1
|
Souchak J, Mohammed NBB, Lau LS, Dimitroff CJ. The role of galectins in mediating the adhesion of circulating cells to vascular endothelium. Front Immunol 2024; 15:1395714. [PMID: 38840921 PMCID: PMC11150550 DOI: 10.3389/fimmu.2024.1395714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Vascular cell adhesion is a complex orchestration of events that commonly feature lectin-ligand interactions between circulating cells, such as immune, stem, and tumor cells, and endothelial cells (ECs) lining post-capillary venules. Characteristically, circulating cell adherence to the vasculature endothelium is initiated through interactions between surface sialo-fucosylated glycoprotein ligands and lectins, specifically platelet (P)- or endothelial (E)-selectin on ECs or between leukocyte (L)-selectin on circulating leukocytes and L-selectin ligands on ECs, culminating in circulating cell extravasation. This lectin-ligand interplay enables the migration of immune cells into specific tissue sites to help maintain effective immunosurveillance and inflammation control, the homing of stem cells to bone marrow or tissues in need of repair, and, unfortunately, in some cases, the dissemination of circulating tumor cells (CTCs) to distant metastatic sites. Interestingly, there is a growing body of evidence showing that the family of β-galactoside-binding lectins, known as galectins, can also play pivotal roles in the adhesion of circulating cells to the vascular endothelium. In this review, we present contemporary knowledge on the significant roles of host- and/or tumor-derived galectin (Gal)-3, -8, and -9 in facilitating the adhesion of circulating cells to the vascular endothelium either directly by acting as bridging molecules or indirectly by triggering signaling pathways to express adhesion molecules on ECs. We also explore strategies for interfering with galectin-mediated adhesion to attenuate inflammation or hinder the metastatic seeding of CTCs, which are often rich in galectins and/or their glycan ligands.
Collapse
Affiliation(s)
- Joseph Souchak
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Lee Seng Lau
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
2
|
Rapoport EM, Ryzhov IM, Slivka EV, Korchagina EY, Popova IS, Khaidukov SV, André S, Kaltner H, Gabius HJ, Henry S, Bovin NV. Galectin-9 as a Potential Modulator of Lymphocyte Adhesion to Endothelium via Binding to Blood Group H Glycan. Biomolecules 2023; 13:1166. [PMID: 37627231 PMCID: PMC10452646 DOI: 10.3390/biom13081166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The recruitment of leukocytes from blood is one of the most important cellular processes in response to tissue damage and inflammation. This multi-step process includes rolling leukocytes and their adhesion to endothelial cells (EC), culminating in crossing the EC barrier to reach the inflamed tissue. Galectin-8 and galectin-9 expressed on the immune system cells are part of this process and can induce cell adhesion via binding to oligolactosamine glycans. Similarly, these galectins have an order of magnitude higher affinity towards glycans of the ABH blood group system, widely represented on ECs. However, the roles of gal-8 and gal-9 as mediators of adhesion to endothelial ABH antigens are practically unknown. In this work, we investigated whether H antigen-gal-9-mediated adhesion occurred between Jurkat cells (of lymphocytic origin and known to have gal-9) and EA.hy 926 cells (immortalized endothelial cells and known to have blood group H antigen). Baseline experiments showed that Jurkat cells adhered to EA.hy 926 cells; however when these EA.hy 926 cells were defucosylated (despite the unmasking of lactosamine chains), adherence was abolished. Restoration of fucosylation by insertion of synthetic glycolipids in the form of H (type 2) trisaccharide Fucα1-2Galβ1-4GlcNAc restored adhesion. The degree of lymphocyte adhesion to native and the "H-restored" (glycolipid-loaded) EA.hy 926 cells was comparable. If this gal-9/H (type 2) interaction is similar to processes that occur in vivo, this suggests that only the short (trisaccharide) H glycan on ECs is required.
Collapse
Affiliation(s)
- Eugenia M. Rapoport
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Ivan M. Ryzhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Ekaterina V. Slivka
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Elena Yu. Korchagina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Inna S. Popova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Sergey V. Khaidukov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
| | - Sabine André
- Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinär Str. 13, D-80539 Munich, Germany (H.K.)
| | - Herbert Kaltner
- Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinär Str. 13, D-80539 Munich, Germany (H.K.)
| | - Hans-J. Gabius
- Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Veterinär Str. 13, D-80539 Munich, Germany (H.K.)
| | - Stephen Henry
- School of Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Nicolai V. Bovin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia; (E.M.R.); (I.S.P.); (S.V.K.)
- School of Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
3
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
4
|
Cajas D, Guajardo E, Jara-Rosales S, Nuñez C, Vargas R, Carriel V, Campos A, Milla L, Orihuela P, Godoy-Guzman C. Molecules involved in the sperm interaction in the human uterine tube: a histochemical and immunohistochemical approach. Eur J Histochem 2023; 67. [PMID: 37052420 PMCID: PMC10141343 DOI: 10.4081/ejh.2023.3513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023] Open
Abstract
In humans, even where millions of spermatozoa are deposited upon ejaculation in the vagina, only a few thousand enter the uterine tube (UT). Sperm transiently adhere to the epithelial cells lining the isthmus reservoir, and this interaction is essential in coordinating the availability of functional spermatozoa for fertilization. The binding of spermatozoa to the UT epithelium (mucosa) occurs due to interactions between cell-adhesion molecules on the cell surfaces of both the sperm and the epithelial cell. However, in humans, there is little information about the molecules involved. The aim of this study was to perform a histological characterization of the UT focused on determining the tissue distribution and deposition of some molecules associated with cell adhesion (F-spondin, galectin-9, osteopontin, integrin αV/β3) and UT's contractile activity (TNFα-R1, TNFα-R2) in the follicular and luteal phases. Our results showed the presence of galectin-9, F-spondin, osteopontin, integrin αV/β3, TNFα-R1, and TNFα-R2 in the epithelial cells in ampullar and isthmic segments during the menstrual cycle. Our results suggest that these molecules could form part of the sperm-UT interactions. Future studies will shed light on the specific role of each of the identified molecules.
Collapse
Affiliation(s)
- David Cajas
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH), Santiago.
| | - Emanuel Guajardo
- Facultad de Química y Biología, Laboratorio de Inmunología de la Reproducción, Universidad de Santiago de Chile (USACH); Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago.
| | - Sergio Jara-Rosales
- Escuela de Obstetricia, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Sede Los Leones, Santiago; Programa de Doctorado en Enfermedades Crónicas, Universidad San Sebastián, Sede Los Leones.
| | - Claudio Nuñez
- Servicio de Ginecología y Obstetricia, Hospital San José, Santiago.
| | - Renato Vargas
- Servicio de Ginecología y Obstetricia, Hospital San José, Santiago.
| | - Victor Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, Spain; Instituto de Investigación Biosanitaria ibis.GRANADA, Granada.
| | - Antonio Campos
- Department of Histology, Tissue Engineering Group, University of Granada, Spain; Instituto de Investigación Biosanitaria ibis.GRANADA, Granada.
| | - Luis Milla
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH), Santiago.
| | - Pedro Orihuela
- Facultad de Química y Biología, Laboratorio de Inmunología de la Reproducción, Universidad de Santiago de Chile (USACH), Santiago.
| | - Carlos Godoy-Guzman
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH); Universidad de Santiago de Chile (USACH), Escuela de Medicina, Unidad de Histología, Santiago.
| |
Collapse
|
5
|
Cho SH, Park JY, Kim CH. Systemic Lectin-Glycan Interaction of Pathogenic Enteric Bacteria in the Gastrointestinal Tract. Int J Mol Sci 2022; 23:1451. [PMID: 35163392 PMCID: PMC8835900 DOI: 10.3390/ijms23031451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Microorganisms, such as bacteria, viruses, and fungi, and host cells, such as plants and animals, have carbohydrate chains and lectins that reciprocally recognize one another. In hosts, the defense system is activated upon non-self-pattern recognition of microbial pathogen-associated molecular patterns. These are present in Gram-negative and Gram-positive bacteria and fungi. Glycan-based PAMPs are bound to a class of lectins that are widely distributed among eukaryotes. The first step of bacterial infection in humans is the adhesion of the pathogen's lectin-like proteins to the outer membrane surfaces of host cells, which are composed of glycans. Microbes and hosts binding to each other specifically is of critical importance. The adhesion factors used between pathogens and hosts remain unknown; therefore, research is needed to identify these factors to prevent intestinal infection or treat it in its early stages. This review aims to present a vision for the prevention and treatment of infectious diseases by identifying the role of the host glycans in the immune response against pathogenic intestinal bacteria through studies on the lectin-glycan interaction.
Collapse
Affiliation(s)
- Seung-Hak Cho
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju 28160, Korea; (S.-H.C.); (J.-y.P.)
| | - Jun-young Park
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju 28160, Korea; (S.-H.C.); (J.-y.P.)
| | - Cheorl-Ho Kim
- Glycobiology Unit, Department of Biological Science, Sung Kyunkwan University, Suwon 16419, Korea
| |
Collapse
|
6
|
Jiang W, Chetry M, Pan S, Wang L, Zhu X. Overexpression of Galectin10 Predicts a Better Prognosis in Human Ovarian Cancer. J Cancer 2021; 12:2654-2664. [PMID: 33854625 PMCID: PMC8040711 DOI: 10.7150/jca.54595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
To explore the prognosis of Galectins (LGALS) expression on patients with ovarian cancer, the prognosis of LGALS members in ovarian cancer was retrieved and analyzed by using 'Kaplan-Meier plotter' database. The relation of LGALS to overall survival (OS) was evaluated according to histological subtypes, clinical stages and pathological grade. Quantitative real-time polymerase chain reaction and western blot were used to detect the mRNA and protein expression of LGALS in ovarian cancer and normal ovarian cells. Immunohistochemistry was applied to evaluate the different expression of LGALS between cancer and normal tissues. In total patients with ovarian cancer, LGALS4, LGALS8, LGALS10 and LGALS13 mRNA levels were related to a better OS, and LGALS1 to a worse OS. LGALS1 predicted a worse OS in women with serous, stages III+IV or grade II ovarian cancer. LGALS4 predicted a better OS in patients with endometrioid, stages I+II or grade III ovarian cancer. LGALS10 predicted a longer OS in females with serous, all stages, or grade III cancer. LGALS8 overexpression was related to a better OS in all stages. Notably, mRNA and protein expressions of LGALS4, LGALS10 and LGALS13 were decreased in cancer cells than those in normal cells (P<0.05). Additionally, the immunostaining score of LGALS8, LGALS10 and LGALS13 expression were lower but LGALS1 was higher in caner tissues than those in normal tissues (P<0.001). In conclusion, LGALS10 possibly is a valuable biomarker for predicting a favorable prognosis in patients with ovarian cancer, especially with serous, all stages and grade III cancer.
Collapse
Affiliation(s)
| | | | | | | | - Xueqiong Zhu
- Department of obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
7
|
Setayesh T, Colquhoun SD, Wan YJY. Overexpression of Galectin-1 and Galectin-3 in hepatocellular carcinoma. LIVER RESEARCH 2020; 4:173-179. [PMID: 34567824 PMCID: PMC8460053 DOI: 10.1016/j.livres.2020.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Galectins (Gals) are evolutionarily conserved proteins that bind to β-galactoside containing glycans. Abnormal expression of Gals is associated with the development, progression, and metastasis of different types of cancer. Among the 11 Gals identified in humans, the roles of Gal-1 and Gal-3 have been extensively investigated in various tumors. Here, we summarize the roles of overly expressed Gal-1 and Gal-3 in the pathogenesis of hepatocellular carcinoma (HCC). The overexpression of Gal-1 and Gal-3 correlates with tumor growth, HCC cell migration and invasion, tumor aggressiveness, metastasis, and poor prognosis. A potentially promising future treatment strategy for HCC may include the combination of immunotherapy with Gal-1 inhibition. Additional research is warranted to investigate targeting Gal-1 and Gal-3 for HCC treatment.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | | | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA,Corresponding author. Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
8
|
Si Y, Yao Y, Jaramillo Ayala G, Li X, Han Q, Zhang W, Xu X, Tai G, Mayo KH, Zhou Y, Su J. Human galectin-16 has a pseudo ligand binding site and plays a role in regulating c-Rel-mediated lymphocyte activity. Biochim Biophys Acta Gen Subj 2020; 1865:129755. [PMID: 33011338 DOI: 10.1016/j.bbagen.2020.129755] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/13/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The structure of human galectin-16 (Gal-16) has yet to be solved, and its function has remained elusive. METHODS X-ray crystallography was used to determine the atomic structures of Gal-16 and two of its mutants. The Gal-16 oligomer state was investigated by gel filtration, its hemagglutination activity was determined along with its ability to bind lactose using ITC. The cellular distribution of EGFP-tagged Gal-16 in various cell lines was also investigated, and the interaction between Gal-16 and c-Rel was assessed by pull-down studies, microscale thermophoresis and immunofluorescence. RESULTS Unlike other galectins, Gal-16 lacks the ability to bind the β-galactoside lactose. Lactose binding could be regained by replacing an arginine (Arg55) with asparagine, as shown in the crystal structures of two lactose-loaded Gal-16 mutants (R55N and R55N/H57R). Gal-16 was also shown to be monomeric by gel filtration, as well as in crystal structures. Thus, this galectin could not induce erythrocyte agglutination. EGFP-tagged Gal-16 was found to be localized mostly in the nucleus of various cell types, and can interact with c-Rel, a member of NF-κB family. CONCLUSIONS Gal-16 exists as a monomer and its ligand binding is significantly different from that of other prototype galectins, suggesting that it has a novel function(s). The interaction between Gal-16 and c-Rel indicates that Gal-16 may regulate signal transduction pathways via the c-Rel hub in B or T cells at the maternal-fetal interface. GENERAL SIGNIFICANCE The present study lays the foundation for further studies into the cellular and physiological functions of Gal-16.
Collapse
Affiliation(s)
- Yunlong Si
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuan Yao
- Media Academy, Jilin Engineering Normal University, Changchun, China
| | - Gabriela Jaramillo Ayala
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xumin Li
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Qiuyu Han
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Wenlu Zhang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejiao Xu
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
9
|
Su J, Gao J, Si Y, Cui L, Song C, Wang Y, Wu R, Tai G, Zhou Y. Galectin-10: a new structural type of prototype galectin dimer and effects on saccharide ligand binding. Glycobiology 2017; 28:159-168. [DOI: 10.1093/glycob/cwx107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/21/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jiyong Su
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jin Gao
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yunlong Si
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Linlin Cui
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Chenyang Song
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yue Wang
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Runjie Wu
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guihua Tai
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Jilin Province Key Laboratory for Chemistry and Biology of Natural Drugs in Changbai Mountain, The School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
10
|
Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker. Int J Mol Sci 2016; 17:ijms17122088. [PMID: 27973456 PMCID: PMC5187888 DOI: 10.3390/ijms17122088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Galectin-8 (Gal-8) plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD) connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate overall Gal-8 function, including multimerization and biological activity. Here, we crystallized the Gal-8 N-terminal CRD with the peptide linker using a crystallization condition that contains Ni2+. The Ni2+ ion was found to be complexed between two CRDs via crystal packing contacts. The coordination between Ni2+ and Asp25 plays an indirect role in determining the structure of β-strand F0 and in influencing the linker conformation which could not be defined due to its dynamic nature. The linker was also shortened in situ and crystallized under a different condition, leading to a higher resolution structure refined to 1.08 Å. This crystal structure allowed definition of a short portion of the linker interacting with the Gal-8 N-terminal tail via ionic interactions and hydrogen bonds. Observation of two Gal-8 N-terminal CRD structures implies that the N-terminal tail and the linker may influence each other’s conformation. In addition, under specific crystallization conditions, glycerol could replace lactose and was observed at the carbohydrate binding site. However, glycerol did not show inhibition activity in hemagglutination assay.
Collapse
|
11
|
Si Y, Feng S, Gao J, Wang Y, Zhang Z, Meng Y, Zhou Y, Tai G, Su J. Human galectin-2 interacts with carbohydrates and peptides non-classically: new insight from X-ray crystallography and hemagglutination. Acta Biochim Biophys Sin (Shanghai) 2016; 48:939-947. [PMID: 27563008 DOI: 10.1093/abbs/gmw089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022] Open
Abstract
Galectin-2 (Gal-2) plays a role in cancer, myocardial infarction, immune response, and gastrointestinal tract diseases. The only reported crystal structure of Gal-2 shows that it is a dimer in which the monomer subunits have almost identical structures, each binding with one molecule of lactose. In this study, we crystallized Gal-2 under new conditions that produced three crystal structures. In each Gal-2 dimer structure, lactose was shown to be bound to only one of the carbohydrate recognition domain subunits. In solution studies, the thermal shift assay demonstrated that inequivalent monomer subunits in the Gal-2 dimer become equivalent upon ligand binding. In addition, galectin-mediated erythrocyte agglutination assays using lactose and larger complex polysaccharides as inhibitors showed the structural differences between Gal-1 and Gal-2. Overall, our results reveal some novel aspects to the structural differentiation in Gal-2 and expand the potential for different types of molecular interactions that may be specific to this lectin.
Collapse
Affiliation(s)
- Yunlong Si
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Shiqiong Feng
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jin Gao
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yue Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zhongyu Zhang
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yue Meng
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Guihua Tai
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jiyong Su
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
12
|
Bhat R, Chakraborty M, Glimm T, Stewart TA, Newman SA. Deep phylogenomics of a tandem-repeat galectin regulating appendicular skeletal pattern formation. BMC Evol Biol 2016; 16:162. [PMID: 27538950 PMCID: PMC4989294 DOI: 10.1186/s12862-016-0729-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A multiscale network of two galectins Galectin-1 (Gal-1) and Galectin-8 (Gal-8) patterns the avian limb skeleton. Among vertebrates with paired appendages, chondrichthyan fins typically have one or more cartilage plates and many repeating parallel endoskeletal elements, actinopterygian fins have more varied patterns of nodules, bars and plates, while tetrapod limbs exhibit tandem arrays of few, proximodistally increasing numbers of elements. We applied a comparative genomic and protein evolution approach to understand the origin of the galectin patterning network. Having previously observed a phylogenetic constraint on Gal-1 structure across vertebrates, we asked whether evolutionary changes of Gal-8 could have critically contributed to the origin of the tetrapod pattern. RESULTS Translocations, duplications, and losses of Gal-8 genes in Actinopterygii established them in different genomic locations from those that the Sarcopterygii (including the tetrapods) share with chondrichthyans. The sarcopterygian Gal-8 genes acquired a potentially regulatory non-coding motif and underwent purifying selection. The actinopterygian Gal-8 genes, in contrast, did not acquire the non-coding motif and underwent positive selection. CONCLUSION These observations interpreted through the lens of a reaction-diffusion-adhesion model based on avian experimental findings can account for the distinct endoskeletal patterns of cartilaginous, ray-finned, and lobe-finned fishes, and the stereotypical limb skeletons of tetrapods.
Collapse
Affiliation(s)
- Ramray Bhat
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Present Address: Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012 India
| | - Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 USA
| | - Tilmann Glimm
- Department of Mathematics, Western Washington University, Bellingham, WA 98229 USA
| | - Thomas A. Stewart
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520 USA
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Stuart A. Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|
13
|
Menachem A, Bodner O, Pastor J, Raz A, Kloog Y. Inhibition of malignant thyroid carcinoma cell proliferation by Ras and galectin-3 inhibitors. Cell Death Discov 2015; 1:15047. [PMID: 27551476 PMCID: PMC4979473 DOI: 10.1038/cddiscovery.2015.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022] Open
Abstract
Anaplastic Thyroid carcinoma is an extremely aggressive solid tumor that resists most treatments and is almost always fatal. Galectin-3 (Gal-3) is an important marker for thyroid carcinomas and a scaffold of the K-Ras protein. S-trans, transfarnesylthiosalicylic acid (FTS; Salirasib) is a Ras inhibitor that inhibits the active forms of Ras proteins. Modified citrus pectin (MCP) is a water-soluble citrus-fruit-derived polysaccharide fiber that specifically inhibits Gal-3. The aim of this study was to develop a novel drug combination designed to treat aggressive anaplastic thyroid carcinoma. Combined treatment with FTS and MCP inhibited anaplastic thyroid cells proliferation in vitro by inducing cell cycle arrest and increasing apoptosis rate. Immunoblot analysis revealed a significant decrease in Pan-Ras, K-Ras, Ras-GTP, p-ERK, p53, and Gal-3 expression levels and significant increase in p21 expression levels. In nude mice, treatment with FTS and MCP inhibited tumor growth. Levels of Gal-3, K-Ras-GTP, and p-ERK were significantly decreased. To conclude, our results suggest K-Ras and Gal-3 as potential targets in anaplastic thyroid tumors and herald a novel treatment for highly aggressive anaplastic thyroid carcinoma.
Collapse
Affiliation(s)
- A Menachem
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv, Israel
| | - O Bodner
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv, Israel
| | - J Pastor
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv, Israel
| | - A Raz
- The Departments of Oncology and Pathology, School of Medicine, The Karmanos Cancer Institute, Wayne State University , Detroit, MI, USA
| | - Y Kloog
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
14
|
Timoshenko AV. Towards molecular mechanisms regulating the expression of galectins in cancer cells under microenvironmental stress conditions. Cell Mol Life Sci 2015; 72:4327-40. [PMID: 26245305 PMCID: PMC11113283 DOI: 10.1007/s00018-015-2008-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/12/2015] [Accepted: 07/30/2015] [Indexed: 02/07/2023]
Abstract
Galectins, a family of soluble β-galactoside-binding proteins, serve as mediators of fundamental biological processes, such as cell growth, differentiation, adhesion, migration, survival, and death. The purpose of this review is to summarize the current knowledge regarding the ways in which the expression of individual galectins differs in normal and transformed human cells exposed to various stimuli mimicking physiological and pathological microenvironmental stress conditions. A conceptual point is being made and grounded that the modulation of galectin expression profiles is a key aspect of cellular stress responses. Moreover, this modulation might be precisely regulated at transcriptional and post-transcriptional levels in the context of non-overlapping transcription factors and miRNAs specific to galectins.
Collapse
Affiliation(s)
- Alexander V Timoshenko
- Department of Biology, Western University, 1151 Richmond Street, London, ON, N6A 5B7, Canada.
| |
Collapse
|
15
|
Piccolo E, Tinari N, D'Addario D, Rossi C, Iacobelli V, La Sorda R, Lattanzio R, D'Egidio M, Di Risio A, Piantelli M, Natali PG, Iacobelli S. Prognostic relevance of LGALS3BP in human colorectal carcinoma. J Transl Med 2015. [PMID: 26219351 PMCID: PMC4518516 DOI: 10.1186/s12967-015-0606-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background A previous report has shown that LGALS3BP (also known as 90K or Mac-2 BP) has antitumor activity in colorectal cancer (CRC) via suppression of Wnt signalling with a novel mechanism of ISGylation-dependent ubiquitination of β-catenin. The role of LGALS3BP in CRC prognosis was investigated. Methods The role of LGALS3BP on CRC progression and clinical prognosis was analyzed by combining cell cultures, in vitro assays, and immunohistochemistry. Results Silencing of LGALS3BP in HCT-116 human colon cancer cells resulted in enhanced β-catenin expression that was reversed by addition of human recombinant LGALS3BP. Moreover, intra-tumor delivery of LGALS3BP reduced tumor growth of xenografts originating from LGALS3BP-silenced HCT-116 cells. Finally, in a series of 196 CRC patients, LGALS3BP expression in tumor tissue associated with clinical outcome. Patients with high LGALS3BP expression had lower risk of relapse and a longer overall survival time than those with low LGALS3BP expression. Multivariate analyses confirmed LGALS3BP expression status as the only independent prognostic factor of survival. Conclusions These results provide evidence that low expression of LGALS3BP participates in malignant progression of CRC and implicates poor prognosis, highlighting its augmentation as a potential therapeutic approach.
Collapse
Affiliation(s)
- Enza Piccolo
- MediaPharma s.r.l., Via dei Vestini, 31, Chieti, Italy.
| | - Nicola Tinari
- MediaPharma s.r.l., Via dei Vestini, 31, Chieti, Italy. .,Department of Experimental and Clinical Sciences, "G. D'Annunzio" University and Foundation, Chieti, Italy.
| | - Domenica D'Addario
- Department of Experimental and Clinical Sciences, "G. D'Annunzio" University and Foundation, Chieti, Italy.
| | - Cosmo Rossi
- Department of Experimental and Clinical Sciences, "G. D'Annunzio" University and Foundation, Chieti, Italy.
| | | | | | - Rossano Lattanzio
- Department of Experimental and Clinical Sciences, "G. D'Annunzio" University and Foundation, Chieti, Italy.
| | - Maurizia D'Egidio
- Department of Experimental and Clinical Sciences, "G. D'Annunzio" University and Foundation, Chieti, Italy.
| | | | - Mauro Piantelli
- MediaPharma s.r.l., Via dei Vestini, 31, Chieti, Italy. .,Department of Experimental and Clinical Sciences, "G. D'Annunzio" University and Foundation, Chieti, Italy.
| | | | - Stefano Iacobelli
- MediaPharma s.r.l., Via dei Vestini, 31, Chieti, Italy. .,Department of Experimental and Clinical Sciences, "G. D'Annunzio" University and Foundation, Chieti, Italy.
| |
Collapse
|
16
|
Than NG, Romero R, Balogh A, Karpati E, Mastrolia SA, Staretz-Chacham O, Hahn S, Erez O, Papp Z, Kim CJ. Galectins: Double-edged Swords in the Cross-roads of Pregnancy Complications and Female Reproductive Tract Inflammation and Neoplasia. J Pathol Transl Med 2015; 49:181-208. [PMID: 26018511 PMCID: PMC4440931 DOI: 10.4132/jptm.2015.02.25] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Galectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance. Some galectins are also central to the regulation of angiogenesis, cell migration and invasion. Expression and functional data provide convincing evidence that, due to these functions, galectins play key roles in shared and unique pathways of normal embryonic and placental development as well as oncodevelopmental processes in tumorigenesis. Therefore, galectins may sometimes act as double-edged swords since they have beneficial but also harmful effects for the organism. Recent advances facilitate the use of galectins as biomarkers in obstetrical syndromes and in various malignancies, and their therapeutic applications are also under investigation. This review provides a general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eva Karpati
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
- Department of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | | | - Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Pathology, Wayne State University, Detroit, MI, USA
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 438] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
18
|
Mirandola L, Nguyen DD, Rahman RL, Grizzi F, Yuefei Y, Figueroa JA, Jenkins MR, Cobos E, Chiriva-Internati M. Anti-galectin-3 therapy: a new chance for multiple myeloma and ovarian cancer? Int Rev Immunol 2014; 33:417-427. [PMID: 24801755 DOI: 10.3109/08830185.2014.911855] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 12/23/2022]
Abstract
Here we review the role of Galectins in the molecular pathogenesis of multiple myeloma and ovarian cancer, with a special focus on Glectin-3. Multiple myeloma is the second most common hematologic malignancy worldwide. Because the pathogenesis of multiple myeloma is still incompletely understood, there is no ultimately effective cure, and this cancer results fatal. Ovarian cancer is the most lethal gynecologic malignancy worldwide. Due to the lack of screening techniques for early detection, patients are mostly diagnosed with advanced disease, which results ultimately fatal. Multiple myeloma and ovarian cancer have different biologies, but they share a strong dependence on adhesion with extracellular matrix and other cells. Galectin-3 plays a key role in regulating such adhesive abilities of tumor cells. Here we discuss the outcomes and possible mechanism of action of a truncated, dominant negative form of Galectin-3, Galectin-3C, in these malignancies. Overall, we report that Galectin-3C is a promising new compound for effective adjuvant therapies in advanced, refractory multiple myeloma and ovarian cancer.
Collapse
Affiliation(s)
- Leonardo Mirandola
- 1Department of Internal Medicine at the Division of Hematology & Oncology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, Lubbock, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bhat R, Chakraborty M, Mian IS, Newman SA. Structural divergence in vertebrate phylogeny of a duplicated prototype galectin. Genome Biol Evol 2014; 6:2721-30. [PMID: 25260584 PMCID: PMC4224342 DOI: 10.1093/gbe/evu215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Prototype galectins, endogenously expressed animal lectins with a single carbohydrate recognition domain, are well-known regulators of tissue properties such as growth and adhesion. The earliest discovered and best studied of the prototype galectins is Galectin-1 (Gal-1). In the Gallus gallus (chicken) genome, Gal-1 is represented by two homologs: Gal-1A and Gal-1B, with distinct biochemical properties, tissue expression, and developmental functions. We investigated the origin of the Gal-1A/Gal-1B divergence to gain insight into when their developmental functions originated and how they could have contributed to vertebrate phenotypic evolution. Sequence alignment and phylogenetic tree construction showed that the Gal-1A/Gal-1B divergence can be traced back to the origin of the sauropsid lineage (consisting of extinct and extant reptiles and birds) although lineage-specific duplications also occurred in the amphibian and actinopterygian genomes. Gene synteny analysis showed that sauropsid gal-1b (the gene for Gal-1B) and its frog and actinopterygian gal-1 homologs share a similar chromosomal location, whereas sauropsid gal-1a has translocated to a new position. Surprisingly, we found that chicken Gal-1A, encoded by the translocated gal-1a, was more similar in its tertiary folding pattern than Gal-1B, encoded by the untranslocated gal-1b, to experimentally determined and predicted folds of nonsauropsid Gal-1s. This inference is consistent with our finding of a lower proportion of conserved residues in sauropsid Gal-1Bs, and evidence for positive selection of sauropsid gal-1b, but not gal-1a genes. We propose that the duplication and structural divergence of Gal-1B away from Gal-1A led to specialization in both expression and function in the sauropsid lineage.
Collapse
Affiliation(s)
- Ramray Bhat
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Mahul Chakraborty
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - I S Mian
- Department of Computer Science, University College London, United Kingdom
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| |
Collapse
|
20
|
Studies on the role of goat heart galectin-1 as a tool for detecting post-malignant changes in glycosylation pattern. Saudi J Biol Sci 2014; 22:85-9. [PMID: 25561889 DOI: 10.1016/j.sjbs.2014.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 11/22/2022] Open
Abstract
Galectins are mammalian lectins established to play a crucial role in the progression of various cancer types by the virtue of their differential expression in normal and cancerous cells. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its potential role in the detection of post-malignant changes in glycosylation pattern. When exposed to superoxide radicals generated from a pyrogallol auto-oxidation system, GHG-1 treated erythrocyte suspension released higher amount of oxyhemoglobin than the unagglutinated erythrocytes. The extent of erythrocyte hemolysis was found to be directly proportional to concentrations of hypochlorous acid. GHG-1 was used to detect the change in the β-galactoside expression pattern in erythrocyte membrane from human donors suffering from prostate and breast cancer. No significant change was observed in the hemolysis of lectin agglutinated erythrocytes collected from pre-operated breast cancer patients, whereas significant increase was observed in normal healthy control and post-operated samples. Findings of this study proclaim GHG-1 as an important tool for the detection of post-malignant changes in glycosylation pattern.
Collapse
|
21
|
Rachel H, Chang-Chun L. Recent advances toward the development of inhibitors to attenuate tumor metastasis via the interruption of lectin-ligand interactions. Adv Carbohydr Chem Biochem 2014; 69:125-207. [PMID: 24274369 DOI: 10.1016/b978-0-12-408093-5.00005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant glycosylation is a well-recognized phenomenon that occurs on the surface of tumor cells, and the overexpression of a number of ligands (such as TF, sialyl Tn, and sialyl Lewis X) has been correlated to a worse prognosis for the patient. These unique carbohydrate structures play an integral role in cell-cell communication and have also been associated with more metastatic cancer phenotypes, which can result from binding to lectins present on cell surfaces. The most well studied metastasis-associated lectins are the galectins and selectins, which have been correlated to adhesion, neoangiogenesis, and immune-cell evasion processes. In order to slow the rate of metastatic lesion formation, a number of approaches have been successfully developed which involve interfering with the tumor lectin-substrate binding event. Through the generation of inhibitors, or by attenuating lectin and/or carbohydrate expression, promising results have been observed both in vitro and in vivo. This article briefly summarizes the involvement of lectins in the metastatic process and also describes different approaches used to prevent these undesirable carbohydrate-lectin binding events, which should ultimately lead to improvement in current cancer therapies.
Collapse
Affiliation(s)
- Hevey Rachel
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
22
|
Bacigalupo ML, Manzi M, Rabinovich GA, Troncoso MF. Hierarchical and selective roles of galectins in hepatocarcinogenesis, liver fibrosis and inflammation of hepatocellular carcinoma. World J Gastroenterol 2013; 19:8831-8849. [PMID: 24379606 PMCID: PMC3870534 DOI: 10.3748/wjg.v19.i47.8831] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/02/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a global health problem. Infections with hepatitis B or C virus, non-alcoholic steatohepatitis disease, alcohol abuse, or dietary exposure to aflatoxin are the major risk factors to the development of this tumor. Regardless of the carcinogenic insult, HCC usually develops in a context of cirrhosis due to chronic inflammation and advanced fibrosis. Galectins are a family of evolutionarily-conserved proteins defined by at least one carbohydrate recognition domain with affinity for β-galactosides and conserved sequence motifs. Here, we summarize the current literature implicating galectins in the pathogenesis of HCC. Expression of "proto-type" galectin-1, "chimera-type" galectin-3 and "tandem repeat-type" galectin-4 is up-regulated in HCC cells compared to their normal counterparts. On the other hand, the "tandem-repeat-type" lectins galectin-8 and galectin-9 are down-regulated in tumor hepatocytes. The abnormal expression of these galectins correlates with tumor growth, HCC cell migration and invasion, tumor aggressiveness, metastasis, postoperative recurrence and poor prognosis. Moreover, these galectins have important roles in other pathological conditions of the liver, where chronic inflammation and/or fibrosis take place. Galectin-based therapies have been proposed to attenuate liver pathologies. Further functional studies are required to delineate the precise molecular mechanisms through which galectins contribute to HCC.
Collapse
|
23
|
|
24
|
Kim HJ, Do IG, Jeon HK, Cho YJ, Park YA, Choi JJ, Sung CO, Lee YY, Choi CH, Kim TJ, Kim BG, Lee JW, Bae DS. Galectin 1 expression is associated with tumor invasion and metastasis in stage IB to IIA cervical cancer. Hum Pathol 2012; 44:62-8. [PMID: 22939954 DOI: 10.1016/j.humpath.2012.04.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 01/01/2023]
Abstract
Galectin 1 is a 14-kd laminin-binding lectin involved in important biologic mechanisms of tumors, including neoplastic transformation, cell survival, angiogenesis, cell proliferation, and metastasis. In this study, we investigated the role of galectin 1 in cell survival and metastasis in cervical cancer. The expression of galectin 1 was determined in 73 formalin-fixed, paraffin-embedded cervical cancer tissues using an immunohistochemical method and compared with clinicopathologic risk factors for recurrence after surgery. To evaluate the role of galectin 1 in cell proliferation and invasion, we performed proliferation and invasion assays with galectin 1 small interfering RNA (siRNA) using cervical cancer cell lines, including HeLa and SiHa cells. Immunohistochemical analysis revealed that galectin 1 expression was found in most peritumoral stroma samples (72/73; 98.6%). Galectin 1 expression was significantly correlated with the depth of invasion in the cervix (P=.015) and lymph node metastasis (P=.045) on univariate analysis. When progression-free survival of all of the patients studied was analyzed based upon galectin 1 expression, galectin 1 expression was not correlated with progression-free survival (P=.32). Down-regulation of galectin 1 using small interfering RNA resulted in the inhibition of cell growth and proliferation of HeLa and SiHa cells. Moreover, the ability of cells to invade was significantly reduced by galectin 1 small interfering RNA. Our results revealed that high galectin 1 expression in peritumoral stroma was significantly correlated with depth of invasion in cervical lesions and lymph node metastasis of cervical cancer and that galectin 1 may be functionally involved in cell proliferation and invasion.
Collapse
Affiliation(s)
- Ha-Jeong Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lonin IS, Grin MA, Lakhina AA, Mironov AF. Synthesis of chlorophyll a glycoconjugates using olefin cross-metathesis. MENDELEEV COMMUNICATIONS 2012. [DOI: 10.1016/j.mencom.2012.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Vokhmyanina OA, Rapoport EM, Ryzhov IM, Korchagina EY, Pazynina GV, Severov VV, Kaltner H, André S, Gabius HJ, Bovin NV. Carbohydrate specificity of chicken and human tandem-repeat-type galectins-8 in composition of cells. BIOCHEMISTRY (MOSCOW) 2012; 76:1185-92. [PMID: 22098245 DOI: 10.1134/s0006297911100130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The network of adhesion/growth-regulatory galectins in chicken (chicken galectin, CG) has only one tandem-repeat-type protein, CG8. Using a cell-based assay and probing galectin reactivity with a panel of fluorescent neoglycoconjugates (glycoprobes), its glycan-binding profile was determined. For internal validation, human galectin-8 (HG8) was tested. In comparison to HG8, CG8 showed a rather similar specificity: both galectins displayed high affinity to blood group ABH antigens as well as to 3'-sialylated and 3'-sulfated lactosamine chains. The most remarkable difference was found to be an ability of HG8 (but not CG8) to bind the disaccharide Galβ1-3GlcNAc (Le(c)) as well as branched and linear oligolactosamines. The glycan-binding profile was shown to be influenced by glycocalix of the cell, where the galectin is anchored. Particularly, glycosidase treatment of galectin-loaded cells led to the change of the profile. Thus, we suppose the involvement of cis-glycans in the interaction of cell-anchored galectins with external glycoconjugates.
Collapse
Affiliation(s)
- O A Vokhmyanina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cederfur C, Malmström J, Nihlberg K, Block M, Breimer ME, Bjermer L, Westergren-Thorsson G, Leffler H. Glycoproteomic identification of galectin-3 and -8 ligands in bronchoalveolar lavage of mild asthmatics and healthy subjects. Biochim Biophys Acta Gen Subj 2012; 1820:1429-36. [PMID: 22240167 DOI: 10.1016/j.bbagen.2011.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND Galectins, a family of small carbohydrate binding proteins, have been implicated in regulation of inflammatory reactions, including asthma and fibrosis in the lungs. Galectins are found in cells of the airways and in airway secretions, but their glycoprotein ligands there have only been studied to a very limited extent. METHODS Bronchoalveolar lavage (BAL) fluid from mild asthmatics and healthy volunteers were fractionated by affinity chromatography on the immobilized galectins. Total (10-30 μg) and galectin bound (~1-10 μg) protein fractions were identified, quantified and compared using shot-gun proteomics and spectral counts. RESULTS About 175 proteins were identified in unfractionated BAL-fluid, and about 100 bound galectin-3 and 60 bound galectin-8. These included plasma glycoproteins, and typical airway proteins such as SP-A2, PIGR and SP-B. The concentration of galectin-binding proteins was 100-300 times higher than the concentration of galectins in BAL. CONCLUSION The low relative concentration of galectins in BAL makes it likely that functional interactions with glycoproteins occur at sites rich in galectin, such as cells of the airways, rather than the extracellular fluid itself. The profile of galectin bound proteins differed between samples from asthma patients and healthy subjects and correlated with the presence of fibroblasts or eosinophils. This included appearance of a specific galectin-8-binding glycoform of haptoglobin, previously shown to be increased in serum in other inflammatory conditions. GENERAL SIGNIFICANCE It is technically feasible to identify galectin-binding glycoproteins in low concentration patient samples such as BAL-fluid, to generate biomedically interesting results. This article is part of a Special Issue entitled Glycoproteomics.
Collapse
Affiliation(s)
- Cecilia Cederfur
- MIG (Microbiology, Immunology, Glycobiology), Dept. of Laboratory Medicine Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Carlsson MC, Bakoush O, Tengroth L, Kilsgård O, Malmström J, Hellmark T, Segelmark M, Leffler H. Galectin-8 in IgA nephritis: decreased binding of IgA by galectin-8 affinity chromatography and associated increased binding in non-IgA serum glycoproteins. J Clin Immunol 2011; 32:246-55. [PMID: 22173878 PMCID: PMC3305883 DOI: 10.1007/s10875-011-9618-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/11/2011] [Indexed: 12/18/2022]
Abstract
Background Immunoglobulin A nephritis (IgAN) is the most common primary glomerulonephritis worldwide. It is caused by accumulation of IgA1-containing immune complexes in the kidney resulting in renal failure, which is thought to be due to altered glycosylation of IgA with a decrease of 2–3-sialylated galactosides (NeuAcα2-3Gal). Purpose The purpose of this study was to analyze whether altered glycosylation of IgA would lead to an altered binding to galectin-8, an endogenous lectin with strong affinity for 2–3-sialylated galactosides. Galectins are a family of β-galactoside-binding proteins; by binding various glycoproteins, they play important roles in the regulation of cellular functions in inflammation and immunity. Hence, an altered binding of IgA to galectin-8 could lead to pathologic immune functions, such as glomerulonephritis. Methods Affinity chromatography of serum glycoproteins on the human sialogalactoside-binding lectin galectin-8N permitted quantitation of bound and unbound fractions, including IgA. Results Analysis of ∼100 IgA nephritis sera showed that the galectin-8N unbound fraction of IgA increased compared to ∼100 controls, consistent with the known loss of galactosylation. A subgroup of ∼15% of the IgAN patients had a ratio of galectin-8 bound/unbound IgA <0.09, not found for any of the controls. Unexpectedly, the galectin-8N-binding fraction of serum glycoproteins other than IgA increased in the sera of IgAN patients but not in controls, suggesting a previously unrecognized change in this disease. Conclusion This is the first study that relates a galectin, an endogenous lectin family, to IgA nephritis and thus should stimulate new avenues of research into the pathophysiology of the disease. Electronic supplementary material The online version of this article (doi:10.1007/s10875-011-9618-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael C. Carlsson
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Sölvegatan 23, 223 62 Lund, Sweden
| | - Omran Bakoush
- Department of Nephrology, Lund University Hospital, Lund, Sweden
| | - Lotta Tengroth
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Sölvegatan 23, 223 62 Lund, Sweden
| | - Ola Kilsgård
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Johan Malmström
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Thomas Hellmark
- Department of Nephrology, Lund University Hospital, Lund, Sweden
| | - Mårten Segelmark
- Department of Nephrology, Lund University Hospital, Lund, Sweden
- Department of Medicine and Health, Linköping University, Linköping, Sweden
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, Sölvegatan 23, 223 62 Lund, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Skåne University Hospital SUS., Lund, Sweden
| |
Collapse
|
29
|
Mobergslien A, Sioud M. Galectin-1 and -3 gene silencing in immature and mature dendritic cells enhances T cell activation and interferon-γ production. J Leukoc Biol 2011; 91:461-7. [PMID: 22167721 DOI: 10.1189/jlb.0711361] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DCs are specialized APCs capable of inducing T cell activation as well as promoting tolerance. Although Gal, a family of β-galactoside-binding proteins, were found to affect immunity, little is known about the contribution of DC-expressed Gal on T cell activation. Here, we show that human imDCs and mDCs constitutively express Gal-1, Gal-3, Gal-8, and Gal-9 at mRNA and protein levels. Two of the most abundant Gal-Gal-1 and Gal-3-were highly expressed and detected on the cell surface of DCs. In contrast to Gal-8, knockdown of Gal-1 or Gal-3 in DCs enhanced allogeneic T cell responses. This was observed with imDCs and mDCs, but the effects were more pronounced with imDCs. Furthermore, allogeneic CD4(+) T cells incubated with Gal-1 or Gal-3 knockdown DCs produced more IFN-γ and less IL-10 than did control cells. The percentage of apoptotic T cells was significantly higher in cultures with control DCs than that with Gal-1 or Gal-3 knockdown DCs. Collectively, the data indicate that DC-expressed Gal-1 and Gal-3 are regulatory molecules that favor the inhibition of T cell activation. Furthermore, the data provide a new mechanism for the poor capacity of imDCs to stimulate T cells.
Collapse
Affiliation(s)
- Anne Mobergslien
- Department of Immunology, Institute for Cancer Research, Radiumhospitalet-Rikshospitalet University Hospital, Montebello, Oslo, Norway
| | | |
Collapse
|
30
|
A Novel Binding Pattern Unique in Two Ligands for One Carbohydrate Recognition Domain in Galectins*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Bian CF, Zhang Y, Sun H, Li DF, Wang DC. Structural basis for distinct binding properties of the human galectins to Thomsen-Friedenreich antigen. PLoS One 2011; 6:e25007. [PMID: 21949831 PMCID: PMC3176802 DOI: 10.1371/journal.pone.0025007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/22/2011] [Indexed: 01/22/2023] Open
Abstract
The Thomsen-Friedenreich (TF or T) antigen, Galβ1-3GalNAcα1-O-Ser/Thr, is the core 1 structure of O-linked mucin type glycans appearing in tumor-associated glycosylation. The TF antigen occurs in about 90% of human cancer cells and is a potential ligand for the human endogenous galectins. It has been reported that human galectin-1 (Gal-1) and galectin-3 (Gal-3) can perform their cancer-related functions via specifically recognizing TF antigen. However, the detailed binding properties have not been clarified and structurally characterized. In this work, first we identified the distinct TF-binding abilities of Gal-1 and Gal-3. The affinity to TF antigen for Gal-3 is two orders of magnitude higher than that for Gal-1. The structures of Gal-3 carbohydrate recognition domain (CRD) complexed with TF antigen and derivatives, TFN and GM1, were then determined. These structures show a unique Glu-water-Arg-water motif-based mode as previously observed in the mushroom galectin AAL. The observation demonstrates that this recognition mode is commonly adopted by TF-binding galectins, either as endogenous or exogenous ones. The detailed structural comparisons between Gal-1 and Gal-3 CRD and mutagenesis experiments reveal that a pentad residue motif (51AHGDA55) at the loop (g1-L4) connecting β-strands 4 and 5 of Gal-1 produces a serious steric hindrance for TF binding. This motif is the main structural basis for Gal-1 with the low affinity to TF antigen. These findings provide the intrinsic structural elements for regulating the TF-binding activity of Gal-1 in some special conditions and also show certain target and approach for mediating some tumor-related bioactivities of human galectins.
Collapse
Affiliation(s)
- Cheng-Feng Bian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ying Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, People's Republic of China
| | - De-Feng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (D-FL); (D-CW)
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (D-FL); (D-CW)
| |
Collapse
|
32
|
Rech C, Rosencrantz RR, Křenek K, Pelantová H, Bojarová P, Römer CE, Hanisch FG, Křen V, Elling L. Combinatorial One-Pot Synthesis of Poly-N-acetyllactosamine Oligosaccharides with Leloir-Glycosyltransferases. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100375] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Öberg CT, Noresson AL, Leffler H, Nilsson UJ. Arene-anion based arginine-binding motif on a galactose scaffold: structure-activity relationships of interactions with arginine-rich galectins. Chemistry 2011; 17:8139-44. [PMID: 21656580 DOI: 10.1002/chem.201003247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Indexed: 12/26/2022]
Abstract
Two series of C3-benzamido and O2-anion-substituted galactopyranosides were synthesized and studied as binders to arginine-rich proteins galectin-1, -3, -7, -8N (N-terminal domain), and -9N (N-terminal domain). The first series had a 4-methylbenzamide at C3 and the anionic O2-substituent was varied. The second series varied the 4-substituent of the C3-benzamide, whereas the anionic O2 substituent was kept as a sulfate. The influence of the O2-anion substituent correlated negatively with the oxygen charge density in case of galectin-1, -3, and -9N. In the second series, the electron-donating capacity of the 4-substituent of the C3-benzamides correlated positively with the magnitude of the affinity enhancement by the 2O-sulfate.
Collapse
|
34
|
Synthesis and galectin-binding activities of mercaptododecyl glycosides containing a terminal β-galactosyl group. Bioorg Med Chem Lett 2011; 21:1265-9. [DOI: 10.1016/j.bmcl.2010.12.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/06/2010] [Accepted: 12/13/2010] [Indexed: 11/21/2022]
|
35
|
Kövér KE, Wéber E, Martinek TA, Monostori E, Batta G. (15)N and (13)C group-selective techniques extend the scope of STD NMR detection of weak host-guest interactions and ligand screening. Chembiochem 2011; 11:2182-7. [PMID: 20878964 DOI: 10.1002/cbic.201000317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Saturation transfer difference (STD) is a valuable tool for studying the binding of small molecules to large biomolecules and for obtaining detailed information on the binding epitopes. Here, we demonstrate that the proposed (15)N/(13)C variants of group-selective, "GS-STD" experiments provide a powerful approach to mapping the binding epitope of a ligand even in the absence of efficient spin diffusion within the target protein. Therefore, these experimental variants broaden the scope of STD studies to smaller and/or more-dynamic targets. The STD spectra obtained in four different experimental setups (selective (1)H STD, (15)N GS-STD, (13)C(Ar) and (13)C(aliphatic) GS-STD approaches) revealed that the signal-intensity pattern of the difference spectra is affected by both the type and the spatial distribution of the excited "transmitter" atoms, as well as by the efficiency of the spin-diffusion-mediated magnetization transfer. The performance of the experiments is demonstrated on a system by using the lectin, galectin-1 and its carbohydrate ligand, lactose.
Collapse
Affiliation(s)
- Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, 4032 Debrecen, Hungary.
| | | | | | | | | |
Collapse
|
36
|
Desiniotis A, Kyprianou N. Significance of talin in cancer progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:117-47. [PMID: 21749900 DOI: 10.1016/b978-0-12-386039-2.00004-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Upon detachment from the extracellular matrix, tumor epithelial cells and tumor-associated endothelial cells are capable of overcoming anoikis, gain survival benefits, and hence contribute to the process of metastasis. The focal-adhesion complex formation recruits the association of key adaptor proteins such as FAK (focal-adhesion kinase). Vimentin, paxillin, and talin are responsible for mediating the interaction between the actin cytoskeleton and integrins. Talin is an early-recruited focal-adhesion player that is of structural and functional significance in mediating interactions with integrin cytoplasmic tails leading to destabilization of the transmembrane complex and resulting in rearrangements in the extracellular integrin compartments that mediate integrin activation. Talin-mediated integrin activation plays a definitive role in integrin-mediated signaling and induction of downstream survival pathways leading to protection from anoikis and consequently resulting in cancer progression to metastasis. We recently reported that talin expression is significantly increased in prostate cancer compared with benign and normal prostate tissue and that this overexpression correlates with progression to metastatic disease implicating a prognostic value for talin during tumor progression. At the molecular level, talin is functionally associated with enhanced survival and proliferation pathways and confers anoikis resistance and metastatic spread of primary tumor cells via activation of the Akt survival pathway. In this review, we discuss the growing evidence surrounding the value of talin as a prognostic marker of cancer progression to metastasis and as therapeutic target in advanced prostate cancer, as well as the current understanding of mechanisms regulating its signaling activity in cancer.
Collapse
Affiliation(s)
- Andreas Desiniotis
- Department of Surgery/Urology, and Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, USA
| | | |
Collapse
|
37
|
Guo W, Xue J, Shi J, Li N, Shao Y, Yu X, Shen F, Wu M, Liu S, Cheng S. Proteomics analysis of distinct portal vein tumor thrombi in hepatocellular carcinoma patients. J Proteome Res 2010; 9:4170-5. [PMID: 20583822 DOI: 10.1021/pr100412w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Portal vein tumor thrombosis (PVTT) in patients with hepatocellular carcinoma (HCC) is known as a major complication associated with poor survival. We clinically defined a type of distinct PVTT (dPVTT) in small HCC patients that is distant to liver parenchyma tumor (PT). The biological features of dPVTT are not clear. We utilized two-dimensional electrophoresis and tandem MS to compare and identify differentially expressed proteins between dPVTT and PT tissues. Of the 65 spots identified as differentially expressed (p < 0.05) between the two cancerous tissues, 19 (corresponding to 19 unique proteins) were identified. Further analysis of five proteins confirmed quantitative differences between the two tumor tissues. Upon comparison with PT tissues of HCC, c-kit was also significantly upregulated in dPVTTs in small HCC patients and the CSQT-2 cell line derived from dPVTT tissues, which validated the differences between the dPVTT and PT tissues. The protein expression profiles and proteins identified in this study demonstrate the presence of dPVTTs with more malignant phenotypes and will be useful in clarifying the mechanisms through which dPVTT develops. Specific treatments targeting dPVTT might be applied to HCC patients with dPVTT.
Collapse
Affiliation(s)
- Weixing Guo
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China, and Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Horlacher T, Oberli MA, Werz DB, Kröck L, Bufali S, Mishra R, Sobek J, Simons K, Hirashima M, Niki T, Seeberger PH. Determination of carbohydrate-binding preferences of human galectins with carbohydrate microarrays. Chembiochem 2010; 11:1563-73. [PMID: 20572248 DOI: 10.1002/cbic.201000020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Galectins are a class of carbohydrate-binding proteins named for their galactose-binding preference and are involved in a host of processes ranging from homeostasis of organisms to immune responses. As a first step towards correlating the carbohydrate-binding preferences of the different galectins with their biological functions, we determined carbohydrate recognition fine-specificities of galectins with the aid of carbohydrate microarrays. A focused set of oligosaccharides considered relevant to galectins was prepared by chemical synthesis. Structure-activity relationships for galectin-sugar interactions were determined, and these helped in the establishment of redundant and specific galectin actions by comparison of binding preferences. Distinct glycosylations on the basic lactosyl motifs proved to be key to galectin binding regulation--and therefore galectin action--as either high-affinity ligands are produced or binding is blocked. High-affinity ligands such as the blood group antigens that presumably mediate particular functions were identified.
Collapse
Affiliation(s)
- Tim Horlacher
- Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sanchez-Ruderisch H, Fischer C, Detjen KM, Welzel M, Wimmel A, Manning JC, André S, Gabius HJ. Tumor suppressor p16 INK4a: Downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model. FEBS J 2010; 277:3552-63. [PMID: 20695889 DOI: 10.1111/j.1742-4658.2010.07764.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tumor suppressor p16(INK4a) has functions beyond cell-cycle control via cyclin-dependent kinases. A coordinated remodeling of N- and O-glycosylation, and an increase in the presentation of the endogenous lectin galectin-1 sensing these changes on the surface of p16(INK4a)-expressing pancreatic carcinoma cells (Capan-1), lead to potent pro-anoikis signals. We show that the p16(INK4a)-dependent impact on growth-regulatory lectins is not limited to galectin-1, but also concerns galectin-3. By monitoring its expression in relation to p16(INK4a) status, as well as running anoikis assays with galectin-3 and cell transfectants with up- or downregulated lectin expression, a negative correlation between anoikis and the presence of this lectin was established. Nuclear run-off and northern blotting experiments revealed an effect of the presence of p16(INK4a) on steady-state levels of galectin-3-specific mRNA that differed from decreasing the transcriptional rate. On the cell surface, galectin-3 interferes with galectin-1, which initiates signaling toward its pro-anoikis activity via caspase-8 activation. The detected opposite effects of p16(INK4a) at the levels of growth-regulatory galectins-1 and -3 shift the status markedly towards the galectin-1-dependent pro-anoikis activity. A previously undescribed orchestrated fine-tuning of this effector system by a tumor suppressor is discovered.
Collapse
Affiliation(s)
- Hugo Sanchez-Ruderisch
- Medizinische Klinik m.S. Hepatologie und Gastroenterologie, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
El-Boubbou K, Zhu DC, Vasileiou C, Borhan B, Prosperi D, Li W, Huang X. Magnetic glyco-nanoparticles: a tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging. J Am Chem Soc 2010; 132:4490-9. [PMID: 20201530 DOI: 10.1021/ja100455c] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Within cancer, there is a large wealth of diversity, complexity, and information that nature has engineered rendering it challenging to identify reliable detection methods. Therefore, the development of simple and effective techniques to delineate the fine characteristics of cancer cells can have great potential impacts on cancer diagnosis and treatment. Herein, we report a magnetic glyco-nanoparticle (MGNP) based nanosensor system bearing carbohydrates as the ligands, not only to detect and differentiate cancer cells but also to quantitatively profile their carbohydrate binding abilities by magnetic resonance imaging (MRI). Using an array of MGNPs, a range of cells including closely related isogenic tumor cells, cells with different metastatic potential and malignant vs normal cells can be readily distinguished based on their respective "MRI signatures". Furthermore, the information obtained from such studies helped guide the establishment of strongly binding MGNPs as antiadhesive agents against tumors. As the interactions between glyco-conjugates and endogenous lectins present on cancer cell surface are crucial for cancer development and metastasis, the ability to characterize and unlock the glyco-code of individual cell lines can facilitate both the understanding of the roles of carbohydrates as well as the expansion of diagnostic and therapeutic tools for cancer.
Collapse
|
41
|
Asgarian-Omran H, Forghani P, Hojjat-Farsangi M, Roohi A, Sharifian RA, Razavi SM, Jeddi-Tehrani M, Rabbani H, Shokri F. Expression Profile of Galectin-1 and Galectin-3 Molecules in Different Subtypes of Chronic Lymphocytic Leukemia. Cancer Invest 2010; 28:717-25. [DOI: 10.3109/07357907.2010.494319] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Kurmyshkina O, Rapoport E, Moiseeva E, Korchagina E, Ovchinnikova T, Pazynina G, Belyanchikov I, Bovin N. Glycoprobes as a tool for the study of lectins expressed on tumor cells. Acta Histochem 2010; 112:118-26. [PMID: 19285339 DOI: 10.1016/j.acthis.2009.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 01/18/2023]
Abstract
Polyacrylamide glycoconjugates, Glyc-PAA, having various tags or labels are convenient tools for analysis of cellular lectins. Adaptation of such glycoprobes for flow cytometry allows us to reveal lectins expressed on cell surface and analyze their carbohydrate specificity as well as functionality. Localization of lectins is visualized by labeling of cells with fluorescein-tagged glycoprobes, Glyc-PAA-fluo, in combination with fluorescent microscopy techniques. Additionally, biotinylated glycoprobes can be immobilized on magnetic particles making it possible to separate a cell population according to its carbohydrate-binding profile. Here, we exemplify application of glycoprobes in the study of cellular siglecs and galectins, as well as lectin patterning of tumor cells. The specificity of sialic acid binding membrane-anchored lectins, siglecs-1, -5, -7, -8 and -9 was determined using this methodology. To study the carbohydrate-binding profile of soluble galactoside-binding lectins, galectins-1 or -3, these were loaded on (initially galectin free) Raji cells and probed using Glyc-PAA-fluo. Lessons learned from this model system allowed us to study the galectin distribution pattern of tumors: cells obtained from mice carrying mammary adenocarcinoma or lymphoma were probed with Glyc-PAA-fluo using flow cytometry. Disaccharide 6OSuLacdiNAc was shown to be the most potent probe for adenocarcinoma cells, demonstrating that 6OSuLacdiNAc-binding molecules accumulate on cell surface in a patch-wise distribution.
Collapse
Affiliation(s)
- Olga Kurmyshkina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Implication of the Galectin-3 in colorectal cancer development (about 325 Tunisian patients). Bull Cancer 2010; 97:E1-8. [PMID: 20080461 DOI: 10.1684/bdc.2010.1032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Galectin-3 is a specific soluble lectin of the beta-galactoside family. It plays an important role in cell adherence, proliferation, and differentiation. It has also been shown that galectin-3 expression correlates with tumor progression in several types of cancers. We investigated the involvement of galectin-3 in colorectal cancer development. We performed a comparative immunohistochemical analysis of galectin-3 expression in term of intensity and distribution in normal mucosa, in primary tumor and in metastasis from 200 patients with colorectal cancer selected among 325 cases. We also compared the galectin-3 staining according to the histological subtype (mucinous vs non mucinous), tumoral differentiation and stage of tumor. We showed a strong and diffuse positive staining of galectin-3 in both adjacent and distanced normal mucosa, in well differentiated adenocarcinoma and in metastasis. However, we note a progressive decrease of galectin-3 staining according to the decreasing degree of tumoral differentiation. We also observed a loss of this protein in adenocarcinoma with mucinous component < 50%, where the positive staining was limited only to the well differentiated areas of tumor. These data suggest that galectin-3 play an important role in colorectal cancer progression concerning the non mucinous carcinoma and can be used as a prognostic factor to predict poor outcome of patients. In mucinous subtype, galectin-3 might be implicated in one or many step of its genesis perhaps through the control of cellular adhesion and interaction with mucin produced. Adenocarcinoma with mucinous component <50% would be integrate to mucinous carcinoma, not to non mucinous ones. These investigations could open perspectives for therapeutic means targeted to improve the prognosis of this neoplasm.
Collapse
|
44
|
Meynier C, Feracci M, Espeli M, Chaspoul F, Gallice P, Schiff C, Guerlesquin F, Roche P. NMR and MD investigations of human galectin-1/oligosaccharide complexes. Biophys J 2010; 97:3168-77. [PMID: 20006954 DOI: 10.1016/j.bpj.2009.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 08/31/2009] [Accepted: 09/10/2009] [Indexed: 12/18/2022] Open
Abstract
The specific recognition of carbohydrates by lectins plays a major role in many cellular processes. Galectin-1 belongs to a family of 15 structurally related beta-galactoside binding proteins that are able to control a variety of cellular events, including cell cycle regulation, adhesion, proliferation, and apoptosis. The three-dimensional structure of galectin-1 has been solved by x-ray crystallography in the free form and in complex with various carbohydrate ligands. In this work, we used a combination of two-dimensional NMR titration experiments and molecular-dynamics simulations with explicit solvent to study the mode of interaction between human galectin-1 and five galactose-containing ligands. Isothermal titration calorimetry measurements were performed to determine their affinities for galectin-1. The contribution of the different hexopyranose units in the protein-carbohydrate interaction was given particular consideration. Although the galactose moiety of each oligosaccharide is necessary for binding, it is not sufficient by itself. The nature of both the reducing sugar in the disaccharide and the interglycosidic linkage play essential roles in the binding to human galectin-1.
Collapse
Affiliation(s)
- Christophe Meynier
- Unité Interactions et Modulateurs de Réponses, Institut de Microbiologie de la Méditerrannée, Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yoshioka K, Sato Y, Murakami T, Tanaka M, Niwa O. One-Step Detection of Galectins on Hybrid Monolayer Surface with Protruding Lactoside. Anal Chem 2010; 82:1175-8. [DOI: 10.1021/ac9022346] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyoko Yoshioka
- National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yukari Sato
- National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Teiichi Murakami
- National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Mutsuo Tanaka
- National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Osamu Niwa
- National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
46
|
Muñoz FJ, Santos JI, Ardá A, André S, Gabius HJ, Sinisterra JV, Jiménez-Barbero J, Hernáiz MJ. Binding studies of adhesion/growth-regulatory galectins with glycoconjugates monitored by surface plasmon resonance and NMR spectroscopy. Org Biomol Chem 2010; 8:2986-92. [DOI: 10.1039/b927139b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Jiménez-Barbero J, Dragoni E, Venturi C, Nannucci F, Ardá A, Fontanella M, André S, Cañada FJ, Gabius HJ, Nativi C. Alpha-O-linked glycopeptide mimetics: synthesis, conformation analysis, and interactions with viscumin, a galactoside-binding model lectin. Chemistry 2009; 15:10423-31. [PMID: 19746469 DOI: 10.1002/chem.200901077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Efficient cycloaddition of a silylidene-protected galactal with a suitable heterodiene yielded the basis for a facile diastereoselective route to a glycopeptide-mimetic scaffold. Its carbohydrate part was further extended by beta1-3-linked galactosylation. The pyranose rings retain their (4)C(1) chair conformation, as shown by molecular modeling and NMR spectroscopy, and the typical exo-anomeric geometry was observed for the disaccharide. The expected bioactivity was ascertained by saturation-transfer-difference NMR spectroscopy by using the galactoside-specific plant toxin viscumin as a model lectin. The experimental part was complemented by molecular docking. The described synthetic route and the strategic combination of computational and experimental techniques to reveal conformational properties and bioactivity establish the prepared alpha-O-linked glycopeptide mimetics as promising candidates for further exploitation of this scaffold to give O-glycans for lectin blocking and vaccination.
Collapse
Affiliation(s)
- Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wéber E, Hetényi A, Váczi B, Szolnoki É, Fajka-Boja R, Tubak V, Monostori É, Martinek TA. Galectin-1-Asialofetuin Interaction Is Inhibited by Peptides Containing the Tyr-Xxx-Tyr Motif Acting on the Glycoprotein. Chembiochem 2009; 11:228-34. [DOI: 10.1002/cbic.200900502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Leyden R, Velasco-Torrijos T, André S, Gouin S, Gabius HJ, Murphy PV. Synthesis of Bivalent Lactosides Based on Terephthalamide, N,N′-Diglucosylterephthalamide, and Glycophane Scaffolds and Assessment of Their Inhibitory Capacity on Medically Relevant Lectins. J Org Chem 2009; 74:9010-26. [DOI: 10.1021/jo901667r] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rosaria Leyden
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Trinidad Velasco-Torrijos
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sabine André
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Sebastien Gouin
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstrasse 13, 80539 Munich, Germany
| | - Paul V. Murphy
- School of Chemistry and Chemical Biology, Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
- School of Chemistry, National University of Ireland, Galway
| |
Collapse
|
50
|
Immobilization of Anti-Galectin-3 onto Polysiloxane–Polyvinyl Alcohol Disks for Tumor Prostatic Diseases Diagnosis. Appl Biochem Biotechnol 2009; 160:2198-207. [DOI: 10.1007/s12010-009-8753-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|