1
|
Hu SK, Smith AR, Anderson RE, Sylva SP, Setzer M, Steadmon M, Frank KL, Chan EW, Lim DSS, German CR, Breier JA, Lang SQ, Butterfield DA, Fortunato CS, Seewald JS, Huber JA. Globally-distributed microbial eukaryotes exhibit endemism at deep-sea hydrothermal vents. Mol Ecol 2023; 32:6580-6598. [PMID: 36302092 DOI: 10.1111/mec.16745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
Single-celled microbial eukaryotes inhabit deep-sea hydrothermal vent environments and play critical ecological roles in the vent-associated microbial food web. 18S rRNA amplicon sequencing of diffuse venting fluids from four geographically- and geochemically-distinct hydrothermal vent fields was applied to investigate community diversity patterns among protistan assemblages. The four vent fields include Axial Seamount at the Juan de Fuca Ridge, Sea Cliff and Apollo at the Gorda Ridge, all in the NE Pacific Ocean, and Piccard and Von Damm at the Mid-Cayman Rise in the Caribbean Sea. We describe species diversity patterns with respect to hydrothermal vent field and sample type, identify putative vent endemic microbial eukaryotes, and test how vent fluid geochemistry may influence microbial community diversity. At a semi-global scale, microbial eukaryotic communities at deep-sea vents were composed of similar proportions of dinoflagellates, ciliates, Rhizaria, and stramenopiles. Individual vent fields supported distinct and highly diverse assemblages of protists that included potentially endemic or novel vent-associated strains. These findings represent a census of deep-sea hydrothermal vent protistan communities. Protistan diversity, which is shaped by the hydrothermal vent environment at a local scale, ultimately influences the vent-associated microbial food web and the broader deep-sea carbon cycle.
Collapse
Affiliation(s)
- Sarah K Hu
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Amy R Smith
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Bard College at Simon's Rock, Great Barrington, Massachusetts, USA
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, Minnesota, USA
| | - Sean P Sylva
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Michaela Setzer
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Oceanography, University of Hawaii at Mānoa, Honolulu, Hawai'i, USA
| | - Maria Steadmon
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Oceanography, University of Hawaii at Mānoa, Honolulu, Hawai'i, USA
| | - Kiana L Frank
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Eric W Chan
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | | | - Christopher R German
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - John A Breier
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Susan Q Lang
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| | - David A Butterfield
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington and NOAA/PMEL, Seattle, Washington, USA
| | | | - Jeffrey S Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Böhnke S, Perner M. Approaches to Unmask Functioning of the Uncultured Microbial Majority From Extreme Habitats on the Seafloor. Front Microbiol 2022; 13:845562. [PMID: 35422772 PMCID: PMC9002263 DOI: 10.3389/fmicb.2022.845562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Researchers have recognized the potential of enzymes and metabolic pathways hidden among the unseen majority of Earth's microorganisms for decades now. Most of the microbes expected to colonize the seafloor and its subsurface are currently uncultured. Thus, their ability and contribution to element cycling remain enigmatic. Given that the seafloor covers ∼70% of our planet, this amounts to an uncalled potential of unrecognized metabolic properties and interconnections catalyzed by this microbial dark matter. Consequently, a tremendous black box awaits discovery of novel enzymes, catalytic abilities, and metabolic properties in one of the largest habitats on Earth. This mini review summarizes the current knowledge of cultivation-dependent and -independent techniques applied to seafloor habitats to unravel the role of the microbial dark matter. It highlights the great potential that combining microbiological and biogeochemical data from in situ experiments with molecular tools has for providing a holistic understanding of bio-geo-coupling in seafloor habitats and uses hydrothermal vent systems as a case example.
Collapse
Affiliation(s)
- Stefanie Böhnke
- Geomicrobiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Mirjam Perner
- Geomicrobiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
3
|
Kashyap S, Musa M, Neat KA, Leopo DA, Holden JF. Desulfovulcanus ferrireducens gen. nov., sp. nov., a thermophilic autotrophic iron and sulfate-reducing bacterium from subseafloor basalt that grows on akaganéite and lepidocrocite minerals. Extremophiles 2022; 26:13. [PMID: 35190935 PMCID: PMC8860800 DOI: 10.1007/s00792-022-01263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022]
Abstract
A deep-sea thermophilic bacterium, strain Ax17T, was isolated from 25 °C hydrothermal fluid at Axial Seamount. It was obligately anaerobic and autotrophic, oxidized molecular hydrogen and formate, and reduced synthetic nanophase Fe(III) (oxyhydr)oxide minerals, sulfate, sulfite, thiosulfate, and elemental sulfur for growth. It produced up to 20 mM Fe2+ when grown on ferrihydrite but < 5 mM Fe2+ when grown on akaganéite, lepidocrocite, hematite, and goethite. It was a straight to curved rod that grew at temperatures ranging from 35 to 70 °C (optimum 65 °C) and a minimum doubling time of 7.1 h, in the presence of 1.5-6% NaCl (optimum 3%) and pH 5-9 (optimum 8.0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was 90-92% identical to other genera of the family Desulfonauticaceae in the phylum Pseudomonadota. The genome of Ax17T was sequenced, which yielded 2,585,834 bp and contained 2407 protein-coding sequences. Based on overall genome relatedness index analyses and its unique phenotypic characteristics, strain Ax17T is suggested to represent a novel genus and species, for which the name Desulfovulcanus ferrireducens is proposed. The type strain is Ax17T (= DSM 111878T = ATCC TSD-233T).
Collapse
Affiliation(s)
- Srishti Kashyap
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA
- Department of Geological Sciences, University of Colorado, Boulder, CO, 80309, USA
| | - Masroque Musa
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA
| | - Kaylee A Neat
- Department of Astronomy, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Deborah A Leopo
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA
| | - James F Holden
- Department of Microbiology, University of Massachusetts, N418 Morrill IV North; 639 N. Pleasant St., Amherst, MA, 01003, USA.
| |
Collapse
|
4
|
Draft Genome Sequence of Desulfurobacterium sp. Strain AV08, a Thermophilic Chemolithoautotroph Isolated from a Deep-Sea Hydrothermal Vent. Microbiol Resour Announc 2021; 10:e0061521. [PMID: 34435861 PMCID: PMC8388535 DOI: 10.1128/mra.00615-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A thermophilic chemolithoautotrophic bacterium was isolated from vent fluids at Axial Seamount, an active deep-sea volcano in the northeast Pacific Ocean. We present the draft genome sequence of Desulfurobacterium sp. strain AV08.
Collapse
|
5
|
Seafloor Incubation Experiment with Deep-Sea Hydrothermal Vent Fluid Reveals Effect of Pressure and Lag Time on Autotrophic Microbial Communities. Appl Environ Microbiol 2021; 87:AEM.00078-21. [PMID: 33608294 PMCID: PMC8091007 DOI: 10.1128/aem.00078-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Diverse microbial communities drive biogeochemical cycles in Earth’s ocean, yet studying these organisms and processes is often limited by technological capabilities, especially in the deep ocean. In this study, we used a novel marine microbial incubator instrument capable of in situ experimentation to investigate microbial primary producers at deep-sea hydrothermal vents. Depressurization and sample processing delays may impact the outcome of shipboard microbial incubations of samples collected from the deep sea. To address this knowledge gap, we developed a remotely operated vehicle (ROV)-powered incubator instrument to carry out and compare results from in situ and shipboard RNA stable isotope probing (RNA-SIP) experiments to identify the key chemolithoautotrophic microbes and metabolisms in diffuse, low-temperature venting fluids from Axial Seamount. All the incubations showed microbial uptake of labeled bicarbonate primarily by thermophilic autotrophic Epsilonbacteraeota that oxidized hydrogen coupled with nitrate reduction. However, the in situ seafloor incubations showed higher abundances of transcripts annotated for aerobic processes, suggesting that oxygen was lost from the hydrothermal fluid samples prior to shipboard analysis. Furthermore, transcripts for thermal stress proteins such as heat shock chaperones and proteases were significantly more abundant in the shipboard incubations, suggesting that depressurization induced thermal stress in the metabolically active microbes in these incubations. Together, the results indicate that while the autotrophic microbial communities in the shipboard and seafloor experiments behaved similarly, there were distinct differences that provide new insight into the activities of natural microbial assemblages under nearly native conditions in the ocean. IMPORTANCE Diverse microbial communities drive biogeochemical cycles in Earth’s ocean, yet studying these organisms and processes is often limited by technological capabilities, especially in the deep ocean. In this study, we used a novel marine microbial incubator instrument capable of in situ experimentation to investigate microbial primary producers at deep-sea hydrothermal vents. We carried out identical stable isotope probing experiments coupled to RNA sequencing both on the seafloor and on the ship to examine thermophilic, microbial autotrophs in venting fluids from an active submarine volcano. Our results indicate that microbial communities were significantly impacted by the effects of depressurization and sample processing delays, with shipboard microbial communities being more stressed than seafloor incubations. Differences in metabolism were also apparent and are likely linked to the chemistry of the fluid at the beginning of the experiment. Microbial experimentation in the natural habitat provides new insights into understanding microbial activities in the ocean.
Collapse
|
6
|
Abiotic redox reactions in hydrothermal mixing zones: Decreased energy availability for the subsurface biosphere. Proc Natl Acad Sci U S A 2020; 117:20453-20461. [PMID: 32817473 PMCID: PMC7456078 DOI: 10.1073/pnas.2003108117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hydrothermal fluid geochemistry exerts a key control on subseafloor microbial community structure and function. However, the effects of microbial metabolic activity, thermal decomposition of biomass, and abiotic reactions on geochemistry remain unconstrained. Depletions in molecular hydrogen and enrichments in methane in submarine hydrothermal mixing zones have been interpreted to reflect the influence of an active subseafloor biosphere. In contrast, our work reveals that these chemical shifts are driven by abiotic and thermogenic processes at temperatures beyond the limit for life. These findings have critical implications for constraining the extent to which global geochemical cycles can sustain a deep biosphere, and for the global molecular hydrogen budget. Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42−) reduction produces large depletions in H2. The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42− reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2 sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2 production and consumption in young oceanic crust.
Collapse
|
7
|
Moulana A, Anderson RE, Fortunato CS, Huber JA. Selection Is a Significant Driver of Gene Gain and Loss in the Pangenome of the Bacterial Genus Sulfurovum in Geographically Distinct Deep-Sea Hydrothermal Vents. mSystems 2020; 5:e00673-19. [PMID: 32291353 PMCID: PMC7159903 DOI: 10.1128/msystems.00673-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Microbial genomes have highly variable gene content, and the evolutionary history of microbial populations is shaped by gene gain and loss mediated by horizontal gene transfer and selection. To evaluate the influence of selection on gene content variation in hydrothermal vent microbial populations, we examined 22 metagenome-assembled genomes (MAGs) (70 to 97% complete) from the ubiquitous vent Epsilonbacteraeota genus Sulfurovum that were recovered from two deep-sea hydrothermal vent regions, Axial Seamount in the northeastern Pacific Ocean (13 MAGs) and the Mid-Cayman Rise in the Caribbean Sea (9 MAGs). Genes involved in housekeeping functions were highly conserved across Sulfurovum lineages. However, genes involved in environment-specific functions, and in particular phosphate regulation, were found mostly in Sulfurovum genomes from the Mid-Cayman Rise in the low-phosphate Atlantic Ocean environment, suggesting that nutrient limitation is an important selective pressure for these bacteria. Furthermore, genes that were rare within the pangenome were more likely to undergo positive selection than genes that were highly conserved in the pangenome, and they also appeared to have experienced gene-specific sweeps. Our results suggest that selection is a significant driver of gene gain and loss for dominant microbial lineages in hydrothermal vents and highlight the importance of factors like nutrient limitation in driving microbial adaptation and evolution.IMPORTANCE Microbes can alter their gene content through the gain and loss of genes. However, there is some debate as to whether natural selection or neutral processes play a stronger role in molding the gene content of microbial genomes. In this study, we examined variation in gene content for the Epsilonbacteraeota genus Sulfurovum from deep-sea hydrothermal vents, which are dynamic habitats known for extensive horizontal gene transfer within microbial populations. Our results show that natural selection is a strong driver of Sulfurovum gene content and that nutrient limitation in particular has shaped the Sulfurovum genome, leading to differences in gene content between ocean basins. Our results also suggest that recently acquired genes undergo stronger selection than genes that were acquired in the more distant past. Overall, our results highlight the importance of natural selection in driving the evolution of microbial populations in these dynamic habitats.
Collapse
Affiliation(s)
- Alief Moulana
- Biology Department, Carleton College, Northfield, Minnesota, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, Minnesota, USA
| | | | - Julie A Huber
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
8
|
Unique Solid Phase Microextraction Sampler Reveals Distinctive Biogeochemical Profiles among Various Deep-Sea Hydrothermal Vents. Sci Rep 2020; 10:1360. [PMID: 31992838 PMCID: PMC6987176 DOI: 10.1038/s41598-020-58418-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/20/2019] [Indexed: 11/08/2022] Open
Abstract
Current methods for biochemical and biogeochemical analysis of the deep-sea hydrothermal vent ecosystems rely on water sample recovery, or in situ analysis using underwater instruments with limited range of analyte detection and limited sensitivity. Even in cases where large quantities of sample are recovered, labile dissolved organic compounds may not be detected due to time delays between sampling and preservation. Here, we present a novel approach for in situ extraction of organic compounds from hydrothermal vent fluids through a unique solid phase microextraction (SPME) sampler. These samplers were deployed to sample effluent of vents on sulphide chimneys, located on Axial Seamount in the North-East Pacific, in the Urashima field on the southern Mariana back-arc, and at the Hafa Adai site in the central Mariana back-arc. Among the compounds that were extracted, a wide range of unique organic compounds, including labile dissolved organic sulfur compounds, were detected through high-resolution LC-MS/MS, among which were biomarkers of anammox bacteria, fungi, and lower animals. This report is the first to show that SPME can contribute to a broader understanding of deep sea ecology and biogeochemical cycles in hydrothermal vent ecosystems.
Collapse
|
9
|
Stewart LC, Algar CK, Fortunato CS, Larson BI, Vallino JJ, Huber JA, Butterfield DA, Holden JF. Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents. THE ISME JOURNAL 2019; 13:1711-1721. [PMID: 30842565 PMCID: PMC6776001 DOI: 10.1038/s41396-019-0382-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/03/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022]
Abstract
The size and biogeochemical impact of the subseafloor biosphere in oceanic crust remain largely unknown due to sampling limitations. We used reactive transport modeling to estimate the size of the subseafloor methanogen population, volume of crust occupied, fluid residence time, and nature of the subsurface mixing zone for two low-temperature hydrothermal vents at Axial Seamount. Monod CH4 production kinetics based on chemostat H2 availability and batch-culture Arrhenius growth kinetics for the hyperthermophile Methanocaldococcus jannaschii and thermophile Methanothermococcus thermolithotrophicus were used to develop and parameterize a reactive transport model, which was constrained by field measurements of H2, CH4, and metagenome methanogen concentration estimates in 20-40 °C hydrothermal fluids. Model results showed that hyperthermophilic methanogens dominate in systems where a narrow flow path geometry is maintained, while thermophilic methanogens dominate in systems where the flow geometry expands. At Axial Seamount, the residence time of fluid below the surface was 29-33 h. Only 1011 methanogenic cells occupying 1.8-18 m3 of ocean crust per m2 of vent seafloor area were needed to produce the observed CH4 anomalies. We show that variations in local geology at diffuse vents can create fluid flow paths that are stable over space and time, harboring persistent and distinct microbial communities.
Collapse
Affiliation(s)
- Lucy C Stewart
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
- GNS Science, Wellington, 5010, New Zealand
| | | | | | - Benjamin I Larson
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA, 98195, USA
| | - Joseph J Vallino
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - David A Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA, 98195, USA
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
10
|
Active subseafloor microbial communities from Mariana back-arc venting fluids share metabolic strategies across different thermal niches and taxa. ISME JOURNAL 2019; 13:2264-2279. [PMID: 31073213 PMCID: PMC6775965 DOI: 10.1038/s41396-019-0431-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
Abstract
There are many unknowns regarding the distribution, activity, community composition, and metabolic repertoire of microbial communities in the subseafloor of deep-sea hydrothermal vents. Here we provide the first characterization of subseafloor microbial communities from venting fluids along the central Mariana back-arc basin (15.5–18°N), where the slow-spreading rate, depth, and variable geochemistry along the back-arc distinguish it from other spreading centers. Results indicated that diverse Epsilonbacteraeota were abundant across all sites, with a population of high temperature Aquificae restricted to the northern segment. This suggests that differences in subseafloor populations along the back-arc are associated with local geologic setting and resultant geochemistry. Metatranscriptomics coupled to stable isotope probing revealed bacterial carbon fixation linked to hydrogen oxidation, denitrification, and sulfide or thiosulfate oxidation at all sites, regardless of community composition. NanoSIMS (nanoscale secondary ion mass spectrometry) incubations at 80 °C show only a small portion of the microbial community took up bicarbonate, but those autotrophs had the highest overall rates of activity detected across all experiments. By comparison, acetate was more universally utilized to sustain growth, but within a smaller range of activity. Together, results indicate that microbial communities in venting fluids from the Mariana back-arc contain active subseafloor communities reflective of their local conditions with metabolisms commonly shared across geologically disparate spreading centers throughout the ocean.
Collapse
|
11
|
Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field. Sci Rep 2018; 8:755. [PMID: 29335466 PMCID: PMC5768773 DOI: 10.1038/s41598-017-19002-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/19/2017] [Indexed: 01/15/2023] Open
Abstract
Hydrogen produced during water-rock serpentinization reactions can drive the synthesis of organic compounds both biotically and abiotically. We investigated abiotic carbon production and microbial metabolic pathways at the high energy but low diversity serpentinite-hosted Lost City hydrothermal field. Compound-specific 14C data demonstrates that formate is mantle-derived and abiotic in some locations and has an additional, seawater-derived component in others. Lipids produced by the dominant member of the archaeal community, the Lost City Methanosarcinales, largely lack 14C, but metagenomic evidence suggests they cannot use formate for methanogenesis. Instead, sulfate-reducing bacteria may be the primary consumers of formate in Lost City chimneys. Paradoxically, the archaeal phylotype that numerically dominates the chimney microbial communities appears ill suited to live in pure hydrothermal fluids without the co-occurrence of organisms that can liberate CO2. Considering the lack of dissolved inorganic carbon in such systems, the ability to utilize formate may be a key trait for survival in pristine serpentinite-hosted environments.
Collapse
|
12
|
Fortunato CS, Larson B, Butterfield DA, Huber JA. Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids. Environ Microbiol 2017; 20:769-784. [DOI: 10.1111/1462-2920.14011] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 10/20/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Caroline S. Fortunato
- Marine Biological Laboratory; Josephine Bay Paul Center; Woods Hole MA USA
- Department of Biology; Wilkes University; Wilkes-Barre PA USA
| | - Benjamin Larson
- Joint Institute for the Study of the Atmosphere and Ocean; University of Washington and NOAA Pacific Marine Environmental Lab; Seattle WA USA
| | - David A. Butterfield
- Joint Institute for the Study of the Atmosphere and Ocean; University of Washington and NOAA Pacific Marine Environmental Lab; Seattle WA USA
| | - Julie A. Huber
- Marine Biological Laboratory; Josephine Bay Paul Center; Woods Hole MA USA
- Marine Chemistry and Geochemistry Department; Woods Hole Oceanographic Institution; Woods Hole MA USA
| |
Collapse
|
13
|
Hager KW, Fullerton H, Butterfield DA, Moyer CL. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc. Front Microbiol 2017; 8:1578. [PMID: 28970817 PMCID: PMC5609546 DOI: 10.3389/fmicb.2017.01578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/03/2017] [Indexed: 01/08/2023] Open
Abstract
The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU) rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity.
Collapse
Affiliation(s)
- Kevin W Hager
- Department of Biology, Western Washington UniversityBellingham, WA, United States
| | - Heather Fullerton
- Department of Biology, Western Washington UniversityBellingham, WA, United States
| | - David A Butterfield
- National Oceanic and Atmospheric Administration Pacific Marine Environmental Lab, Joint Institute for the Study of the Atmosphere and Ocean, University of WashingtonSeattle, WA, United States
| | - Craig L Moyer
- Department of Biology, Western Washington UniversityBellingham, WA, United States
| |
Collapse
|
14
|
Olins HC, Rogers DR, Preston C, Ussler W, Pargett D, Jensen S, Roman B, Birch JM, Scholin CA, Haroon MF, Girguis PR. Co-registered Geochemistry and Metatranscriptomics Reveal Unexpected Distributions of Microbial Activity within a Hydrothermal Vent Field. Front Microbiol 2017; 8:1042. [PMID: 28659879 PMCID: PMC5468400 DOI: 10.3389/fmicb.2017.01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
Despite years of research into microbial activity at diffuse flow hydrothermal vents, the extent of microbial niche diversity in these settings is not known. To better understand the relationship between microbial activity and the associated physical and geochemical conditions, we obtained co-registered metatranscriptomic and geochemical data from a variety of different fluid regimes within the ASHES vent field on the Juan de Fuca Ridge. Microbial activity in the majority of the cool and warm fluids sampled was dominated by a population of Gammaproteobacteria (likely sulfur oxidizers) that appear to thrive in a variety of chemically distinct fluids. Only the warmest, most hydrothermally-influenced flows were dominated by active populations of canonically vent-endemic Epsilonproteobacteria. These data suggest that the Gammaproteobacteria collected during this study may be generalists, capable of thriving over a broader range of geochemical conditions than the Epsilonproteobacteria. Notably, the apparent metabolic activity of the Gammaproteobacteria—particularly carbon fixation—in the seawater found between discrete fluid flows (the intra-field water) suggests that this area within the Axial caldera is a highly productive, and previously overlooked, habitat. By extension, our findings suggest that analogous, diffuse flow fields may be similarly productive and thus constitute a very important and underappreciated aspect of deep-sea biogeochemical cycling that is occurring at the global scale.
Collapse
Affiliation(s)
- Heather C Olins
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, United States
| | - Daniel R Rogers
- Department of Chemistry, Stonehill CollegeEaston, MA, United States
| | - Christina Preston
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - William Ussler
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Douglas Pargett
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Scott Jensen
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Brent Roman
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - James M Birch
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Christopher A Scholin
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - M Fauzi Haroon
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, United States
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, United States
| |
Collapse
|
15
|
Topçuoğlu BD, Stewart LC, Morrison HG, Butterfield DA, Huber JA, Holden JF. Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of Thermophilic Methanogens at Deep-sea Hydrothermal Vents. Front Microbiol 2016; 7:1240. [PMID: 27547206 PMCID: PMC4974244 DOI: 10.3389/fmicb.2016.01240] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/26/2016] [Indexed: 11/13/2022] Open
Abstract
Thermophilic methanogens are common autotrophs at hydrothermal vents, but their growth constraints and dependence on H2 syntrophy in situ are poorly understood. Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected by growth at 80°C and 55°C at most diffuse (7-40°C) hydrothermal vent sites at Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80°C and 55°C demonstrated that growth of thermophilic and hyperthermophilic methanogens is primarily limited by H2 availability. Amendment of microcosms with NH4 (+) generally had no effect on CH4 production. However, annual variations in abundance and CH4 production were observed in relation to the eruption cycle of the seamount. Microcosm incubations of hydrothermal fluids at 80°C and 55°C supplemented with tryptone and no added H2 showed CH4 production indicating the capacity in situ for methanogenic H2 syntrophy. 16S rRNA genes were found in 80°C microcosms from H2-producing archaea and H2-consuming methanogens, but not for any bacteria. In 55°C microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. A co-culture of representative organisms showed that Thermococcus paralvinellae supported the syntrophic growth of Methanocaldococcus bathoardescens at 82°C and Methanothermococcus sp. strain BW11 at 60°C. The results demonstrate that modeling of subseafloor methanogenesis should focus primarily on H2 availability and temperature, and that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important energy source for thermophilic autotrophs in marine geothermal environments.
Collapse
Affiliation(s)
| | - Lucy C. Stewart
- Department of Microbiology, University of Massachusetts, AmherstMA, USA
| | - Hilary G. Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods HoleMA, USA
| | - David A. Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, SeattleWA, USA
- Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, SeattleWA, USA
| | - Julie A. Huber
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods HoleMA, USA
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, AmherstMA, USA
| |
Collapse
|
16
|
Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME JOURNAL 2016; 10:1925-38. [PMID: 26872039 PMCID: PMC5029171 DOI: 10.1038/ismej.2015.258] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023]
Abstract
The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched 13C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent.
Collapse
|
17
|
Bourbonnais A, Juniper SK, Butterfield DA, Anderson RE, Lehmann MF. Diversity and abundance of Bacteria and nirS-encoding denitrifiers associated with the Juan de Fuca Ridge hydrothermal system. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0813-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
Meyer JL, Huber JA. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. ISME JOURNAL 2013; 8:867-80. [PMID: 24257443 DOI: 10.1038/ismej.2013.206] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/02/2013] [Accepted: 10/13/2013] [Indexed: 11/09/2022]
Abstract
Chemolithoautotrophic Epsilonproteobacteria are ubiquitous in sulfidic, oxygen-poor habitats, including hydrothermal vents, marine oxygen minimum zones, marine sediments and sulfidic caves and have a significant role in cycling carbon, hydrogen, nitrogen and sulfur in these environments. The isolation of diverse strains of Epsilonproteobacteria and the sequencing of their genomes have revealed that this group has the metabolic potential to occupy a wide range of niches, particularly at dynamic deep-sea hydrothermal vents. We expand on this body of work by examining the population genomics of six strains of Lebetimonas, a vent-endemic, thermophilic, hydrogen-oxidizing Epsilonproteobacterium, from a single seamount in the Mariana Arc. Using Lebetimonas as a model for anaerobic, moderately thermophilic organisms in the warm, anoxic subseafloor environment, we show that genomic content is highly conserved and that recombination is limited between closely related strains. The Lebetimonas genomes are shaped by mobile genetic elements and gene loss as well as the acquisition of novel functional genes by horizontal gene transfer, which provide the potential for adaptation and microbial speciation in the deep sea. In addition, these Lebetimonas genomes contain two operons of nitrogenase genes with different evolutionary origins. Lebetimonas expressed nifH during growth with nitrogen gas as the sole nitrogen source, thus providing the first evidence of nitrogen fixation in any Epsilonproteobacteria from deep-sea hydrothermal vents. In this study, we provide a comparative overview of the genomic potential within the Nautiliaceae as well as among more distantly related hydrothermal vent Epsilonproteobacteria to broaden our understanding of microbial adaptation and diversity in the deep sea.
Collapse
Affiliation(s)
- Julie L Meyer
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA
| | - Julie A Huber
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA, USA
| |
Collapse
|
19
|
Ver Eecke HC, Akerman NH, Huber JA, Butterfield DA, Holden JF. Growth kinetics and energetics of a deep-sea hyperthermophilic methanogen under varying environmental conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:665-671. [PMID: 24115616 DOI: 10.1111/1758-2229.12065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/18/2013] [Indexed: 06/02/2023]
Abstract
A hyperthermophilic deep-sea methanogen, Methanocaldococcus strain JH146, was isolated from 26°C hydrothermal fluid at Axial Volcano to model high temperature methanogenesis in the subseafloor. Emphasis was placed on defining growth kinetics, cell yields and growth energy demand (GE) across a range of conditions. The organism uses H2 and CO2 as its sole carbon and energy sources. At various temperatures, pHs, and chlorinities, its growth rates and cell yields co-varied while GE remained uniform at 1.69 × 10(-11) J cell(-1)s(-1) ± 0.68 × 10(-11) J cell(-1)s(-1) (s.d., n = 23). An exception was at superoptimal growth temperatures where GE increased to 7.25 × 10(-11) J cell(-1)s(-1) presumably due to heat shock. GE also increased from 5.1 × 10(-12) J cell(-1)s(-1) to 7.61 × 10(-11) J cell(-1)s(-1) as NH4 (+) concentrations decreased from 9.4 mM to 0.14 mM. JH146 did not fix N2 or assimilate NO3 (-), lacked the N2-fixing (cluster II) nifH gene, and became nitrogen limited below 0.14 mM NH4Cl. Nitrogen availability may impact growth in situ since ammonia concentrations at Axial Volcano are < 18 μM. Our approach contributes to refining bioenergetic and carbon flux models for methanogens and other organisms in hydrothermal vents and other environments.
Collapse
Affiliation(s)
- Helene C Ver Eecke
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | | | | | | | | |
Collapse
|
20
|
Perner M, Hansen M, Seifert R, Strauss H, Koschinsky A, Petersen S. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments. GEOBIOLOGY 2013; 11:340-355. [PMID: 23647923 DOI: 10.1111/gbi.12039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes.
Collapse
Affiliation(s)
- M Perner
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Modeling the Impact of Diffuse Vent Microorganisms Along Mid-Ocean Ridges and Flanks. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/178gm11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
22
|
Lang SQ, Früh-Green GL, Bernasconi SM, Butterfield DA. Sources of organic nitrogen at the serpentinite-hosted Lost City hydrothermal field. GEOBIOLOGY 2013; 11:154-169. [PMID: 23346942 DOI: 10.1111/gbi.12026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/18/2012] [Indexed: 06/01/2023]
Abstract
The reaction of ultramafic rocks with water during serpentinization at moderate temperatures results in alkaline fluids with high concentrations of reduced chemical compounds such as hydrogen and methane. Such environments provide unique habitats for microbial communities capable of utilizing these reduced compounds in present-day and, possibly, early Earth environments. However, these systems present challenges to microbial communities as well, particularly due to high fluid pH and possibly the availability of essential nutrients such as nitrogen. Here we investigate the source and cycling of organic nitrogen at an oceanic serpentinizing environment, the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge). Total hydrolizable amino acid (THAA) concentrations in the fluids range from 736 to 2300 nm and constitute a large fraction of the dissolved organic carbon (2.5-15.1%). The amino acid distributions, and the relative concentrations of these compounds across the hydrothermal field, indicate they most likely derived from chemolithoautotrophic production. Previous studies have identified the presence of numerous nitrogen fixation genes in the fluids and the chimneys. Organic nitrogen in actively venting chimneys has δ(15) N values as low as 0.1‰ which is compatible with biological nitrogen fixation. Total hydrolizable amino acids in the chimneys are enriched in (13) C by 2-7‰ compared to bulk organic matter. The distribution and absolute δ(13) C(THAA) values are compatible with a chemolithoautotrophic source, an attribution also supported by molar organic C/N ratios in most active chimneys (4.1-5.5) which are similar to those expected for microbial communities. In total, these data indicate nitrogen is readily available to microbial communities at Lost City.
Collapse
Affiliation(s)
- S Q Lang
- Department of Earth Sciences, ETH Zürich, Zurich, Switzerland
| | | | | | | |
Collapse
|
23
|
Detection of putatively thermophilic anaerobic methanotrophs in diffuse hydrothermal vent fluids. Appl Environ Microbiol 2012. [PMID: 23183981 DOI: 10.1128/aem.03034-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anaerobic oxidation of methane (AOM) is carried out by a globally distributed group of uncultivated Euryarchaeota, the anaerobic methanotrophic arachaea (ANME). In this work, we used G+C analysis of 16S rRNA genes to identify a putatively thermophilic ANME group and applied newly designed primers to study its distribution in low-temperature diffuse vent fluids from deep-sea hydrothermal vents. We found that the G+C content of the 16S rRNA genes (P(GC)) is significantly higher in the ANME-1GBa group than in other ANME groups. Based on the positive correlation between the P(GC) and optimal growth temperatures (T(opt)) of archaea, we hypothesize that the ANME-1GBa group is adapted to thrive at high temperatures. We designed specific 16S rRNA gene-targeted primers for the ANME-1 cluster to detect all phylogenetic groups within this cluster, including the deeply branching ANME-1GBa group. The primers were successfully tested both in silico and in experiments with sediment samples where ANME-1 phylotypes had previously been detected. The primers were further used to screen for the ANME-1 microorganisms in diffuse vent fluid samples from deep-sea hydrothermal vents in the Pacific Ocean, and sequences belonging to the ANME-1 cluster were detected in four individual vents. Phylotypes belonging to the ANME-1GBa group dominated in clone libraries from three of these vents. Our findings provide evidence of existence of a putatively extremely thermophilic group of methanotrophic archaea that occur in geographically and geologically distinct marine hydrothermal habitats.
Collapse
|
24
|
Anderson RE, Beltrán MT, Hallam SJ, Baross JA. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system. FEMS Microbiol Ecol 2012; 83:324-39. [PMID: 22928928 DOI: 10.1111/j.1574-6941.2012.01478.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 11/30/2022] Open
Abstract
Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean.
Collapse
Affiliation(s)
- Rika E Anderson
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
25
|
Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents. Proc Natl Acad Sci U S A 2012; 109:13674-9. [PMID: 22869718 DOI: 10.1073/pnas.1206632109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial productivity at hydrothermal vents is among the highest found anywhere in the deep ocean, but constraints on microbial growth and metabolism at vents are lacking. We used a combination of cultivation, molecular, and geochemical tools to verify pure culture H(2) threshold measurements for hyperthermophilic methanogenesis in low-temperature hydrothermal fluids from Axial Volcano and Endeavour Segment in the northeastern Pacific Ocean. Two Methanocaldococcus strains from Axial and Methanocaldococcus jannaschii showed similar Monod growth kinetics when grown in a bioreactor at varying H(2) concentrations. Their H(2) half-saturation value was 66 μM, and growth ceased below 17-23 μM H(2), 10-fold lower than previously predicted. By comparison, measured H(2) and CH(4) concentrations in fluids suggest that there was generally sufficient H(2) for Methanocaldococcus growth at Axial but not at Endeavour. Fluids from one vent at Axial (Marker 113) had anomalously high CH(4) concentrations and contained various thermal classes of methanogens based on cultivation and mcrA/mrtA analyses. At Endeavour, methanogens were largely undetectable in fluid samples based on cultivation and molecular screens, although abundances of hyperthermophilic heterotrophs were relatively high. Where present, Methanocaldococcus genes were the predominant mcrA/mrtA sequences recovered and comprised ∼0.2-6% of the total archaeal community. Field and coculture data suggest that H(2) limitation may be partly ameliorated by H(2) syntrophy with hyperthermophilic heterotrophs. These data support our estimated H(2) threshold for hyperthermophilic methanogenesis at vents and highlight the need for coupled laboratory and field measurements to constrain microbial distribution and biogeochemical impacts in the deep sea.
Collapse
|
26
|
Perner M, Petersen JM, Zielinski F, Gennerich HH, Seifert R. Geochemical constraints on the diversity and activity of H2 -oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent. FEMS Microbiol Ecol 2010; 74:55-71. [PMID: 20662930 DOI: 10.1111/j.1574-6941.2010.00940.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mixing processes of reduced hydrothermal fluids with oxygenated seawater and fluid-rock reactions contribute to the chemical signatures of diffuse venting and likely determine the geochemical constraints on microbial life. We examined the influence of fluid chemistry on microbial diversity and activity by sampling diffuse fluids emanating through mussel beds at two contrasting hydrothermal vents. The H(2) concentration was very low at the basalt-hosted Clueless site, and mixing models suggest O(2) availability throughout much of the habitat. In contrast, effluents from the ultramafic-hosted Quest site were considerably enriched in H(2) , while O(2) is likely limited to the mussel layer. Only two different hydrogenase genes were identified in clone libraries from the H(2) -poor Clueless fluids, but these fluids exhibited the highest H(2) uptake rates in H(2) -spiked incubations (oxic conditions, at 18 °C). In contrast, a phylogenetically diverse H(2) -oxidizing potential was associated with distinct thermal conditions in the H(2) -rich Quest fluids, but under oxic conditions, H(2) uptake rates were extremely low. Significant stimulation of CO(2) fixation rates by H(2) addition was solely illustrated in Quest incubations (P-value <0.02), but only in conjunction with anoxic conditions (at 18 °C). We conclude that the factors contributing toward differences in the diversity and activity of H(2) oxidizers at these sites include H(2) and O(2) availability.
Collapse
Affiliation(s)
- Mirjam Perner
- Microbiology and Biotechnology Unit, University of Hamburg, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
27
|
Huber JA, Cantin HV, Huse SM, Welch DBM, Sogin ML, Butterfield DA. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts. FEMS Microbiol Ecol 2010; 73:538-49. [PMID: 20533947 DOI: 10.1111/j.1574-6941.2010.00910.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Low-temperature hydrothermal vent fluids represent access points to diverse microbial communities living in oceanic crust. This study examined the distribution, relative abundance, and diversity of Epsilonproteobacteria in 14 low-temperature vent fluids from five volcanically active seamounts of the Mariana Arc using a 454 tag sequencing approach. Most vent fluids were enriched in cell concentrations compared with background seawater, and quantitative PCR results indicated that all fluids were dominated by bacteria. Operational taxonomic unit-based statistical tools applied to 454 data show that all vents from the northern end of the Mariana Arc grouped together, to the exclusion of southern arc seamounts, which were as distinct from one another as they were from northern seamounts. Statistical analysis also showed a significant relationship between seamount and individual vent groupings, suggesting that community membership may be linked to geographical isolation and not geochemical parameters. However, while there may be large-scale geographic differences, distance is not the distinguishing factor in the microbial community composition. At the local scale, most vents host a distinct population of Epsilonproteobacteria, regardless of seamount location. This suggests that there may be barriers to exchange and dispersal for these vent endemic microorganisms at hydrothermal seamounts of the Mariana Arc.
Collapse
Affiliation(s)
- Julie A Huber
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, MA 02543, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Opatkiewicz AD, Butterfield DA, Baross JA. Individual hydrothermal vents at Axial Seamount harbor distinct subseafloor microbial communities. FEMS Microbiol Ecol 2009; 70:413-24. [PMID: 19796141 DOI: 10.1111/j.1574-6941.2009.00747.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The microbial community structure of five geographically distinct hydrothermal vents located within the Axial Seamount caldera, Juan de Fuca Ridge, was examined over 6 years following the 1998 diking eruptive event. Terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene sequence analyses were used to determine the bacterial and archaeal diversity, and the statistical software primer v6 was used to compare vent microbiology, temperature and fluid chemistry. Statistical analysis of vent fluid temperature and composition shows that there are significant differences between vents in any year, but that the fluid composition changes over time such that no vent maintains a chemical composition completely distinct from the others. In contrast, the subseafloor microbial communities associated with individual vents changed from year to year, but each location maintained a distinct community structure (based on TRFLP and 16S rRNA gene sequence analyses) that was significantly different from all other vents included in this study. Epsilonproteobacterial microdiversity is shown to be important in distinguishing vent communities, while archaeal microdiversity is less variable between sites. We propose that persistent venting at diffuse flow vents over time creates the potential to isolate and stabilize diverse microbial community structures between vents.
Collapse
Affiliation(s)
- Andrew D Opatkiewicz
- School of Oceanography and Center for Astrobiology and Early Evolution, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
29
|
Perner M, Bach W, Hentscher M, Koschinsky A, Garbe-Schönberg D, Streit WR, Strauss H. Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5 degrees S on the Mid-Atlantic Ridge. Environ Microbiol 2009; 11:2526-41. [PMID: 19558512 DOI: 10.1111/j.1462-2920.2009.01978.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examines the representativeness of low-temperature hydrothermal fluid samples with respect to their chemical and microbiological characteristics. Within this scope, we investigated short-term temporal chemical and microbial variability of the hydrothermal fluids. For this purpose we collected three fluid samples consecutively from the same spot at the Clueless field near 5 degrees S on the southern Mid-Atlantic Ridge over a period of 50 min. During sampling, the temperature was monitored online. We measured fluid chemical parameters, characterized microbial community compositions and used statistical analyses to determine significant differences between the samples. Overall, the three fluid samples are more closely related to each other than to any other tested habitat. Therefore, on a broad scale, the three collected fluid samples can be regarded as habitat representatives. However, small differences are apparent between all samples. One of the Clueless samples even displayed significant differences (P-value < 0.01) to the other two Clueless samples. Our data suggest that the observed variations in fluid chemical and microbial compositions are not reflecting sampling artefacts but are related to short-term fluid variability due to dynamic subseafloor fluid mixing. Recorded temporal changes in fact reflect spatial heterogeneity found in the subsurface as the fluid flows through distinctive pathways. While conservative elements (Cl, Si, Na and K) indicate variable degrees of fluid-seawater mixing, reactive components, including Fe(II), O(2) and H(2)S, show that chemical and microbial reactions within the mixing zone further modify the emanating fluids on short-time scales. Fluids entrain microorganisms, which modify the chemical microenvironment within the subsurface biotopes. This is the first study focusing on short-term microbial variability linked to chemical changes in hydrothermal fluids.
Collapse
Affiliation(s)
- Mirjam Perner
- Microbiology and Biotechnology, University of Hamburg, Biozentrum Klein Flottbek, 22609 Hamburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Takai K, Nunoura T, Ishibashi JI, Lupton J, Suzuki R, Hamasaki H, Ueno Y, Kawagucci S, Gamo T, Suzuki Y, Hirayama H, Horikoshi K. Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jg000636] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ken Takai
- Subground Animalcule Retrieval (SUGAR) Program; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Japan
| | - Takuro Nunoura
- Subground Animalcule Retrieval (SUGAR) Program; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Japan
| | - Jun-ichiro Ishibashi
- Department of Earth and Planetary Sciences, Faculty of Sciences; Kyushu University; Fukuoka Japan
| | - John Lupton
- NOAA Pacific Marine Environmental Laboratory; Hatfield Marine Science Center; Newport Oregon USA
| | - Ryohei Suzuki
- Department of Earth and Planetary Sciences, Faculty of Sciences; Kyushu University; Fukuoka Japan
| | - Hiroshi Hamasaki
- Department of Earth and Planetary Sciences, Faculty of Sciences; Kyushu University; Fukuoka Japan
| | - Yuichiro Ueno
- Global Edge Institute, Department of Earth and Planetary Sciences; Tokyo Institute of Technology; Tokyo Japan
| | - Shinsuke Kawagucci
- Department of Chemical Oceanography, Ocean Research Institute (ORI); University of Tokyo; Tokyo Japan
| | - Toshitaka Gamo
- Department of Chemical Oceanography, Ocean Research Institute (ORI); University of Tokyo; Tokyo Japan
| | - Yohey Suzuki
- Experimental Geoscience Team, Research Center for Deep Geological Environments; National Institute of Advanced Industrial Science and Technology (AIST); Ibaraki Japan
| | - Hisako Hirayama
- Subground Animalcule Retrieval (SUGAR) Program; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Japan
| | - Koki Horikoshi
- Subground Animalcule Retrieval (SUGAR) Program; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Japan
| |
Collapse
|
31
|
Abstract
A methanogenic archaeon isolated from deep-sea hydrothermal vent fluid was found to reduce N(2) to NH(3) at up to 92 degrees C, which is 28 degrees C higher than the current upper temperature limit of biological nitrogen fixation. The 16S ribosomal RNA gene of the hyperthermophilic nitrogen fixer, designated FS406-22, was 99% similar to that of non-nitrogen fixing Methanocaldococcus jannaschii DSM 2661. At its optimal growth temperature of 90 degrees C, FS406-22 incorporated (15)N(2) and expressed nifH messenger RNA. This increase in the temperature limit of nitrogen fixation could reveal a broader range of conditions for life in the subseafloor biosphere and other nitrogen-limited ecosystems than previously estimated.
Collapse
Affiliation(s)
- Mausmi P Mehta
- School of Oceanography, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
32
|
Huber JA, Butterfield DA, Baross JA. Diversity and distribution of subseafloor Thermococcales populations in diffuse hydrothermal vents at an active deep-sea volcano in the northeast Pacific Ocean. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jg000097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julie A. Huber
- School of Oceanography and Center for Astrobiology and Early Evolution; University of Washington; Seattle Washington USA
| | - David A. Butterfield
- Joint Institute for the Study of Atmosphere and Ocean; University of Washington; Seattle Washington USA
| | - John A. Baross
- School of Oceanography and Center for Astrobiology and Early Evolution; University of Washington; Seattle Washington USA
| |
Collapse
|
33
|
Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc Natl Acad Sci U S A 2006; 103:12115-20. [PMID: 16880384 PMCID: PMC1524930 DOI: 10.1073/pnas.0605127103] [Citation(s) in RCA: 2236] [Impact Index Per Article: 117.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of marine microbes over billions of years predicts that the composition of microbial communities should be much greater than the published estimates of a few thousand distinct kinds of microbes per liter of seawater. By adopting a massively parallel tag sequencing strategy, we show that bacterial communities of deep water masses of the North Atlantic and diffuse flow hydrothermal vents are one to two orders of magnitude more complex than previously reported for any microbial environment. A relatively small number of different populations dominate all samples, but thousands of low-abundance populations account for most of the observed phylogenetic diversity. This "rare biosphere" is very ancient and may represent a nearly inexhaustible source of genomic innovation. Members of the rare biosphere are highly divergent from each other and, at different times in earth's history, may have had a profound impact on shaping planetary processes.
Collapse
Affiliation(s)
- Mitchell L Sogin
- Josephine Bay Paul Center, Marine Biological Laboratory at Woods Hole, 7 MBL Street, Woods Hole, MA 02543, USA.
| | | | | | | | | | | | | | | |
Collapse
|