1
|
Shen Y, Zhi G, Zhang Y, Jin W, Kong Y, Li Z, Zhang H. An investigative review of the expanded capabilities of thermal/optical techniques for measuring carbonaceous aerosols and beyond. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125363. [PMID: 39571715 DOI: 10.1016/j.envpol.2024.125363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Carbonaceous aerosols primarily comprise organic carbon (OC) and black carbon (BC). Thermal-optical analysis (TOA) is the most commonly used method for separating carbonaceous aerosols into OC and EC (BC is referred to as elemental carbon EC, in this method). Advances in hardware design and algorithms have expanded the capabilities of TOA beyond just distinguishing OC and EC. However, a comprehensive understanding of the enhanced functionality of TOA is still lacking. This study provides the first comprehensive review of the TOA technique, highlighting expanded capabilities to measure brown carbon (BrC), mass-absorption efficiency, absorption enhancement, source contributions, and refined OC/EC split points. This review discusses the principles, advantages, and limitations of these advancements. Furthermore, the TOA system anticipates further advancements through integration with other instruments, establishing correlations between EC values obtained from different TOA instruments/protocols, correlating between BrC measurements from TOA and non-TOA methods, and developing an algorithm to quantify BrC from progressive absorption Ångström exponent (AAE) values. This review enhances the understanding of the TOA system and its implication for air quality and atmospheric radiation research.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guorui Zhi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yuzhe Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenjing Jin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yao Kong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhengying Li
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, China
| | - Haitao Zhang
- College of Science, China University of Petroleum, Beijing, 102249, China
| |
Collapse
|
2
|
Vohra K, Marais EA, Achakulwisut P, Lu G, Kelly JM, Harkins C, McDonald B. Influence of Oil and Gas End-Use on Summertime Particulate Matter and Ozone Pollution in the Eastern US. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19736-19747. [PMID: 39417565 PMCID: PMC11542890 DOI: 10.1021/acs.est.4c10032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The influence of oil and gas end-use activities on ambient air quality is complex and understudied, particularly in regions where intensive end-use activities and large biogenic emissions of isoprene coincide. In these regions, vehicular emissions of nitrogen oxides (NOx≡NO + NO2) modulate the oxidative fate of isoprene, a biogenic precursor of the harmful air pollutants ozone, formaldehyde, and particulate matter (PM2.5). Here, we investigate the direct and indirect influence of the end-use emissions on ambient air quality. To do so, we use the GEOS-Chem model with focus on the eastern United States (US) in summer. Regional mean end-use NOx of 1.4 ppb suppresses isoprene secondary organic aerosol (OA) formation by just 0.02 μg m-3 and enhances abundance of the carcinogen formaldehyde by 0.3 ppb. Formation of other reactive oxygenated volatile organic compounds is also enhanced, contributing to end-use maximum daily mean 8-h ozone (MDA8 O3) of 8 ppb. End-use PM2.5 is mostly (67%) anthropogenic OA, followed by 20% secondary inorganic sulfate, nitrate and ammonium and 11% black carbon. These adverse effects on eastern US summertime air quality suggest potential for severe air quality degradation in regions like the tropics with year-round biogenic emissions, growing oil and gas end-use and limited environmental regulation.
Collapse
Affiliation(s)
- Karn Vohra
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Eloise A. Marais
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Ploy Achakulwisut
- Stockholm
Environment Institute US, Seattle, Washington 98101, United States
| | - Gongda Lu
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Jamie M. Kelly
- Department
of Geography, University College London, London WC1E 6BT, U.K.
| | - Colin Harkins
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA
Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Brian McDonald
- NOAA
Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| |
Collapse
|
3
|
Kong Y, Zhi G, Jin W, Zhang Y, Shen Y, Li Z, Sun J, Ren Y. A review of quantification methods for light absorption enhancement of black carbon aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171539. [PMID: 38462012 DOI: 10.1016/j.scitotenv.2024.171539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Black carbon (BC) is a distinct type of carbonaceous aerosol that has a significant impact on the environment, human health, and climate. A non-BC material coating on BC can alter the mixing state of the BC particles, which considerably enhances the mass absorption efficiency of BC by directing more energy toward the BC cores (lensing effect). A lot of methods have been reported for quantifying the enhancement factor (Eabs), with diverse results. However, to the best of our knowledge, a comprehensive review specific to the quantification methods for Eabs has not been systematically performed, which is unfavorable for the evaluation of obtained results and subsequent radiative forcing. In this review, quantification methods are divided into two broad categories, direct and indirect, depending on whether experimental removal of the coating layer from an aged carbonaceous particle is required. The direct methods described include thermal peeling, solvent dissolution, and optical virtual exfoliation, while the indirect methods include intercept-linear regression fitting, minimum R squared, numerical simulation, and empirical value. We summarized the principles, procedures, virtues, and limitations of the major Eabs quantification methods and analyzed the current problems in the determination of Eabs. We pointed out what breakthroughs are needed to improve or innovate Eabs quantification methods, particularly regarding the need to avoid the influence of brown carbon, develop a broadband Eabs quantification scheme, quantify the Eabs values for the emissions of low-efficiency combustions, measure the Eabs of particles in a high-humidity environment, design a real-time monitor of Eabs by a proper combination of mature techniques, and make more use of artificial intelligence for better Eabs quantification. This review deepens the understanding of Eabs quantification methods and benefits the estimation of the contribution of BC to radiative forcing using climate models.
Collapse
Affiliation(s)
- Yao Kong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guorui Zhi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wenjing Jin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuzhe Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yi Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhengying Li
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing 100048, China
| | - Jianzhong Sun
- School of Physical Education, Chizhou University, Chizhou, Anhui 247000, China
| | - Yanjun Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Yin J, Xie X, Wei X, Zhang H, Ying Q, Hu J. Source-specified atmospheric age distribution of black carbon and its impact on optical properties over the Yangtze River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171353. [PMID: 38432390 DOI: 10.1016/j.scitotenv.2024.171353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Black carbon (BC) exerts a profound and intricate impact on both air quality and climate due to its high light absorption. However, the uncertainty in representing the absorption enhancement of BC in climate models leads to an increased range in the modeled aerosol climate effects. Changes in BC optical properties could result either from atmospheric aging processes or from variations in its sources. In this study, a source-age model for identifying emission sources and aging states presented by University of California at Davis/California Institute of Technology (UCD/CIT) was used to simulate the atmospheric age distribution of BC from different sources and to quantify its impact on the optical properties of BC-containing particles. The results indicate that regions with greater aged BC concentrations do not correspond to regions with higher BC emissions due to atmospheric transport. High concentrations of aged BC are found in northern Yangtze River Delta (YRD) regions during summer. The chemical compositions of particles from different sources and with different atmospheric ages differ significantly. BC and primary organic aerosols (POA) are dominating in Traffic-dominated source while other components dominate in Industry-dominated source. As the atmospheric age increases, the mass fraction of secondary inorganic aerosols rises. Compared to the original model, the simulated mass absorption cross section of BC particles in the source-age model decreases while the single scattering albedo increases. This compensates for ~11 % of the overestimation of the simulated BC direct radiative forcing. Our study highlights that incorporating atmospheric age and source information into models can greatly improve the estimation of optical properties of BC-containing particles and deepen our understanding of their climate effects.
Collapse
Affiliation(s)
- Junjie Yin
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaodong Xie
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiaodong Wei
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hongliang Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Qi Ying
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
5
|
Marais EA, Kelly JM, Vohra K, Li Y, Lu G, Hina N, Rowe EC. Impact of Legislated and Best Available Emission Control Measures on UK Particulate Matter Pollution, Premature Mortality, and Nitrogen-Sensitive Habitats. GEOHEALTH 2023; 7:e2023GH000910. [PMID: 37885915 PMCID: PMC10599219 DOI: 10.1029/2023gh000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Past emission controls in the UK have substantially reduced precursor emissions of health-hazardous fine particles (PM2.5) and nitrogen pollution detrimental to ecosystems. Still, 79% of the UK exceeds the World Health Organization (WHO) guideline for annual mean PM2.5 of 5 μg m-3 and there is no enforcement of controls on agricultural sources of ammonia (NH3). NH3 is a phytotoxin and an increasingly large contributor to PM2.5 and nitrogen deposited to sensitive habitats. Here we use emissions projections, the GEOS-Chem model, high-resolution data sets, and contemporary exposure-risk relationships to assess potential human and ecosystem health co-benefits in 2030 relative to the present day of adopting legislated or best available emission control measures. We estimate that present-day annual adult premature mortality attributable to exposure to PM2.5 is 48,625 (95% confidence interval: 45,188-52,595), that harmful amounts of reactive nitrogen deposit to almost all (95%) sensitive habitat areas, and that 75% of ambient NH3 exceeds levels safe for bryophytes and lichens. Legal measures decrease the extent of the UK above the WHO guideline to 58% and avoid 6,800 premature deaths by 2030. This improves with best available measures to 36% of the UK and 13,300 avoided deaths. Both legal and best available measures are insufficient at reducing the extent of damage of nitrogen pollution to sensitive habitats. Far more ambitious reductions in nitrogen emissions (>80%) than is achievable with best available measures (34%) are required to halve the amount of excess nitrogen deposited to sensitive habitats.
Collapse
Affiliation(s)
| | - Jamie M. Kelly
- Department of GeographyUniversity College LondonLondonUK
- Now at Centre for Research and Clean AirHelsinkiFinland
| | - Karn Vohra
- Department of GeographyUniversity College LondonLondonUK
| | - Yifan Li
- Reading AcademyNanjing University of Information Science and TechnologyNanjingChina
| | - Gongda Lu
- Department of GeographyUniversity College LondonLondonUK
| | - Naila Hina
- UK Centre for Ecology & HydrologyEnvironment Centre WalesBangorUK
| | - Ed C. Rowe
- UK Centre for Ecology & HydrologyEnvironment Centre WalesBangorUK
| |
Collapse
|
6
|
Liu X, Wang S, Zhang Q, Jiang C, Liang L, Tang S, Zhang X, Han X, Zhu L. Origins of black carbon from anthropogenic emissions and open biomass burning transported to Xishuangbanna, Southwest China. J Environ Sci (China) 2023; 125:277-289. [PMID: 36375914 DOI: 10.1016/j.jes.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 06/16/2023]
Abstract
Black carbon (BC) has importance regarding aerosol composition, radiative balance, and human exposure. This study adopted a backward-trajectory approach to quantify the origins of BC from anthropogenic emissions (BCAn) and open biomass burning (BCBB) transported to Xishuangbanna in 2017. Haze months, between haze and clean months, and clean months in Xishuangbanna were defined according to daily PM2.5 concentrations of >75, 35-75, and <35 µg/m3, respectively. Results showed that the transport efficiency density (TED) of BC transported to Xishuangbanna was controlled by the prevailing winds in different seasons. The yearly contributions to the effective emission intensity of BCAn and BCBB transported to Xishuangbanna were 52% and 48%, respectively. However, when haze occurred in Xishuangbanna, the average BCAn and BCBB contributions were 23% and 77%, respectively. This suggests that open biomass burning (BB) becomes the dominant source in haze months. Myanmar, India, and Laos were the dominant source regions of BC transported to Xishuangbanna during haze months, accounting for 59%, 18%, and 13% of the total, respectively. Furthermore, India was identified as the most important source regions of BCAn transported to Xishuangbanna in haze months, accounting for 14%. The two countries making the greatest contributions to BCBB transported to Xishuangbanna were Myanmar and Laos in haze months, accounting for 55% and 13%, respectively. BC emissions from Xishuangbanna had minimal effects on the results of the present study. It is suggested that open BB in Myanmar and Laos, and anthropogenic emissions in India were responsible for poor air quality in Xishuangbanna.
Collapse
Affiliation(s)
- Xuyan Liu
- National Satellite Meteorological Center, Beijing 100081, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| | - Siwen Wang
- Department of Multiphase Chemistry, Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Qianqian Zhang
- National Satellite Meteorological Center, Beijing 100081, China
| | - Chunlai Jiang
- Research Center for Total Pollution Load Control and Emission Trading, Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Linlin Liang
- State Key Laboratory of Severe Weather and Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Shihao Tang
- National Satellite Meteorological Center, Beijing 100081, China
| | - Xingying Zhang
- National Satellite Meteorological Center, Beijing 100081, China
| | - Xiuzhen Han
- National Satellite Meteorological Center, Beijing 100081, China
| | - Lin Zhu
- National Satellite Meteorological Center, Beijing 100081, China
| |
Collapse
|
7
|
Gao CY, Heald CL, Katich JM, Luo G, Yu F. Remote Aerosol Simulated During the Atmospheric Tomography (ATom) Campaign and Implications for Aerosol Lifetime. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2022JD036524. [PMID: 36582200 PMCID: PMC9787353 DOI: 10.1029/2022jd036524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
We investigate and assess how well a global chemical transport model (GEOS-Chem) simulates submicron aerosol mass concentrations in the remote troposphere. The simulated speciated aerosol (organic aerosol (OA), black carbon, sulfate, nitrate, and ammonium) mass concentrations are evaluated against airborne observations made during all four seasons of the NASA Atmospheric Tomography Mission (ATom) deployments over the remote Pacific and Atlantic Oceans. Such measurements over pristine environments offer fresh insights into the spatial (Northern [NH] and Southern Hemispheres [SH], Atlantic, and Pacific Oceans) and temporal (all seasons) variability in aerosol composition and lifetime, away from continental sources. The model captures the dominance of fine OA and sulfate aerosol mass concentrations in all seasons. There is a high bias across all species in the ATom-2 (NH winter) simulations; implementing recent updates to the wet scavenging parameterization improves our simulations, eliminating the large ATom-2 (NH winter) bias, improving the ATom-1 (NH summer) and ATom-3 (NH fall) simulations, but producing a model underestimate in aerosol mass concentrations for the ATom-4 (NH spring) simulations. Following the wet scavenging updates, simulated global annual mean aerosol lifetimes vary from 1.9 to 4.0 days, depending on species. Aerosol lifetimes in each hemisphere vary by season, and are longest for carbonaceous aerosol during the southern hemispheric fire season. The updated wet scavenging parameterization brings simulated concentrations closer to observations and reduces global aerosol lifetime for all species, indicating the sensitivity of global aerosol lifetime and burden to wet removal processes.
Collapse
Affiliation(s)
- Chloe Yuchao Gao
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Now at Program in Atmospheric and Oceanic SciencesPrinceton UniversityPrincetonNJUSA
| | - Colette L. Heald
- Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Joseph M. Katich
- Cooperative Institute for Research in Environmental Sciences (CIRES)University of ColoradoBoulderCOUSA
- NOAA Chemical Sciences Laboratory (CSL)BoulderCOUSA
- Now at Ball AerospaceBoulderCOUSA
| | - Gan Luo
- Atmospheric Sciences Research CenterUniversity at AlbanyAlbanyNYUSA
| | - Fangqun Yu
- Atmospheric Sciences Research CenterUniversity at AlbanyAlbanyNYUSA
| |
Collapse
|
8
|
Pai SJ, Heald CL, Coe H, Brooks J, Shephard MW, Dammers E, Apte JS, Luo G, Yu F, Holmes CD, Venkataraman C, Sadavarte P, Tibrewal K. Compositional Constraints are Vital for Atmospheric PM 2.5 Source Attribution over India. ACS EARTH & SPACE CHEMISTRY 2022; 6:2432-2445. [PMID: 36303716 PMCID: PMC9590233 DOI: 10.1021/acsearthspacechem.2c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
India experiences some of the highest levels of ambient PM2.5 aerosol pollution in the world. However, due to the historical dearth of in situ measurements, chemical transport models that are often used to estimate PM2.5 exposure over the region are rarely evaluated. Here, we conduct a novel model comparison with speciated airborne measurements of fine aerosol, revealing large biases in the ammonium and nitrate simulations. To address this, we incorporate process-level changes to the model and use satellite observations from the Cross-track Infrared Sounder (CrIS) and the TROPOspheric Monitoring Instrument (TROPOMI) to constrain ammonia and nitrogen oxide emissions. The resulting simulation demonstrates significantly lower bias (NMBModified: 0.19; NMBBase: 0.61) when validated against the airborne aerosol measurements, particularly for the nitrate (NMBModified: 0.08; NMBBase: 1.64) and ammonium simulation (NMBModified: 0.49; NMBBase: 0.90). We use this validated simulation to estimate a population-weighted annual PM2.5 exposure of 61.4 μg m-3, with the RCO (residential, commercial, and other) and energy sectors contributing 21% and 19%, respectively, resulting in an estimated 961,000 annual PM2.5-attributable deaths. Regional exposure and sectoral source contributions differ meaningfully in the improved simulation (compared to the baseline simulation). Our work highlights the critical role of speciated observational constraints in developing accurate model-based PM2.5 aerosol source attribution for health assessments and air quality management in India.
Collapse
Affiliation(s)
- Sidhant J. Pai
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Colette L. Heald
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hugh Coe
- Centre
for Atmospheric Science, School of Earth and Environmental Science, University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - James Brooks
- Centre
for Atmospheric Science, School of Earth and Environmental Science, University of Manchester, Oxford Rd, Manchester M13 9PL, UK
| | - Mark W. Shephard
- Environment
and Climate Change Canada, 4905 Dufferin St., North York, Ontario M3H 5T4, Canada
| | - Enrico Dammers
- Environment
and Climate Change Canada, 4905 Dufferin St., North York, Ontario M3H 5T4, Canada
- Climate,
Air and Sustainability, Netherlands Organization
for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, Netherlands
| | - Joshua S. Apte
- Department
of Civil and Environmental Engineering, University of California, 760 Davis Hall, Berkeley, California 94720, United States
- School
of Public Health, University of California, 2121 Berkeley Way, Berkeley, California 94704, United States
| | - Gan Luo
- Atmospheric
Sciences Research Center, University at
Albany, 1220 Washington Ave., Albany, New York 12226, United
States
| | - Fangqun Yu
- Atmospheric
Sciences Research Center, University at
Albany, 1220 Washington Ave., Albany, New York 12226, United
States
| | - Christopher D. Holmes
- Department
of Earth, Ocean, and Atmospheric Science, Florida State University, 1011 Academic Way, Tallahassee, Florida 32304, United
States
| | - Chandra Venkataraman
- Department
of Chemical Engineering, Indian Institute
of Technology Bombay, Main Building, Powai, Mumbai, Maharashtra 400076, India
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Pankaj Sadavarte
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
- Institute for Advanced Sustainability
Studies (IASS), Berliner
Str. 130, 14467 Potsdam, Germany
| | - Kushal Tibrewal
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
9
|
Han Y, Fu B, Tao S, Zhu D, Wang X, Peng S, Li B. Impact of the initial hydrophilic ratio on black carbon aerosols in the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153044. [PMID: 35038527 DOI: 10.1016/j.scitotenv.2022.153044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Black carbon (BC) contributes to patterns of Arctic warming, yet the initial hydrophilic ratio (IHR) of BC emitted from various sources and its impact on Arctic BC remain uncertain. With the use of a tagged tracer method of BC implemented in the global chemistry transport model GEOS-Chem, IHRs were partitioned into 7 BC combustion source categories according to the PKU-BC-v2 emission inventory. The results show that as the IHR increased, the concentration of BC decreased globally. The impact on Arctic BC was mainly reflected in the vertical profile and the burden rather than at the surface. Specifically, the greatest impact of IHR on Arctic BC appeared in summer, with the largest perturbation appearing at an altitude of approximately 600 hPa, reaching 8%. This change in BC vertical profile was mainly caused by the IHR change of wildfire combustion in Russia (44%) and Canada (51%), and the emissions from these two regions were also the two most important contributors to the BC concentration and burden in the middle and lower Arctic atmosphere in summer. In the other three seasons, anthropogenic combustion sources (oil, coal, and biomass) in East Asia, Russia, and Europe accounted for 19-40%, 14-28%, and 7-23%, respectively, of the monthly BC burden. Emissions from Russia were the most important contributor (27-43%) to the monthly BC surface concentration. Due to the large adjustment in IHR from 20% to 70%, biomass burning in Europe was shown to be the dominant contributor causing both burden (39%) and surface concentration (88%) changes in all seasons except summer.
Collapse
Affiliation(s)
- Yunman Han
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bo Fu
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Dongqiang Zhu
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shushi Peng
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bengang Li
- Sino-French Institute for Earth System Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Niu Z, Huang Z, Wang S, Feng X, Wu S, Zhao H, Lu X. Characteristics and source apportionment of particulate carbon in precipitation based on dual-carbon isotopes ( 13C and 14C) in Xi'an, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118908. [PMID: 35091020 DOI: 10.1016/j.envpol.2022.118908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Wet deposition is a dominant removal pathway of carbonaceous particles from the atmosphere, but few studies have assessed the particulate carbon in precipitation in Chinese cities. To assess the characteristics and sources of particulate carbon, we measured the concentrations, fluxes, stable carbon isotopes, and radiocarbon of particulate carbon, and some cations concentrations in precipitation in Xi'an, China, in 2019. In contrast to rainfall samples, particulate carbon in snowfall samples in Xi'an showed extremely high concentrations and wet deposition fluxes. The concentrations as well as wet deposition fluxes showed no significant (p > 0.05) differences between urban and suburban sites, and they also exhibited low seasonality in rainfall samples. Water-insoluble organic carbon (WIOC) accounted for the majority (∼90%) of the concentrations and wet deposition fluxes of water-insoluble total carbon (WITC) in precipitation. The best estimates of source apportionment of WITC in precipitation showed that biological sources were the main contributor (80.0% ± 10.5%) in summer, and their contributions decreased to 47.3% ± 12.8% in winter. The contribution of vehicle exhaust emissions accounted for 11.7% ± 3.5% in summer and 39.0% ± 4.3% in winter, while the contributions of coal combustion were relatively small in summer (8.3% ± 7.0%) and winter (13.8% ± 8.5%). Biomass burning accounted for 25.7% ± 9.3% and 89.9% ± 0.7% of the biological sources in summer and winter, respectively, with the remainder comprising other sources of contemporary carbon. These results highlight the nonnegligible contributions of biogenic emissions and biomass burning to particulate carbon in precipitation in this city in summer and winter, respectively.
Collapse
Affiliation(s)
- Zhenchuan Niu
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China; Shaanxi Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, China.
| | - Zhipu Huang
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Sen Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Xue Feng
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Xi'an Institute for Innovative Earth Environment Research, Xi'an, China
| | - Shugang Wu
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China
| | - Huiyizhe Zhao
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China
| | - Xuefeng Lu
- State Key Laboratory of Loess and Quaternary Geology, CAS Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Joint Xi'an AMS Center Between IEECAS and Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Nayak G, Kumar A, Bikkina S, Tiwari S, Sheteye SS, Sudheer AK. Carbonaceous aerosols and their light absorption properties over the Bay of Bengal during continental outflow. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:72-88. [PMID: 34897330 DOI: 10.1039/d1em00347j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The marine atmosphere of the Bay of Bengal (BoB) is prone to get impacted by anthropogenic aerosols from the Indo-Gangetic Plain (IGP) and Southeast Asia (SEA), particularly during the northeast monsoon (NEM). In this study, we quantify and characterize carbonaceous aerosols and their absorption properties collected in two cruise campaigns onboard ORV Sindhu Sadhana during the continental outflow period over the BoB. Aerosol samples were classified based on the air mass back trajectory analyses, wherein samples were impacted by the continental air parcel (CAP), marine air parcel (MAP), and mix of both (CAP + MAP). Significant variability in the PM10 mass concentration (in μg m-3) is found with a maximum value for MAP samples (75.5 ± 36.4) followed by CAP + MAP (58.5 ± 27.3) and CAP (58.5 ± 27.3). The OC/EC ratio (>2) and diagnostic tracers i.e. nss-K+/EC (0.2-0.96) and nss-K+/OC (0.11-1.32) along with the absorption angstrom exponent (AAE: 4.31-6.02) and MODIS (Moderate Resolution Imaging Spectroradiometer) derived fire counts suggest the dominance of biomass burning emission sources. A positive correlation between OC and EC (i.e. r = 0.86, 0.70, and 0.42 for CAP, MAP, and CAP + MAP, respectively) further confirmed the similar emission sources of carbonaceous species. Similarly, a significant correlation between estimated secondary organic carbon (SOC) and water-soluble organic carbon (WSOC; r = 0.99, 0.96, and 0.97 for CAP, MAP, and CAP + MAP, respectively) indicate their similar chemical nature as well as dominant contribution of SOC to WSOC. The absorption coefficient (babs-365) and mass absorption efficiency (MAEBrC-365) of the soluble fraction were estimated at 365 nm wherein, babs-365 showed a linear relationship with WSOC and nss-K+, signifying the contribution of water soluble brown carbon from biomass burning emissions. The estimated MAEBrC-365 (0.30-0.93 m2 g-1), during this study, was consistent with the earlier observations over the BoB, particularly during the continental outflow season.
Collapse
Affiliation(s)
- Gourav Nayak
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa-403 004, India.
| | - Ashwini Kumar
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa-403 004, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Srinivas Bikkina
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa-403 004, India.
| | - Shani Tiwari
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa-403 004, India.
| | - Suhas S Sheteye
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa-403 004, India.
| | - A K Sudheer
- Physical Research Laboratory, Department of Space, Ahmedabad, India
| |
Collapse
|
12
|
Sun T, Wyslouzil BE. Freezing of Dilute Aqueous-Alcohol Nanodroplets: The Effect of Molecular Structure. J Phys Chem B 2021; 125:12329-12343. [PMID: 34709826 DOI: 10.1021/acs.jpcb.1c06188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate vapor-liquid nucleation and subsequent freezing of aqueous-alcohol nanodroplets containing 1-pentanol, 1-hexanol, and their 3-isomers. The aerosols are produced in a supersonic nozzle, where condensation and freezing are characterized by static pressure and Fourier transform Infrared (FTIR) spectroscopy measurements. At fixed water concentrations, the presence of alcohol enables particle formation at higher temperatures since both the equilibrium vapor pressure above the critical clusters and the cluster interfacial free energy are decreased relative to the pure water case. The disappearance of a small free OH peak, observed for pure water droplets, when alcohols are added and shifts in the CH peaks as a function of alcohol chain length reveal varying surface partitioning preferences of the alcohols. Changes in the FTIR spectra during freezing, as well as changes in the ice component derived from self-modeling curve resolution analysis, show that 1-hexanol and 1-pentanol perturb freezing less than their branched isomers do. This behavior may reflect the molecular footprints of the alcohols, the available surface area of the droplets, and not only alcohol solubility. The presence of alcohols also lowers the freezing temperature relative to that of pure water, but when there is clear evidence for the formation of ice, the ice nucleation rates change by less than a factor of ∼2-3 for all cases studied.
Collapse
Affiliation(s)
- Tong Sun
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Barbara E Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Shikwambana L, Ncipha X, Sangeetha SK, Sivakumar V, Mhangara P. Qualitative Study on the Observations of Emissions, Transport, and the Influence of Climatic Factors from Sugarcane Burning: A South African Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147672. [PMID: 34300123 PMCID: PMC8305458 DOI: 10.3390/ijerph18147672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
There are two methods of harvesting sugarcane—manual or mechanical. Manual harvesting requires the burning of the standing sugarcane crop. Burning of the crop results in the emission of aerosols and harmful trace gases into the atmosphere. This work makes use of a long-term dataset (1980–2019) to study (1) the atmospheric spatial and vertical distribution of pollutants; (2) the spatial distribution and temporal change of biomass emissions; and (3) the impact/influence of climatic factors on temporal change in atmospheric pollutant loading and biomass emissions over the Mpumalanga and KwaZulu Natal provinces in South Africa, where sugarcane farming is rife. Black carbon (BC) and sulfur dioxide (SO2) are two dominant pollutants in the JJA and SON seasons due to sugarcane burning. Overall, there was an increasing trend in the emissions of BC, SO2, and carbon dioxide (CO2) from 1980 to 2019. Climatic conditions, such as warm temperature, high wind speed, dry conditions in the JJA, and SON season, favor the intensity and spread of the fire, which is controlled. The emitted pollutants are transported to neighboring countries and can travel over the Atlantic Ocean, as far as ~6600 km from the source site.
Collapse
Affiliation(s)
- Lerato Shikwambana
- Earth Observation Directorate, South African National Space Agency, Pretoria 0001, South Africa
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa;
- Correspondence:
| | - Xolile Ncipha
- South African Weather Service, Private Bag X097, Pretoria 0001, South Africa;
| | | | - Venkataraman Sivakumar
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4041, South Africa; (S.K.S.); (V.S.)
| | - Paidamwoyo Mhangara
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa;
| |
Collapse
|
14
|
Road Traffic Emission Inventory in an Urban Zone of West Africa: Case of Yopougon City (Abidjan, Côte d’Ivoire). ENERGIES 2021. [DOI: 10.3390/en14041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Road traffic emission inventories based on bottom-up methodology, are calculated for each road segment from fuel consumption and traffic volume data obtained during field measurements in Yopougon. High emissions of black carbon (BC) from vehicles are observed at major road intersections, in areas surrounding industrial zones and on highways. Highest emission values from road traffic are observed for carbon monoxide (CO) (14.8 t/d) and nitrogen oxides (NOx) (7.9 t/d), usually considered as the major traffic pollution tracers. Furthermore, peak values of CO emissions due to personal cars (PCs) are mainly linked to the old age of the vehicle fleet with high emission factors. The highest emitting type of vehicle for BC on the highway is PC (70.2%), followed by inter-communal taxis (TAs) (13.1%), heavy vehicles (HVs) (9.8%), minibuses (GBs) (6.4%) and intra-communal taxis (WRs) (0.4%). While for organic carbon (OC) emissions on the main roads, PCs represent 46.7%, followed by 20.3% for WRs, 14.9% for TAs, 11.4% for GB and 6.7% for HVs. This work provides new key information on local pollutant emissions and may be useful to guide mitigation strategies such as modernizing the vehicle fleet and reorganizing public transportation, to reduce emissions and improve public health.
Collapse
|
15
|
Fang D, Yang J. Drivers and critical supply chain paths of black carbon emission: A structural path decomposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111514. [PMID: 33126197 DOI: 10.1016/j.jenvman.2020.111514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
As the second largest factor contributing to global warming, black carbon (BC) is also the main cause of smog pollution in Chinese cities and has negative influence on residential health. In this paper, structural decomposition analysis (SDA) and structural path decomposition (SPD) are jointly used to identify the socioeconomic factors and critical supply chain paths driving consumption-based BC changes in Sichuan Province, which has become a main BC emission source since the implementation of "Western Development Strategy". The SDA results show that economic growth contributes 75.02 kt emission increase. Emission intensity plays a critical role in emission reduction, which offsets the emission increase by 56.00 kt. The results of SPD identify that the major paths influencing BC emission changes are "Petroleum Processing→(Construction/Metal Smelting and Production/Machinery and Equipment)→Final Demand," "Agriculture→(Food Production/Agriculture)→Final Demand," and "Transportation→(Commercial and Institution)→Final Demand." Socioeconomic drivers might pose a bidirectional impact on BC emission on different supply paths. The results reveal that BC reduction should emphasize reducing the emission intensity of the upstream sector, improving the production efficiency of the intermediate sector, and using cleaner alternatives in the downstream sectors on critical paths. The case of Sichuan may provide insights into the BC mitigation practices of other regions.
Collapse
Affiliation(s)
- Dan Fang
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China
| | - Jin Yang
- School of Economics and Management, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
16
|
Mu L, Li X, Liu X, Bai H, Peng L, Li Y, Tian M, Zheng L. Characterization and emission factors of carbonaceous aerosols originating from coke production in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115768. [PMID: 33120149 DOI: 10.1016/j.envpol.2020.115768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Coking is a substantial source of carbonaceous aerosols in China, but the emission characteristics and pollution levels of coking-produced organic carbon (OC) and elemental carbon (EC) remain unknown, causing considerable uncertainty in emission estimates. In this study, the emission factors of OC (EFOC) and EC (EFEC) of typical coking plants in Shanxi, China, were measured. The measured EFEC and EFOC from fugitive emissions (7.43 and 9.54 g/t) were significantly higher than those from flue gas (1.67 and 3.71 g/t). The technological conditions of coke production affect the emissions of OC and EC. For example, the total emissions from coke plants that use 3.2-m-high coke ovens were greater than those from plants that use 4.3- and 6-m-high ovens. The EFOC and EFEC for plants conducting stamp charging were considerably higher than those for plants using top charging. The stable carbon isotopes of total carbon (δ13CTC), OC (δ13COC), and EC (δ13CEC) for fly ash during coking were -23.74‰ to -24.17‰, -23.32‰ to -23.87‰, and -23.84‰ to -24.14‰, respectively, and no clear isotopic fractionation was found during coke production. Different EC/OC ratios from different emission pathways and the carbon isotope signature of coke production should be considered when investigating the sources of carbonaceous aerosols. The total estimated EC and OC emissions from coke production in China were 3.93 and 5.72 Gg in 2017, and Shanxi, Hebei, and Shaanxi made the largest contributions.
Collapse
Affiliation(s)
- Ling Mu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xuemei Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaofeng Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huiling Bai
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lin Peng
- School of Environment and Chemical Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yangyong Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mei Tian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lirong Zheng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
17
|
Singh AK, Srivastava A. Seasonal variation of carbonaceous species in PM1 measured over residential area of Delhi, India. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
18
|
Gurney KR, Liang J, Patarasuk R, Song Y, Huang J, Roest G. The Vulcan Version 3.0 High-Resolution Fossil Fuel CO 2 Emissions for the United States. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2020; 125:e2020JD032974. [PMID: 33133992 DOI: 10.3334/ornldaac/1741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/15/2020] [Accepted: 08/30/2020] [Indexed: 05/21/2023]
Abstract
Estimates of high-resolution greenhouse gas (GHG) emissions have become a critical component of climate change research and an aid to decision makers considering GHG mitigation opportunities. The "Vulcan Project" is an effort to estimate bottom-up carbon dioxide emissions from fossil fuel combustion and cement production (FFCO2) for the U.S. landscape at space and time scales that satisfy both scientific and policy needs. Here, we report on the Vulcan version 3.0 which quantifies emissions at a resolution of 1 km2/hr for the 2010-2015 time period. We estimate 2011 FFCO2 emissions of 1,589.9 TgC with a 95% confidence interval of 1,367/1,853 TgC (-14.0%/+16.6%), implying a one-sigma uncertainty of ~ ±8%. Per capita emissions are larger in states dominated by electricity production and industrial activity and smaller where onroad and building emissions dominate. The U.S. FFCO2 emissions center of mass (CoM) is located in the state of Missouri with mean seasonality that moves on a near-elliptical NE/SW path. Comparison to ODIAC, a global gridded FFCO2 emissions estimate, shows large total emissions differences (100.4 TgC for year 2011), a spatial correlation of 0.68 (R2), and a mean absolute relative difference at the 1 km2 scale of 104.3%. The Vulcan data product offers a high-resolution estimate of FFCO2 emissions in every U.S. city, obviating costly development of self-reported urban inventories. The Vulcan v3.0 annual gridded emissions data product can be downloaded from the Oak Ridge National Laboratory Distributed Active Archive Center (Gurney, Liang, et al., 2019, https://doi.org/10.3334/ORNLDAAC/1741).
Collapse
Affiliation(s)
- Kevin R Gurney
- School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff AZ USA
| | - Jianming Liang
- School of Life Sciences Arizona State University Tempe AZ USA
- ESRI Redlands CA USA
| | - Risa Patarasuk
- School of Life Sciences Arizona State University Tempe AZ USA
- Citrus County Board of Commissioners Lecanto FL USA
| | - Yang Song
- School of Life Sciences Arizona State University Tempe AZ USA
| | - Jianhua Huang
- School of Life Sciences Arizona State University Tempe AZ USA
- VISA Research Austin TX USA
| | - Geoffrey Roest
- School of Informatics, Computing, and Cyber Systems Northern Arizona University Flagstaff AZ USA
| |
Collapse
|
19
|
Gurney KR, Liang J, Patarasuk R, Song Y, Huang J, Roest G. The Vulcan Version 3.0 High-Resolution Fossil Fuel CO 2 Emissions for the United States. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2020; 125:e2020JD032974. [PMID: 33133992 PMCID: PMC7583371 DOI: 10.1029/2020jd032974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/15/2020] [Accepted: 08/30/2020] [Indexed: 05/05/2023]
Abstract
Estimates of high-resolution greenhouse gas (GHG) emissions have become a critical component of climate change research and an aid to decision makers considering GHG mitigation opportunities. The "Vulcan Project" is an effort to estimate bottom-up carbon dioxide emissions from fossil fuel combustion and cement production (FFCO2) for the U.S. landscape at space and time scales that satisfy both scientific and policy needs. Here, we report on the Vulcan version 3.0 which quantifies emissions at a resolution of 1 km2/hr for the 2010-2015 time period. We estimate 2011 FFCO2 emissions of 1,589.9 TgC with a 95% confidence interval of 1,367/1,853 TgC (-14.0%/+16.6%), implying a one-sigma uncertainty of ~ ±8%. Per capita emissions are larger in states dominated by electricity production and industrial activity and smaller where onroad and building emissions dominate. The U.S. FFCO2 emissions center of mass (CoM) is located in the state of Missouri with mean seasonality that moves on a near-elliptical NE/SW path. Comparison to ODIAC, a global gridded FFCO2 emissions estimate, shows large total emissions differences (100.4 TgC for year 2011), a spatial correlation of 0.68 (R2), and a mean absolute relative difference at the 1 km2 scale of 104.3%. The Vulcan data product offers a high-resolution estimate of FFCO2 emissions in every U.S. city, obviating costly development of self-reported urban inventories. The Vulcan v3.0 annual gridded emissions data product can be downloaded from the Oak Ridge National Laboratory Distributed Active Archive Center (Gurney, Liang, et al., 2019, https://doi.org/10.3334/ORNLDAAC/1741).
Collapse
Affiliation(s)
- Kevin R. Gurney
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZUSA
| | - Jianming Liang
- School of Life SciencesArizona State UniversityTempeAZUSA
- ESRIRedlandsCAUSA
| | - Risa Patarasuk
- School of Life SciencesArizona State UniversityTempeAZUSA
- Citrus County Board of CommissionersLecantoFLUSA
| | - Yang Song
- School of Life SciencesArizona State UniversityTempeAZUSA
| | - Jianhua Huang
- School of Life SciencesArizona State UniversityTempeAZUSA
- VISA ResearchAustinTXUSA
| | - Geoffrey Roest
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZUSA
| |
Collapse
|
20
|
Kaneyasu N, Matsumoto K, Yamaguchi T, Noguchi I, Murao N, Yasunari TJ, Ikemori F. A twenty-year deposition record of elemental carbon in Northern Japan retrieved from archived filters. Sci Rep 2020; 10:4520. [PMID: 32188870 PMCID: PMC7080725 DOI: 10.1038/s41598-020-61067-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/21/2020] [Indexed: 11/09/2022] Open
Abstract
The black carbon or elemental carbon (EC) content in ice and snow has been a concern in climate change studies, but time-series records have mostly been obtained from glacier ice-core samples in limited geographical locations, such as the Arctic or high mountains. This is the first study to present decade-long records of EC deposition measured at urban (Sapporo) and background (Rishiri Island) sites in Japan, in the mid-latitude zone of the eastern edge of the Asian continent. By using archived membrane filters from an acid rain study, we retrieved monthly EC deposition records of 1993–2012 in Sapporo and intermittent deposition data in Rishiri. Annual EC deposition showed large fluctuations, with a maximum in 2000–2001 and a minor increase in 2010–2011. This interannual change was moderately related to the deposition of non-sea salt SO42− and the collected water volume but did not reflect the estimated emission history of China. High depositions in 2000–2001 were probably caused by the transport of Asian Dust accompanied by air pollutants, which were characteristically active in these years. The findings of this study have implications for the use of observational data in validating global aerosol transport models.
Collapse
Affiliation(s)
- Naoki Kaneyasu
- National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, 305-8569, Japan.
| | - Kiyoshi Matsumoto
- Division of Life and Environmental Sciences, University of Yamanashi, 4-4-37, Takeda, Kofu, Yamanashi, 400-8510, Japan
| | - Takashi Yamaguchi
- Environmental and Geological Research Department, Hokkaido Research Organization, Kita-19 Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Izumi Noguchi
- Environmental and Geological Research Department, Hokkaido Research Organization, Kita-19 Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Naoto Murao
- Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo, 060-8628, Japan
| | - Teppei J Yasunari
- Arctic Research Center and Global Station for Arctic Research, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan.,Center for Natural Hazards Research, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Fumikazu Ikemori
- Nagoya City Institute for Environmental Sciences, 5-16-8 Toyoda, Nagoya, 457-0841, Japan
| |
Collapse
|
21
|
Lee S, Lee MI, Song CK, Kim KM, da Silva AM. Interannual Variation of the East Asia Jet Stream and Its Impact on the Horizontal Distribution of Aerosol in Boreal Spring. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2020; 223:117296. [PMID: 33088210 PMCID: PMC7571601 DOI: 10.1016/j.atmosenv.2020.117296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Interannual variation of the aerosol optical depth (AOD) in East Asia has been investigated using Moderate Resolution Imaging Spectroradiometer (MODIS) data and Modern Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) data for 2000-2018. The data analysis focuses on boreal spring when Siberian biomass burning is at its seasonal maximum. The results indicate that the significant increase in organic and black carbon is primarily caused by emissions from biomass burning in East Asia, which leads to significant interannual variations in aerosol loading and pan-Pacific transport. The anomalous large-scale climate variability associated with the East Asia Jet Stream (EAJS) provides favorable conditions for increasing the AOD of organic and black carbon in Northeast Asia and may represent an underlying physical mechanism. When the EAJS shows greater weakening than normal, abnormal high-pressure anomalies are maintained in East Asia, which tend to drive warm advection over Northeast Asia. This warm advection expedites the melting of the Eurasian snow cover, which helps increase surface dryness in late spring and provides favorable conditions for biomass burning. The EAJS index can be predictable with statistical significance up to lead 1 month by the dynamical ensemble seasonal forecasts, suggesting a possible implementation of the empirical AOD forecasts using climate forecast models.
Collapse
Affiliation(s)
- Seunghee Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Myong-In Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chang-Keun Song
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyu-Myong Kim
- NASA Goddard Space Flight Center, Greenbelt, Maryland, U.S.A
| | | |
Collapse
|
22
|
Xian P, Reid JS, Hyer EJ, Sampson CR, Rubin JI, Ades M, Asencio N, Basart S, Benedetti A, Bhattacharjee PS, Brooks ME, Colarco PR, da Silva AM, Eck TF, Guth J, Jorba O, Kouznetsov R, Kipling Z, Sofiev M, Perez Garcia‐Pando C, Pradhan Y, Tanaka T, Wang J, Westphal DL, Yumimoto K, Zhang J. Current state of the global operational aerosol multi-model ensemble: An update from the International Cooperative for Aerosol Prediction (ICAP). QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY. ROYAL METEOROLOGICAL SOCIETY (GREAT BRITAIN) 2019; 145:176-209. [PMID: 31787783 PMCID: PMC6876662 DOI: 10.1002/qj.3497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/08/2018] [Accepted: 01/24/2019] [Indexed: 06/10/2023]
Abstract
Since the first International Cooperative for Aerosol Prediction (ICAP) multi-model ensemble (MME) study, the number of ICAP global operational aerosol models has increased from five to nine. An update of the current ICAP status is provided, along with an evaluation of the performance of ICAP-MME over 2012-2017, with a focus on June 2016-May 2017. Evaluated with ground-based Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) and data assimilation quality MODerate-resolution Imaging Spectroradiometer (MODIS) retrieval products, the ICAP-MME AOD consensus remains the overall top-scoring and most consistent performer among all models in terms of root-mean-square error (RMSE), bias and correlation for total, fine- and coarse-mode AODs as well as dust AOD; this is similar to the first ICAP-MME study. Further, over the years, the performance of ICAP-MME is relatively stable and reliable compared to more variability in the individual models. The extent to which the AOD forecast error of ICAP-MME can be predicted is also examined. Leading predictors are found to be the consensus mean and spread. Regression models of absolute forecast errors were built for AOD forecasts of different lengths for potential applications. ICAP-MME performance in terms of modal AOD RMSEs of the 21 regionally representative sites over 2012-2017 suggests a general tendency for model improvements in fine-mode AOD, especially over Asia. No significant improvement in coarse-mode AOD is found overall for this time period.
Collapse
Affiliation(s)
- Peng Xian
- Marine Meteorology DivisionNaval Research LaboratoryMontereyCalifornia
| | - Jeffrey S. Reid
- Marine Meteorology DivisionNaval Research LaboratoryMontereyCalifornia
| | - Edward J. Hyer
- Marine Meteorology DivisionNaval Research LaboratoryMontereyCalifornia
| | | | - Juli I. Rubin
- Remote Sensing DivisionNaval Research LaboratoryWashingtonDistrict of Columbia
| | - Melanie Ades
- European Centre for Medium‐Range Weather ForecastsReadingUK
| | | | - Sara Basart
- Earth Sciences DepartmentBarcelona Supercomputing CenterBarcelonaSpain
| | | | | | | | | | | | - Tom F. Eck
- NASA Goddard Space Flight CenterGreenbeltMaryland
| | | | - Oriol Jorba
- Earth Sciences DepartmentBarcelona Supercomputing CenterBarcelonaSpain
| | - Rostislav Kouznetsov
- Atmospheric Composition UnitFinnish Meteorological InstituteHelsinkiFinland
- Obukhov Institute for Atmospheric PhysicsMoscowRussia
| | - Zak Kipling
- European Centre for Medium‐Range Weather ForecastsReadingUK
| | - Mikhail Sofiev
- Atmospheric Composition UnitFinnish Meteorological InstituteHelsinkiFinland
| | | | | | - Taichu Tanaka
- Atmospheric Environment and Applied Meteorology Research DepartmentMeteorological Research Institute, Japan Meteorological AgencyTsukubaJapan
| | - Jun Wang
- I.M. System Group at NOAA/NCEP/EMCCollege ParkMaryland
- NOAA NCEPCollege ParkMaryland
| | | | - Keiya Yumimoto
- Atmospheric Environment and Applied Meteorology Research DepartmentMeteorological Research Institute, Japan Meteorological AgencyTsukubaJapan
- Research Institute for Applied Mechanics, Kyushu UniversityFukuokaJapan
| | - Jianglong Zhang
- Department of Atmospheric SciencesUniversity of North DakotaGrand ForksNorth Dakota
| |
Collapse
|
23
|
Aerosol Indirect Effects on the Predicted Precipitation in a Global Weather Forecasting Model. ATMOSPHERE 2019. [DOI: 10.3390/atmos10070392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aerosol indirect effects on precipitation were investigated in this study using a Global/Regional Integrated Model system (GRIMs) linked with a chemistry package devised for reducing the heavy computational burden occurring in common atmosphere–chemistry coupling models. The chemistry package was based on the Goddard Chemistry Aerosol Radiation and Transport scheme of Weather Research and Forecasting with Chemistry (WRF-Chem), and five tracers that are relatively important for cloud condensation nuclei (CCN) formation were treated as prognostic variables. For coupling with the cloud physics processes in the GRIMs, the CCN number concentrations derived from the simplified chemistry package were utilized in the cumulus parameterization scheme (CPS) and the microphysics scheme (MPS). The simulated CCN number concentrations were higher than those used in original cloud physics schemes and, overall, the amount of incoming shortwave radiation reaching the ground was indirectly reduced by an increase in clouds owing to a high CCN. The amount of heavier precipitation increased over the tropics owing to the inclusion of enhanced riming effects under deep precipitating convection. The trend regarding the changes in non-convective precipitation was mixed depending on the atmospheric conditions. The increase in small-size cloud water owing to a suppressed autoconversion led to a reduction in precipitation. More precipitation can occur when ice particles fall under high CCN conditions owing to the accretion of cloud water by snow and graupel, along with their melting.
Collapse
|
24
|
Sensitivity of Nitrate Aerosol Production to Vehicular Emissions in an Urban Street. ATMOSPHERE 2019. [DOI: 10.3390/atmos10040212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study investigated the sensitivity of nitrate aerosols to vehicular emissions in urban streets using a coupled computational fluid dynamics (CFD)–chemistry model. Nitrate concentrations were highest at the street surface level following NH3 emissions from vehicles, indicating that ammonium nitrate formation occurs under NH3-limited conditions in street canyons. Sensitivity simulations revealed that the nitrate concentration has no clear relationship with the NOx emission rate, showing nitrate changes of only 2% across among 16 time differences in NOx emissions. NOx emissions show a conflicting effect on nitrate production via decreasing O3 and increasing NO2 concentrations under a volatile organic compound (VOC)-limited regime for O3 production. The sensitivity simulations also show that nitrate aerosol is proportional to vehicular VOC and NH3 emissions in the street canyon. Changes of VOC emissions affect the nitrate aerosol and HNO3 concentrations through changes in the O3 concentration under a VOC-limited regime for O3 production. Nitrate aerosol concentration is influenced by vehicular NH3 emissions, which produce ammonium nitrate effectively under an NH3-limited regime for nitrate production. This research suggests that, when vehicular emissions are dominant in winter, the control of vehicular VOC and NH3 emissions might be a more effective way to degrade PM2.5 problems than the control of NOx.
Collapse
|
25
|
Recent Advances in Quantifying Wet Scavenging Efficiency of Black Carbon Aerosol. ATMOSPHERE 2019. [DOI: 10.3390/atmos10040175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Black carbon (BC) aerosol is of great importance not only for its strong potential in heating air and impacts on cloud, but also because of its hazards to human health. Wet deposition is regarded as the main sink of BC, constraining its lifetime and thus its impact on the environment and climate. However, substantial controversial and ambiguous issues in the wet scavenging processes of BC are apparent in current studies. Despite of its significance, there are only a small number of field studies that have investigated the incorporation of BC-containing particles into cloud droplets and influencing factors, in particular, the in-cloud scavenging, because it was simplicitly considered in many studies (as part of total wet scavenging). The mass scavenging efficiencies (MSEs) of BC were observed to be varied over the world, and the influencing factors were attributed to physical and chemical properties (e.g., size and chemical compositions) and meteorological conditions (cloud water content, temperature, etc.). In this review, we summarized the MSEs and potential factors that influence the in-cloud and below-cloud scavenging of BC. In general, MSEs of BC are lower at low-altitude regions (urban, suburban, and rural sites) and increase with the rising altitude, which serves as additional evidence that atmospheric aging plays an important role in the chemical modification of BC. Herein, higher altitude sites are more representative of free-tropospheric conditions, where BC is usually more aged. Despite of increasing knowledge of BC–cloud interaction, there are still challenges that need to be addressed to gain a better understanding of the wet scavenging of BC. We recommend that more comprehensive methods should be further estimated to obtain high time-resolved scavenging efficiency (SE) of BC, and to distinguish the impact of in-cloud and below-cloud scavenging on BC mass concentration, which is expected to be useful for constraining the gap between field observation and modeling simulation results.
Collapse
|
26
|
Liu XY, He KB, Zhang Q, Lu ZF, Wang SW, Zhang YX, Streets DG. Analysis of the origins of black carbon and carbon monoxide transported to Beijing, Tianjin, and Hebei in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1364-1376. [PMID: 30759576 DOI: 10.1016/j.scitotenv.2018.09.274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 06/09/2023]
Abstract
A novel back-trajectory approach was adopted to determine the origins of black carbon (BC) and carbon monoxide (CO) transported to Beijing, Tianjin and Hebei. Results showed that the transport efficiency was controlled mainly by mid-latitude westerlies in winter, the South Asian monsoon in summer and prevailing westerly and northwesterly winds in spring and autumn. Hebei was identified as the most important source region of both BC (respectively accounting for 55% and 49%) and CO (39% and 38%) transported to Beijing and Tianjin. Inner Mongolia contributed more to the effective emission intensity (EEI) in winter than in summer for both BC and CO transported to Beijing and Tianjin. Shandong was responsible for higher EEI in summer than in winter. The six provinces making the greatest contributions to BC transported to Hebei were Shandong (19%), Shanxi (19%), Inner Mongolia (17%), Beijing (11%), Henan (11%), and Tianjin (10%), whereas those making the greatest contributions to CO transported to Hebei were Shandong (20%), Inner Mongolia (10%), Tianjin (9%), Henan (9%), Shanxi (9%), and Beijing (8%). In summary, Hebei, Inner Mongolia, Shandong, Tianjin and Shanxi were determined as the dominant source regions of not only BC but also CO transported to Beijing. Hebei, Shandong, Beijing, Inner Mongolia, Henan, Liaoning and Shanxi were relatively important source regions for Tianjin. Shandong, Shanxi, Inner Mongolia, Beijing, Henan, Tianjin, Liaoning, Jiangsu and Anhui were the main source regions for Hebei. Residential and industrial sectors were the dominant sectors for BC and CO transported to the receptors, respectively. These results are consistent with the results of previous studies. Finally, comparing the observed ΔBC/ΔCO ratio with the enhancement ratio of the EEI of BC with that of CO (ΔEEIBC/ΔEEICO) at Miyun site, we further confirmed that the EEI can be used to represent the amounts of BC and CO reaching receptors.
Collapse
Affiliation(s)
- Xu-Yan Liu
- National Satellite Meteorological Center, Beijing 100081, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ke-Bin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Regional Environmental Quality, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Qiang Zhang
- Collaborative Innovation Center for Regional Environmental Quality, Beijing 100084, China; Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China.
| | - Zi-Feng Lu
- Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Si-Wen Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Multiphase Chemistry Department, Max Panck Institute for Chemistry, Mainz 55128, Germany
| | - Yu-Xuan Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China; Multiphase Chemistry Department, Max Panck Institute for Chemistry, Mainz 55128, Germany
| | - David G Streets
- Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
27
|
Zhang Y, Liao H, Ding X, Jo D, Li K. Implications of RCP emissions on future concentration and direct radiative forcing of secondary organic aerosol over China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1187-1204. [PMID: 30021284 DOI: 10.1016/j.scitotenv.2018.05.274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/06/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
This study applies the nested-grid version of Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem) to examine future changes (2000-2050) in SOA concentration and associated direct radiative forcing (DRF) over China under the Representative Concentration Pathways (RCPs). The projected changes in SOA concentrations over 2010-2050 generally follow future changes in emissions of toluene and xylene. On an annual mean basis, the largest increase in SOA over eastern China is simulated to be 25.1% in 2020 under RCP2.6, 20.4% in 2020 under RCP4.5, 56.3% in 2050 under RCP6.0, and 44.6% in 2030 under RCP8.5. The role of SOA in PM2.5 increases with each decade in 2010-2050 under RCP2.6, RCP4.5, and RCP8.5, with a maximum ratio of concentration of SOA to that of PM2.5 of 16.3% in 2050 under RCP4.5 as averaged over eastern China (20°-45°N, 100°-125°E). Concentrations of SOA are projected to be able to exceed those of sulfate, ammonium, and black carbon (BC) in the future. The future changes in SOA levels over eastern China are simulated to lead to domain-averaged (20°-45°N, 100°-125°E) DRFs of +0.19 W m-2, +0.12 W m-2, - 0.28 W m-2, and -0.17 W m-2 in 2050 relative to 2000 under RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. Model results indicate that future changes in SOA owing to future changes in anthropogenic precursor emissions are important for future air quality planning and climate mitigation measures.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Duseong Jo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO 80309, USA; Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Ke Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
28
|
Mousavi A, Sowlat MH, Hasheminassab S, Polidori A, Sioutas C. Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1231-1240. [PMID: 30021288 DOI: 10.1016/j.scitotenv.2018.06.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
In this study, we evaluated the spatial and temporal trends of black carbon (BC) in the Los Angeles Basin between 2012-2013 and 2016-2017. BC concentrations were measured in seven wavelengths using Aethalometers (AE33) at four sites, including central Los Angeles (CELA), Anaheim, Fontana, and Riverside. Sources of BC were quantified using the equivalent black carbon (EBC) model. Results indicate that total BC concentrations nearly doubled in colder period compared to the warm period. Source apportionment results revealed that fossil fuel combustion has higher annual contributions (ranging from 82% in Riverside to 91% in CELA) than biomass burning (ranging from 9.3% in CELA to 18.7% in Riverside) to the total BC concentrations at all sites. This trend was more clearly observed at the sites closer to major freeways, such as CELA and Anaheim. The relative contribution of fossil fuel to total BC concentrations was higher in the warm period, whereas biomass burning had higher contributions in the colder period. The diurnal variation of fossil-fuel-originated BC (BCff) to the total BC concentrations revealed major rises during the traffic rush hours, especially in the warm period. In contrast, the fraction of BC originating from biomass burning (BCbb) peaked at nighttime, particularly in the cold period, reaching values as high as 25-30% of total BC concentration. Moreover, we observed a clear decrease in both absolute BC concentrations as well as relative contributions of BCff to total BC concentrations from 2012-2013 to 2016-2017, which can be attributed to the implementation of strict regulations in California to reduce transportation-related PM emissions. Results from the present study suggest that as these regulations become increasingly stricter, the relative contributions of traffic sources to BC also decrease, thereby making the impact of non-fossil fuel combustion sources, such as biomass burning, to the overall BC levels more significant.
Collapse
Affiliation(s)
- Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| | - Mohammad H Sowlat
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| | | | - Andrea Polidori
- South Coast Air Quality Management District, Diamond Bar, CA, USA.
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Friberg MD, Kahn RA, Limbacher JA, Appel KW, Mulholland JA. Constraining chemical transport PM 2.5 modeling outputs using surface monitor measurements and satellite retrievals: application over the San Joaquin Valley. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:12891-12913. [PMID: 30288162 PMCID: PMC6166888 DOI: 10.5194/acp-18-12891-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Advances in satellite retrieval of aerosol type can improve the accuracy of near-surface air quality characterization by providing broad regional context and decreasing metric uncertainties and errors. The frequent, spatially extensive and radiometrically consistent instantaneous constraints can be especially useful in areas away from ground monitors and progressively downwind of emission sources. We present a physical approach to constraining regional-scale estimates of PM2.5, its major chemical component species estimates, and related uncertainty estimates of chemical transport model (CTM; e.g., the Community Multi-scale Air Quality Model) outputs. This approach uses ground-based monitors where available, combined with aerosol optical depth and qualitative constraints on aerosol size, shape, and light-absorption properties from the Multi-angle Imaging SpectroRadiometer (MISR) on the NASA Earth Observing System's Terra satellite. The CTM complements these data by providing complete spatial and temporal coverage. Unlike widely used approaches that train statistical regression models, the technique developed here leverages CTM physical constraints such as the conservation of aerosol mass and meteorological consistency, independent of observations. The CTM also aids in identifying relationships between observed species concentrations and emission sources. Aerosol air mass types over populated regions of central California are characterized using satellite data acquired during the 2013 San Joaquin field deployment of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) project. We investigate the optimal application of incorporating 275 m horizontal-resolution aerosol air-mass-type maps and total-column aerosol optical depth from the MISR Research Aerosol retrieval algorithm (RA) into regional-scale CTM output. The impact on surface PM2.5 fields progressively downwind of large single sources is evaluated using contemporaneous surface observations. Spatiotemporal R 2 and RMSE values for the model, constrained by both satellite and surface monitor measurements based on 10-fold cross-validation, are 0.79 and 0.33 for PM2.5, 0.88 and 0.65 for NO3 -, 0.78 and 0.23 for SO4 2-, and 1.01 for NH+, 0.73 and 0.23 for OC, and 0.31 and 0.65 for EC, respectively. Regional cross-validation temporal and spatiotemporal R2 results for the satellite-based PM2.5 improve by 30 % and 13 %, respectively, in comparison to unconstrained CTM simulations and provide finer spatial resolution. SO4 2- cross-validation values showed the largest spatial and spatiotemporal R2 improvement, with a 43 % increase. Assessing this physical technique in a well- instrumented region opens the possibility of applying it globally, especially over areas where surface air quality measurements are scarce or entirely absent.
Collapse
Affiliation(s)
- Mariel D. Friberg
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ralph A. Kahn
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - James A. Limbacher
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- Science Systems and Applications Inc., Lanham, MD 20706, USA
| | | | - James A. Mulholland
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
30
|
Pintér M, Ajtai T, Kiss-Albert G, Kiss D, Utry N, Janovszky P, Palásti D, Smausz T, Kohut A, Hopp B, Galbács G, Kukovecz Á, Kónya Z, Szabó G, Bozóki Z. Thermo-optical properties of residential coals and combustion aerosols. ATMOSPHERIC ENVIRONMENT 2018. [DOI: 10.1016/j.atmosenv.2018.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Liu Y, Yan C, Zheng M. Source apportionment of black carbon during winter in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:531-541. [PMID: 29149737 DOI: 10.1016/j.scitotenv.2017.11.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 05/12/2023]
Abstract
Black carbon (BC) in PM2.5 was measured at an urban site in Beijing during winter 2015 using an aethalometer. The characteristics and sources of BC during pollution episodes and clean days were analyzed. The average hourly mass concentration of BC during the study period was 5.31±6.27μg/m3. BC was highly correlated with PM2.5 (R2=0.80), with its concentration ranging from 0.17μg/m3 in clean days to 35.33μg/m3 in haze days. Source apportionment results showed that the average contribution of liquid fuel source (e.g., vehicle emission) to BC was around 50% in clean days. While during the pollution episodes, solid fuel sources including coal combustion and biomass burning were the predominant sources, accounting for 61-83% of BC. Specific source tracers suggested that coal combustion and biomass burning dominated in different pollution episodes. Ratios of BC/PM2.5 and BC/CO as well as source tracers provided further supportive evidences for the source apportionment results. Our findings suggest that it is more important to control solid fuel sources such as coal combustion for BC abatement in Beijing during haze days, while liquid fuel source (e.g., vehicle emission) plays a relatively more important role in clean days compared to pollution episodes.
Collapse
Affiliation(s)
- Yue Liu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Caiqing Yan
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
32
|
Hegde P, Kawamura K. Chemical Constituents of Carbonaceous and Nitrogen Aerosols over Thumba Region, Trivandrum, India. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:456-473. [PMID: 28668997 DOI: 10.1007/s00244-017-0426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Aerosol filter samples collected at a tropical coastal site Thumba over Indian region were analysed for water-soluble ions, total carbon and nitrogen, organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon/nitrogen and their sources for different seasons of the year. For the entire study period, the order of abundance of ions showed the dominance of secondary ions, such as SO42-, NO3-, and NH4+. On average, Mg2+ (56%), K+ (11%), SO42- (8.8%), and Ca2+ (8.1%) contributions were from maritime influence. There was significant chloride depletion due to enhanced levels of inorganic acids, such as SO42- and NO3-. Total carbon contributed 21% of the aerosol total suspended particulate matter in which 85% is organic carbon. Primary combustion-generated carbonaceous aerosols contributed 41% of aerosol mass for the entire study period. High average ratios of OC/EC (5.5 ± 1.8) and WSOC/OC (0.38 ± 0.11) suggest that organic aerosols are predominantly comprised of secondary species. In our samples, major fraction (89 ± 9%) was found to be inorganic nitrate in total nitrogen (TN). Good correlations (R 2 ≥ 0.82) were observed between TN with NO3- plus NH4+, indicating that nitrate and ammonium ions account for a significant portion of TN. The temporal variations in the specific carbonaceous aerosols and air mass trajectories demonstrated that several pollutants and/or their precursor compounds are likely transported from north western India and the oceanic regions.
Collapse
Affiliation(s)
- Prashant Hegde
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum, India.
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Japan
| |
Collapse
|
33
|
Wang Y, de Foy B, Schauer JJ, Olson MR, Zhang Y, Li Z, Zhang Y. Impacts of regional transport on black carbon in Huairou, Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:75-84. [PMID: 27889086 DOI: 10.1016/j.envpol.2016.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/09/2016] [Accepted: 11/02/2016] [Indexed: 05/21/2023]
Abstract
The 22nd Asia-Pacific Economic Cooperation (APEC) Conference was held near Yanqi Lake, Huairou, in Beijing, China during November 10-11, 2014. To guarantee haze-free days during the APEC Conference, the Beijing government and the governments of the surrounding provinces implemented a series of controls. Three months of Aethalometer 880 nm black carbon (BC) measurements were examined to understand the hourly fluctuations in BC concentrations that resulted from emission controls and meteorology changes. Measurements were collected at the University of Chinese Academy of Sciences near the APEC Conference site and in Central Beijing at the Institute of Remote Sensing and Digital Earth of the Chinese Academy of Sciences. Synoptic conditions are successfully represented through analysis of backward trajectories in six cluster groups. The clusters are identified based on air mass transport from various areas such as Inner Mongolia, Russia, three northeastern provinces, and Hebei industrial areas, to the measurement sites. Air pollution control measures during the APEC Conference significantly reduced BC at the conference site (Huairou) and in Central Beijing, with greater reductions in BC concentrations at the conference site than in Central Beijing. The highest BC concentrations in Huairou were associated with air masses originating from Central Beijing rather than from the Hebei industrial region. The success of the control measures implemented in Beijing and the surrounding regions demonstrates that BC concentrations can be effectively reduced to protect human health and mitigate regional climate forcing. This study also demonstrates the need for regional strategies to reduce BC concentrations, since urban areas like Beijing are sources as well as downwind receptors of emissions.
Collapse
Affiliation(s)
- Yuqin Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Benjamin de Foy
- Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63108, USA
| | - James J Schauer
- Civil and Environmental Engineering Department, University of Wisconsin-Madison, Madison, WI 53706, USA; Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael R Olson
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Water Science and Engineering Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yang Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengqiang Li
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing, 100094, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Huairou Eco-Environmental Observatory, Chinese Academy of Sciences, Beijing, 101408, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
34
|
Lui KH, Bandowe BAM, Tian L, Chan CS, Cao JJ, Ning Z, Lee SC, Ho KF. Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China. CHEMOSPHERE 2017; 169:660-668. [PMID: 27912191 DOI: 10.1016/j.chemosphere.2016.11.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 05/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM2.5) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. A sample from the community with the highest mortality contained the highest total concentration of PAHs, OPAHs and AZAs and posed the highest excess cancer risk from a lifetime of inhaling fine particulates. Positive correlations between total carbonyl-OPAHs, total AZAs and total PAHs implied that the emissions were dependent on similar factors, regardless of sample location and type. The calculated cancer risk ranged from 5.23-10.7 × 10-3, which is higher than the national average. The risk in each sample was ∼1-2 orders of magnitude higher than that deemed high risk, suggesting that the safety of these households is in jeopardy. The lack of potency equivalency factors for the PAH derivatives could possibly have underestimated the overall cancer risk.
Collapse
Affiliation(s)
- K H Lui
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Benjamin A Musa Bandowe
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012 Bern, Switzerland
| | - Linwei Tian
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Chi-Sing Chan
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun-Ji Cao
- Key Laboratory of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Zhi Ning
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - S C Lee
- Department of Civil and Structural Engineering, Research Center of Urban Environmental Technology and Management, The Hong Kong Polytechnic University, Hong Kong, China
| | - K F Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Key Laboratory of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China.
| |
Collapse
|
35
|
Shi G, Peng X, Liu J, Tian Y, Song D, Yu H, Feng Y, Russell AG. Quantification of long-term primary and secondary source contributions to carbonaceous aerosols. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:897-905. [PMID: 27616649 DOI: 10.1016/j.envpol.2016.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/02/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Ambient fine particulate matter samples were collected during 2009-2013 in Chengdu, a megacity in western China, and the samples were speciated into organic carbon (OC), elemental carbon (EC), char-EC, soot-EC, eight carbon fractions, inorganic elements and water-soluble ions. Char-EC and soot-EC contribute to the better understanding of the sources and properties of EC. The highest levels of most carbon fractions were found in winter and May. The higher OC/EC ratio in winter suggests higher SOC fraction in winter, and higher char-EC/soot-EC ratio in May are the direct consequences of straw burning activities. Source contributions to PM2.5 and carbonaceous aerosols were quantified using the ME2 receptor model. Major contributors to OC in PM2.5 are vehicular exhaust (36.5%), coal combustion & straw burning (35.2%) and SOC (27.0%). The first two categories also contributed 51.4% and 49.3% of char-EC in PM2.5. Vehicular exhaust dominated soot-EC, contributing 63.0% to soot-EC in PM2.5. SOC contributed to high OC levels in winter due to the increase of precursor emissions and stable meteorological conditions. Coal combustion & straw burning show higher contributions to OC, char-EC and soot-EC in winter months and in May, which can be explained, in part, by increased coal consumption in winter and straw burning activities in May. Vehicular exhaust contributions are not strongly associated with monthly nor weekday-weekend patterns, resulting in that soot-EC vary insignificantly by month nor by weekday.
Collapse
Affiliation(s)
- Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xing Peng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiayuan Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Danlin Song
- Chengdu Research Academy of Environmental Sciences, China
| | - Haofei Yu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 30332-0512, Georgia
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 30332-0512, Georgia
| |
Collapse
|
36
|
Wang Y, Xing Z, Zhao S, Zheng M, Mu C, Du K. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 547:422-428. [PMID: 26799329 DOI: 10.1016/j.scitotenv.2015.12.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Accurately quantifying black carbon (BC) emission factors (EFs) is a prerequisite for estimation of BC emission inventory. BC EFs determined by measuring BC at the roadside or chasing a vehicle on-road may introduce large uncertainty for low emission vehicles. In this study, BC concentrations were measured inside the tailpipe of gasoline vehicles with different engine sizes under different driving modes to determine the respective EFs. BC EFs ranged from 0.005-7.14 mg/kg-fuel under the speeds of 20-70 km/h, 0.05-28.95 mg/kg-fuel under the accelerations of 0.5-1.5m/s(2). Although the water vapor in the sampling stream could result in an average of 12% negative bias, the BC EFs are significantly lower than the published results obtained with roadside or chasing vehicle measurement. It is suggested to conduct measurement at the tailpipe of gasoline vehicles instead of in the atmosphere behind the vehicles to reduce the uncertainty from fluctuation in ambient BC concentration.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhenyu Xing
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Shuhui Zhao
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mei Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chao Mu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ke Du
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
37
|
Li Y, Henze DK, Jack D, Kinney PL. The influence of air quality model resolution on health impact assessment for fine particulate matter and its components. AIR QUALITY, ATMOSPHERE, & HEALTH 2016; 9:51-68. [PMID: 28659994 PMCID: PMC5484574 DOI: 10.1007/s11869-015-0321-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Health impact assessments for fine particulate matter (PM2.5) often rely on simulated concentrations generated from air quality models. However, at the global level, these models often run at coarse resolutions, resulting in underestimates of peak concentrations in populated areas. This study aims to quantitatively examine the influence of model resolution on the estimates of mortality attributable to PM2.5 and its species in the USA. We use GEOS-Chem, a global 3-D model of atmospheric composition, to simulate the 2008 annual average concentrations of PM2.5 and its six species over North America. The model was run at a fine resolution of 0.5 × 0.66° and a coarse resolution of 2 × 2.5°, and mortality was calculated using output at the two resolutions. Using the fine-modeled concentrations, we estimate that 142,000 PM2.5-related deaths occurred in the USA in 2008, and the coarse resolution produces a national mortality estimate that is 8 % lower than the fine-model estimate. Our spatial analysis of mortality shows that coarse resolutions tend to substantially underestimate mortality in large urban centers. We also re-grid the fine-modeled concentrations to several coarser resolutions and repeat mortality calculation at these resolutions. We found that model resolution tends to have the greatest influence on mortality estimates associated with primary species and the least impact on dust-related mortality. Our findings provide evidence of possible biases in quantitative PM2.5 health impact assessments in applications of global atmospheric models at coarse spatial resolutions.
Collapse
Affiliation(s)
- Ying Li
- Department of Environmental Health, College of Public Health, East Tennessee State University, PO Box 70682, Johnson City, TN, USA
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive UCB 427, Boulder, CO, USA
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, USA
| | - Patrick L Kinney
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, USA
| |
Collapse
|
38
|
Li Y, Henze DK, Jack D, Henderson BH, Kinney PL. Assessing public health burden associated with exposure to ambient black carbon in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 539:515-525. [PMID: 26383853 PMCID: PMC4761114 DOI: 10.1016/j.scitotenv.2015.08.129] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/17/2015] [Accepted: 08/25/2015] [Indexed: 05/21/2023]
Abstract
Black carbon (BC) is a significant component of fine particulate matter (PM2.5) air pollution, which has been linked to a series of adverse health effects, in particular premature mortality. Recent scientific research indicates that BC also plays an important role in climate change. Therefore, controlling black carbon emissions provides an opportunity for a double dividend. This study quantifies the national burden of mortality and morbidity attributable to exposure to ambient BC in the United States (US). We use GEOS-Chem, a global 3-D model of atmospheric composition to estimate the 2010 annual average BC levels at 0.5×0.667° resolution, and then re-grid to 12-km grid resolution across the continental US. Using PM2.5 mortality risk coefficient drawn from the American Cancer Society cohort study, the numbers of deaths due to BC exposure were estimated for each 12-km grid, and then aggregated to the county, state and national level. Given evidence that BC particles may pose a greater risk on human health than other components of PM2.5, we also conducted sensitivity analysis using BC-specific risk coefficients drawn from recent literature. We estimated approximately 14,000 deaths to result from the 2010 BC levels, and hundreds of thousands of illness cases, ranging from hospitalizations and emergency department visits to minor respiratory symptoms. Sensitivity analysis indicates that the total BC-related mortality could be even significantly larger than the above mortality estimate. Our findings indicate that controlling BC emissions would have substantial benefits for public health in the US.
Collapse
Affiliation(s)
- Ying Li
- Department of Environmental Health, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Barron H Henderson
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Patrick L Kinney
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
39
|
Ford B, Heald CL. Exploring the Uncertainty Associated with Satellite-Based Estimates of Premature Mortality due to Exposure to Fine Particulate Matter. ATMOSPHERIC CHEMISTRY AND PHYSICS 2016; 16:3499-3523. [PMID: 28649266 PMCID: PMC5482289 DOI: 10.5194/acp-16-3499-2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the datasets and methodology. Satellite observations of aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and datasets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004-2011. Using the Burnett et al. (2014) integrated exposure response function, we estimate that in the United States, exposure to PM2.5 accounts for approximately 2% of total deaths compared to 14% in China (using satellite-based exposure), which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 14% for the U.S. and 2% for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on the order of 20% due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10% due to the satellite observational uncertainty, and 30% or greater uncertainty associated with the application of concentration response functions to estimated exposure.
Collapse
Affiliation(s)
- Bonne Ford
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
- Correspondence to: B. Ford ()
| | - Colette L. Heald
- Department of Civil and Environmental Engineering and Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
40
|
Ji Z, Dai R, Zhang Z. Characterization of fine particulate matter in ambient air by combining TEM and multiple spectroscopic techniques--NMR, FTIR and Raman spectroscopy. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:552-560. [PMID: 25597896 DOI: 10.1039/c4em00678j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper reports a systematic study of the microstructures and spectroscopic characteristics of PM2.5 and its potential sources in Beijing by combining transmission electron microscopy and multiple spectroscopic techniques: nuclear magnetic resonance, Fourier transform infrared and Raman spectroscopy. TEM images showed that dominant components of PM2.5 are airborne organic substances with many trace metal elements which are associated with combustion sources. NMR spectra precisely determined the percentage of carbonaceous speciation in both PM2.5 (with spatial and temporal distribution) and its potential sources, and distinguished the similarities and differences among them. In FTIR spectra, a remarkable peak at 1390 cm(-1) that appeared only in PM2.5 samples was attributed to NH4NO3, representing the occurrence of secondary processes. Raman spectra revealed certain inorganic compounds including sulfate and nitrate ions. Based on the analysis of the decomposition of Raman spectra, spectral parameters provided structural information and helped to find potential sources of PM2.5. In the space of carbon aromaticity index and ID1/IG, PM2.5 points followed a linear distribution which may also be useful in source tracing. The result shows that the combined non-destructive methods are efficient to trace the sources of PM2.5.
Collapse
Affiliation(s)
- Zhurun Ji
- School of The Gifted Young, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | |
Collapse
|
41
|
Bae MS, Shin JS, Lee KY, Lee KH, Kim YJ. Long-range transport of biomass burning emissions based on organic molecular markers and carbonaceous thermal distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:56-66. [PMID: 23892024 DOI: 10.1016/j.scitotenv.2013.06.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/25/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Semi-continuous organic carbon (OC), elemental carbon (EC), and organic molecular markers were analyzed using the thermal optical transmittance method at the Gosan supersite (on Jeju Island, Korea), which has been widely used as a regional background site for East Asia. The Carbonaceous Thermal Distribution (CTD) method, which can provide detailed carbon signature characteristics relative to analytical temperature, was used to improve the carbon fractionation of the analytical method. Ground-based measurements were conducted from October 25 to November 5, 2010. During the sampling period, one high OC concentration event and two characteristic periods were observed. Considering the thermal distribution patterns, the relationship between the EC and black carbon (BC) by optical measurements, the backward trajectories, the aerosol optical thickness, the PM10 concentrations from the 316 PM-network sites that were operated by the Ministry of Environment in Korea, and the organic molecular markers, such as levoglucosan, PAHs, and organic acids, we concluded that the event was influenced by long-range transport from biomass burning emissions. This study discusses the CTD analysis with organic molecular marker concentrations, extracts and interprets additional carbon fractions from a semi-continuous data set, and provides knowledge regarding the origin of carbon sources and their behaviors.
Collapse
Affiliation(s)
- Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan-gun 534-729, Republic of Korea.
| | | | | | | | | |
Collapse
|
42
|
Yue X, Mickley LJ, Logan JA, Kaplan JO. Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2013; 77:767-780. [PMID: 24015109 PMCID: PMC3763857 DOI: 10.1016/j.atmosenv.2013.06.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We estimate future wildfire activity over the western United States during the mid-21st century (2046-2065), based on results from 15 climate models following the A1B scenario. We develop fire prediction models by regressing meteorological variables from the current and previous years together with fire indexes onto observed regional area burned. The regressions explain 0.25-0.60 of the variance in observed annual area burned during 1980-2004, depending on the ecoregion. We also parameterize daily area burned with temperature, precipitation, and relative humidity. This approach explains ~0.5 of the variance in observed area burned over forest ecoregions but shows no predictive capability in the semi-arid regions of Nevada and California. By applying the meteorological fields from 15 climate models to our fire prediction models, we quantify the robustness of our wildfire projections at mid-century. We calculate increases of 24-124% in area burned using regressions and 63-169% with the parameterization. Our projections are most robust in the southwestern desert, where all GCMs predict significant (p<0.05) meteorological changes. For forested ecoregions, more GCMs predict significant increases in future area burned with the parameterization than with the regressions, because the latter approach is sensitive to hydrological variables that show large inter-model variability in the climate projections. The parameterization predicts that the fire season lengthens by 23 days in the warmer and drier climate at mid-century. Using a chemical transport model, we find that wildfire emissions will increase summertime surface organic carbon aerosol over the western United States by 46-70% and black carbon by 20-27% at midcentury, relative to the present day. The pollution is most enhanced during extreme episodes: above the 84th percentile of concentrations, OC increases by ~90% and BC by ~50%, while visibility decreases from 130 km to 100 km in 32 Federal Class 1 areas in Rocky Mountains Forest.
Collapse
Affiliation(s)
- Xu Yue
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
43
|
|
44
|
Lohmann R, Klanova J, Pribylova P, Liskova H, Yonis S, Bollinger K. PAHs on a west-to-east transect across the tropical Atlantic Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2570-8. [PMID: 23402581 DOI: 10.1021/es304764e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Surface water and atmospheric samples were collected across the tropical Atlantic Ocean on a transect of the R/V Endeavor in summer 2009 and analyzed for polycyclic aromatic hydrocarbons (PAHs). Across the entire tropical Atlantic Ocean, phenanthrene displayed on average highest dissolved concentrations (170 pg L(-1)), followed by pyrene (70 pg L(-1)) and fluoranthene (30 pg L(-1)). The Amazon plume was characterized by elevated dissolved concentrations of phenanthrene and benzo(g,h,i)fluoranthene. The warm eddy that we accidentally sampled at 66° W displayed highest concentrations of PAHs across the entire cruise, with phenanthrene, pyrene, and fluoranthrene all >1 ng L(-1). After having crossed the warm core, concentrations decreased back to previous levels. Samples taken in the Gulf Stream were below detection limit for all parent PAHs, implying very efficient removal processes. Dissolved dimethylphenanthrenes were frequently detected in the samples from the southern hemisphere, the Amazon plume, and in samples characteristic of the Gulf Stream and the U.S. East Coast. Atmospheric concentrations were dominated by gas-phase fluoranthene, pyrene, phenanthrene, and retene. Air-water gradients indicated that PAHs are mostly undergoing net deposition across the tropical Atlantic Ocean, with conditions closer to equilibrium off the U.S. East Coast and in Rhode Island Sound.
Collapse
Affiliation(s)
- Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, South Ferry Road, Narragansett, 02882 Rhode Island, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Anenberg SC, Schwartz J, Shindell D, Amann M, Faluvegi G, Klimont Z, Janssens-Maenhout G, Pozzoli L, Van Dingenen R, Vignati E, Emberson L, Muller NZ, West JJ, Williams M, Demkine V, Hicks WK, Kuylenstierna J, Raes F, Ramanathan V. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:831-9. [PMID: 22418651 PMCID: PMC3385429 DOI: 10.1289/ehp.1104301] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 03/14/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM(2.5)), are associated with premature mortality and they disrupt global and regional climate. OBJECTIVES We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. METHODS We simulated the impacts of mitigation measures on outdoor concentrations of PM(2.5) and ozone using two composition-climate models, and calculated associated changes in premature PM(2.5)- and ozone-related deaths using epidemiologically derived concentration-response functions. RESULTS We estimated that, for PM(2.5) and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM(2.5) relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. CONCLUSIONS In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.
Collapse
Affiliation(s)
- Susan C Anenberg
- U.S. Environmental Protection Agency, Washington, DC 20460, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Couvidat F, Debry É, Sartelet K, Seigneur C. A hydrophilic/hydrophobic organic (H2O) aerosol model: Development, evaluation and sensitivity analysis. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017214] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Ford B, Heald CL. An A-train and model perspective on the vertical distribution of aerosols and CO in the Northern Hemisphere. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016977] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Nair VS, Solmon F, Giorgi F, Mariotti L, Babu SS, Moorthy KK. Simulation of South Asian aerosols for regional climate studies. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016711] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Zhang T, Huang YR, Chen SJ, Liu AM, Xu PJ, Li N, Qi L, Ren Y, Zhou ZG, Mai BX. PCDD/Fs, PBDD/Fs, and PBDEs in the air of an e-waste recycling area (Taizhou) in China: current levels, composition profiles, and potential cancer risks. ACTA ACUST UNITED AC 2012; 14:3156-63. [DOI: 10.1039/c2em30648d] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Huang Y, Wu S, Dubey M, French NHF. Impact of aging mechanism on model simulated carbonaceous aerosols. ATMOSPHERIC CHEMISTRY AND PHYSICS 2012; 12:10.5194/acpd-12-28993-2012. [PMID: 24174929 PMCID: PMC3809914 DOI: 10.5194/acpd-12-28993-2012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Carbonaceous aerosols including organic carbon and black carbon have significant implications for both climate and air quality. In the current global climate or chemical transport models, a fixed hydrophobic-to-hydrophilic conversion lifetime for carbonaceous aerosol (τ) is generally assumed, which is usually around one day. We have implemented a new detailed aging scheme for carbonaceous aerosols in a chemical transport model (GEOS-Chem) to account for both the chemical oxidation and the physical condensation-coagulation effects, where τ is affected by local atmospheric environment including atmospheric concentrations of water vapor, ozone, hydroxyl radical and sulfuric acid. The updated τ exhibits large spatial and temporal variations with the global average (up to 11 km altitude) calculated to be 2.6 days. The chemical aging effects are found to be strongest over the tropical regions driven by the low ozone concentrations and high humidity there. The τ resulted from chemical aging generally decreases with altitude due to increases in ozone concentration and decreases in humidity. The condensation-coagulation effects are found to be most important for the high-latitude areas, in particular the polar regions, where the τ values are calculated to be up to 15 days. When both the chemical aging and condensation-coagulation effects are considered, the total atmospheric burdens and global average lifetimes of BC, black carbon, (OC, organic carbon) are calculated to increase by 9% (3%) compared to the control simulation, with considerable enhancements of BC and OC concentrations in the Southern Hemisphere. Model evaluations against data from multiple datasets show that the updated aging scheme improves model simulations of carbonaceous aerosols for some regions, especially for the remote areas in the Northern Hemisphere. The improvement helps explain the persistent low model bias for carbonaceous aerosols in the Northern Hemisphere reported in literature. Further model sensitivity simulations focusing on the continental outflow of carbonaceous aerosols demonstrate that previous studies using the old aging scheme could have significantly underestimated the intercontinental transport of carbonaceous aerosols.
Collapse
Affiliation(s)
- Y. Huang
- Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - S. Wu
- Atmospheric Science Program, Department of Geological and Mining Engineering and Sciences, Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - M.K. Dubey
- Earth System Observations, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - N. H. F. French
- Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, MI 48105, USA
| |
Collapse
|