1
|
Zhao Y, Li J, Wang H, Gong D, Li Q, Wang D, Wang J, Wang B. Enhanced validation and application of satellite-derived formaldehyde data for assessing photochemical pollution in the Chinese Greater Bay Area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125553. [PMID: 39701363 DOI: 10.1016/j.envpol.2024.125553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/01/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Formaldehyde (HCHO) is a key player in photochemical processes and serves as a crucial precursor in the formation of hydroxyl radicals and ozone (O3). While satellite observations can offer extensive spatiotemporal distributions of HCHO at both global and regional scales, the reliability of these satellite-derived HCHO measurements remains uncertain. In this study, we generated a five-year (June 2018-May 2023) Level 3 HCHO dataset, by applying spatial averaging technique to the TROPOspheric Monitoring Instrument (TROPOMI) Level 2 data. We validated this dataset against ground-based HCHO and O3 measurements collected from 12 sites across the Greater Bay Area (GBA) in China, a region known for severe photochemical pollution. Our results indicated that the Level 3 HCHO dataset significantly outperforms the Level 2 HCHO data in representing the spatial distribution (r > 0.5) and temporal variation of surface HCHO. Moreover, Level 3 HCHO exhibited a stronger correlation (r > 0.65) with surface O3 compared to surface HCHO, particularly during periods of intense photochemical pollution. With reduced interference from primary HCHO emissions at the surface, Level 3 HCHO offers a more accurate representation of photochemical pollution. Additionally, the combination of Level 3 HCHO, ground-based measurements, and model simulations highlighted the central GBA as a persistent hotspot for photochemical pollution. Further analysis identified anthropogenic volatile organic compounds, especially those emitted from solvent use, as key contributors to the formation of photochemical pollution in the region. This study provides a more reliable satellite-derived HCHO dataset for the GBA and offers critical insights into the spatiotemporal variability and mitigation of surface O3 in this heavily polluted area.
Collapse
Affiliation(s)
- Yiming Zhao
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
| | - Jiangyong Li
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
| | - Hao Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, Guangzhou, 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, 511443, China.
| | - Daocheng Gong
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, Guangzhou, 511443, China
| | - Qinqin Li
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, Guangzhou, 511443, China
| | - Dakang Wang
- Institute of Aerospace Remote Sensing Innovations (ARSI) Guangzhou University, Guangzhou, 510006, China; School of Geography and Remote Sensing, Guangzhou University, Guangzhou, 510006, China
| | - Jinnian Wang
- Institute of Aerospace Remote Sensing Innovations (ARSI) Guangzhou University, Guangzhou, 510006, China; School of Geography and Remote Sensing, Guangzhou University, Guangzhou, 510006, China
| | - Boguang Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, Guangzhou, 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou, 511443, China
| |
Collapse
|
2
|
Dhankar S, Pani B. Spatio-temporal analysis of formaldehyde and its association with atmospheric and environmental variables over the Southeast Asian region using satellite data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:185. [PMID: 39849246 DOI: 10.1007/s10661-025-13617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
This study investigates the spatio-temporal distribution of formaldehyde (HCHO) over the mainland Southeast Asian region (including Northeast India) from 2019 to 2022 using TROPOMI satellite data. HCHO is a key atmospheric trace gas which is influenced by both natural processes and anthropogenic activities. We analyze HCHO levels in relation to atmospheric species including carbon monoxide (CO), nitrogen dioxide (NO2), and environmental factors such as land surface temperature (LST), precipitation (PPT), fire radiative power (FRP), and enhanced vegetation index (EVI). Peak levels of HCHO are particularly observed in March and April, which coincide with the dry and warm seasons and reflect seasonal variability arising from both fluctuating emission sources and regional climate patterns. Correlation analyses reveal significant associations between HCHO and CO (r = 0.727), followed by HCHO and NO2 (r = 0.577) and HCHO and LST (r = 0.539). Conversely, a negative correlation with PPT (r = - 0.233) is observed as HCHO decreases with increased precipitation due to washout. The negative correlation with EVI (r = - 0.319) is unexpected since biogenic emissions are significant contributors to HCHO. This outcome likely results from the confounding effect of precipitation. A robust multiple regression model incorporating these variables is developed which is able to explain 61.8% of the variance in HCHO. It enhances predictive capabilities facilitating the estimation of HCHO distribution and supporting air quality management efforts in the region. This research contributes to understanding the complex interactions of HCHO with atmospheric chemistry and climate variability in Southeast Asia. Insights gained from this study are crucial for informing environmental policies aimed at reducing air pollution and protecting public health in rapidly developing regions.
Collapse
Affiliation(s)
- Sneha Dhankar
- Shri Ram College of Commerce, University of Delhi, New Delhi, Delhi, 110007, India.
| | - Balaram Pani
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, Delhi, 110078, India
| |
Collapse
|
3
|
Yousaf T, Saleem F, Andleeb S, Ali M, Farhan Ul Haque M. Methylotrophic bacteria from rice paddy soils: mineral-nitrogen-utilizing isolates richness in bulk soil and rhizosphere. World J Microbiol Biotechnol 2024; 40:188. [PMID: 38702590 DOI: 10.1007/s11274-024-04000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Methanol, the second most abundant volatile organic compound, primarily released from plants, is a major culprit disturbing atmospheric chemistry. Interestingly, ubiquitously found methanol-utilizing bacteria, play a vital role in mitigating atmospheric methanol effects. Despite being extensively characterized, the effect of nitrogen sources on the richness of methanol-utilizers in the bulk soil and rhizosphere is largely unknown. Therefore, the current study was planned to isolate, characterize and explore the richness of cultivable methylotrophs from the bulk soil and rhizosphere of a paddy field using media with varying nitrogen sources. Our data revealed that more genera of methylotrophs, including Methylobacterium, Ancylobacter, Achromobacter, Xanthobacter, Moraxella, and Klebsiella were enriched with the nitrate-based medium compared to only two genera, Hyphomicrobium and Methylobacterium, enriched with the ammonium-based medium. The richness of methylotrophic bacteria also differed substantially in the bulk soil as compared to the rhizosphere. Growth characterization revealed that majority of the newly isolated methanol-utilizing strains in this study exhibited better growth at 37 °C instead of 30 or 45 °C. Moreover, Hyphomicrobium sp. FSA2 was the only strain capable of utilizing methanol even at elevated temperature 45 °C, showing its adaptability to a wide range of temperatures. Differential carbon substrate utilization profiling revealed the facultative nature of all isolated methanol-utilizer strains with Xanthobacter sp. TS3, being an important methanol-utilizer capable of degrading toxic compounds such as acetone and ethylene glycol. Overall, our study suggests the role of nutrients and plant-microbial interaction in shaping the composition of methanol-utilizers in terrestrial environment.
Collapse
Affiliation(s)
- Tabassum Yousaf
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Fatima Saleem
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sahar Andleeb
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Ali
- Faculty of Agriculture Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | | |
Collapse
|
4
|
Shutter J, Cox J, Keutsch FN. Leaf-Level Bidirectional Exchange of Formaldehyde on Deciduous and Evergreen Tree Saplings. ACS EARTH & SPACE CHEMISTRY 2024; 8:723-733. [PMID: 38654895 PMCID: PMC11033940 DOI: 10.1021/acsearthspacechem.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 04/26/2024]
Abstract
Gas-phase formaldehyde (HCHO) is formed in high yield from the oxidation of many volatile organic compounds (VOCs) and is commonly used as a constraint when testing the performance of VOC oxidation mechanisms in models. However, prior to using HCHO as a model constraint for VOC oxidation in forested regions, it is essential to have a thorough understanding of its foliar exchange. Therefore, a controlled laboratory setup was designed to measure the emission and dry deposition of HCHO at the leaf-level to red oak (Quercus rubra) and Leyland cypress (Cupressus × leylandii) tree saplings. The results show that HCHO has a compensation point (CP) that rises exponentially with temperature (22-35 °C) with a mean range of 0.3-0.9 ppbv. The HCHO CP results are also found to be independent of the studied tree species and 40-70% relative humidity. Given that HCHO mixing ratios in forests during the daytime are usually greater than 1 ppbv, the magnitude of the CP suggests that trees generally act as a net sink of HCHO. Additionally, the results show that HCHO foliar exchange is stomatally controlled and better matches a reactivity factor (f0) of 0 as opposed to 1 in conventional dry deposition parametrizations. At 30 °C, daytime HCHO dry deposition fluxes are reduced by upward of 50% when using f0 = 0 and a nonzero HCHO CP, although deposition remains the dominant canopy sink of HCHO. A reduced deposition sink also implies the increased importance of the gas-phase photolysis of HCHO as a source of HO2.
Collapse
Affiliation(s)
- Joshua
D. Shutter
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Joshua
L. Cox
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Frank N. Keutsch
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
5
|
Douroudgari H, Zarepour H, Vahedpour M, Jaberi M, Zarepour M. The atmospheric relevance of primary alcohols and imidogen reactions. Sci Rep 2023; 13:9150. [PMID: 37277419 DOI: 10.1038/s41598-023-35473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Organic alcohols as very volatile compounds play a crucial role in the air quality of the atmosphere. So, the removal processes of such compounds are an important atmospheric challenge. The main goal of this research is to discover the atmospheric relevance of degradation paths of linear alcohols by imidogen with the aid of simulation by quantum mechanical (QM) methods. To this end, we combine broad mechanistic and kinetic results to get more accurate information and to have a deeper insight into the behavior of the designed reactions. Thus, the main and necessary reaction pathways are explored by well-behaved QM methods for complete elucidation of the studying gaseous reactions. Moreover, the potential energy surfaces as a main factor are computed for easier judging of the most probable pathways in the simulated reactions. Our attempt to find the occurrence of the considered reactions in the atmospheric conditions is completed by precisely evaluating the rate constants of all elementary reactions. All of the computed bimolecular rate constants have a positive dependency on both temperature and pressure. The kinetic results show that H-abstraction from the α carbon is dominant relative to the other sites. Finally, by the results of this study, we conclude that at moderate temperatures and pressures primary alcohols can degrade with imidogen, so they can get atmospheric relevance.
Collapse
Affiliation(s)
- Hamed Douroudgari
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran.
| | - Hadi Zarepour
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran
| | - Morteza Vahedpour
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran.
| | - Mahdi Jaberi
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran
| | - Mahdi Zarepour
- Department of Chemistry, University of Zanjan, PO Box 38791-45371, Zanjan, Iran
| |
Collapse
|
6
|
Atmospheric Formaldehyde Monitored by TROPOMI Satellite Instrument throughout 2020 over São Paulo State, Brazil. REMOTE SENSING 2022. [DOI: 10.3390/rs14133032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We aimed to study the daily formaldehyde (HCHO) columns over urban and forested areas in São Paulo State, Brazil, from rhe TROPOMI spectrometer onboard the Sentinel-5P satellite during 2020. Nineteen specific areas were defined in four regions: 3 areas in each of two preserved Atlantic Forests (PEMD and PETAR), 3 in a sugarcane growing region (NERG) and 10 in the Metropolitan Area of São Paulo (MASP), among which 2 areas are in the Morro Grande reserve, which is a significant remnant of Atlantic Forest outside the densely urbanized area of MASP. An analysis of variance and Tukey’s test showed that the mean annual columns over the Morro Grande reserve (1.69±1.05×10−4 mol/m² and 1.73±1.07×10−4 mol/m²) presented greater statistical similarity with the forest and rural areas of the state (<1.70×10−4 mol/m²) than with MASP (>2.00×10−4 mol/m²), indicating few effects from megacity anthropogenic emissions. Case studies addressing selected days in 2020 showed that fires in and around the state were related to episodes of maximum density of HCHO columns. The results showed significant seasonality, with lower concentrations during summer (wet season) and higher concentrations during winter and spring (dry and transition dry–wet seasons).
Collapse
|
7
|
Ambient Formaldehyde over the United States from Ground-Based (AQS) and Satellite (OMI) Observations. REMOTE SENSING 2022. [DOI: 10.3390/rs14092191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study evaluates formaldehyde (HCHO) over the U.S. from 2006 to 2015 by comparing ground monitor data from the Air Quality System (AQS) and a satellite retrieval from the Ozone Monitoring Instrument (OMI). Our comparison focuses on the utility of satellite data to inform patterns, trends, and processes of ground-based HCHO across the U.S. We find that cities with higher levels of biogenic volatile organic compound (BVOC) emissions, including primary HCHO, exhibit larger HCHO diurnal amplitudes in surface observations. These differences in hour-to-hour variability in surface HCHO suggests that satellite agreement with ground-based data may depend on the distribution of emission sources. On a seasonal basis, OMI exhibits the highest correlation with AQS in summer and the lowest correlation in winter. The ratios of HCHO in summer versus other seasons show pronounced seasonal variability in OMI, likely due to seasonal changes in the vertical HCHO distribution. The seasonal variability in HCHO from satellite is more pronounced than at the surface, with seasonal variability 20–100% larger in satellite than surface observations. The seasonal variability also has a latitude dependency, with more variability in higher latitude regions. OMI agrees with AQS on the interannual variability in certain periods, whereas AQS and OMI do not show a consistent decadal trend. This is possibly due to a rather large interannual variability in HCHO, which makes the small decadal drift less significant. Temperature also explains part of the interannual variabilities. Small temperature variations in the western U.S. are reflected with more quiescent HCHO interannual variability in that region. The decrease in summertime HCHO in the southeast U.S. could also be partially explained by a small and negative trend in local temperatures.
Collapse
|
8
|
Simulation of Isoprene Emission with Satellite Microwave Emissivity Difference Vegetation Index as Water Stress Factor in Southeastern China during 2008. REMOTE SENSING 2022. [DOI: 10.3390/rs14071740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Isoprene is one of the most important biogenic volatile organic compounds (BVOCs) emitted by vegetation. The biogenic isoprene emissions are widely estimated by the Model of Emission of Gases and Aerosols from Nature (MEGAN) considering different environmental stresses. The response of isoprene emission to the water stress is usually parameterized using soil moisture in previous studies. In this study, we designed a new parameterization scheme of water stress in MEGAN as a function of a novel, satellite, passive microwave-based vegetation index, Emissivity Difference Vegetation Index (EDVI), which indicates the vegetation inner water content. The isoprene emission rates in southeastern China were simulated with different water stress indicators including soil moisture, EDVI, Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). Then the simulated isoprene emission rates were compared to associated satellite top-down estimations. The results showed that in southeastern China, the spatiotemporal correlations between those simulations and top-down retrieval are all high with different biases. The simulated isoprene emission rates with EDVI-based water stress factor are most consistent with top-down estimation with higher temporal correlation, lower bias and lower RMSE, while soil moisture alters the emission rates little, and optical vegetation indices (NDVI and EVI) slightly increase the correlation with top-down. The temporal correlation coefficients are increased after applied with EDVI water stress factor in most areas; especially in the Yunnan-Guizhou Plateau and Yangtze River Delta (>0.12). Overall, higher consistency of simulation and top-down estimation is shown when EDVI is applied, which indicates the possibility of estimating the effect of vegetation water stress on biogenic isoprene emission using microwave observations.
Collapse
|
9
|
Wang Y, Liao H. 2015–2050年南亚与东南亚输送对中国大气臭氧浓度的影响 . CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Li K, Jacob DJ, Liao H, Qiu Y, Shen L, Zhai S, Bates KH, Sulprizio MP, Song S, Lu X, Zhang Q, Zheng B, Zhang Y, Zhang J, Lee HC, Kuk SK. Ozone pollution in the North China Plain spreading into the late-winter haze season. Proc Natl Acad Sci U S A 2021; 118:e2015797118. [PMID: 33649215 PMCID: PMC7958175 DOI: 10.1073/pnas.2015797118] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Surface ozone is a severe air pollution problem in the North China Plain, which is home to 300 million people. Ozone concentrations are highest in summer, driven by fast photochemical production of hydrogen oxide radicals (HOx) that can overcome the radical titration caused by high emissions of nitrogen oxides (NOx) from fuel combustion. Ozone has been very low during winter haze (particulate) pollution episodes. However, the abrupt decrease of NOx emissions following the COVID-19 lockdown in January 2020 reveals a switch to fast ozone production during winter haze episodes with maximum daily 8-h average (MDA8) ozone concentrations of 60 to 70 parts per billion. We reproduce this switch with the GEOS-Chem model, where the fast production of ozone is driven by HOx radicals from photolysis of formaldehyde, overcoming radical titration from the decreased NOx emissions. Formaldehyde is produced by oxidation of reactive volatile organic compounds (VOCs), which have very high emissions in the North China Plain. This remarkable switch to an ozone-producing regime in January-February following the lockdown illustrates a more general tendency from 2013 to 2019 of increasing winter-spring ozone in the North China Plain and increasing association of high ozone with winter haze events, as pollution control efforts have targeted NOx emissions (30% decrease) while VOC emissions have remained constant. Decreasing VOC emissions would avoid further spreading of severe ozone pollution events into the winter-spring season.
Collapse
Affiliation(s)
- Ke Li
- Harvard-NUIST Joint Laboratory for Air Quality and Climate, Nanjing University of Information Science and Technology, 210044 Nanjing, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Daniel J Jacob
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 210044 Nanjing, China;
| | - Yulu Qiu
- Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei, Beijing 100089, China
| | - Lu Shen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Shixian Zhai
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Kelvin H Bates
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Melissa P Sulprizio
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Shaojie Song
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Xiao Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Qiang Zhang
- Department of Earth System Science, Tsinghua University, 100084 Beijing, China
| | - Bo Zheng
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuli Zhang
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jinqiang Zhang
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hyun Chul Lee
- Samsung Advance Institute of Technology, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Su Keun Kuk
- Samsung Advance Institute of Technology, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| |
Collapse
|
11
|
Harkey M, Holloway T, Kim EJ, Baker KR, Henderson B. Satellite Formaldehyde to Support Model Evaluation. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2021; 126:10.1029/2020jd032881. [PMID: 34381662 PMCID: PMC8353957 DOI: 10.1029/2020jd032881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/16/2020] [Indexed: 06/13/2023]
Abstract
Formaldehyde (HCHO), a known carcinogen classified as a hazardous pollutant by the United States Environmental Protection Agency (U.S. EPA), is measured through monitoring networks across the U.S. Since these data are limited in spatial and temporal extent, model simulations from the U.S. EPA Community Multiscale Air Quality (CMAQ) model are used to estimate ambient HCHO exposure for the EPA National Air Toxics Assessment (NATA). Here, we employ satellite HCHO retrievals from the Ozone Monitoring Instrument (OMI)-the NASA retrieval developed by the Smithsonian Astrophysical Observatory (SAO), and the European Union Quality Assurance for Essential Climate Variables (QA4ECV) retrieval-to evaluate three CMAQ configurations, spanning the summers of 2011 and 2016, with differing biogenic emissions inputs and chemical mechanisms. These CMAQ configurations capture the general spatial and temporal behavior of both satellite retrievals, but underestimate column HCHO, particularly in the western U.S. In the southeastern U.S., the comparison with OMI HCHO highlights differences in modeled meteorology and biogenic emissions even with differences in satellite retrievals. All CMAQ configurations show low daily correlations with OMI HCHO (r = 0.26 - 0.38), however, we find higher monthly correlations (r = 0.52 - 0.73), and the models correlate best with the OMI-QA4ECV product. Compared to surface observations, we find improved agreement over a 24-hour period compared to afternoon-only, suggesting daily HCHO amounts are captured with more accuracy than afternoon amounts. This work highlights the potential for synergistic improvements in modeling and satellite retrievals to support near-surface HCHO estimates for the NATA and other applications.
Collapse
Affiliation(s)
- Monica Harkey
- Nelson Institute Center for Sustainability and the Global Environment (SAGE), University of Wisconsin-Madison, 1710 University Ave, Madison WI 53726
| | - Tracey Holloway
- Nelson Institute Center for Sustainability and the Global Environment (SAGE), University of Wisconsin-Madison, 1710 University Ave, Madison WI 53726
- Department of Atmospheric & Oceanic Sciences, University of Wisconsin-Madison, 1225 W Dayton Street, Madison, WI 53706
| | - Eliot J. Kim
- Nelson Institute Center for Sustainability and the Global Environment (SAGE), University of Wisconsin-Madison, 1710 University Ave, Madison WI 53726
| | - Kirk R. Baker
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Barron Henderson
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
12
|
Chaliyakunnel S, Millet DB, Chen X. Constraining Emissions of Volatile Organic Compounds Over the Indian Subcontinent Using Space-Based Formaldehyde Measurements. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:10525-10545. [PMID: 33614368 PMCID: PMC7894393 DOI: 10.1029/2019jd031262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/26/2019] [Indexed: 06/11/2023]
Abstract
India is an air pollution mortality hot spot, but regional emissions are poorly understood. We present a high-resolution nested chemical transport model (GEOS-Chem) simulation for the Indian subcontinent and use it to interpret formaldehyde (HCHO) observations from two satellite sensors (OMI and GOME-2A) in terms of constraints on regional volatile organic compound (VOC) emissions. We find modeled biogenic VOC emissions to be overestimated by ~30-60% for most locations and seasons, and derive a best estimate biogenic flux of 16 Tg C/year subcontinent-wide for year 2009. Terrestrial vegetation provides approximately half the total VOC flux in our base-case inversions (full uncertainty range: 44-65%). This differs from prior understanding, in which biogenic emissions represent >70% of the total. Our derived anthropogenic VOC emissions increase slightly (13-16% in the base case, for a subcontinent total of 15 Tg C/year in 2009) over RETRO year 2000 values, with some larger regional discrepancies. The optimized anthropogenic emissions agree well with the more recent CEDS inventory, both subcontinent-wide (within 2%) and regionally. An exception is the Indo-Gangetic Plain, where we find an underestimate for both RETRO and CEDS. Anthropogenic emissions thus constitute 37-50% of the annual regional VOC source in our base-case inversions and exceed biogenic emissions over the Indo-Gangetic Plain, West India, and South India, and over the entire subcontinent during winter and post-monsoon. Fires are a minor fraction (<7%) of the total regional VOC source in the prior and optimized model. However, evidence suggests that VOC emissions in the fire inventory used here (GFEDv4) are too low over the Indian subcontinent.
Collapse
Affiliation(s)
- Sreelekha Chaliyakunnel
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| | - Dylan B Millet
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| | - Xin Chen
- Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, USA
| |
Collapse
|
13
|
Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Sci Rep 2018; 8:10679. [PMID: 30013098 PMCID: PMC6048126 DOI: 10.1038/s41598-018-29138-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/04/2018] [Indexed: 11/08/2022] Open
Abstract
The Sao Paulo Metropolitan Area is a unique case worldwide due to the extensive use of biofuel, particularly ethanol, by its large fleet of nearly 8 million cars. Based on source apportionment analysis of Organic Aerosols in downtown Sao Paulo, and using ethanol as tracer of passenger vehicles, we have identified primary emissions from light-duty-vehicles (LDV) and heavy-duty-vehicles (HDV), as well as secondary process component. Each of those factors mirror a relevant primary source or secondary process in this densely occupied area. Using those factors as predictors in a multiple linear regression analysis of a wide range of pollutants, we have quantified the role of primary LDV or HDV emissions, as well as atmospheric secondary processes, on air quality degradation. Results show a significant contribution of HDV emissions, despite contributing only about 5% of vehicles number in the region. The latter is responsible, for example, of 40% and 47% of benzene and black carbon atmospheric concentration, respectively. This work describes an innovative use of biofuel as a tracer of passenger vehicle emissions, allowing to better understand the role of vehicular sources on air quality degradation in one of most populated megacities worldwide.
Collapse
|
14
|
Mao J, Carlton A, Cohen RC, Brune WH, Brown SS, Wolfe GM, Jimenez JL, Pye HOT, Ng NL, Xu L, McNeill VF, Tsigaridis K, McDonald BC, Warneke C, Guenther A, Alvarado MJ, de Gouw J, Mickley LJ, Leibensperger EM, Mathur R, Nolte CG, Portmann RW, Unger N, Tosca M, Horowitz LW. Southeast Atmosphere Studies: learning from model-observation syntheses. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:2615-2651. [PMID: 29963079 PMCID: PMC6020695 DOI: 10.5194/acp-18-2615-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Collapse
Affiliation(s)
- Jingqiu Mao
- Geophysical Institute and Department of Chemistry, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Annmarie Carlton
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ronald C. Cohen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - William H. Brune
- Department of Meteorology, Pennsylvania State University, University Park, PA, USA
| | - Steven S. Brown
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
| | - Glenn M. Wolfe
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Jose L. Jimenez
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
| | - Havala O. T. Pye
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nga Lee Ng
- School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lu Xu
- School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY USA
| | - Kostas Tsigaridis
- Center for Climate Systems Research, Columbia University, New York, NY, USA
- NASA Goddard Institute for Space Studies, New York, NY, USA
| | - Brian C. McDonald
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Carsten Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
| | | | - Joost de Gouw
- Department of Chemistry and CIRES, University of Colorado Boulder, Boulder, CO, USA
| | - Loretta J. Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Rohit Mathur
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christopher G. Nolte
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert W. Portmann
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Boulder, CO, USA
| | - Nadine Unger
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Mika Tosca
- School of the Art Institute of Chicago (SAIC), Chicago, IL 60603, USA
| | - Larry W. Horowitz
- Geophysical Fluid Dynamics Laboratory–National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| |
Collapse
|
15
|
Spinei E, Whitehill A, Fried A, Tiefengraber M, Knepp TN, Herndon S, Herman JR, Müller M, Abuhassan N, Cede A, Richter D, Walega J, Crawford J, Szykman J, Valin L, Williams DJ, Long R, Swap RJ, Lee Y, Nowak N, Poche B. The first evaluation of formaldehyde column observations by improved Pandora spectrometers during the KORUS-AQ field study. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 11:4943-4961. [PMID: 33424951 PMCID: PMC7788067 DOI: 10.5194/amt-11-4943-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Korea-United States Air Quality Study (KORUS-AQ) conducted during May-June 2016 offered the first opportunity to evaluate direct-sun observations of formaldehyde (HCHO) total column densities with improved Pandora spectrometer instruments. The measurements highlighted in this work were conducted both in the Seoul megacity area at the Olympic Park site (37.5232° N, 27.1260° E; 26 ma.s.l.) and at a nearby rural site downwind of the city at the Mount Taehwa research forest site (37.3123° N, 127.3106° E; 160ma.s.l.). Evaluation of these measurements was made possible by concurrent ground-based in situ observations of HCHO at both sites as well as overflight by the NASA DC-8 research aircraft. The flights provided in situ measurements of HCHO to characterize its vertical distribution in the lower troposphere (0-5km). Diurnal variation in HCHO total column densities followed the same pattern at both sites, with the minimum daily values typically observed between 6:00 and 7:00 local time, gradually increasing to a maximum between 13:00 and 17:00 before decreasing into the evening. Pandora vertical column densities were compared with those derived from the DC-8 HCHO in situ measured profiles augmented with in situ surface concentrations below the lowest altitude of the DC-8 in proximity to the ground sites. A comparison between 49 column densities measured by Pandora vs. aircraft-integrated in situ data showed that Pandora values were larger by 16% with a constant offset of 0.22DU (Dobson units; R 2 = 0.68). Pandora HCHO columns were also compared with columns calculated from the surface in situ measurements over Olympic Park by assuming a well-mixed lower atmosphere up to a ceilometer-measured mixed-layer height (MLH) and various assumptions about the small residual HCHO amounts in the free troposphere up to the tropopause. The best comparison (slope = 1.03±0.03; intercept = 0.29±0.02DU; and R 2 = 0.78±0.02) was achieved assuming equal mixing within ceilometer-measured MLH combined with an exponential profile shape. These results suggest that diurnal changes in HCHO surface concentrations can be reasonably estimated from the Pandora total column and information on the mixed-layer height. More work is needed to understand the bias in the intercept and the slope relative to columns derived from the in situ aircraft and surface measurements.
Collapse
Affiliation(s)
- Elena Spinei
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | - Alan Fried
- Institute of Arctic and Alpine Research (INSTAAR) at the University of Colorado, Boulder, C0 80303, USA
| | - Martin Tiefengraber
- LuftBlick, Kreith 39A, 6162 Mutters, Austria
- Institue of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
| | - Travis N. Knepp
- NASA Langley Research Center, Hampton, VA 23681, USA
- Science Systems and Applications, Inc., Hampton, VA 23681, USA
| | | | - Jay R. Herman
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- University of Maryland Baltimore County, Baltimore, MD, USA
| | - Moritz Müller
- LuftBlick, Kreith 39A, 6162 Mutters, Austria
- Institue of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
| | - Nader Abuhassan
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- University of Maryland Baltimore County, Baltimore, MD, USA
| | - Alexander Cede
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- LuftBlick, Kreith 39A, 6162 Mutters, Austria
| | - Dirk Richter
- Institute of Arctic and Alpine Research (INSTAAR) at the University of Colorado, Boulder, C0 80303, USA
| | - James Walega
- Institute of Arctic and Alpine Research (INSTAAR) at the University of Colorado, Boulder, C0 80303, USA
| | | | - James Szykman
- US EPA, Research Triangle Park, Durham, NC 27709, USA
- NASA Langley Research Center, Hampton, VA 23681, USA
| | - Lukas Valin
- US EPA, Research Triangle Park, Durham, NC 27709, USA
| | | | - Russell Long
- US EPA, Research Triangle Park, Durham, NC 27709, USA
| | - Robert J. Swap
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Youngjae Lee
- Korean National Institute of Environmental Research (NIER), Incheon, South Korea
| | - Nabil Nowak
- Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Brett Poche
- Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
16
|
Anderson DC, Nicely JM, Wolfe GM, Hanisco TF, Salawitch RJ, Canty TP, Dickerson RR, Apel EC, Baidar S, Bannan TJ, Blake NJ, Chen D, Dix B, Fernandez RP, Hall SR, Hornbrook RS, Huey LG, Josse B, Jöckel P, Kinnison DE, Koenig TK, LeBreton M, Marécal V, Morgenstern O, Oman LD, Pan LL, Percival C, Plummer D, Revell LE, Rozanov E, Saiz-Lopez A, Stenke A, Sudo K, Tilmes S, Ullmann K, Volkamer R, Weinheimer AJ, Zeng G. Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017. [PMID: 29527424 DOI: 10.1002/2017ja024474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HOx. In remote marine environments, such as the Tropical Western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here, we have used observations from the CONTRAST field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 pptv near the surface to ~75 pptv in the upper troposphere. Recent convective transport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide, increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NO than more aged air. Output from the CAM-Chem chemistry transport model (2014 meteorology) as well as nine chemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are found to uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. This underestimate of HCHO likely results from a near factor of two underestimate of NO in most models, which strongly suggests errors in NOx emissions inventories and/or in the model chemical mechanisms. Likewise, the lack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead to additional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere.
Collapse
Affiliation(s)
- Daniel C Anderson
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
| | - Julie M Nicely
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Universities Space Research Association, Columbia, Maryland, USA
| | - Glenn M Wolfe
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Thomas F Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Ross J Salawitch
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Timothy P Canty
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
| | - Russell R Dickerson
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
| | - Eric C Apel
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Sunil Baidar
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, USA
| | | | - Nicola J Blake
- Department of Chemistry, University of California, Irvine, California, USA
| | - Dexian Chen
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Barbara Dix
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA
| | - Rafael P Fernandez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
- Department of Natural Science, National Research Council (CONICET), FCEN-UNCuyo, Mendoza, Argentina
| | - Samuel R Hall
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | | | - L Gregory Huey
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Beatrice Josse
- Centre National de Recherche Météorologique, UMR3589, Méteo-France-CNRS, Toulouse, France
| | - Patrick Jöckel
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
| | | | - Theodore K Koenig
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, USA
| | - Michael LeBreton
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Virginie Marécal
- Centre National de Recherche Météorologique, UMR3589, Méteo-France-CNRS, Toulouse, France
| | - Olaf Morgenstern
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Luke D Oman
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Laura L Pan
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Carl Percival
- Department of Chemistry, University of Manchester, UK
| | - David Plummer
- Canadian Centre for Climate Modeling and Analysis, Environment Canada, Victoria, British Columbia, Canada
| | - Laura E Revell
- Bodeker Scientific, Alexandra, New Zealand
- ETH Zürich, Institute for Atmospheric and Climate Science, Zürich, Switzerland
| | - Eugene Rozanov
- ETH Zürich, Institute for Atmospheric and Climate Science, Zürich, Switzerland
- Physikalisch-Meteorologisches Observatorium Davos World Radiation Centre, Davos Dorf, Switzerland
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
| | - Andrea Stenke
- ETH Zürich, Institute for Atmospheric and Climate Science, Zürich, Switzerland
| | - Kengo Sudo
- Nagoya University, Graduate School of Environmental Studies, Nagoya, Japan
- Japan Marine-Earth Science and Technology, Yokohama, Japan
| | - Simone Tilmes
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Kirk Ullmann
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Rainer Volkamer
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, USA
| | | | - Guang Zeng
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| |
Collapse
|
17
|
Anderson DC, Nicely JM, Wolfe GM, Hanisco TF, Salawitch RJ, Canty TP, Dickerson RR, Apel EC, Baidar S, Bannan TJ, Blake NJ, Chen D, Dix B, Fernandez RP, Hall SR, Hornbrook RS, Huey LG, Josse B, Jöckel P, Kinnison DE, Koenig TK, LeBreton M, Marécal V, Morgenstern O, Oman LD, Pan LL, Percival C, Plummer D, Revell LE, Rozanov E, Saiz-Lopez A, Stenke A, Sudo K, Tilmes S, Ullmann K, Volkamer R, Weinheimer AJ, Zeng G. Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:11201-11226. [PMID: 29527424 PMCID: PMC5839129 DOI: 10.1002/2016jd026121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HOx. In remote marine environments, such as the Tropical Western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here, we have used observations from the CONTRAST field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 pptv near the surface to ~75 pptv in the upper troposphere. Recent convective transport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide, increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NO than more aged air. Output from the CAM-Chem chemistry transport model (2014 meteorology) as well as nine chemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are found to uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. This underestimate of HCHO likely results from a near factor of two underestimate of NO in most models, which strongly suggests errors in NOx emissions inventories and/or in the model chemical mechanisms. Likewise, the lack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead to additional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere.
Collapse
Affiliation(s)
- Daniel C Anderson
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
| | - Julie M Nicely
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Universities Space Research Association, Columbia, Maryland, USA
| | - Glenn M Wolfe
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Thomas F Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Ross J Salawitch
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Timothy P Canty
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
| | - Russell R Dickerson
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
| | - Eric C Apel
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Sunil Baidar
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, USA
| | | | - Nicola J Blake
- Department of Chemistry, University of California, Irvine, California, USA
| | - Dexian Chen
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Barbara Dix
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA
| | - Rafael P Fernandez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
- Department of Natural Science, National Research Council (CONICET), FCEN-UNCuyo, Mendoza, Argentina
| | - Samuel R Hall
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | | | - L Gregory Huey
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Beatrice Josse
- Centre National de Recherche Météorologique, UMR3589, Méteo-France-CNRS, Toulouse, France
| | - Patrick Jöckel
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
| | | | - Theodore K Koenig
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, USA
| | - Michael LeBreton
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Virginie Marécal
- Centre National de Recherche Météorologique, UMR3589, Méteo-France-CNRS, Toulouse, France
| | - Olaf Morgenstern
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Luke D Oman
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Laura L Pan
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Carl Percival
- Department of Chemistry, University of Manchester, UK
| | - David Plummer
- Canadian Centre for Climate Modeling and Analysis, Environment Canada, Victoria, British Columbia, Canada
| | - Laura E Revell
- Bodeker Scientific, Alexandra, New Zealand
- ETH Zürich, Institute for Atmospheric and Climate Science, Zürich, Switzerland
| | - Eugene Rozanov
- ETH Zürich, Institute for Atmospheric and Climate Science, Zürich, Switzerland
- Physikalisch-Meteorologisches Observatorium Davos World Radiation Centre, Davos Dorf, Switzerland
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain
| | - Andrea Stenke
- ETH Zürich, Institute for Atmospheric and Climate Science, Zürich, Switzerland
| | - Kengo Sudo
- Nagoya University, Graduate School of Environmental Studies, Nagoya, Japan
- Japan Marine-Earth Science and Technology, Yokohama, Japan
| | - Simone Tilmes
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Kirk Ullmann
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Rainer Volkamer
- Department of Chemistry, University of Colorado, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, USA
| | | | - Guang Zeng
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| |
Collapse
|
18
|
Zhu L, Jacob DJ, Keutsch FN, Mickley LJ, Scheffe R, Strum M, González Abad G, Chance K, Yang K, Rappenglück B, Millet DB, Baasandorj M, Jaeglé L, Shah V. Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and Inferring Cancer Risks in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5650-5657. [PMID: 28441488 DOI: 10.1021/acs.est.7b01356] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Formaldehyde (HCHO) is the most important carcinogen in outdoor air among the 187 hazardous air pollutants (HAPs) identified by the U.S. Environmental Protection Agency (EPA), not including ozone and particulate matter. However, surface observations of HCHO are sparse and the EPA monitoring network could be prone to positive interferences. Here we use 2005-2016 summertime HCHO column data from the OMI satellite instrument, validated with high-quality aircraft data and oversampled on a 5 × 5 km2 grid, to map surface air HCHO concentrations across the contiguous U.S. OMI-derived summertime HCHO values are converted to annual averages using the GEOS-Chem chemical transport model. Results are in good agreement with high-quality summertime observations from urban sites (-2% bias, r = 0.95) but a factor of 1.9 lower than annual means from the EPA network. We thus estimate that up to 6600-12 500 people in the U.S. will develop cancer over their lifetimes by exposure to outdoor HCHO. The main HCHO source in the U.S. is atmospheric oxidation of biogenic isoprene, but the corresponding HCHO yield decreases as the concentration of nitrogen oxides (NOx ≡ NO + NO2) decreases. A GEOS-Chem sensitivity simulation indicates that HCHO levels would decrease by 20-30% in the absence of U.S. anthropogenic NOx emissions. Thus, NOx emission controls to improve ozone air quality have a significant cobenefit in reducing HCHO-related cancer risks.
Collapse
Affiliation(s)
- Lei Zhu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Daniel J Jacob
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Earth and Planetary Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Frank N Keutsch
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Loretta J Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Richard Scheffe
- U.S. Environmental Protection Agency, Durham, North Carolina 27711, United States
| | - Madeleine Strum
- U.S. Environmental Protection Agency, Durham, North Carolina 27711, United States
| | - Gonzalo González Abad
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Kelly Chance
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Kai Yang
- Department of Atmospheric and Oceanic Science, University of Maryland College Park , College Park, Maryland 20740, United States
| | - Bernhard Rappenglück
- Department of Earth and Atmospheric Sciences, University of Houston , Houston, Texas 77204, United States
| | - Dylan B Millet
- Department of Soil, Water, and Climate, University of Minnesota , Minneapolis-Saint Paul, Minnesota 55108, United States
| | - Munkhbayar Baasandorj
- Department of Soil, Water, and Climate, University of Minnesota , Minneapolis-Saint Paul, Minnesota 55108, United States
| | - Lyatt Jaeglé
- Department of Atmospheric Sciences, University of Washington , Seattle, Washington 98105, United States
| | - Viral Shah
- Department of Atmospheric Sciences, University of Washington , Seattle, Washington 98105, United States
| |
Collapse
|
19
|
Wu R, Xie S. Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2574-2583. [PMID: 28145691 DOI: 10.1021/acs.est.6b03634] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ozone (O3) pollution is becoming increasingly severe in China. In addition, our limited understanding of the relationship between O3 and volatile organic compounds (VOCs), is an obstacle to improving air quality. By developing an improved source-oriented speciated VOC emission inventory in 2013, we estimated the ozone formation potential (OFP) and investigated its characteristics in China. Besides, a comparison was made between our estimates and space-based observations from the ozone monitoring instrument (OMI) on the National Aeronautics and Space Administration (NASA)'s Aura satellite. According to our estimates, m-/p-xylene, ethylene, formaldehyde, toluene, and propene were the five species that had the largest potential to form ozone, and on-road vehicles, industrial processes, biofuel combustion, and surface coating were the key contributing sectors. Among different regions of China, the North China Plain, Yangtze River Delta, and Pearl River Delta had the highest OFP values. Our results suggest that O3 formation is VOC-limited in major urban areas of China. Additionally, considering the different photochemical reactivities of various VOC species and the disparate energy and industry structures in the different regions of China, more efficient OFP-based and localized VOC control measures should be implemented, instead of the current mass-based and nationally uniform policies.
Collapse
Affiliation(s)
- Rongrong Wu
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University , Room 402, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Shaodong Xie
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University , Room 402, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
20
|
Schroeder JR, Crawford JH, Fried A, Walega J, Weinheimer A, Wisthaler A, Müller M, Mikoviny T, Chen G, Shook M, Blake DR, Diskin G, Estes M, Thompson AM, Lefer BL, Long R, Mattson E. Formaldehyde column density measurements as a suitable pathway to estimate near-surface ozone tendencies from space. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:13088-13112. [PMID: 32812915 PMCID: PMC7430524 DOI: 10.1002/2016jd025419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r 2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for ~28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (±20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.
Collapse
Affiliation(s)
- Jason R Schroeder
- NASA Langley Research Center, Hampton, Virginia, USA
- NASA Postdoctoral Program, NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Alan Fried
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA
| | - James Walega
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Armin Wisthaler
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Markus Müller
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
| | - Tomas Mikoviny
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Gao Chen
- NASA Langley Research Center, Hampton, Virginia, USA
| | - Michael Shook
- NASA Langley Research Center, Hampton, Virginia, USA
| | - Donald R Blake
- Department of Chemistry, University of California, Irvine, California, USA
| | - Glenn Diskin
- NASA Langley Research Center, Hampton, Virginia, USA
| | - Mark Estes
- Texas Commission on Environmental Quality, Austin, Texas, USA
| | - Anne M Thompson
- Department of Meteorology, Penn State University, University Park, Pennsylvania, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Barry L Lefer
- Department of Earth and Atmospheric Science, University of Houston, Houston, Texas, USA
- Now at NASA Headquarters, Washington, DC, USA
| | - Russell Long
- National Exposure Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Eric Mattson
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| |
Collapse
|
21
|
Glasius M, Goldstein AH. Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2754-64. [PMID: 26862779 DOI: 10.1021/acs.est.5b05105] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Earth's atmosphere contains a multitude of organic compounds, which differ by orders of magnitude regarding fundamental properties such as volatility, reactivity, and propensity to form cloud droplets, affecting their impact on global climate and human health. Despite recent major research efforts and advances, there are still substantial gaps in understanding of atmospheric organic chemistry, hampering efforts to understand, model, and mitigate environmental problems such as aerosol formation in both polluted urban and more pristine regions. The analytical toolbox available for chemists to study atmospheric organic components has expanded considerably during the past decade, opening new windows into speciation, time resolution and detection of reactive and semivolatile compounds at low concentrations. This has provided unprecedented opportunities, but also unveiled new scientific challenges. Specific groundbreaking examples include the role of epoxides in aerosol formation especially from isoprene, the importance of highly oxidized, reactive organics in air-surface processes (whether atmosphere-biosphere exchange or aerosols), as well as the extent of interactions of anthropogenic and biogenic emissions and the resulting impact on atmospheric organic chemistry.
Collapse
Affiliation(s)
- Marianne Glasius
- Department of Chemistry and iNANO, Aarhus University , 8000 Aarhus C, Denmark
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, and Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| |
Collapse
|
22
|
Wolfe GM, Kaiser J, Hanisco TF, Keutsch FN, de Gouw JA, Gilman JB, Graus M, Hatch CD, Holloway J, Horowitz LW, Lee BH, Lerner BM, Lopez-Hilifiker F, Mao J, Marvin MR, Peischl J, Pollack IB, Roberts JM, Ryerson TB, Thornton JA, Veres PR, Warneke C. Formaldehyde production from isoprene oxidation across NO x regimes. ATMOSPHERIC CHEMISTRY AND PHYSICS 2016; 16:2597-2610. [PMID: 29619046 PMCID: PMC5879783 DOI: 10.5194/acp-16-2597-2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the Southeast U.S., we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly-emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1 - 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv-1), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models under-estimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or under-estimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100% increase in OH and a 40% increase in branching of organic peroxy radical reactions to produce HCHO.
Collapse
Affiliation(s)
- G. M. Wolfe
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - J. Kaiser
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - T. F. Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - F. N. Keutsch
- School of Engineering and Applied Sciences and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - J. A. de Gouw
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J. B. Gilman
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - M. Graus
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - C. D. Hatch
- Department of Chemistry, Hendrix College, Conway, AR, USA
| | - J. Holloway
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - L. W. Horowitz
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
| | - B. H. Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - B. M. Lerner
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - F. Lopez-Hilifiker
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - J. Mao
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ
| | - M. R. Marvin
- Department of Chemistry, University of Maryland, College Park, MD, USA
| | - J. Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - I. B. Pollack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J. M. Roberts
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - T. B. Ryerson
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J. A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - P. R. Veres
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - C. Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| |
Collapse
|
23
|
Marais EA, Jacob DJ, Jimenez JL, Campuzano-Jost P, Day DA, Hu W, Krechmer J, Zhu L, Kim PS, Miller CC, Fisher JA, Travis K, Yu K, Hanisco TF, Wolfe GM, Arkinson HL, Pye HOT, Froyd KD, Liao J, McNeill VF. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the Southeast United States and co-benefit of SO 2 emission controls. ATMOSPHERIC CHEMISTRY AND PHYSICS 2016; 16:1603-1618. [PMID: 32742280 PMCID: PMC7394309 DOI: 10.5194/acp-16-1603-2016] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the Southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the low-NOx pathway and glyoxal (28%) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34% for NOx (leading to 7% increase in isoprene SOA) and 48% for SO2 (35% decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls.
Collapse
Affiliation(s)
- E A Marais
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - D J Jacob
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - J L Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - P Campuzano-Jost
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - D A Day
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - W Hu
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - J Krechmer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - L Zhu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - P S Kim
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - C C Miller
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - J A Fisher
- School of Chemistry and School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - K Travis
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - K Yu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - T F Hanisco
- Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - G M Wolfe
- Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - H L Arkinson
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
| | - H O T Pye
- National Exposure Research Laboratory, US EPA, Research Triangle Park, NC, USA
| | - K D Froyd
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
| | - J Liao
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
| | - V F McNeill
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| |
Collapse
|
24
|
Strum M, Scheffe R. National review of ambient air toxics observations. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:120-33. [PMID: 26230369 DOI: 10.1080/10962247.2015.1076538] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED Ambient air observations of hazardous air pollutant (HAPs), also known as air toxics, derived from routine monitoring networks operated by states, local agencies, and tribes (SLTs), are analyzed to characterize national concentrations and risk across the nation for a representative subset of the 187 designated HAPs. Observations from the National Air Toxics Trend Sites (NATTS) network of 27 stations located in most major urban areas of the contiguous United States have provided a consistent record of HAPs that have been identified as posing the greatest risk since 2003 and have also captured similar concentration patterns of nearly 300 sites operated by SLTs. Relatively high concentration volatile organic compounds (VOCs) such as benzene, formaldehyde, and toluene exhibit the highest annual average concentration levels, typically ranging from 1 to 5 µg/m(3). Halogenated (except for methylene chloride) and semivolatile organic compounds (SVOCs) and metals exhibit concentrations typically 2-3 orders of magnitude lower. Formaldehyde is the highest national risk driver based on estimated cancer risk and, nationally, has not exhibited significant changes in concentration, likely associated with the large pool of natural isoprene and formaldehyde emissions. Benzene, toluene, ethylbenzene, and 1,3-butadiene are ubiquitous VOC HAPs with large mobile source contributions that continue to exhibit declining concentrations over the last decade. Common chlorinated organic compounds such as ethylene dichloride and methylene chloride exhibit increasing concentrations. The variety of physical and chemical attributes and measurement technologies across 187 HAPs result in a broad range of method detection limits (MDLs) and cancer risk thresholds that challenge confidence in risk results for low concentration HAPs with MDLs near or greater than risk thresholds. From a national monitoring network perspective, the ability of the HAPs observational database to characterize the multiple pollutant and spatial scale patterns influencing exposure is severely limited and positioned to benefit by leveraging a variety of emerging measurement technologies. IMPLICATIONS Ambient air toxics observation networks have limited ability to characterize the broad suite of hazardous air pollutants (HAPs) that affect exposures across multiple spatial scales. While our networks are best suited to capture major urban-scale signals of ubiquitous volatile organic compound HAPs, incorporation of sensing technologies that address regional and local-scale exposures should be pursued to address major gaps in spatial resolution. Caution should be exercised in interpreting HAPs observations based on data proximity to minimum detection limit and risk thresholds.
Collapse
|
25
|
Marais EA, Jacob DJ, Jimenez JL, Campuzano-Jost P, Day DA, Hu W, Krechmer J, Zhu L, Kim PS, Miller CC, Fisher JA, Travis K, Yu K, Hanisco TF, Wolfe GM, Arkinson HL, Pye HOT, Froyd KD, Liao J, McNeill VF. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the Southeast United States and co-benefit of SO 2 emission controls. ATMOSPHERIC CHEMISTRY AND PHYSICS 2016. [PMID: 32742280 DOI: 10.5194/acp16-1603-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ) for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS) and ground-based (SOAS) observations over the Southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx ≡ NO + NO2) over the Southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2) react significantly with both NO (high-NOx pathway) and HO2 (low-NOx pathway), leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA) and formaldehyde (a product of isoprene oxidation). Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58% of isoprene SOA) from the low-NOx pathway and glyoxal (28%) from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation), but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume). The US EPA projects 2013-2025 decreases in anthropogenic emissions of 34% for NOx (leading to 7% increase in isoprene SOA) and 48% for SO2 (35% decrease in isoprene SOA). Reducing SO2 emissions decreases sulfate and isoprene SOA by a similar magnitude, representing a factor of 2 co-benefit for PM2.5 from SO2 emission controls.
Collapse
Affiliation(s)
- E A Marais
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - D J Jacob
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - J L Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - P Campuzano-Jost
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - D A Day
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - W Hu
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - J Krechmer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - L Zhu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - P S Kim
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - C C Miller
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - J A Fisher
- School of Chemistry and School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - K Travis
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - K Yu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - T F Hanisco
- Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - G M Wolfe
- Atmospheric Chemistry and Dynamics Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - H L Arkinson
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
| | - H O T Pye
- National Exposure Research Laboratory, US EPA, Research Triangle Park, NC, USA
| | - K D Froyd
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
| | - J Liao
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
| | - V F McNeill
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| |
Collapse
|
26
|
Wolfe GM, Kaiser J, Hanisco TF, Keutsch FN, de Gouw JA, Gilman JB, Graus M, Hatch CD, Holloway J, Horowitz LW, Lee BH, Lerner BM, Lopez-Hilifiker F, Mao J, Marvin MR, Peischl J, Pollack IB, Roberts JM, Ryerson TB, Thornton JA, Veres PR, Warneke C. Formaldehyde production from isoprene oxidation across NO x regimes. ATMOSPHERIC CHEMISTRY AND PHYSICS 2016. [PMID: 29619046 DOI: 10.5194/acp-16-2597-] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the Southeast U.S., we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a "prompt" yield of HCHO (molecules of HCHO produced per molecule of freshly-emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1 - 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv-1), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models under-estimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or under-estimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100% increase in OH and a 40% increase in branching of organic peroxy radical reactions to produce HCHO.
Collapse
Affiliation(s)
- G M Wolfe
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD, USA
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - J Kaiser
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - T F Hanisco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - F N Keutsch
- School of Engineering and Applied Sciences and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - J A de Gouw
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J B Gilman
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - M Graus
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - C D Hatch
- Department of Chemistry, Hendrix College, Conway, AR, USA
| | - J Holloway
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - L W Horowitz
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
| | - B H Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - B M Lerner
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - F Lopez-Hilifiker
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - J Mao
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ
| | - M R Marvin
- Department of Chemistry, University of Maryland, College Park, MD, USA
| | - J Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - I B Pollack
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J M Roberts
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - T B Ryerson
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - J A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - P R Veres
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - C Warneke
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| |
Collapse
|
27
|
Sullivan RC, Crippa P, Hallar AG, Clarisse L, Whitburn S, Van Damme M, Leaitch WR, Walker JT, Khlystov A, Pryor SC. Using satellite-based measurements to explore spatiotemporal scales and variability of drivers of new particle formation. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:12217-12235. [PMID: 32803203 PMCID: PMC7425633 DOI: 10.1002/2016jd025568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
New particle formation (NPF) can potentially alter regional climate by increasing aerosol particle (hereafter particle) number concentrations and ultimately cloud condensation nuclei. The large scales on which NPF is manifest indicate potential to use satellite-based (inherently spatially averaged) measurements of atmospheric conditions to diagnose the occurrence of NPF and NPF characteristics. We demonstrate the potential for using satellite-based measurements of insolation (UV), trace gas concentrations (sulfur dioxide (SO2), nitrogen dioxide (NO2), ammonia (NH3), formaldehyde (HCHO), and ozone (O3)), aerosol optical properties (aerosol optical depth (AOD) and Ångström exponent (AE)), and a proxy of biogenic volatile organic compound emissions (leaf area index (LAI) and temperature (T)) as predictors for NPF characteristics: formation rates, growth rates, survival probabilities, and ultrafine particle (UFP) concentrations at five locations across North America. NPF at all sites is most frequent in spring, exhibits a one-day autocorrelation, and is associated with low condensational sink (AOD × AE) and HCHO concentrations, and high UV. However, there are important site-to-site variations in NPF frequency and characteristics, and in which of the predictor variables (particularly gas concentrations) significantly contribute to the explanatory power of regression models built to predict those characteristics. This finding may provide a partial explanation for the reported spatial variability in skill of simple generalized nucleation schemes in reproducing observed NPF. In contrast to more simple proxies developed in prior studies (e.g., based on AOD, AE, SO2, and UV), use of additional predictors (NO2, NH3, HCHO, LAI, T, and O3) increases the explained temporal variance of UFP concentrations at all sites.
Collapse
Affiliation(s)
- R. C. Sullivan
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA
| | - P. Crippa
- COMET, School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK
| | - A. G. Hallar
- Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado, USA; Atmospheric Science Department, University of Utah, Salt Lake City, Utah, USA
| | - L. Clarisse
- Environment Canada, Toronto, Ontario, Canada
| | - S. Whitburn
- Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado, USA; Atmospheric Science Department, University of Utah, Salt Lake City, Utah, USA
| | - M. Van Damme
- Storm Peak Laboratory, Desert Research Institute, Steamboat Springs, Colorado, USA; Atmospheric Science Department, University of Utah, Salt Lake City, Utah, USA
| | | | - J. T. Walker
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Durham, North Carolina, USA
| | - A. Khlystov
- Desert Research Institute, Reno, Nevada, USA
| | - S. C. Pryor
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA; Pervasive Technology Institute, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
28
|
Baek KH, Kim JH, Park RJ, Chance K, Kurosu TP. Validation of OMI HCHO data and its analysis over Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:93-105. [PMID: 24840284 DOI: 10.1016/j.scitotenv.2014.04.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 04/20/2014] [Accepted: 04/24/2014] [Indexed: 05/12/2023]
Abstract
OMI HCHO is validated over the continental US (CONUS), and used to analyze regional sources in Northeast Asia (NA) and Southeast Asia (SA). OMI HCHO Version 2.0 data show unrealistic trends, which prompted the production of a corrected OMI HCHO data set. EOF and SVD are utilized to compare the spatial and temporal variability between OMI HCHO against GOME and SCIAMACHY, and against GEOS-Chem. CONUS HCHO chemistry is well studied; its concentrations are greatest in the southeastern US with annual cycle maximums corresponding to the summer vegetation. The corrected OMI HCHO agrees with this understanding as well as with the other sensors measurements and has no unrealistic trends. In NA the annual cycle is super-posed by extremely large concentrations in polluted mega-cities. The other sensors generally agree with NA's OMI HCHO regional distribution, but megacity signal is not seen in GEOS-Chem. Our study supports the findings proposed by others that the emission inventory used in GEOS-Chem significantly underestimates anthropogenic influence on HCHO emission over megacities. The persistent mega-city signal is also present in SA. In SA the spatial and temporal patterns of OMI HCHO show a maximum in the dry season. The patterns are in remarkably good agreement with fire counts, which illustrates that the variability of HCHO over SA is strongly influenced by biomass burning. The corrected OMI HCHO data has realistic trends, conforms to well-known sources over CONUS, and has shown a stationary large concentration over polluted Asian mega-cities, and a widespread biomass burning in SA.
Collapse
Affiliation(s)
- K H Baek
- Department of Atmospheric Science, Pusan National University, Republic of Korea
| | - Jae H Kim
- Department of Atmospheric Science, Pusan National University, Republic of Korea.
| | - Rokjin J Park
- School of Earth and Environmental Science, Seoul National University, Seoul, Republic of Korea
| | - Kelly Chance
- Harvard-Smithsonian Center for Astrophysics, USA
| | | |
Collapse
|
29
|
Wells KC, Millet DB, Cady-Pereira KE, Shephard MW, Henze DK, Bousserez N, Apel EC, de Gouw J, Warneke C, Singh HB. Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor. ATMOSPHERIC CHEMISTRY AND PHYSICS 2014; 14:2555-2570. [PMID: 33758587 PMCID: PMC7983851 DOI: 10.5194/acp-14-2555-2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We employ new global space-based measurements of atmospheric methanol from the Tropospheric Emission Spectrometer (TES) with the adjoint of the GEOS-Chem chemical transport model to quantify terrestrial emissions of methanol to the atmosphere. Biogenic methanol emissions in the model are based on version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1), using leaf area data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and GEOS-5 assimilated meteorological fields. We first carry out a pseudo observation test to validate the overall approach, and find that the TES sampling density is sufficient to accurately quantify regional- to continental-scale methanol emissions using this method. A global inversion of two years of TES data yields an optimized annual global surface flux of 122 Tg yr-1 (including biogenic, pyrogenic, and anthropogenic sources), an increase of 60 % from the a priori global flux of 76 Tg yr-1. Global terrestrial methanol emissions are thus nearly 25 % those of isoprene (~540 Tg yr-1), and are comparable to the combined emissions of all anthropogenic volatile organic compounds (~100-200 Tg yr-1). Our a posteriori terrestrial methanol source leads to a strong improvement of the simulation relative to an ensemble of airborne observations, and corroborates two other recent top-down estimates (114-120 Tg yr-1) derived using in situ and space-based measurements. Inversions testing the sensitivity of optimized fluxes to model errors in OH, dry deposition, and oceanic uptake of methanol, as well as to the assumed a priori constraint, lead to global fluxes ranging from 118 to 126 Tg yr-1. The TES data imply a relatively modest revision of model emissions over most of the tropics, but a significant upward revision in midlatitudes, particularly over Europe and North America. We interpret the inversion results in terms of specific source types using the methanol : CO correlations measured by TES, and find that biogenic emissions are overestimated relative to biomass burning and anthropogenic emissions in central Africa and southeastern China, while they are underestimated in regions such as Brazil and the US. Based on our optimized emissions, methanol accounts for > 25 % of the photochemical source of CO and HCHO over many parts of the northern extratropics during springtime, and contributes ~6 % of the global secondary source of those compounds annually.
Collapse
Affiliation(s)
- K. C. Wells
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - D. B. Millet
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - K. E. Cady-Pereira
- Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA
| | | | - D. K. Henze
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, USA
| | - N. Bousserez
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado, USA
| | - E. C. Apel
- Atmospheric Chemistry Division, NCAR, Boulder, Colorado, USA
| | - J. de Gouw
- Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
- CIRES, University of Colorado, Boulder, Colorado, USA
| | - C. Warneke
- Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
- CIRES, University of Colorado, Boulder, Colorado, USA
| | - H. B. Singh
- NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
30
|
Han KM, Park RS, Kim HK, Woo JH, Kim J, Song CH. Uncertainty in biogenic isoprene emissions and its impacts on tropospheric chemistry in East Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:754-771. [PMID: 23867846 DOI: 10.1016/j.scitotenv.2013.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/31/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
In this study, the accuracy of biogenic isoprene emission fluxes over East Asia during two summer months (July and August) was examined by comparing two tropospheric HCHO columns (ΩHCHO) obtained from the SCIAMACHY sensor and the Community Multi-scale Air Quality (CMAQ v4.7.1) model simulations, using three available biogenic isoprene emission inventories over East Asia: i) GEIA, ii) MEGAN and iii) MOHYCAN. From this comparative analysis, the tropospheric HCHO columns from the CMAQ model simulations, using the MEGAN and MOHYCAN emission inventories (Ω(CMAQ, MEGAN) and Ω(CMAQ, MOHYCAN)), were found to agree well with the tropospheric HCHO columns from the SCIAMACHY observations (Ω(SCIA)). Secondly, the propagation of such uncertainties in the biogenic isoprene emission fluxes to the levels of atmospheric oxidants (e.g., OH and HO2) and other atmospheric gaseous/particulate species over East Asia during the two summer months was also investigated. As the biogenic isoprene emission fluxes decreased from the GEIA to the MEGAN emission inventories, the levels of OH radicals increased by factors of 1.39 and 1.75 over Central East China (CEC) and South China, respectively. Such increases in the OH radical mixing ratios subsequently influence the partitioning of HO(y) species. For example, the HO2/OH ratios from the CMAQ model simulations with GEIA isoprene emissions were 2.7 times larger than those from the CMAQ model simulations based on MEGAN isoprene emissions. The large HO2/OH ratios from the CMAQ model simulations with the GEIA biogenic emission were possibly due to the overestimation of GEIA biogenic isoprene emissions over East Asia. It was also shown that such large changes in HO(x) radicals created large differences on other tropospheric compounds (e.g., NO(y) chemistry) over East Asia during the summer months.
Collapse
Affiliation(s)
- K M Han
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea; Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Barkley MP, Kurosu TP, Chance K, De Smedt I, Van Roozendael M, Arneth A, Hagberg D, Guenther A. Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: Implications for top-down isoprene emission estimates. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016827] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Wells KC, Millet DB, Hu L, Cady-Pereira KE, Xiao Y, Shephard M, Clerbaux CL, Clarisse L, Coheur PF, Apel EC, de Gouw J, Warneke C, Singh HB, Goldstein AH, Sive BC. Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions. ATMOSPHERIC CHEMISTRY AND PHYSICS 2012; 12:5897-5912. [PMID: 33719354 PMCID: PMC7954041 DOI: 10.5194/acp-12-5897-2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES) on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS) are above 0.5, in which case the model:TES regressions are generally consistent with the model:aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS >0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1-2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 0.26, 0.12 and 3.0 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.5 for expanding canopies with leaf area index <1.2) provide a more realistic simulation of seasonal methanol concentrations in midlatitudes on the basis of both the IASI and TES measurements.
Collapse
Affiliation(s)
- K. C. Wells
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - D. B. Millet
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - L. Hu
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - K. E. Cady-Pereira
- Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA
| | - Y. Xiao
- Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA
| | | | - C. L. Clerbaux
- UMPC Univ. Paris 06, Université Versailles St-Quentin, CNRS/INSU, LATMOS-IPSL, Paris, France
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique, Universitè Libre de Bruxelles, Brussels, Belgium
| | - L. Clarisse
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique, Universitè Libre de Bruxelles, Brussels, Belgium
| | - P.-F. Coheur
- Spectroscopie de l’Atmosphère, Service de Chimie Quantique et Photophysique, Universitè Libre de Bruxelles, Brussels, Belgium
| | - E. C. Apel
- Atmospheric Chemistry Division, NCAR, Boulder, Colorado, USA
| | - J. de Gouw
- Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
- CIRES, University of Colorado, Boulder, Colorado, USA
| | - C. Warneke
- Earth System Research Laboratory, NOAA, Boulder, Colorado, USA
- CIRES, University of Colorado, Boulder, Colorado, USA
| | - H. B. Singh
- NASA Ames Research Center, Moffett Field, California, USA
| | - A. H. Goldstein
- Departments of Environmental Science, Policy, and Management and of Civil and Environmental Engineering, UC Berkeley, Berkeley, California, USA
| | - B. C. Sive
- Department of Chemistry, Appalachian State University, Boone, North Carolina, USA
| |
Collapse
|
34
|
Marais EA, Jacob DJ, Kurosu TP, Chance K, Murphy JG, Reeves C, Mills G, Casadio S, Millet DB, Barkley MP, Paulot F, Mao J. Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. ATMOSPHERIC CHEMISTRY AND PHYSICS 2012; 12:6219-6235. [PMID: 33688332 PMCID: PMC7939075 DOI: 10.5194/acp-12-6219-2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We use 2005-2009 satellite observations of formaldehyde (HCHO) columns from the OMI instrument to infer biogenic isoprene emissions at monthly 1 × 1° resolution over the African continent. Our work includes new approaches to remove biomass burning influences using OMI absorbing aerosol optical depth data (to account for transport of fire plumes) and anthropogenic influences using AATSR satellite data for persistent small-flame fires (gas flaring). The resulting biogenic HCHO columns (ΩHCHO) from OMI follow closely the distribution of vegetation patterns in Africa. We infer isoprene emission (E ISOP) from the local sensitivity S = ΔΩHCHO / ΔE ISOP derived with the GEOS-Chem chemical transport model using two alternate isoprene oxidation mechanisms, and verify the validity of this approach using AMMA aircraft observations over West Africa and a longitudinal transect across central Africa. Displacement error (smearing) is diagnosed by anomalously high values of S and the corresponding data are removed. We find significant sensitivity of S to NOx under low-NOx conditions that we fit to a linear function of tropospheric column NO2. We estimate a 40% error in our inferred isoprene emissions under high-NOx conditions and 40-90% under low-NOx conditions. Our results suggest that isoprene emission from the central African rainforest is much lower than estimated by the state-of-the-science MEGAN inventory.
Collapse
Affiliation(s)
- E. A. Marais
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - D. J. Jacob
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - T. P. Kurosu
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - K. Chance
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - J. G. Murphy
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - C. Reeves
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - G. Mills
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - S. Casadio
- Instrument Data quality Evaluation and Analysis (IDEAS), Serco Spa Via Sciadonna 24, 00044 Frascati (Roma), Italy
| | - D. B. Millet
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA
| | - M. P. Barkley
- Space Research Centre, University of Leicester, Leicester, UK
| | - F. Paulot
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - J. Mao
- Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
35
|
Barkley MP, Palmer PI, Ganzeveld L, Arneth A, Hagberg D, Karl T, Guenther A, Paulot F, Wennberg PO, Mao J, Kurosu TP, Chance K, Müller JF, De Smedt I, Van Roozendael M, Chen D, Wang Y, Yantosca RM. Can a “state of the art” chemistry transport model simulate Amazonian tropospheric chemistry? ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015893] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Boeke NL, Marshall JD, Alvarez S, Chance KV, Fried A, Kurosu TP, Rappenglück B, Richter D, Walega J, Weibring P, Millet DB. Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model. ACTA ACUST UNITED AC 2011; 116. [PMID: 33716354 DOI: 10.1029/2010jd014870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
[1] We combine aircraft measurements (Second Texas Air Quality Study, Megacity Initiative: Local and Global Research Observations, Intercontinental Chemical Transport Experiment: Phase B) over the United States, Mexico, and the Pacific with a 3-D model (GEOS-Chem) to evaluate formaldehyde column (ΩHCHO) retrievals from the Ozone Monitoring Instrument (OMI) and assess the information they provide on HCHO across local to regional scales and urban to background regimes. OMI ΩHCHO correlates well with columns derived from aircraft measurements and GEOS-Chem (R = 0.80). For the full data ensemble, OMI's mean bias is -3% relative to aircraft-derived ΩHCHO (-17% where ΩHCHO > 5 × 1015 molecules cm-2) and -8% relative to GEOS-Chem, within expected uncertainty for the retrieval. Some negative bias is expected for the satellite and model, given the plume sampling of many flights and averaging over the satellite and model footprints. Major axis regression for OMI versus aircraft and model columns yields slopes (95% confidence intervals) of 0.80 (0.62-1.03) and 0.98 (0.73-1.35), respectively, with no significant intercept. Aircraft measurements indicate that the normalized vertical HCHO distribution, required by the satellite retrieval, is well captured by GEOS-Chem, except near Mexico City. Using measured HCHO profiles in the retrieval algorithm does not improve satellite-aircraft agreement, suggesting that use of a global model to specify shape factors does not substantially degrade retrievals over polluted areas. While the OMI measurements show that biogenic volatile organic compounds dominate intra-annual and regional ΩHCHO variability across the United States, smaller anthropogenic ΩHCHO gradients are detectable at finer spatial scales (∼20-200 km) near many urban areas.
Collapse
Affiliation(s)
- Nicholas L Boeke
- Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julian D Marshall
- Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sergio Alvarez
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, USA
| | - Kelly V Chance
- Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - Alan Fried
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Thomas P Kurosu
- Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - Bernhard Rappenglück
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, USA
| | - Dirk Richter
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - James Walega
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Petter Weibring
- Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA
| | - Dylan B Millet
- Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
37
|
Lee C, Martin RV, van Donkelaar A, O'Byrne G, Krotkov N, Richter A, Huey LG, Holloway JS. Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd012123] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Hudman RC, Murray LT, Jacob DJ, Turquety S, Wu S, Millet DB, Avery M, Goldstein AH, Holloway J. North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010126] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Rinsland CP, Mahieu E, Chiou L, Herbin H. First ground-based infrared solar absorption measurements of free tropospheric methanol (CH3OH): Multidecade infrared time series from Kitt Peak (31.9°N 111.6°W): Trend, seasonal cycle, and comparison with previous measurements. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Millet DB, Atlas EL, Blake DR, Blake NJ, Diskin GS, Holloway JS, Hudman RC, Meinardi S, Ryerson TB, Sachse GW. Halocarbon emissions from the United States and Mexico and their global warming potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:1055-1060. [PMID: 19320157 DOI: 10.1021/es802146j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We use recent aircraft measurements of a comprehensive suite of anthropogenic halocarbons, carbon monoxide (CO), and related tracers to place new constraints on North American halocarbon emissions and quantify their global warming potential. Using a chemical transport model (GEOS-Chem) we find that the ensemble of observations are consistent with our prior best estimate of the U.S. anthropogenic CO source, but suggest a 30% underestimate of Mexican emissions. We develop an optimized CO emission inventory on this basis and quantify halocarbon emissions from their measured enhancements relative to CO. Emissions continue for many compounds restricted under the Montreal Protocol, and we show that halocarbons make up an important fraction of the total greenhouse gas source for both countries: our best estimate is 9% (uncertainty range 6-12%) and 32% (21-52%) of equivalent CO2 emissions for the U.S. and Mexico, respectively, on a 20 year time scale. Performance of bottom-up emission inventories is variable, with underestimates for some compounds and overestimates for others. Ongoing methylchloroform emissions are significant in the U.S. (2.8 Gg/y in 2004-2006), in contrast to bottom-up estimates (< 0.05 Gg), with implications for tropospheric OH calculations. Mexican methylchloroform emissions are minor.
Collapse
Affiliation(s)
- Dylan B Millet
- University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Barkley MP, Palmer PI, Kuhn U, Kesselmeier J, Chance K, Kurosu TP, Martin RV, Helmig D, Guenther A. Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd009863] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Fried A, Olson JR, Walega JG, Crawford JH, Chen G, Weibring P, Richter D, Roller C, Tittel F, Porter M, Fuelberg H, Halland J, Bertram TH, Cohen RC, Pickering K, Heikes BG, Snow JA, Shen H, O'Sullivan DW, Brune WH, Ren X, Blake DR, Blake N, Sachse G, Diskin GS, Podolske J, Vay SA, Shetter RE, Hall SR, Anderson BE, Thornhill L, Clarke AD, McNaughton CS, Singh HB, Avery MA, Huey G, Kim S, Millet DB. Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009760] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Fried A, Walega JG, Olson JR, Crawford JH, Chen G, Weibring P, Richter D, Roller C, Tittel FK, Heikes BG, Snow JA, Shen H, O'Sullivan DW, Porter M, Fuelberg H, Halland J, Millet DB. Formaldehyde over North America and the North Atlantic during the summer 2004 INTEX campaign: Methods, observed distributions, and measurement-model comparisons. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009185] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Millet DB, Jacob DJ, Boersma KF, Fu TM, Kurosu TP, Chance K, Heald CL, Guenther A. Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008950] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Liang Q, Jaeglé L, Hudman RC, Turquety S, Jacob DJ, Avery MA, Browell EV, Sachse GW, Blake DR, Brune W, Ren X, Cohen RC, Dibb JE, Fried A, Fuelberg H, Porter M, Heikes BG, Huey G, Singh HB, Wennberg PO. Summertime influence of Asian pollution in the free troposphere over North America. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007919] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Hudman RC, Jacob DJ, Turquety S, Leibensperger EM, Murray LT, Wu S, Gilliland AB, Avery M, Bertram TH, Brune W, Cohen RC, Dibb JE, Flocke FM, Fried A, Holloway J, Neuman JA, Orville R, Perring A, Ren X, Sachse GW, Singh HB, Swanson A, Wooldridge PJ. Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007912] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Fu TM, Jacob DJ, Palmer PI, Chance K, Wang YX, Barletta B, Blake DR, Stanton JC, Pilling MJ. Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007853] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
48
|
Wang Y, McElroy MB, Martin RV, Streets DG, Zhang Q, Fu TM. Seasonal variability of NOxemissions over east China constrained by satellite observations: Implications for combustion and microbial sources. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007538] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Singh HB, Brune WH, Crawford JH, Jacob DJ, Russell PB. Overview of the summer 2004 Intercontinental Chemical Transport Experiment–North America (INTEX-A). ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007905] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Heald CL, Jacob DJ, Turquety S, Hudman RC, Weber RJ, Sullivan AP, Peltier RE, Atlas EL, de Gouw JA, Warneke C, Holloway JS, Neuman JA, Flocke FM, Seinfeld JH. Concentrations and sources of organic carbon aerosols in the free troposphere over North America. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007705] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Colette L. Heald
- Center for Atmospheric Sciences; University of California; Berkeley California USA
| | - Daniel J. Jacob
- Division of Engineering and Applied Science; Harvard University; Cambridge Massachusetts USA
| | - Solène Turquety
- Division of Engineering and Applied Science; Harvard University; Cambridge Massachusetts USA
| | - Rynda C. Hudman
- Division of Engineering and Applied Science; Harvard University; Cambridge Massachusetts USA
| | - Rodney J. Weber
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | - Amy P. Sullivan
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | - Richard E. Peltier
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | - Eliot L. Atlas
- Rosentiel School of Marine and Atmospheric Science; University of Miami; Miami Florida USA
| | - Joost A. de Gouw
- Chemical Sciences Division; NOAA Earth System Research Laboratory; Boulder Colorado USA
| | - Carsten Warneke
- Chemical Sciences Division; NOAA Earth System Research Laboratory; Boulder Colorado USA
| | - John S. Holloway
- Chemical Sciences Division; NOAA Earth System Research Laboratory; Boulder Colorado USA
| | - J. Andrew Neuman
- Chemical Sciences Division; NOAA Earth System Research Laboratory; Boulder Colorado USA
| | - Frank M. Flocke
- National Center for Atmospheric Research; Boulder Colorado USA
| | - John H. Seinfeld
- Department of Chemical Engineering; California Institute of Technology; Pasadena California USA
| |
Collapse
|