1
|
Freitas GP, Kojoj J, Mavis C, Creamean J, Mattsson F, Nilsson L, Schmidt JS, Adachi K, Šantl-Temkiv T, Ahlberg E, Mohr C, Riipinen I, Zieger P. A comprehensive characterisation of natural aerosol sources in the high Arctic during the onset of sea ice melt. Faraday Discuss 2025. [PMID: 40034057 DOI: 10.1039/d4fd00162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The interactions between aerosols and clouds are still one of the largest sources of uncertainty in quantifying anthropogenic radiative forcing. To reduce this uncertainty, we must first determine the baseline natural aerosol loading for different environments. In the pristine and hardly accessible polar regions, the exact nature of local aerosol sources remains poorly understood. It is unclear how oceans, including sea ice, control the aerosol budget, influence cloud formation, and determine the cloud phase. One critical question relates to the abundance and characteristics of biological aerosol particles that are important for the formation and microphysical properties of Arctic mixed-phase clouds. Within this work, we conducted a comprehensive analysis of various potential local sources of natural aerosols in the high Arctic over the pack ice during the ARTofMELT expedition in May-June 2023. Samples of snow, sea ice, seawater, and the sea surface microlayer (SML) were analysed for their microphysical, chemical, and fluorescent properties immediately after collection. Accompanied analyses of ice nucleating properties and biological cell quantification were performed at a later stage. We found that increased biological activity in seawater and the SML during the late Arctic spring led to higher emissions of fluorescent primary biological aerosol particles (fPBAPs) and other highly fluorescent particles (OHFPs, here organic-coated sea salt particles). Surprisingly, the concentrations of ice nucleating particles (INPs) in the corresponding liquid samples did not follow this trend. Gradients in OHFPs, fPBAPs, and black carbon indicated an anthropogenic pollution signal in surface samples especially in snow but also in the top layer of the sea ice core and SML samples. Salinity did not affect the aerosolisation of fPBAPs or sample ice nucleating activity. Compared to seawater, INP and fPBAP concentrations were enriched in sea ice samples. All samples showed distinct differences in their biological, chemical, and physical properties, which can be used in future work for an improved source apportionment of natural Arctic aerosol to reduce uncertainties associated with their representation in models and impacts on Arctic mixed-phase clouds.
Collapse
Affiliation(s)
- Gabriel Pereira Freitas
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Julia Kojoj
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Camille Mavis
- Department of Atmospheric Science, Colorado State University, USA
| | - Jessie Creamean
- Department of Atmospheric Science, Colorado State University, USA
| | - Fredrik Mattsson
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | | | | | - Kouji Adachi
- Department of Atmosphere, Ocean, and Earth System Modeling Research, Meteorological Research Institute, Tsukuba, Japan
| | | | | | - Claudia Mohr
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zürich, Switzerland
| | - Ilona Riipinen
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Paul Zieger
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Rocchi A, von Jackowski A, Welti A, Li G, Kanji ZA, Povazhnyy V, Engel A, Schmale J, Nenes A, Berdalet E, Simó R, Dall′Osto M. Glucose Enhances Salinity-Driven Sea Spray Aerosol Production in Eastern Arctic Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8748-8759. [PMID: 38709019 PMCID: PMC11112759 DOI: 10.1021/acs.est.4c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Sea spray aerosols (SSA) greatly affect the climate system by scattering solar radiation and acting as seeds for cloud droplet formation. The ecosystems in the Arctic Ocean are rapidly changing due to global warming, and the effects these changes have on the generation of SSA, and thereby clouds and fog formation in this region, are unknown. During the ship-based Arctic Century Expedition, we examined the dependency of forced SSA production on the biogeochemical characteristics of seawater using an on-board temperature-controlled aerosol generation chamber with a plunging jet system. Our results indicate that mainly seawater salinity and organic content influence the production and size distribution of SSA. However, we observed a 2-fold higher SSA production from waters with similar salinity collected north of 81°N compared to samples collected south of this latitude. This variability was not explained by phytoplankton and bacterial abundances or Chlorophyll-a concentration but by the presence of glucose in seawater. The synergic action of sea salt (essential component) and glucose or glucose-rich saccharides (enhancer) accounts for >80% of SSA predictability throughout the cruise. Our results suggest that besides wind speed and salinity, SSA production in Arctic waters is also affected by specific organics released by the microbiota.
Collapse
Affiliation(s)
- Arianna Rocchi
- Department
of Marine Biology and Oceanography, Institute
of Marine Sciences (ICM, CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Spain
- Faculty
of Earth Sciences, University of Barcelona, Carrer Martí i Franquès,
s/n, E-08028 Barcelona, Spain
| | - Anabel von Jackowski
- GEOMAR
Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1−3, 24148 Kiel, Germany
| | - André Welti
- Finnish
Meteorological Institute, Erik Palménin aukio, 1. 00560 Helsinki, Finland
| | - Guangyu Li
- Institute
for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Zamin A. Kanji
- Institute
for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Vasiliy Povazhnyy
- The Otto
Schmidt Laboratory, Arctic and Antarctic Research Institute, Beringa, 38. 199397 St. Petersburg, Russia
| | - Anja Engel
- GEOMAR
Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1−3, 24148 Kiel, Germany
| | - Julia Schmale
- École
Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
| | - Athanasios Nenes
- École
Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
| | - Elisa Berdalet
- Department
of Marine Biology and Oceanography, Institute
of Marine Sciences (ICM, CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Spain
| | - Rafel Simó
- Department
of Marine Biology and Oceanography, Institute
of Marine Sciences (ICM, CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Spain
| | - Manuel Dall′Osto
- Department
of Marine Biology and Oceanography, Institute
of Marine Sciences (ICM, CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Spain
| |
Collapse
|
3
|
McRae O, Walls PLL, Natarajan V, Antoniou C, Bird JC. Elucidating the effects of microbubble pinch-off dynamics on mammalian cell viability. Biotechnol Bioeng 2024; 121:524-534. [PMID: 37902645 DOI: 10.1002/bit.28582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/22/2023] [Accepted: 10/15/2023] [Indexed: 10/31/2023]
Abstract
In the biotechnology industry, ensuring the health and viability of mammalian cells, especially Chinese Hamster Ovary (CHO) cells, plays a significant role in the successful production of therapeutic agents. These cells are typically cultivated in aerated bioreactors, where they encounter fluid stressors from rapidly deforming bubbles. These stressors can disrupt essential biological processes and potentially lead to cell death. However, the impact of these transient, elevated stressors on cell viability remains elusive. In this study, we first employ /cgqamicrofluidics to expose CHO cells near to bubbles undergoing pinch-off, subsequently collecting and assaying the cells to quantify the reduction in viability. Observing a significant impact, we set out to understand this phenomenon. We leverage computational fluid dynamics and numerical particle tracking to map the stressor field history surrounding a rapidly deforming bubble. Separately, we expose CHO cells to a known stressor level in a flow constriction device, collecting and assaying the cells to quantify the reduction in viability. By integrating the numerical data and results from the flow constriction device experiments, we develop a predictive model for cell viability reduction. We validate this model by comparing its predictions to the earlier microfluidic results, observing good agreement. Our findings provide critical insights into the relationship between bubble-induced fluid stressors and mammalian cell viability, with implications for bioreactor design and cell culture protocol optimization in the biotechnology sector.
Collapse
Affiliation(s)
- Oliver McRae
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Peter L L Walls
- Department of Mechanical Engineering, Dunwoody College of Technology, Minneapolis, Minnesota, USA
| | | | - Chris Antoniou
- Global Processing Engineering, Biogen, Cambridge, Massachusetts, USA
| | - James C Bird
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Song Y, Li J, Tsona NT, Liu L, Du L. Enrichment of short-chain organic acids transferred to submicron sea spray aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158122. [PMID: 35988626 DOI: 10.1016/j.scitotenv.2022.158122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Organic acids, considered to be a substantial component of the marine carbon cycle, can enter the atmosphere through sea spray aerosol (SSA) and further affect the climate. Despite their importance, the distribution and mixing state of organic acids in SSA over the marine boundary layer are poorly understood and therefore need more investigation. Here, we have used ion chromatography (IC) in anion mode to measure short-chain organic acids concentrations in SSA collected throughout a custom-made SSA simulation chamber. The enrichment behavior and morphology of monocarboxylic acids (MAs, C1-8) and dicarboxylic acids (DAs) in submicron SSA were studied in seawater. We found that with MAs addition, the number concentration and mass concentration of SSA particles decreased gradually for C5-8 MAs, whereas they weakly varied with DAs addition due to the fact that carboxyl groups at both ends of DAs increased the surface tension of seawater. Moreover, the target compounds in submicron SSA displayed a surface activity-dependent enrichment behavior, where seawater with stronger surface activity, such as that containing MAs with >5 carbons, was more enriched in SSA in comparison to seawater with weaker surface activity. MAs with chain length <5 carbons were slightly enriched in SSA, whereas the enrichment factor (EF) of C5-8 MAs further increased with increasing chain length. These findings are of utmost importance in further understanding and quantifying the contribution of organic matter to SSA, which is crucial for assessing the atmosphere feedback of the marine carbon cycle. MAIN FINDING OF THE WORK: Surface tension of seawater is the key factor affecting the enrichment of short-chain organic acids in SSA.
Collapse
Affiliation(s)
- Yaru Song
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lingrui Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Dall'Osto M, Sotomayor-Garcia A, Cabrera-Brufau M, Berdalet E, Vaqué D, Zeppenfeld S, van Pinxteren M, Herrmann H, Wex H, Rinaldi M, Paglione M, Beddows D, Harrison R, Avila C, Martin-Martin RP, Park J, Barbosa A. Leaching material from Antarctic seaweeds and penguin guano affects cloud-relevant aerosol production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154772. [PMID: 35364145 DOI: 10.1016/j.scitotenv.2022.154772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Within the Southern Ocean, the greatest warming is occurring on the Antarctic Peninsula (AP) where clear cryospheric and biological consequences are being observed. Antarctic coastal systems harbour a high diversity of marine and terrestrial ecosystems heavily influenced by Antarctic seaweeds (benthonic macroalgae) and bird colonies (mainly penguins). Primary sea spray aerosols (SSA) formed by the outburst of bubbles via the sea-surface microlayer depend on the organic composition of the sea water surface. In order to gain insight into the influence of ocean biology and biogeochemistry on atmospheric aerosol, we performed in situ laboratory aerosol bubble chamber experiments to study the effect of different leachates of biogenic material - obtained from common Antarctic seaweeds as well as penguin guano - on primary SSA. The addition of different leachate materials on a seawater sample showed a dichotomous effect depending on the leachate material added - either suppressing (up to 52%) or enhancing (22-88%) aerosol particle production. We found high ice nucleating particle number concentrations resulting from addition of guano leachate material. Given the evolution of upper marine polar coastal ecosystems in the AP, further studies on ocean-atmosphere coupling are needed in order to represent the currently poorly understood climate feedback processes.
Collapse
Affiliation(s)
- Manuel Dall'Osto
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Catalonia, Spain.
| | - Ana Sotomayor-Garcia
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Catalonia, Spain
| | - Miguel Cabrera-Brufau
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Catalonia, Spain
| | - Elisa Berdalet
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Catalonia, Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (CSIC), Pg. Marítim de la Barceloneta, 37-49, E-08003 Barcelona, Catalonia, Spain
| | - Sebastian Zeppenfeld
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), D-04318 Leipzig, Germany
| | - Manuela van Pinxteren
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), D-04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), D-04318 Leipzig, Germany
| | - Heike Wex
- Experimental Aerosol and Cloud Microphysics Department, Leibniz-Institute for Tropospheric Research (TROPOS), D-04318 Leipzig, Germany
| | - Matteo Rinaldi
- National Research Council, Institute of Atmospheric Sciences and Climate, Bologna, Italy
| | - Marco Paglione
- National Research Council, Institute of Atmospheric Sciences and Climate, Bologna, Italy
| | - David Beddows
- National Centre for Atmospheric Science Division of Environmental Health & Risk Management School of Geography, Earth & Environmental Sciences University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roy Harrison
- National Centre for Atmospheric Science Division of Environmental Health & Risk Management School of Geography, Earth & Environmental Sciences University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona & Biodiversity Research Institute (IRBio), Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Rafael P Martin-Martin
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona & Biodiversity Research Institute (IRBio), Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Jiyeon Park
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Andrés Barbosa
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| |
Collapse
|
6
|
Liu L, Du L, Xu L, Li J, Tsona NT. Molecular size of surfactants affects their degree of enrichment in the sea spray aerosol formation. ENVIRONMENTAL RESEARCH 2022; 206:112555. [PMID: 34922983 DOI: 10.1016/j.envres.2021.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Sea spray aerosol (SSA), the largest source of natural primary aerosol, plays an important role in atmospheric chemical processes and the earth radiation balance. Its formation process is controlled by many factors. In this study, ethylene glycol (EG) and polyethylene glycol (PEG) with three different molecular weights (200, 400, 600) were used to investigate the influence of molecular size on the properties of submicron SSA produced by plunging jet from an adjustable home-built SSA generator. Different parameters were tested to obtain the optimum experimental conditions. The addition of EG and PEG inhibited the production of SSA and increased the geometric mean diameter (GMD) between 10 and 35 nm. However, PEG with a molecular weight of 600 could promote the production of SSA at higher concentrations, which means that the molecular weight and concentration of the polymer would affect the production efficiency of SSA. Combining with the measurement of surface tension, we found no clear relationship between surface tension and the yield of SSA, due to the properties of the substances themselves. Transmission electron microscopy images show that the addition of EG and PEG could significantly change the structure of salt nuclei in SSA. PEG was significantly enriched in SSA (with enrichment factors within the range 92.9-133.4), and the enrichment was independent of the sampling time, while increasing with the increase of molecular weight. Our results highlight the influence of polymer molecular weight on the properties of SSA, and their importance to improve the accuracy of aerosol emission model parameters.
Collapse
Affiliation(s)
- Lingrui Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Li Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| |
Collapse
|
7
|
Sellegri K, Nicosia A, Freney E, Uitz J, Thyssen M, Grégori G, Engel A, Zäncker B, Haëntjens N, Mas S, Picard D, Saint-Macary A, Peltola M, Rose C, Trueblood J, Lefevre D, D'Anna B, Desboeufs K, Meskhidze N, Guieu C, Law CS. Surface ocean microbiota determine cloud precursors. Sci Rep 2021; 11:281. [PMID: 33431943 PMCID: PMC7801489 DOI: 10.1038/s41598-020-78097-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/05/2020] [Indexed: 12/02/2022] Open
Abstract
One pathway by which the oceans influence climate is via the emission of sea spray that may subsequently influence cloud properties. Sea spray emissions are known to be dependent on atmospheric and oceanic physicochemical parameters, but the potential role of ocean biology on sea spray fluxes remains poorly characterized. Here we show a consistent significant relationship between seawater nanophytoplankton cell abundances and sea-spray derived Cloud Condensation Nuclei (CCN) number fluxes, generated using water from three different oceanic regions. This sensitivity of CCN number fluxes to ocean biology is currently unaccounted for in climate models yet our measurements indicate that it influences fluxes by more than one order of magnitude over the range of phytoplankton investigated.
Collapse
Affiliation(s)
- Karine Sellegri
- Laboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, CNRS, 63000, Clermont-Ferrand, France.
| | - Alessia Nicosia
- Laboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, CNRS, 63000, Clermont-Ferrand, France
| | - Evelyn Freney
- Laboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, CNRS, 63000, Clermont-Ferrand, France
| | - Julia Uitz
- Laboratoire d'Océanographie de Villefranche (LOV), Sorbonne Université, CNRS, 06230, Villefranche-sur-Mer, France
| | - Melilotus Thyssen
- Mediterranean Institute of Oceanography UM110, Aix-Marseille University, Toulon University, CNRS, IRD, 13288, Marseille, France
| | - Gérald Grégori
- Mediterranean Institute of Oceanography UM110, Aix-Marseille University, Toulon University, CNRS, IRD, 13288, Marseille, France
| | - Anja Engel
- GEOMAR, Helmholtz Centre for Ocean Research, 24105, Kiel, Germany
| | - Birthe Zäncker
- GEOMAR, Helmholtz Centre for Ocean Research, 24105, Kiel, Germany
| | - Nils Haëntjens
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA
| | - Sébastien Mas
- MEDIMEER, UMS3282 OSU OREME, Université de Montpellier, CNRS, IRD, Sète, France
| | - David Picard
- Laboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, CNRS, 63000, Clermont-Ferrand, France
| | - Alexia Saint-Macary
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
- Department of Marine Sciences, University of Otago, Dunedin, New Zealand
| | - Maija Peltola
- Laboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, CNRS, 63000, Clermont-Ferrand, France
| | - Clémence Rose
- Laboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, CNRS, 63000, Clermont-Ferrand, France
| | - Jonathan Trueblood
- Laboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, CNRS, 63000, Clermont-Ferrand, France
| | - Dominique Lefevre
- Mediterranean Institute of Oceanography UM110, Aix-Marseille University, Toulon University, CNRS, IRD, 13288, Marseille, France
| | - Barbara D'Anna
- Laboratoire Chimie Environnement (LCE), UMR 7673 CNRS, Université Aix-Marseille, 13331, Marseille, France
| | - Karine Desboeufs
- LISA, UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université de Paris, Université Paris-Est-Créteil, Créteil, France
| | | | - Cécile Guieu
- Laboratoire d'Océanographie de Villefranche (LOV), Sorbonne Université, CNRS, 06230, Villefranche-sur-Mer, France
| | - Cliff S Law
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
- Department of Marine Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Lv C, Tsona NT, Du L. Sea spray aerosol formation: Results on the role of different parameters and organic concentrations from bubble bursting experiments. CHEMOSPHERE 2020; 252:126456. [PMID: 32182508 DOI: 10.1016/j.chemosphere.2020.126456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 05/13/2023]
Abstract
Submicron sea spray aerosol (SSA) particles play an essential role in atmospheric chemical processes and the Earth's radiative balance. In this study, different combinations of NaCl, MgSO4, malonic acid (MA), d-fructose and sodium malonate were used to explore the effect of MA on submicron SSA generation. SSA particles were produced at room temperature by bubble bursting from an adjustable home-built SSA generator with sintered glass filters. We found that MA could promote the generation of SSA particles and make the geometric mean diameter (GMD) to decrease for MA concentrations ranging between 8 and 32 mM and then, to increase for MA concentrations in the range of 64-160 mM. d-fructose could improve the generation of SSA with increasing GMD. Interestingly, sodium malonate could significantly enhance the production of SSA, with the change of morphology. Besides, different parameters including flow rate, underwater depth, pore size and size span of sintered glass filter and salinity of water were tested to obtain the characterization of our self-made adjustable SSA generator. Three modes could be found among different SSA generation methods, and they exhibited an obvious accumulation mode around 100 nm. The SSA generation under different conditions was compared with oceanic measurements from the literature, which showed that the sintered glass filter has advantages in generating submicron SSA from film drops.
Collapse
Affiliation(s)
- Chen Lv
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Narcisse T Tsona
- School of Life Science, Shandong University, Binhai Road 72, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao 266237, China.
| |
Collapse
|
9
|
Christiansen S, Salter ME, Gorokhova E, Nguyen QT, Bilde M. Sea Spray Aerosol Formation: Laboratory Results on the Role of Air Entrainment, Water Temperature, and Phytoplankton Biomass. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13107-13116. [PMID: 31633921 DOI: 10.1021/acs.est.9b04078] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sea spray aerosol (SSA) emission is a complex process affected by various controlling factors. This work seeks to deconvolute some of this complexity in a controlled laboratory setting using a plunging jet by varying three key parameters, one at a time: (1) air entrainment rate, (2) seawater temperature, and (3) biomass of phytoplankton. The production of SSA is found to vary linearly with air entrainment rate. By normalizing the production flux to air entrainment rate, we observe nonlinear variation of the production efficiency of SSA with seawater temperature with a minimum around 6-10 °C. For comparison, SSA was also generated by detraining air into artificial seawater using a diffuser demonstrating that the production efficiency of SSA generated using a diffuser decreases almost linearly with increasing seawater temperature, and the production efficiency is significantly higher than that for SSA generated using a plunging jet. Finally, by varying the amount of phytoplankton biomass we demonstrate that SSA particle production varies nonlinearly with the amount of biomass in seawater.
Collapse
Affiliation(s)
| | - Matthew E Salter
- Department of Environmental Science and Analytical Chemistry , Stockholm University , 106 91 Stockholm , Sweden
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry , Stockholm University , 106 91 Stockholm , Sweden
| | - Quynh T Nguyen
- Department of Chemistry , Aarhus University , 8000 Aarhus , Denmark
| | - Merete Bilde
- Department of Chemistry , Aarhus University , 8000 Aarhus , Denmark
| |
Collapse
|
10
|
Xiao Z, Zheng R, Liu Y, He H, Yuan X, Ji Y, Li D, Yin H, Zhang Y, Li XM, He T. Slippery for scaling resistance in membrane distillation: A novel porous micropillared superhydrophobic surface. WATER RESEARCH 2019; 155:152-161. [PMID: 30844676 DOI: 10.1016/j.watres.2019.01.036] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 05/26/2023]
Abstract
Scaling in membrane distillation (MD) is a key issue in desalination of concentrated saline water, where the interface property between the membrane and the feed become critical. In this paper, a slippery mechanism was explored as an innovative concept to understand the scaling behavior in membrane distillation for a soluble salt, NaCl. The investigation was based on a novel design of a superhydrophobic polyvinylidene fluoride (PVDF) membrane with micro-pillar arrays (MP-PVDF) using a micromolding phase separation (μPS) method. The membrane showed a contact angle of 166.0 ± 2.3° and the sliding angle of 15.8 ± 3.3°. After CF4 plasma treatment, the resultant membrane (CF4-MP-PVDF) showed a reduced sliding angle of 3.0°. In direct contact membrane distillation (DCMD), the CF4-MP-PVDF membrane illustrated excellent anti-scaling in concentrating saturated NaCl feed. Characterization of the used membranes showed that aggregation of NaCl crystals occurred on the control PVDF and MP-PVDF membranes, but not on the CF4-MP-PVDF membrane. To understand this phenomenon, a "slippery" theory was introduced and correlated the sliding angle to the slippery surface of CF4-MP-PVDF and its anti-scaling property. This work proposed a well-defined physical and theoretical platform for investigating scaling problems in membrane distillation and beyond.
Collapse
Affiliation(s)
- Zechun Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjie Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hailong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaofei Yuan
- School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Yunhui Ji
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Department of Materials Science & Engineering, Nanjing University, Jiangsu, 210093, China
| | - Dongdong Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Yuebiao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xue-Mei Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Tao He
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| |
Collapse
|
11
|
Johansson JH, Salter ME, Acosta Navarro JC, Leck C, Nilsson ED, Cousins IT. Global transport of perfluoroalkyl acids via sea spray aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:635-649. [PMID: 30888351 DOI: 10.1039/c8em00525g] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent organic pollutants found throughout the world's oceans. Previous research suggests that long-range atmospheric transport of these substances may be substantial. However, it remains unclear what the main sources of PFAAs to the atmosphere are. We have used a laboratory sea spray chamber to study water-to-air transfer of 11 PFAAs via sea spray aerosol (SSA). We observed significant enrichment of all PFAAs relative to sodium in the SSA generated. The highest enrichment was observed in aerosols with aerodynamic diameter < 1.6 μm, which had aerosol PFAA concentrations up to ∼62 000 times higher than the PFAA water concentrations in the chamber. In surface microlayer samples collected from the sea spray chamber, the enrichment of the substances investigated was orders of magnitude smaller than the enrichment observed in the aerosols. In experiments with mixtures of structural isomers, a lower contribution of branched PFAA isomers was observed in the surface microlayer compared to the bulk water. However, no clear trend was observed in the comparison of structural isomers in SSA and bulk water. Using the measured enrichment factors of perfluorooctanoic acid and perfluorooctane sulfonic acid versus sodium we have estimated global annual emissions of these substances to the atmosphere via SSA as well as their global annual deposition to land areas. Our experiments suggest that SSA may currently be an important source of these substances to the atmosphere and, over certain areas, to terrestrial environments.
Collapse
Affiliation(s)
- J H Johansson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 11418 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Decho AW, Gutierrez T. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Front Microbiol 2017; 8:922. [PMID: 28603518 PMCID: PMC5445292 DOI: 10.3389/fmicb.2017.00922] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
Microbial cells (i.e., bacteria, archaea, microeukaryotes) in oceans secrete a diverse array of large molecules, collectively called extracellular polymeric substances (EPSs) or simply exopolymers. These secretions facilitate attachment to surfaces that lead to the formation of structured 'biofilm' communities. In open-water environments, they also lead to formation of organic colloids, and larger aggregations of cells, called 'marine snow.' Secretion of EPS is now recognized as a fundamental microbial adaptation, occurring under many environmental conditions, and one that influences many ocean processes. This relatively recent realization has revolutionized our understanding of microbial impacts on ocean systems. EPS occur in a range of molecular sizes, conformations and physical/chemical properties, and polysaccharides, proteins, lipids, and even nucleic acids are actively secreted components. Interestingly, however, the physical ultrastructure of how individual EPS interact with each other is poorly understood. Together, the EPS matrix molecules form a three-dimensional architecture from which cells may localize extracellular activities and conduct cooperative/antagonistic interactions that cannot be accomplished efficiently by free-living cells. EPS alter optical signatures of sediments and seawater, and are involved in biogeomineral precipitation and the construction of microbial macrostructures, and horizontal-transfers of genetic information. In the water-column, they contribute to the formation of marine snow, transparent exopolymer particles (TEPs), sea-surface microlayer biofilm, and marine oil snow. Excessive production of EPS occurs during later-stages of phytoplankton blooms as an excess metabolic by product and releases a carbon pool that transitions among dissolved-, colloidal-, and gel-states. Some EPS are highly labile carbon forms, while other forms appear quite refractory to degradation. Emerging studies suggest that EPS contribute to efficient trophic-transfer of environmental contaminants, and may provide a protective refugia for pathogenic cells within marine systems; one that enhances their survival/persistence. Finally, these secretions are prominent in 'extreme' environments ranging from sea-ice communities to hypersaline systems to the high-temperatures/pressures of hydrothermal-vent systems. This overview summarizes some of the roles of exopolymer in oceans.
Collapse
Affiliation(s)
- Alan W. Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, ColumbiaSC, United States
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, United Kingdom
| |
Collapse
|
13
|
Quinn PK, Collins DB, Grassian VH, Prather KA, Bates TS. Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol. Chem Rev 2015; 115:4383-99. [DOI: 10.1021/cr500713g] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Patricia K. Quinn
- Pacific
Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington 98115, United States
| | - Douglas B. Collins
- Center
for Aerosol Impacts on Climate and the Environment, University of California at San Diego, La Jolla, California 92024, United States
| | - Vicki H. Grassian
- Center
for Aerosol Impacts on Climate and the Environment, University of California at San Diego, La Jolla, California 92024, United States
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kimberly A. Prather
- Center
for Aerosol Impacts on Climate and the Environment, University of California at San Diego, La Jolla, California 92024, United States
| | - Timothy S. Bates
- Joint
Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
14
|
Elsayed M, Huang J, Edirisinghe M. Bioinspired preparation of alginate nanoparticles using microbubble bursting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 46:132-9. [PMID: 25491969 DOI: 10.1016/j.msec.2014.09.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/18/2014] [Accepted: 09/26/2014] [Indexed: 11/15/2022]
Abstract
Nanoparticles are considered to be one of the most advanced tools for drug delivery applications. In this research, alginate (a model hydrophilic polymer) nanoparticles 80 to 200 nm in diameter were obtained using microbubble bursting. The natural process of bubble bursting occurs through a number of stages, which consequently produce nano- and microsized droplets via two main production mechanisms, bubble shell disintegration and a jetting process. In this study, nano-sized droplets/particles were obtained by promoting the disintegrating mechanism and suppressing (limiting) the formation of larger microparticles resulting from the jetting mechanism. A T-junction microfluidic device was used to prepare alginate microbubbles with different sizes in a well-controlled manner. The size of the bubbles was varied by controlling two processing parameters, the solution flow rate and the bubbling pressure. Crucially, the bubble size was found to be the determining factor for inducing (or limiting) the bubble shell disintegration mechanism and the size needed to promote this process was influenced by the properties of the solution used for preparing the bubbles, particularly the viscosity. The size of alginate nanoparticles produced via the disintegration mechanism was found to be directly proportional to the viscosity of the alginate solution.
Collapse
Affiliation(s)
- Mohamed Elsayed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Jie Huang
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
15
|
Ocean–Atmosphere Interactions of Particles. OCEAN-ATMOSPHERE INTERACTIONS OF GASES AND PARTICLES 2014. [DOI: 10.1007/978-3-642-25643-1_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Upadhyay N, Sun Q, Allen JO, Westerhoff P, Herckes P. Characterization of aerosol emissions from wastewater aeration basins. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2013; 63:20-26. [PMID: 23447861 DOI: 10.1080/10962247.2012.726693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
UNLABELLED The emission of particulate matter (PM10 and PM2.5) and ammonia (NH3) by aeration processes at wastewater treatment plants (WWTPs) with and without odor control units was examined. Local concentrations of PM2.5, PM10, and NH3 at the aeration basins were within urban ranges. Emission fluxes of NH3 and PM2.5 for a medium-sized WWTP were determined to be 136 g day(-1) and 43 g day(-1), respectively, which are not substantial emission fluxes for urban environments. Odor control treatment using a granulated activated carbon bed reduced aerosol and NH3 emissions substantially. Detection of sterols, in particular the fecal sterol campesterol, in the PM clearly demonstrates aerosolization of wastewater components in the aeration process. The presence of campesterol in PM2.5 at a remote fenceline location in a WWTP facility illustrates that wastewater components are aerosolized in the fine PM fraction and transported beyond the facilities. IMPLICATIONS Wastewater treatment plants are potential emission sources of particulate matter and gases. This study characterized particulate matter emissions from aeration basins and quantified emissions fluxes of particulate matter and NH3. While fine and coarse particles as well as NH3 are being emitted, the overall emissions are small compared to other urban sources. However, fecal steroid presence in particles at the fence of a treatment plant demonstrates that wastewater material is getting aerosolized and transported beyond the facilities.
Collapse
Affiliation(s)
- Nabin Upadhyay
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | | | | | |
Collapse
|
17
|
King S, Butcher AC, Rosenoern T, Coz E, Lieke K, de Leeuw G, Nilsson ED, Bilde M. Investigating primary marine aerosol properties: CCN activity of sea salt and mixed inorganic-organic particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10405-12. [PMID: 22809370 PMCID: PMC3462475 DOI: 10.1021/es300574u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 07/13/2012] [Accepted: 07/18/2012] [Indexed: 05/22/2023]
Abstract
Sea spray particles ejected as a result of bubbles bursting from artificial seawater containing salt and organic matter in a stainless steel tank were sampled for size distribution, morphology, and cloud condensation nucleus (CCN) activity. Bubbles were generated either by aeration through a diffuser or by water jet impingement on the seawater surface. Three objectives were addressed in this study. First, CCN activities of NaCl and two types of artificial sea salt containing only inorganic components were measured to establish a baseline for further measurements of mixed organic-inorganic particles. Second, the effect of varying bubble residence time in the bulk seawater solution on particle size and CCN activity was investigated and was found to be insignificant for the organic compounds studied. Finally, CCN activities of particles produced from jet impingement were compared with those produced from diffuser aeration. Analyses indicate a considerable amount of organic enrichment in the jet-produced particles relative to the bulk seawater composition when sodium laurate, an organic surfactant, is present in the seawater. In this case, the production of a thick foam layer during impingement may explain the difference in activation and supports hypotheses that particle production from the two methods of generating bubbles is not equal.
Collapse
Affiliation(s)
- Stephanie
M. King
- Department
of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Andrew C. Butcher
- Department
of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Thomas Rosenoern
- Department
of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Esther Coz
- Departamento
de Medio Ambiente, CIEMAT,
E-28040 Madrid, Spain
| | - Kirsten
I. Lieke
- Department
of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Gerrit de Leeuw
- Climate
Change Unit, Finnish Meteorological Institute, FI-00560 Helsinki,
Finland
- Department
of Physics, University of Helsinki, FI-00560 Helsinki, Finland
- Department
of Air Quality and Climate, TNO Built Environment
and Geosciences, NL-3508 TA Utrecht, Netherlands
| | - E. Douglas Nilsson
- Department
of Applied Environmental Science, Stockholm
University, SE-11418 Stockholm, Sweden
| | - Merete Bilde
- Department
of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Phone: +45 35320329. E-mail:
| |
Collapse
|
18
|
Bates TS, Quinn PK, Frossard AA, Russell LM, Hakala J, Petäjä T, Kulmala M, Covert DS, Cappa CD, Li SM, Hayden KL, Nuaaman I, McLaren R, Massoli P, Canagaratna MR, Onasch TB, Sueper D, Worsnop DR, Keene WC. Measurements of ocean derived aerosol off the coast of California. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017588] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 2011; 480:51-6. [PMID: 22129724 DOI: 10.1038/nature10580] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/21/2011] [Indexed: 11/09/2022]
Abstract
More than twenty years ago, a biological regulation of climate was proposed whereby emissions of dimethyl sulphide from oceanic phytoplankton resulted in the formation of aerosol particles that acted as cloud condensation nuclei in the marine boundary layer. In this hypothesis--referred to as CLAW--the increase in cloud condensation nuclei led to an increase in cloud albedo with the resulting changes in temperature and radiation initiating a climate feedback altering dimethyl sulphide emissions from phytoplankton. Over the past two decades, observations in the marine boundary layer, laboratory studies and modelling efforts have been conducted seeking evidence for the CLAW hypothesis. The results indicate that a dimethyl sulphide biological control over cloud condensation nuclei probably does not exist and that sources of these nuclei to the marine boundary layer and the response of clouds to changes in aerosol are much more complex than was recognized twenty years ago. These results indicate that it is time to retire the CLAW hypothesis.
Collapse
|
20
|
Gaston CJ, Furutani H, Guazzotti SA, Coffee KR, Bates TS, Quinn PK, Aluwihare LI, Mitchell BG, Prather KA. Unique ocean-derived particles serve as a proxy for changes in ocean chemistry. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015289] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Hultin KAH, Nilsson ED, Krejci R, Mårtensson EM, Ehn M, Hagström Å, de Leeuw G. In situ laboratory sea spray production during the Marine Aerosol Production 2006 cruise on the northeastern Atlantic Ocean. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012522] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Wise ME, Freney EJ, Tyree CA, Allen JO, Martin ST, Russell LM, Buseck PR. Hygroscopic behavior and liquid-layer composition of aerosol particles generated from natural and artificial seawater. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010449] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|