1
|
Udry A, Ostwald AM, Day JM, Hallis LJ. Fundamental constraints and questions from the study of martian meteorites and the need for returned samples. Proc Natl Acad Sci U S A 2025; 122:e2404254121. [PMID: 39761396 PMCID: PMC11745394 DOI: 10.1073/pnas.2404254121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Physical materials from planetary bodies are crucial for understanding fundamental processes that constrain the evolution of the solar system, as samples can be analyzed at high precision and accuracy in Earth-based laboratories. Mars is the only planet outside of Earth from which we possess samples in the form of meteorites. Martian meteorites (n > 350) have enabled constraints to be placed on various aspects of the red planet's formation and evolution, notably: that Mars accreted and differentiated rapidly; that the planet has a complex volatile element evolution; and that it has always been volcanically active with a rich and diverse magmatic history. Meteorites have limitations, however, with lack of field context, restricted lithological diversity compared to the martian surface, and with no sampling of a major portion of Mars' history between 4.1 and 2.4 billion years ago. Returned samples from Mars have the potential to fill these gaps and answer many open questions driven by the study of meteorites, as well as reveal new fundamental research questions. Key questions that Mars Sample Return is likely to answer regard the basic evolution of the martian interior and surface, its potential for habitability and the possibility of past life, and calibration of age dating of the martian surface. Samples of various lithologies and different ages collected at Jezero crater by the Perseverance rover will aid in better understanding our own planet and will answer outstanding questions regarding Mars' future geological evolution and habitability.
Collapse
Affiliation(s)
- Arya Udry
- Department of Geosciences, University of Nevada Las Vegas, Las Vegas, NV89154
| | - Amanda M. Ostwald
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC20013-7012
| | - James M.D. Day
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Lydia J. Hallis
- School of Geographical and Earth Sciences, Gregory Building, University of Glasgow, GlasgowG12 8QQ, Scotland
| |
Collapse
|
2
|
Hart R, Cardace D. Mineral Indicators of Geologically Recent Past Habitability on Mars. Life (Basel) 2023; 13:2349. [PMID: 38137950 PMCID: PMC10744562 DOI: 10.3390/life13122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We provide new support for habitable microenvironments in the near-subsurface of Mars, hosted in Fe- and Mg-rich rock units, and present a list of minerals that can serve as indicators of specific water-rock reactions in recent geologic paleohabitats for follow-on study. We modeled, using a thermodynamic basis without selective phase suppression, the reactions of published Martian meteorites and Jezero Crater igneous rock compositions and reasonable planetary waters (saline, alkaline waters) using Geochemist's Workbench Ver. 12.0. Solid-phase inputs were meteorite compositions for ALH 77005, Nakhla, and Chassigny, and two rock units from the Mars 2020 Perseverance rover sites, Máaz and Séítah. Six plausible Martian groundwater types [NaClO4, Mg(ClO4)2, Ca(ClO4)2, Mg-Na2(ClO4)2, Ca-Na2(ClO4)2, Mg-Ca(ClO4)2] and a unique Mars soil-water analog solution (dilute saline solution) named "Rosy Red", related to the Phoenix Lander mission, were the aqueous-phase inputs. Geophysical conditions were tuned to near-subsurface Mars (100 °C or 373.15 K, associated with residual heat from a magmatic system, impact event, or a concentration of radionuclides, and 101.3 kPa, similar to <10 m depth). Mineral products were dominated by phyllosilicates such as serpentine-group minerals in most reaction paths, but differed in some important indicator minerals. Modeled products varied in physicochemical properties (pH, Eh, conductivity), major ion activities, and related gas fugacities, with different ecological implications. The microbial habitability of pore spaces in subsurface groundwater percolation systems was interrogated at equilibrium in a thermodynamic framework, based on Gibbs Free Energy Minimization. Models run with the Chassigny meteorite produced the overall highest H2 fugacity. Models reliant on the Rosy Red soil-water analog produced the highest sustained CH4 fugacity (maximum values observed for reactant ALH 77005). In general, Chassigny meteorite protoliths produced the best yield regarding Gibbs Free Energy, from an astrobiological perspective. Occurrences of serpentine and saponite across models are key: these minerals have been observed using CRISM spectral data, and their formation via serpentinization would be consistent with geologically recent-past H2 and CH4 production and sustained energy sources for microbial life. We list index minerals to be used as diagnostic for paleo water-rock models that could have supported geologically recent-past microbial activity, and suggest their application as criteria for future astrobiology study-site selections.
Collapse
Affiliation(s)
- Roger Hart
- Department of Physics and Engineering, Community College of Rhode Island, Lincoln, RI 02865, USA
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA;
| | - Dawn Cardace
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
3
|
Rucker HR, Ely TD, LaRowe DE, Giovannelli D, Price RE. Quantifying the Bioavailable Energy in an Ancient Hydrothermal Vent on Mars and a Modern Earth-Based Analog. ASTROBIOLOGY 2023; 23:431-445. [PMID: 36862508 DOI: 10.1089/ast.2022.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Putative alkaline hydrothermal systems on Noachian Mars were potentially habitable environments for microorganisms. However, the types of reactions that could have fueled microbial life in such systems and the amount of energy available from them have not been quantitatively constrained. In this study, we use thermodynamic modeling to calculate which catabolic reactions could have supported ancient life in a saponite-precipitating hydrothermal vent system in the Eridania basin on Mars. To further evaluate what this could mean for microbial life, we evaluated the energy potential of an analog site in Iceland, the Strytan Hydrothermal Field. Results show that, of the 84 relevant redox reactions that were considered, the highest energy-yielding reactions in the Eridania hydrothermal system were dominated by methane formation. By contrast, Gibbs energy calculations carried out for Strytan indicate that the most energetically favorable reactions are CO2 and O2 reduction coupled to H2 oxidation. In particular, our calculations indicate that an ancient hydrothermal system within the Eridania basin could have been a habitable environment for methanogens using NH4+ as an electron acceptor. Differences in Gibbs energies between the two systems were largely determined by oxygen-its presence on Earth and absence on Mars. However, Strytan can serve as a useful analog for Eridania when studying methane-producing reactions that do not involve O2.
Collapse
Affiliation(s)
- Holly R Rucker
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Tucker D Ely
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- 39Alpha Research, Tempe, Arizona, USA
| | - Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Donato Giovannelli
- Department of Biology, University of Naples "Federico II," Naples, Italy
| | - Roy E Price
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
4
|
Liu Y, Tice MM, Schmidt ME, Treiman AH, Kizovski TV, Hurowitz JA, Allwood AC, Henneke J, Pedersen DAK, VanBommel SJ, Jones MWM, Knight AL, Orenstein BJ, Clark BC, Elam WT, Heirwegh CM, Barber T, Beegle LW, Benzerara K, Bernard S, Beyssac O, Bosak T, Brown AJ, Cardarelli EL, Catling DC, Christian JR, Cloutis EA, Cohen BA, Davidoff S, Fairén AG, Farley KA, Flannery DT, Galvin A, Grotzinger JP, Gupta S, Hall J, Herd CDK, Hickman-Lewis K, Hodyss RP, Horgan BHN, Johnson JR, Jørgensen JL, Kah LC, Maki JN, Mandon L, Mangold N, McCubbin FM, McLennan SM, Moore K, Nachon M, Nemere P, Nothdurft LD, Núñez JI, O'Neil L, Quantin-Nataf CM, Sautter V, Shuster DL, Siebach KL, Simon JI, Sinclair KP, Stack KM, Steele A, Tarnas JD, Tosca NJ, Uckert K, Udry A, Wade LA, Weiss BP, Wiens RC, Williford KH, Zorzano MP. An olivine cumulate outcrop on the floor of Jezero crater, Mars. Science 2022; 377:1513-1519. [PMID: 36007094 DOI: 10.1126/science.abo2756] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigate the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit. We find that these outcrops are composed of igneous rock, moderately altered by aqueous fluid. The igneous rocks are mainly made of coarse-grained olivine, similar to some Martian meteorites. We interpret them as an olivine cumulate, formed by settling and enrichment of olivine through multi-stage cooling of a thick magma body.
Collapse
Affiliation(s)
- Y Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - M M Tice
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - M E Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - A H Treiman
- Lunar and Planetary Institute, Universities Space Research Association, Houston TX 77058, USA
| | - T V Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - J A Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - A C Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J Henneke
- Department of Space, Measurement and Instrumentation, Technical University of Denmark,, Lyngby, Denmark
| | - D A K Pedersen
- Department of Space, Measurement and Instrumentation, Technical University of Denmark,, Lyngby, Denmark
| | - S J VanBommel
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - M W M Jones
- Central Analytical Research Facility, and School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - A L Knight
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - B J Orenstein
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - B C Clark
- Space Science Institute, Boulder, CO 80301, USA
| | - W T Elam
- Applied Physics Lab and Department of Earth and Space Sciences, University of Washington, Seattle, WA 98052, USA
| | - C M Heirwegh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - T Barber
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - L W Beegle
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - K Benzerara
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - S Bernard
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - O Beyssac
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - T Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - E L Cardarelli
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D C Catling
- Department of Earth and Space Sciences, University of Washington, Seattle WA 98195, USA
| | - J R Christian
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - E A Cloutis
- Department of Geography, University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada
| | - B A Cohen
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - S Davidoff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A G Fairén
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas - Instituto Nacional de Tecnica Aeroespacial, Madrid 28850, Spain.,Dept. of Astronomy, Cornell University, Ithaca, NY 14853, USA
| | - K A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - D T Flannery
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - A Galvin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - S Gupta
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - J Hall
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C D K Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - K Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, South Kensington, London, SW7 5BD, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, via Zamboni 67, I-40126 Bologna, Italy
| | - R P Hodyss
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B H N Horgan
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J R Johnson
- Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723, USA
| | - J L Jørgensen
- Department of Space, Measurement and Instrumentation, Technical University of Denmark,, Lyngby, Denmark
| | - L C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville TN 37996, USA
| | - J N Maki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - L Mandon
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris-Université Paris Sciences et Lettres, CNRS, Sorbonne Université, Université de Paris Cité, Meudon 92190, France
| | - N Mangold
- Laboratoire Planetologie et Geosciences, Centre National de Recherches Scientifiques, Universite Nantes, Universite Angers, Unite Mixte de Recherche 6112, Nantes 44322, France
| | - F M McCubbin
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - S M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - K Moore
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - M Nachon
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - P Nemere
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - L D Nothdurft
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - J I Núñez
- Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723, USA
| | - L O'Neil
- Applied Physics Lab and Department of Earth and Space Sciences, University of Washington, Seattle, WA 98052, USA
| | - C M Quantin-Nataf
- Laboratoire de Geologie de Lyon-Terre Planetes Environnement, Univ Lyon, Universite Claude Bernard Lyon 1, Ecole Normale Superieure Lyon, Centre National de Recherches Scientifiques, 69622 Villeurbanne, France
| | - V Sautter
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, Centre National de la Recherche Scientifique (CNRS), Muséum National d'Histoire Naturelle, Sorbonne Université, Paris 75005, France
| | - D L Shuster
- Dept. Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - K L Siebach
- Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX 77005, USA
| | - J I Simon
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - K P Sinclair
- Applied Physics Lab and Department of Earth and Space Sciences, University of Washington, Seattle, WA 98052, USA
| | - K M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - J D Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - N J Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - K Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - A Udry
- Department of Geosciences University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - L A Wade
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B P Weiss
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - R C Wiens
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - K H Williford
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.,Blue Marble Space Institute of Science, 600 1st Ave. Seattle, WA 98104, USA
| | - M-P Zorzano
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas - Instituto Nacional de Tecnica Aeroespacial, Madrid 28850, Spain
| |
Collapse
|
5
|
Lagain A, Bouley S, Zanda B, Miljković K, Rajšić A, Baratoux D, Payré V, Doucet LS, Timms NE, Hewins R, Benedix GK, Malarewic V, Servis K, Bland PA. Early crustal processes revealed by the ejection site of the oldest martian meteorite. Nat Commun 2022; 13:3782. [PMID: 35821210 PMCID: PMC9276826 DOI: 10.1038/s41467-022-31444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
The formation and differentiation of the crust of Mars in the first tens of millions of years after its accretion can only be deciphered from incredibly limited records. The martian breccia NWA 7034 and its paired stones is one of them. This meteorite contains the oldest martian igneous material ever dated: ~4.5 Ga old. However, its source and geological context have so far remained unknown. Here, we show that the meteorite was ejected 5-10 Ma ago from the north-east of the Terra Cimmeria-Sirenum province, in the southern hemisphere of Mars. More specifically, the breccia belongs to the ejecta deposits of the Khujirt crater formed 1.5 Ga ago, and it was ejected as a result of the formation of the Karratha crater 5-10 Ma ago. Our findings demonstrate that the Terra Cimmeria-Sirenum province is a relic of the differentiated primordial martian crust, formed shortly after the accretion of the planet, and that it constitutes a unique record of early crustal processes. This province is an ideal landing site for future missions aiming to unravel the first tens of millions of years of the history of Mars and, by extension, of all terrestrial planets, including the Earth.
Collapse
Affiliation(s)
- A Lagain
- Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA, Australia.
| | - S Bouley
- Université Paris-Saclay, CNRS, GEOPS, 91405, Orsay, France.,IMCCE, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75005, Paris, France
| | - B Zanda
- IMCCE, Observatoire de Paris, 77 avenue Denfert-Rochereau, 75005, Paris, France.,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum national d'Histoire naturelle, Sorbonne Université et CNRS, 75005, Paris, France
| | - K Miljković
- Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA, Australia
| | - A Rajšić
- Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA, Australia
| | - D Baratoux
- Géosciences Environnement Toulouse, University of Toulouse, CNRS and IRD, Toulouse, 31400, France.,Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - V Payré
- Department of Astronomy and Planetary Science, Northern Arizona University, Flagstaff, AZ, USA
| | - L S Doucet
- Earth Dynamics Research Group, TIGeR, School of Earth and Planetary Sciences, Curtin University, Perth, WA, Australia
| | - N E Timms
- Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA, Australia.,The Institute for Geoscience Research (TIGeR), Curtin University, Perth, 6845, WA, Australia
| | - R Hewins
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum national d'Histoire naturelle, Sorbonne Université et CNRS, 75005, Paris, France.,EPS, Rutgers University, Piscataway, NJ, 08854, USA
| | - G K Benedix
- Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA, Australia.,Department of Earth and Planetary Sciences, Western Australian Museum, Perth, WA, Australia.,Planetary Sciences Institute, Tucson, AZ, USA
| | - V Malarewic
- Université Paris-Saclay, CNRS, GEOPS, 91405, Orsay, France.,Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum national d'Histoire naturelle, Sorbonne Université et CNRS, 75005, Paris, France
| | - K Servis
- Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA, Australia.,Pawsey Supercomputing Centre, CSIRO, Kensington, WA, Australia
| | - P A Bland
- Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA, Australia
| |
Collapse
|
6
|
Clark BC, Kolb VM, Steele A, House CH, Lanza NL, Gasda PJ, VanBommel SJ, Newsom HE, Martínez-Frías J. Origin of Life on Mars: Suitability and Opportunities. Life (Basel) 2021; 11:539. [PMID: 34207658 PMCID: PMC8227854 DOI: 10.3390/life11060539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.
Collapse
Affiliation(s)
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA;
| | - Christopher H. House
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16807, USA;
| | - Nina L. Lanza
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Patrick J. Gasda
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Scott J. VanBommel
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Horton E. Newsom
- Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 88033, USA;
| | | |
Collapse
|
7
|
Scheller EL, Ehlmann BL, Hu R, Adams DJ, Yung YL. Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science 2021; 372:56-62. [PMID: 33727251 DOI: 10.1126/science.abc7717] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/04/2021] [Indexed: 11/02/2022]
Abstract
Geological evidence shows that ancient Mars had large volumes of liquid water. Models of past hydrogen escape to space, calibrated with observations of the current escape rate, cannot explain the present-day deuterium-to-hydrogen isotope ratio (D/H). We simulated volcanic degassing, atmospheric escape, and crustal hydration on Mars, incorporating observational constraints from spacecraft, rovers, and meteorites. We found that ancient water volumes equivalent to a 100 to 1500 meter global layer are simultaneously compatible with the geological evidence, loss rate estimates, and D/H measurements. In our model, the volume of water participating in the hydrological cycle decreased by 40 to 95% over the Noachian period (~3.7 billion to 4.1 billion years ago), reaching present-day values by ~3.0 billion years ago. Between 30 and 99% of martian water was sequestered through crustal hydration, demonstrating that irreversible chemical weathering can increase the aridity of terrestrial planets.
Collapse
Affiliation(s)
- E L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| | - B L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Renyu Hu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D J Adams
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Y L Yung
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.,Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
8
|
Bell JF, Maki JN, Mehall GL, Ravine MA, Caplinger MA, Bailey ZJ, Brylow S, Schaffner JA, Kinch KM, Madsen MB, Winhold A, Hayes AG, Corlies P, Tate C, Barrington M, Cisneros E, Jensen E, Paris K, Crawford K, Rojas C, Mehall L, Joseph J, Proton JB, Cluff N, Deen RG, Betts B, Cloutis E, Coates AJ, Colaprete A, Edgett KS, Ehlmann BL, Fagents S, Grotzinger JP, Hardgrove C, Herkenhoff KE, Horgan B, Jaumann R, Johnson JR, Lemmon M, Paar G, Caballo-Perucha M, Gupta S, Traxler C, Preusker F, Rice MS, Robinson MS, Schmitz N, Sullivan R, Wolff MJ. The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation. SPACE SCIENCE REVIEWS 2021; 217:24. [PMID: 33612866 PMCID: PMC7883548 DOI: 10.1007/s11214-020-00755-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 05/16/2023]
Abstract
Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 μrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 μrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.
Collapse
Affiliation(s)
| | | | | | - M. A. Ravine
- Malin Space Science Systems, Inc., San Diego, CA USA
| | | | | | - S. Brylow
- Malin Space Science Systems, Inc., San Diego, CA USA
| | | | | | | | | | | | | | - C. Tate
- Cornell Univ., Ithaca, NY USA
| | | | | | - E. Jensen
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - K. Paris
- Arizona State Univ., Tempe, AZ USA
| | | | - C. Rojas
- Arizona State Univ., Tempe, AZ USA
| | | | | | | | - N. Cluff
- Arizona State Univ., Tempe, AZ USA
| | | | - B. Betts
- The Planetary Society, Pasadena, CA USA
| | | | - A. J. Coates
- Mullard Space Science Laboratory, Univ. College, London, UK
| | - A. Colaprete
- NASA/Ames Research Center, Moffett Field, CA USA
| | - K. S. Edgett
- Malin Space Science Systems, Inc., San Diego, CA USA
| | - B. L. Ehlmann
- JPL/Caltech, Pasadena, CA USA
- Caltech, Pasadena, CA USA
| | | | | | | | | | | | - R. Jaumann
- Inst. of Geological Sciences, Free University Berlin, Berlin, Germany
| | | | - M. Lemmon
- Space Science Inst., Boulder, CO USA
| | - G. Paar
- Joanneum Research, Graz, Austria
| | | | | | | | - F. Preusker
- DLR/German Aerospace Center, Berlin, Germany
| | - M. S. Rice
- Western Washington Univ., Bellingham, WA USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Martian meteorites provide the only direct constraints on the timing of Martian accretion, core formation, magmatic differentiation, and ongoing volcanism. While many radiogenic isotope chronometers have been applied to a wide variety of Martian samples, few, if any, techniques are immune to secondary effects from alteration and terrestrial weathering. This short review focuses on the most robust geochronometers that have been used to date Martian meteorites and geochemically model the differentiation of the planet, including 147Sm/143Nd, 146Sm/142Nd, 176Lu/176Hf, 182Hf/182W, and U-Th-Pb systematics.
Collapse
|
10
|
Hughes SS, Haberle CW, Kobs Nawotniak SE, Sehlke A, Garry WB, Elphic RC, Payler SJ, Stevens AH, Cockell CS, Brady AL, Heldmann JL, Lim DS. Basaltic Terrains in Idaho and Hawai'i as Planetary Analogs for Mars Geology and Astrobiology. ASTROBIOLOGY 2019; 19:260-283. [PMID: 30339033 PMCID: PMC6442300 DOI: 10.1089/ast.2018.1847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/30/2018] [Indexed: 05/26/2023]
Abstract
Field research target regions within two basaltic geologic provinces are described as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawai'i, the United States, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provides rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho, and (3) Mauna Ulu low shield, (4) Kīlauea Iki lava lake, and (5) Kīlauea caldera in the Kīlauea Volcano summit region and the East Rift Zone of Hawai'i. Our evaluation of compositional and textural attributes, as well as the effects of syn- and posteruptive rock alteration, shows that basaltic terrains in Idaho and Hawai'i provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.
Collapse
Affiliation(s)
- Scott S. Hughes
- Department of Geosciences, Idaho State University, Pocatello, Idaho
| | - Christopher W. Haberle
- Mars Space Flight Facility, School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | | | | | | | | | - Samuel J. Payler
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Allyson L. Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer L. Heldmann
- NASA Ames Research Center, Moffett Field, California
- NASA Headquarters, Washington, District of Columbia
| | - Darlene S.S. Lim
- NASA Ames Research Center, Moffett Field, California
- BAER Institute, Moffett Field, California
| |
Collapse
|
11
|
Day JMD, Tait KT, Udry A, Moynier F, Liu Y, Neal CR. Martian magmatism from plume metasomatized mantle. Nat Commun 2018; 9:4799. [PMID: 30442916 PMCID: PMC6237973 DOI: 10.1038/s41467-018-07191-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 10/11/2018] [Indexed: 11/09/2022] Open
Abstract
Direct analysis of the composition of Mars is possible through delivery of meteorites to Earth. Martian meteorites include ∼165 to 2400 Ma shergottites, originating from depleted to enriched mantle sources, and ∼1340 Ma nakhlites and chassignites, formed by low degree partial melting of a depleted mantle source. To date, no unified model has been proposed to explain the petrogenesis of these distinct rock types, despite their importance for understanding the formation and evolution of Mars. Here we report a coherent geochemical dataset for shergottites, nakhlites and chassignites revealing fundamental differences in sources. Shergottites have lower Nb/Y at a given Zr/Y than nakhlites or chassignites, a relationship nearly identical to terrestrial Hawaiian main shield and rejuvenated volcanism. Nakhlite and chassignite compositions are consistent with melting of hydrated and metasomatized depleted mantle lithosphere, whereas shergottite melts originate from deep mantle sources. Generation of martian magmas can be explained by temporally distinct melting episodes within and below dynamically supported and variably metasomatized lithosphere, by long-lived, static mantle plumes.
Collapse
Affiliation(s)
- James M D Day
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Kimberly T Tait
- Department of Natural History, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | - Arya Udry
- Department of Geoscience, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Frédéric Moynier
- Institut de Physique du Globe de Paris, Université Sorbonne Paris Cité, Université Paris Diderot, 1 Rue Jussieu, 75328, Paris cedex 05, France
| | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Clive R Neal
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
12
|
The divergent fates of primitive hydrospheric water on Earth and Mars. Nature 2017; 552:391-394. [PMID: 29293210 DOI: 10.1038/nature25031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/03/2017] [Indexed: 11/08/2022]
Abstract
Despite active transport into Earth's mantle, water has been present on our planet's surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet's magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet's surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth's mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.
Collapse
|
13
|
Pressure induced elastic softening in framework aluminosilicate- albite (NaAlSi 3O 8). Sci Rep 2016; 6:34815. [PMID: 27734903 PMCID: PMC5062091 DOI: 10.1038/srep34815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/20/2016] [Indexed: 11/25/2022] Open
Abstract
Albite (NaAlSi3O8) is an aluminosilicate mineral. Its crystal structure consists of 3-D framework of Al and Si tetrahedral units. We have used Density Functional Theory to investigate the high-pressure behavior of the crystal structure and how it affects the elasticity of albite. Our results indicate elastic softening between 6–8 GPa. This is observed in all the individual elastic stiffness components. Our analysis indicates that the softening is due to the response of the three-dimensional tetrahedral framework, in particular by the pressure dependent changes in the tetrahedral tilts. At pressure <6 GPa, the PAW-GGA can be described by a Birch-Murnaghan equation of state with = 687.4 Å3, = 51.7 GPa, and = 4.7. The shear modulus and its pressure derivative are = 33.7 GPa, and = 2.9. At 1 bar, the azimuthal compressional and shear wave anisotropy = 42.8%, and = 50.1%. We also investigate the densification of albite to a mixture of jadeite and quartz. The transformation is likely to cause a discontinuity in density, compressional, and shear wave velocity across the crust and mantle. This could partially account for the Mohorovicic discontinuity in thickened continental crustal regions.
Collapse
|
14
|
Adcock CT, Hausrath EM. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters. ASTROBIOLOGY 2015; 15:1060-1075. [PMID: 26684505 DOI: 10.1089/ast.2015.1291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Abundant evidence indicates that significant surface and near-surface liquid water has existed on Mars in the past. Evaluating the potential for habitable environments on Mars requires an understanding of the chemical and physical conditions that prevailed in such aqueous environments. Among the geological features that may hold evidence of past environmental conditions on Mars are weathering profiles, such as those in the phosphorus-rich Wishstone-class rocks in Gusev Crater. The weathering profiles in these rocks indicate that a Ca-phosphate mineral has been lost during past aqueous interactions. The high phosphorus content of these rocks and potential release of phosphorus during aqueous interactions also make them of astrobiological interest, as phosphorus is among the elements required for all known life. In this work, we used Mars mission data, laboratory-derived kinetic and thermodynamic data, and data from terrestrial analogues, including phosphorus-rich basalts from Idaho, to model a conceptualized Wishstone-class rock using the reactive transport code CrunchFlow. Modeling results most consistent with the weathering profiles in Wishstone-class rocks suggest a combination of chemical and physical erosion and past aqueous interactions with near-neutral waters. The modeling results also indicate that multiple Ca-phosphate minerals are likely in Wishstone-class rocks, consistent with observations of martian meteorites. These findings suggest that Gusev Crater experienced a near-neutral phosphate-bearing aqueous environment that may have been conducive to life on Mars in the past. KEY WORDS Mars-Gusev Crater-Wishstone-Reactive transport modeling-CrunchFlow-Aqueous interactions-Neutral pH-Habitability.
Collapse
|
15
|
Núñez JI, Farmer JD, Sellar RG, Swayze GA, Blaney DL. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars. ASTROBIOLOGY 2014; 14:132-69. [PMID: 24552233 PMCID: PMC3929460 DOI: 10.1089/ast.2013.1079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/15/2014] [Indexed: 05/30/2023]
Abstract
Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars.
Collapse
Affiliation(s)
- Jorge I. Núñez
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Jack D. Farmer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - R. Glenn Sellar
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Diana L. Blaney
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
16
|
McLennan SM, Anderson RB, Bell JF, Bridges JC, Calef F, Campbell JL, Clark BC, Clegg S, Conrad P, Cousin A, Des Marais DJ, Dromart G, Dyar MD, Edgar LA, Ehlmann BL, Fabre C, Forni O, Gasnault O, Gellert R, Gordon S, Grant JA, Grotzinger JP, Gupta S, Herkenhoff KE, Hurowitz JA, King PL, Le Mouélic S, Leshin LA, Léveillé R, Lewis KW, Mangold N, Maurice S, Ming DW, Morris RV, Nachon M, Newsom HE, Ollila AM, Perrett GM, Rice MS, Schmidt ME, Schwenzer SP, Stack K, Stolper EM, Sumner DY, Treiman AH, VanBommel S, Vaniman DT, Vasavada A, Wiens RC, Yingst RA. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 2013; 343:1244734. [PMID: 24324274 DOI: 10.1126/science.1244734] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.
Collapse
Affiliation(s)
- S M McLennan
- Department of Geosciences, State University of New York, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stolper EM, Baker MB, Newcombe ME, Schmidt ME, Treiman AH, Cousin A, Dyar MD, Fisk MR, Gellert R, King PL, Leshin L, Maurice S, McLennan SM, Minitti ME, Perrett G, Rowland S, Sautter V, Wiens RC, Kemppinen O, Bridges N, Johnson JR, Cremers D, Bell JF, Edgar L, Farmer J, Godber A, Wadhwa M, Wellington D, McEwan I, Newman C, Richardson M, Charpentier A, Peret L, Blank J, Weigle G, Li S, Milliken R, Robertson K, Sun V, Edwards C, Ehlmann B, Farley K, Griffes J, Grotzinger J, Miller H, Pilorget C, Rice M, Siebach K, Stack K, Brunet C, Hipkin V, Léveillé R, Marchand G, Sánchez PS, Favot L, Cody G, Steele A, Flückiger L, Lees D, Nefian A, Martin M, Gailhanou M, Westall F, Israël G, Agard C, Baroukh J, Donny C, Gaboriaud A, Guillemot P, Lafaille V, Lorigny E, Paillet A, Pérez R, Saccoccio M, Yana C, Armiens‐Aparicio C, Rodríguez JC, Blázquez IC, Gómez FG, Gómez-Elvira J, Hettrich S, Malvitte AL, Jiménez MM, Martínez-Frías J, Martín-Soler J, Martín-Torres FJ, Jurado AM, Mora-Sotomayor L, Caro GM, López SN, Peinado-González V, Pla-García J, Manfredi JAR, Romeral-Planelló JJ, Fuentes SAS, Martinez ES, Redondo JT, Urqui-O'Callaghan R, Mier MPZ, Chipera S, et alStolper EM, Baker MB, Newcombe ME, Schmidt ME, Treiman AH, Cousin A, Dyar MD, Fisk MR, Gellert R, King PL, Leshin L, Maurice S, McLennan SM, Minitti ME, Perrett G, Rowland S, Sautter V, Wiens RC, Kemppinen O, Bridges N, Johnson JR, Cremers D, Bell JF, Edgar L, Farmer J, Godber A, Wadhwa M, Wellington D, McEwan I, Newman C, Richardson M, Charpentier A, Peret L, Blank J, Weigle G, Li S, Milliken R, Robertson K, Sun V, Edwards C, Ehlmann B, Farley K, Griffes J, Grotzinger J, Miller H, Pilorget C, Rice M, Siebach K, Stack K, Brunet C, Hipkin V, Léveillé R, Marchand G, Sánchez PS, Favot L, Cody G, Steele A, Flückiger L, Lees D, Nefian A, Martin M, Gailhanou M, Westall F, Israël G, Agard C, Baroukh J, Donny C, Gaboriaud A, Guillemot P, Lafaille V, Lorigny E, Paillet A, Pérez R, Saccoccio M, Yana C, Armiens‐Aparicio C, Rodríguez JC, Blázquez IC, Gómez FG, Gómez-Elvira J, Hettrich S, Malvitte AL, Jiménez MM, Martínez-Frías J, Martín-Soler J, Martín-Torres FJ, Jurado AM, Mora-Sotomayor L, Caro GM, López SN, Peinado-González V, Pla-García J, Manfredi JAR, Romeral-Planelló JJ, Fuentes SAS, Martinez ES, Redondo JT, Urqui-O'Callaghan R, Mier MPZ, Chipera S, Lacour JL, Mauchien P, Sirven JB, Manning H, Fairén A, Hayes A, Joseph J, Squyres S, Sullivan R, Thomas P, Dupont A, Lundberg A, Melikechi N, Mezzacappa A, DeMarines J, Grinspoon D, Reitz G, Prats B, Atlaskin E, Genzer M, Harri AM, Haukka H, Kahanpää H, Kauhanen J, Kemppinen O, Paton M, Polkko J, Schmidt W, Siili T, Fabre C, Wray J, Wilhelm MB, Poitrasson F, Patel K, Gorevan S, Indyk S, Paulsen G, Gupta S, Bish D, Schieber J, Gondet B, Langevin Y, Geffroy C, Baratoux D, Berger G, Cros A, d’Uston C, Forni O, Gasnault O, Lasue J, Lee QM, Meslin PY, Pallier E, Parot Y, Pinet P, Schröder S, Toplis M, Lewin É, Brunner W, Heydari E, Achilles C, Oehler D, Sutter B, Cabane M, Coscia D, Israël G, Szopa C, Teinturier S, Dromart G, Robert F, Le Mouélic S, Mangold N, Nachon M, Buch A, Stalport F, Coll P, François P, Raulin F, Cameron J, Clegg S, DeLapp D, Dingler R, Jackson RS, Johnstone S, Lanza N, Little C, Nelson T, Williams RB, Kirkland L, Baker B, Cantor B, Caplinger M, Davis S, Duston B, Edgett K, Fay D, Hardgrove C, Harker D, Herrera P, Jensen E, Kennedy MR, Krezoski G, Krysak D, Lipkaman L, Malin M, McCartney E, McNair S, Nixon B, Posiolova L, Ravine M, Salamon A, Saper L, Stoiber K, Supulver K, Van Beek J, Van Beek T, Zimdar R, French KL, Iagnemma K, Miller K, Summons R, Goesmann F, Goetz W, Hviid S, Johnson M, Lefavor M, Lyness E, Breves E, Fassett C, Blake DF, Bristow T, DesMarais D, Edwards L, Haberle R, Hoehler T, Hollingsworth J, Kahre M, Keely L, McKay C, Wilhelm MB, Bleacher L, Brinckerhoff W, Choi D, Conrad P, Dworkin JP, Eigenbrode J, Floyd M, Freissinet C, Garvin J, Glavin D, Harpold D, Mahaffy P, Martin DK, McAdam A, Pavlov A, Raaen E, Smith MD, Stern J, Tan F, Trainer M, Meyer M, Posner A, Voytek M, Anderson RC, Aubrey A, Beegle LW, Behar A, Blaney D, Brinza D, Calef F, Christensen L, Crisp J, DeFlores L, Ehlmann B, Feldman J, Feldman S, Flesch G, Hurowitz J, Jun I, Keymeulen D, Maki J, Mischna M, Morookian JM, Parker T, Pavri B, Schoppers M, Sengstacken A, Simmonds JJ, Spanovich N, Juarez MDLT, Vasavada A, Webster CR, Yen A, Archer PD, Cucinotta F, Jones JH, Ming D, Morris RV, Niles P, Rampe E, Nolan T, Radziemski L, Barraclough B, Bender S, Berman D, Dobrea EN, Tokar R, Vaniman D, Williams RME, Yingst A, Lewis K, Cleghorn T, Huntress W, Manhès G, Hudgins J, Olson T, Stewart N, Sarrazin P, Grant J, Vicenzi E, Wilson SA, Bullock M, Ehresmann B, Hamilton V, Hassler D, Peterson J, Rafkin S, Zeitlin C, Fedosov F, Golovin D, Karpushkina N, Kozyrev A, Litvak M, Malakhov A, Mitrofanov I, Mokrousov M, Nikiforov S, Prokhorov V, Sanin A, Tretyakov V, Varenikov A, Vostrukhin A, Kuzmin R, Clark B, Wolff M, Botta O, Drake D, Bean K, Lemmon M, Schwenzer SP, Anderson RB, Herkenhoff K, Lee EM, Sucharski R, Hernández MÁDP, Ávalos JJB, Ramos M, Jones A, Kim MH, Malespin C, Plante I, Muller JP, Navarro-González R, Ewing R, Boynton W, Downs R, Fitzgibbon M, Harshman K, Morrison S, Dietrich W, Kortmann O, Palucis M, Sumner DY, Williams A, Lugmair G, Wilson MA, Rubin D, Jakosky B, Balic-Zunic T, Frydenvang J, Jensen JK, Kinch K, Koefoed A, Madsen MB, Stipp SLS, Boyd N, Campbell JL, Pradler I, VanBommel S, Jacob S, Owen T, Atlaskin E, Savijärvi H, Boehm E, Böttcher S, Burmeister S, Guo J, Köhler J, García CM, Mueller-Mellin R, Wimmer-Schweingruber R, Bridges JC, McConnochie T, Benna M, Franz H, Bower H, Brunner A, Blau H, Boucher T, Carmosino M, Atreya S, Elliott H, Halleaux D, Rennó N, Wong M, Pepin R, Elliott B, Spray J, Thompson L, Gordon S, Newsom H, Ollila A, Williams J, Vasconcelos P, Bentz J, Nealson K, Popa R, Kah LC, Moersch J, Tate C, Day M, Kocurek G, Hallet B, Sletten R, Francis R, McCullough E, Cloutis E, ten Kate IL, Kuzmin R, Arvidson R, Fraeman A, Scholes D, Slavney S, Stein T, Ward J, Berger J, Moores JE. The Petrochemistry of Jake_M: A Martian Mugearite. Science 2013; 341:1239463. [DOI: 10.1126/science.1239463] [Show More Authors] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - M. E. Schmidt
- Brock University, St. Catharines, Ontario L2T 3V8, Canada
| | - A. H. Treiman
- Lunar and Planetary Institute, Houston, TX 77058, USA
| | - A. Cousin
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Institut de Recherches en Astrophysique et Planétologie, 31028 Toulouse, France
| | - M. D. Dyar
- Mount Holyoke College, South Hadley, MA 01075, USA
| | - M. R. Fisk
- Oregon State University, Corvallis, OR 97331, USA
| | - R. Gellert
- University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - P. L. King
- Research School of Earth Sciences, Australian National University, Acton, ACT 0200, Australia
| | - L. Leshin
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - S. Maurice
- Institut de Recherches en Astrophysique et Planétologie, 31028 Toulouse, France
| | - S. M. McLennan
- The State University of New York, Stony Brook, NY 11794, USA
| | - M. E. Minitti
- Applied Physics Laboratory, The Johns Hopkins University, Baltimore, MD 20723, USA
| | - G. Perrett
- University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - S. Rowland
- University of Hawaii, Honolulu, HI 96822, USA
| | - V. Sautter
- Laboratoire de Minéralogie et Cosmochimie du Muséum, 75005 Paris, France
| | - R. C. Wiens
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tuff J, Wade J, Wood BJ. Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 2013; 498:342-5. [PMID: 23783628 DOI: 10.1038/nature12225] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/18/2013] [Indexed: 11/09/2022]
Abstract
Detailed information about the chemical composition and evolution of Mars has been derived principally from the SNC (shergottite-nakhlite-chassignite) meteorites, which are genetically related igneous rocks of Martian origin. They are chemically and texturally similar to terrestrial basalts and cumulates, except that they have higher concentrations of iron and volatile elements such as phosphorus and chlorine and lower concentrations of nickel and other chalcophile (sulphur-loving) elements. Most Martian meteorites have relatively young crystallization ages (1.4 billion years to 180 million years ago) and are considered to be derived from young, lightly cratered volcanic regions, such as the Tharsis plateau. Surface rocks from the Gusev crater analysed by the Spirit rover are much older (about 3.7 billion years old) and exhibit marked compositional differences from the meteorites. Although also basaltic in composition, the surface rocks are richer in nickel and sulphur and have lower manganese/iron ratios than the meteorites. This has led to doubts that Mars can be described adequately using the 'SNC model'. Here we show, however, that the differences between the compositions of meteorites and surface rocks can be explained by differences in the oxygen fugacity during melting of the same sulphur-rich mantle. This ties the sources of Martian meteorites to those of the surface rocks through an early (>3.7 billion years ago) oxidation of the uppermost mantle that had less influence on the deeper regions, which produce the more recent volcanic rocks.
Collapse
Affiliation(s)
- J Tuff
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | | | | |
Collapse
|
19
|
Planning for Mars returned sample science: final report of the MSR End-to-End International Science Analysis Group (E2E-iSAG). ASTROBIOLOGY 2012; 12:175-230. [PMID: 22468886 DOI: 10.1089/ast.2011.0805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
20
|
McGlynn IO, Fedo CM, McSween HY. Soil mineralogy at the Mars Exploration Rover landing sites: An assessment of the competing roles of physical sorting and chemical weathering. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003861] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Ruff SW, Farmer JD, Calvin WM, Herkenhoff KE, Johnson JR, Morris RV, Rice MS, Arvidson RE, Bell JF, Christensen PR, Squyres SW. Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003767] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 2011; 472:338-41. [PMID: 21471967 DOI: 10.1038/nature09903] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 02/01/2011] [Indexed: 11/08/2022]
Abstract
Reconstruction of the geological history of Mars has been the focus of considerable attention over the past four decades, with important discoveries being made about variations in surface conditions. However, despite a significant increase in the amount of data related to the morphology, mineralogy and chemistry of the martian surface, there is no clear global picture of how magmatism has evolved over time and how these changes relate to the internal workings and thermal evolution of the planet. Here we present geochemical data derived from the Gamma Ray Spectrometer on board NASA's Mars Odyssey spacecraft, focusing on twelve major volcanic provinces of variable age. Our analysis reveals clear trends in composition that are found to be consistent with varying degrees of melting of the martian mantle. There is evidence for thickening of the lithosphere (17-25 km Gyr(-1)) associated with a decrease in mantle potential temperature over time (30-40 K Gyr(-1)). Our inferred thermal history of Mars, unlike that of the Earth, is consistent with simple models of mantle convection.
Collapse
|
23
|
McSween HY, McGlynn IO, Rogers AD. Determining the modal mineralogy of Martian soils. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003582] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009. ASTROBIOLOGY 2010; 10:127-163. [PMID: 20298148 DOI: 10.1089/ast.2010.0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.
Collapse
|
25
|
Karunatillake S, Wray JJ, Squyres SW, Taylor GJ, Gasnault O, McLennan SM, Boynton W, El Maarry MR, Dohm JM. Chemically striking regions on Mars and Stealth revisited. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003303] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Edwards CS, Bandfield JL, Christensen PR, Fergason RL. Global distribution of bedrock exposures on Mars using THEMIS high-resolution thermal inertia. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003363] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Bowles JA, Hammer JE, Brachfeld SA. Magnetic and petrologic characterization of synthetic Martian basalts and implications for the surface magnetization of Mars. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003378] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julie A. Bowles
- Department of Geology and Geophysics; University of Hawai‘i at Mānoa; Honolulu Hawaii USA
| | - Julia E. Hammer
- Department of Geology and Geophysics; University of Hawai‘i at Mānoa; Honolulu Hawaii USA
| | - Stefanie A. Brachfeld
- Department of Earth and Environmental Studies; Montclair State University; Upper Montclair New Jersey USA
| |
Collapse
|
28
|
Affiliation(s)
- Harry Y. McSween
- Planetary Geosciences Institute and Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996–1410, USA
| | - G. Jeffrey Taylor
- Hawai’i Institute for Geophysics and Planetology, University of Hawai’i at Manoa, Honolulu, HI, 96822, USA
| | - Michael B. Wyatt
- Department of Geological Sciences, Brown University, Providence, RI 02912–1846, USA
| |
Collapse
|
29
|
Usui T, McSween HY, Clark BC. Petrogenesis of high-phosphorous Wishstone Class rocks in Gusev Crater, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003225] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Morris RV, Klingelhöfer G, Schröder C, Fleischer I, Ming DW, Yen AS, Gellert R, Arvidson RE, Rodionov DS, Crumpler LS, Clark BC, Cohen BA, McCoy TJ, Mittlefehldt DW, Schmidt ME, de Souza PA, Squyres SW. Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003201] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Ming DW, Gellert R, Morris RV, Arvidson RE, Brückner J, Clark BC, Cohen BA, d'Uston C, Economou T, Fleischer I, Klingelhöfer G, McCoy TJ, Mittlefehldt DW, Schmidt ME, Schröder C, Squyres SW, Tréguier E, Yen AS, Zipfel J. Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003195] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
McCubbin FM, Nekvasil H, Harrington AD, Elardo SM, Lindsley DH. Compositional diversity and stratification of the Martian crust: Inferences from crystallization experiments on the picrobasalt Humphrey from Gusev Crater, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003165] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Tréguier E, d'Uston C, Pinet PC, Berger G, Toplis MJ, McCoy TJ, Gellert R, Brückner J. Overview of Mars surface geochemical diversity through Alpha Particle X-Ray Spectrometer data multidimensional analysis: First attempt at modeling rock alteration. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Arvidson RE, Ruff SW, Morris RV, Ming DW, Crumpler LS, Yen AS, Squyres SW, Sullivan RJ, Bell JF, Cabrol NA, Clark BC, Farrand WH, Gellert R, Greenberger R, Grant JA, Guinness EA, Herkenhoff KE, Hurowitz JA, Johnson JR, Klingelhöfer G, Lewis KW, Li R, McCoy TJ, Moersch J, McSween HY, Murchie SL, Schmidt M, Schröder C, Wang A, Wiseman S, Madsen MB, Goetz W, McLennan SM. Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003183] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Schmidt ME, Ruff SW, McCoy TJ, Farrand WH, Johnson JR, Gellert R, Ming DW, Morris RV, Cabrol N, Lewis KW, Schroeder C. Hydrothermal origin of halogens at Home Plate, Gusev Crater. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003027] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
McCoy TJ, Sims M, Schmidt ME, Edwards L, Tornabene LL, Crumpler LS, Cohen BA, Soderblom LA, Blaney DL, Squyres SW, Arvidson RE, Rice JW, Tréguier E, d'Uston C, Grant JA, McSween HY, Golombek MP, Haldemann AFC, de Souza PA. Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
McSween HY, Ruff SW, Morris RV, Gellert R, Klingelhöfer G, Christensen PR, McCoy TJ, Ghosh A, Moersch JM, Cohen BA, Rogers AD, Schröder C, Squyres SW, Crisp J, Yen A. Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X-Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002970] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Squyres SW, Aharonson O, Clark BC, Cohen BA, Crumpler L, de Souza PA, Farrand WH, Gellert R, Grant J, Grotzinger JP, Haldemann AFC, Johnson JR, Klingelhöfer G, Lewis KW, Li R, McCoy T, McEwen AS, McSween HY, Ming DW, Moore JM, Morris RV, Parker TJ, Rice JW, Ruff S, Schmidt M, Schröder C, Soderblom LA, Yen A. Pyroclastic activity at Home Plate in Gusev Crater, Mars. Science 2007; 316:738-42. [PMID: 17478719 DOI: 10.1126/science.1139045] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarsegrained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.
Collapse
Affiliation(s)
- S W Squyres
- Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ruff SW, Christensen PR, Blaney DL, Farrand WH, Johnson JR, Michalski JR, Moersch JE, Wright SP, Squyres SW. The rocks of Gusev Crater as viewed by the Mini-TES instrument. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002747] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. W. Ruff
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - P. R. Christensen
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - D. L. Blaney
- Jet Propulsion Laboratory; Pasadena California USA
| | | | | | - J. R. Michalski
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - J. E. Moersch
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - S. P. Wright
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| |
Collapse
|
40
|
Squyres SW, Arvidson RE, Bollen D, Bell JF, Brückner J, Cabrol NA, Calvin WM, Carr MH, Christensen PR, Clark BC, Crumpler L, Des Marais DJ, d'Uston C, Economou T, Farmer J, Farrand WH, Folkner W, Gellert R, Glotch TD, Golombek M, Gorevan S, Grant JA, Greeley R, Grotzinger J, Herkenhoff KE, Hviid S, Johnson JR, Klingelhöfer G, Knoll AH, Landis G, Lemmon M, Li R, Madsen MB, Malin MC, McLennan SM, McSween HY, Ming DW, Moersch J, Morris RV, Parker T, Rice JW, Richter L, Rieder R, Schröder C, Sims M, Smith M, Smith P, Soderblom LA, Sullivan R, Tosca NJ, Wänke H, Wdowiak T, Wolff M, Yen A. Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002771] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. W. Squyres
- Department of Astronomy; Cornell University, Space Sciences Building; Ithaca New York USA
| | - R. E. Arvidson
- Department Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - D. Bollen
- Department of Astronomy; Cornell University, Space Sciences Building; Ithaca New York USA
| | - J. F. Bell
- Department of Astronomy; Cornell University, Space Sciences Building; Ithaca New York USA
| | - J. Brückner
- Max Planck Institut für Chemie, Kosmochemie; Mainz Germany
| | - N. A. Cabrol
- NASA Ames/SETI Institute; Moffett Field California USA
| | - W. M. Calvin
- Department of Geological Sciences; University of Nevada, Reno; Reno Nevada USA
| | - M. H. Carr
- U.S. Geological Survey; Menlo Park California USA
| | - P. R. Christensen
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - B. C. Clark
- Lockheed Martin Corporation; Littleton Colorado USA
| | - L. Crumpler
- New Mexico Museum of Natural History and Science; Albuquerque New Mexico USA
| | | | - C. d'Uston
- Centre d'Etude Spatiale des Rayonnements; Toulouse France
| | - T. Economou
- Enrico Fermi Institute; University of Chicago; Chicago Illinois USA
| | - J. Farmer
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | | | - W. Folkner
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - R. Gellert
- Department of Physics; University of Guelph; Guelph, Ontario Canada
| | - T. D. Glotch
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - M. Golombek
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | | | - J. A. Grant
- Center for Earth and Planetary Studies; Smithsonian Institution; Washington, D. C. USA
| | - R. Greeley
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - J. Grotzinger
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | | | - S. Hviid
- Max Planck Institut für Sonnensystemforschung; Katlenburg-Lindau Germany
| | | | - G. Klingelhöfer
- Institut für Anorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | - A. H. Knoll
- Botanical Museum; Harvard University; Cambridge Massachusetts USA
| | - G. Landis
- NASA Glenn Research Center; Cleveland Ohio USA
| | - M. Lemmon
- Department of Atmospheric Sciences; Texas A&M University; College Station Texas USA
| | - R. Li
- Department of Civil and Environmental Engineering and Geodetic Science; Ohio State University; Columbus Ohio USA
| | - M. B. Madsen
- Niels Bohr Institute; Ørsted Laboratory; Copenhagen Denmark
| | - M. C. Malin
- Malin Space Science Systems; San Diego California USA
| | - S. M. McLennan
- Department of Geosciences; State University of New York; Stony Brook New York USA
| | - H. Y. McSween
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - D. W. Ming
- NASA Johnson Space Center; Houston Texas USA
| | - J. Moersch
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | | | - T. Parker
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - J. W. Rice
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - L. Richter
- DLR Institute of Space Simulation; Cologne Germany
| | - R. Rieder
- Max Planck Institut für Chemie, Kosmochemie; Mainz Germany
| | - C. Schröder
- Institut für Anorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | - M. Sims
- NASA Ames Research Center; Moffett Field California USA
| | - M. Smith
- NASA Goddard Space Flight Center; Greenbelt Maryland USA
| | - P. Smith
- Lunar and Planetary Laboratory; University of Arizona; Tucson Arizona USA
| | | | - R. Sullivan
- Department of Astronomy; Cornell University, Space Sciences Building; Ithaca New York USA
| | - N. J. Tosca
- Department of Geosciences; State University of New York; Stony Brook New York USA
| | - H. Wänke
- Max Planck Institut für Chemie, Kosmochemie; Mainz Germany
| | - T. Wdowiak
- Department of Physics; University of Alabama at Birmingham; Birmingham Alabama USA
| | - M. Wolff
- Space Science Institute; Martinez Georgia USA
| | - A. Yen
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| |
Collapse
|