1
|
Ruff SW, Campbell KA, Van Kranendonk MJ, Rice MS, Farmer JD. The Case for Ancient Hot Springs in Gusev Crater, Mars. ASTROBIOLOGY 2020; 20:475-499. [PMID: 31621375 PMCID: PMC7133449 DOI: 10.1089/ast.2019.2044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/11/2019] [Indexed: 05/19/2023]
Abstract
The origin and age of opaline silica deposits discovered by the Spirit rover adjacent to the Home Plate feature in the Columbia Hills of Gusev crater remains debated, in part because of their proximity to sulfur-rich soils. Processes related to fumarolic activity and to hot springs and/or geysers are the leading candidates. Both processes are known to produce opaline silica on Earth, but with differences in composition, morphology, texture, and stratigraphy. Here, we incorporate new and existing observations of the Home Plate region with observations from field and laboratory work to address the competing hypotheses. The results, which include new evidence for a hot spring vent mound, demonstrate that a volcanic hydrothermal system manifesting both hot spring/geyser and fumarolic activity best explains the opaline silica rocks and proximal S-rich materials, respectively. The opaline silica rocks most likely are sinter deposits derived from hot spring activity. Stratigraphic evidence indicates that their deposition occurred before the emplacement of the volcaniclastic deposits comprising Home Plate and nearby ridges. Because sinter deposits throughout geologic history on Earth preserve evidence for microbial life, they are a key target in the search for ancient life on Mars.
Collapse
Affiliation(s)
- Steven W. Ruff
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
- Address correspondence to: Steven W. Ruff, School of Earth and Space Exploration, Arizona State University, Mars Space Flight Facility, Moeur Building Room 131, Tempe, AZ 85287-6305
| | - Kathleen A. Campbell
- School of Environment and Te Ao Mārama—Centre for Fundamental Inquiry, The University of Auckland, Auckland, New Zealand
| | - Martin J. Van Kranendonk
- Australian Centre for Astrobiology, School of Biological, Earth and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia
| | - Melissa S. Rice
- Department of Geology, Western Washington University, Bellingham, Washington
| | - Jack D. Farmer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| |
Collapse
|
2
|
Bartlett CL, Hausrath EM, Adcock CT, Huang S, Harrold ZR, Udry A. Effects of Organic Compounds on Dissolution of the Phosphate Minerals Chlorapatite, Whitlockite, Merrillite, and Fluorapatite: Implications for Interpreting Past Signatures of Organic Compounds in Rocks, Soils and Sediments. ASTROBIOLOGY 2018; 18:1543-1558. [PMID: 30132684 DOI: 10.1089/ast.2017.1739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phosphate is an essential nutrient for life on Earth, present in adenosine triphosphate (ATP), deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and phospholipid membranes. Phosphorus does not have a significant volatile phase, and its release from minerals is therefore critical to its bioavailability. Organic ligands can enhance phosphate release from minerals relative to release in inorganic solutions, and phosphorus depletion in paleosols has consequently been used as a signature of the presence of ligands secreted by terrestrial organisms on early Earth. We performed batch dissolution experiments of the Mars-relevant phosphate minerals merrillite, whitlockite, chlorapatite, and fluorapatite in solutions containing organic compounds relevant to Mars. We also analyzed these phosphate minerals using the ChemCam laboratory instrument at Los Alamos, providing spectra of end-member phosphate phases that are likely present on the surface of Mars. Phosphate release rates from chlorapatite, whitlockite, and merrillite were enhanced by mellitic, oxalic, succinic, and acetic acids relative to inorganic controls by as much as >35 × . The effects of the organic compounds could be explained by the denticity of the ligand, the strength of the complex formed with calcium, and the solution saturation state. Merrillite, whitlockite, and chlorapatite dissolution rates were more strongly enhanced by acetic and succinic acids relative to inorganic controls (as much as >10 ×) than were fluorapatite dissolution rates (≲2 ×). These results suggest that depletion of phosphate in soils, rocks or sediments on Mars could be a sensitive indicator of the presence of organic compounds.
Collapse
Affiliation(s)
- Courtney L Bartlett
- Department of Geoscience, University of Nevada , Las Vegas, Las Vegas , Nevada
| | | | | | - Shichun Huang
- Department of Geoscience, University of Nevada , Las Vegas, Las Vegas , Nevada
| | - Zoe R Harrold
- Department of Geoscience, University of Nevada , Las Vegas, Las Vegas , Nevada
| | - Arya Udry
- Department of Geoscience, University of Nevada , Las Vegas, Las Vegas , Nevada
| |
Collapse
|
3
|
Adcock CT, Hausrath EM. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters. ASTROBIOLOGY 2015; 15:1060-1075. [PMID: 26684505 DOI: 10.1089/ast.2015.1291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Abundant evidence indicates that significant surface and near-surface liquid water has existed on Mars in the past. Evaluating the potential for habitable environments on Mars requires an understanding of the chemical and physical conditions that prevailed in such aqueous environments. Among the geological features that may hold evidence of past environmental conditions on Mars are weathering profiles, such as those in the phosphorus-rich Wishstone-class rocks in Gusev Crater. The weathering profiles in these rocks indicate that a Ca-phosphate mineral has been lost during past aqueous interactions. The high phosphorus content of these rocks and potential release of phosphorus during aqueous interactions also make them of astrobiological interest, as phosphorus is among the elements required for all known life. In this work, we used Mars mission data, laboratory-derived kinetic and thermodynamic data, and data from terrestrial analogues, including phosphorus-rich basalts from Idaho, to model a conceptualized Wishstone-class rock using the reactive transport code CrunchFlow. Modeling results most consistent with the weathering profiles in Wishstone-class rocks suggest a combination of chemical and physical erosion and past aqueous interactions with near-neutral waters. The modeling results also indicate that multiple Ca-phosphate minerals are likely in Wishstone-class rocks, consistent with observations of martian meteorites. These findings suggest that Gusev Crater experienced a near-neutral phosphate-bearing aqueous environment that may have been conducive to life on Mars in the past. KEY WORDS Mars-Gusev Crater-Wishstone-Reactive transport modeling-CrunchFlow-Aqueous interactions-Neutral pH-Habitability.
Collapse
|
4
|
McLennan SM, Anderson RB, Bell JF, Bridges JC, Calef F, Campbell JL, Clark BC, Clegg S, Conrad P, Cousin A, Des Marais DJ, Dromart G, Dyar MD, Edgar LA, Ehlmann BL, Fabre C, Forni O, Gasnault O, Gellert R, Gordon S, Grant JA, Grotzinger JP, Gupta S, Herkenhoff KE, Hurowitz JA, King PL, Le Mouélic S, Leshin LA, Léveillé R, Lewis KW, Mangold N, Maurice S, Ming DW, Morris RV, Nachon M, Newsom HE, Ollila AM, Perrett GM, Rice MS, Schmidt ME, Schwenzer SP, Stack K, Stolper EM, Sumner DY, Treiman AH, VanBommel S, Vaniman DT, Vasavada A, Wiens RC, Yingst RA. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 2013; 343:1244734. [PMID: 24324274 DOI: 10.1126/science.1244734] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.
Collapse
Affiliation(s)
- S M McLennan
- Department of Geosciences, State University of New York, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hausrath EM, Tschauner O. Natural fumarolic alteration of fluorapatite, olivine, and basaltic glass, and implications for habitable environments on Mars. ASTROBIOLOGY 2013; 13:1049-64. [PMID: 24283927 PMCID: PMC3865726 DOI: 10.1089/ast.2013.0985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 09/14/2013] [Indexed: 05/19/2023]
Abstract
Fumaroles represent a very important potential habitat on Mars because they contain water and nutrients. Global deposition of volcanic sulfate aerosols may also have been an important soil-forming process affecting large areas of Mars. Here we identify alteration from the Senator fumarole, northwest Nevada, USA, and in low-temperature environments near the fumarole to help interpret fumarolic and acid vapor alteration of rocks and soils on Mars. We analyzed soil samples and fluorapatite, olivine, and basaltic glass placed at and near the fumarole in in situ mineral alteration experiments designed to measure weathering under natural field conditions. Using synchrotron X-ray diffraction, we clearly observe hydroxyl-carbonate-bearing fluorapatite as a fumarolic alteration product of the original material, fluorapatite. The composition of apatites as well as secondary phosphates has been previously used to infer magmatic conditions as well as fumarolic conditions on Mars. To our knowledge, the observations reported here represent the first documented instance of formation of hydroxyl-carbonate-bearing apatite from fluorapatite in a field experiment. Retreat of olivine surfaces, as well as abundant NH4-containing minerals, was also characteristic of fumarolic alteration. In contrast, alteration in the nearby low-temperature environment resulted in formation of large pits on olivine surfaces, which were clearly distinguishable from the fumarolic alteration. Raman signatures of some fumarolically impacted surfaces are consistent with detection of the biological molecules chlorophyll and scytenomin, potentially useful biosignatures. Observations of altered minerals on Mars may therefore help identify the environment of formation and understand the aqueous history and potential habitability of that planet.
Collapse
Affiliation(s)
| | - Oliver Tschauner
- Department of Geoscience, University of Nevada Las Vegas, Las Vegas, Nevada
- HiPSEC, University of Nevada Las Vegas, Las Vegas, Nevada
| |
Collapse
|
6
|
Usui T, McSween HY, Clark BC. Petrogenesis of high-phosphorous Wishstone Class rocks in Gusev Crater, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003225] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Ming DW, Gellert R, Morris RV, Arvidson RE, Brückner J, Clark BC, Cohen BA, d'Uston C, Economou T, Fleischer I, Klingelhöfer G, McCoy TJ, Mittlefehldt DW, Schmidt ME, Schröder C, Squyres SW, Tréguier E, Yen AS, Zipfel J. Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003195] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Tréguier E, d'Uston C, Pinet PC, Berger G, Toplis MJ, McCoy TJ, Gellert R, Brückner J. Overview of Mars surface geochemical diversity through Alpha Particle X-Ray Spectrometer data multidimensional analysis: First attempt at modeling rock alteration. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Schmidt ME, Ruff SW, McCoy TJ, Farrand WH, Johnson JR, Gellert R, Ming DW, Morris RV, Cabrol N, Lewis KW, Schroeder C. Hydrothermal origin of halogens at Home Plate, Gusev Crater. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003027] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
McCoy TJ, Sims M, Schmidt ME, Edwards L, Tornabene LL, Crumpler LS, Cohen BA, Soderblom LA, Blaney DL, Squyres SW, Arvidson RE, Rice JW, Tréguier E, d'Uston C, Grant JA, McSween HY, Golombek MP, Haldemann AFC, de Souza PA. Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Squyres SW, Arvidson RE, Bollen D, Bell JF, Brückner J, Cabrol NA, Calvin WM, Carr MH, Christensen PR, Clark BC, Crumpler L, Des Marais DJ, d'Uston C, Economou T, Farmer J, Farrand WH, Folkner W, Gellert R, Glotch TD, Golombek M, Gorevan S, Grant JA, Greeley R, Grotzinger J, Herkenhoff KE, Hviid S, Johnson JR, Klingelhöfer G, Knoll AH, Landis G, Lemmon M, Li R, Madsen MB, Malin MC, McLennan SM, McSween HY, Ming DW, Moersch J, Morris RV, Parker T, Rice JW, Richter L, Rieder R, Schröder C, Sims M, Smith M, Smith P, Soderblom LA, Sullivan R, Tosca NJ, Wänke H, Wdowiak T, Wolff M, Yen A. Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002771] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. W. Squyres
- Department of Astronomy; Cornell University, Space Sciences Building; Ithaca New York USA
| | - R. E. Arvidson
- Department Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - D. Bollen
- Department of Astronomy; Cornell University, Space Sciences Building; Ithaca New York USA
| | - J. F. Bell
- Department of Astronomy; Cornell University, Space Sciences Building; Ithaca New York USA
| | - J. Brückner
- Max Planck Institut für Chemie, Kosmochemie; Mainz Germany
| | - N. A. Cabrol
- NASA Ames/SETI Institute; Moffett Field California USA
| | - W. M. Calvin
- Department of Geological Sciences; University of Nevada, Reno; Reno Nevada USA
| | - M. H. Carr
- U.S. Geological Survey; Menlo Park California USA
| | - P. R. Christensen
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - B. C. Clark
- Lockheed Martin Corporation; Littleton Colorado USA
| | - L. Crumpler
- New Mexico Museum of Natural History and Science; Albuquerque New Mexico USA
| | | | - C. d'Uston
- Centre d'Etude Spatiale des Rayonnements; Toulouse France
| | - T. Economou
- Enrico Fermi Institute; University of Chicago; Chicago Illinois USA
| | - J. Farmer
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | | | - W. Folkner
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - R. Gellert
- Department of Physics; University of Guelph; Guelph, Ontario Canada
| | - T. D. Glotch
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - M. Golombek
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | | | - J. A. Grant
- Center for Earth and Planetary Studies; Smithsonian Institution; Washington, D. C. USA
| | - R. Greeley
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - J. Grotzinger
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | | | - S. Hviid
- Max Planck Institut für Sonnensystemforschung; Katlenburg-Lindau Germany
| | | | - G. Klingelhöfer
- Institut für Anorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | - A. H. Knoll
- Botanical Museum; Harvard University; Cambridge Massachusetts USA
| | - G. Landis
- NASA Glenn Research Center; Cleveland Ohio USA
| | - M. Lemmon
- Department of Atmospheric Sciences; Texas A&M University; College Station Texas USA
| | - R. Li
- Department of Civil and Environmental Engineering and Geodetic Science; Ohio State University; Columbus Ohio USA
| | - M. B. Madsen
- Niels Bohr Institute; Ørsted Laboratory; Copenhagen Denmark
| | - M. C. Malin
- Malin Space Science Systems; San Diego California USA
| | - S. M. McLennan
- Department of Geosciences; State University of New York; Stony Brook New York USA
| | - H. Y. McSween
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - D. W. Ming
- NASA Johnson Space Center; Houston Texas USA
| | - J. Moersch
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | | | - T. Parker
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - J. W. Rice
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - L. Richter
- DLR Institute of Space Simulation; Cologne Germany
| | - R. Rieder
- Max Planck Institut für Chemie, Kosmochemie; Mainz Germany
| | - C. Schröder
- Institut für Anorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | - M. Sims
- NASA Ames Research Center; Moffett Field California USA
| | - M. Smith
- NASA Goddard Space Flight Center; Greenbelt Maryland USA
| | - P. Smith
- Lunar and Planetary Laboratory; University of Arizona; Tucson Arizona USA
| | | | - R. Sullivan
- Department of Astronomy; Cornell University, Space Sciences Building; Ithaca New York USA
| | - N. J. Tosca
- Department of Geosciences; State University of New York; Stony Brook New York USA
| | - H. Wänke
- Max Planck Institut für Chemie, Kosmochemie; Mainz Germany
| | - T. Wdowiak
- Department of Physics; University of Alabama at Birmingham; Birmingham Alabama USA
| | - M. Wolff
- Space Science Institute; Martinez Georgia USA
| | - A. Yen
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| |
Collapse
|