1
|
Harris E, Davis JM, Grindrod PM, Fawdon P, Roberts AL. A Low Albedo, Thin, Resistant Unit in Oxia Planum, Mars: Evidence for an Airfall Deposit and Late-Stage Groundwater Activity at the ExoMars Rover Landing Site. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2024; 129:e2024JE008527. [PMID: 39583989 PMCID: PMC11583114 DOI: 10.1029/2024je008527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/25/2024] [Accepted: 11/03/2024] [Indexed: 11/26/2024]
Abstract
Oxia Planum, Mars, is the future landing site of the ExoMars Rosalind Franklin rover mission, which will search for preserved biosignatures in a phyllosilicate-bearing unit. Overlying the mission-important phyllosilicate-bearing rocks is a dark, capping unit-known here as the Low albedo, Thin, Resistant (LTR) unit-which may have protected the phyllosilicate-bearing unit over geologic time from solar insolation and radiation. However, little is known about the origin of the LTR unit. Here, we map the LTR unit and investigate its distribution and morphology across 50,000 km2 using a variety of orbital remote sensing data sets. The characteristics of the LTR unit include draping palaeo-topographic surfaces, deposition over a wide elevation range, and a consistent vertical thickness that can be best explained by airfall deposition including a primary or reworked volcanic palaeo-ashfall. Previous research suggests that the LTR unit was not significantly buried, and we find it to be preferentially preserved with a high mechanical strength in discrete deposits representing palaeo-topographic lows. We suggest this could be attributed to localized cementation via upwelling groundwater. This scenario suggests that most of the phyllosilicate-bearing exposures may not have been protected over geologic time, as the uncemented LTR sediment would have easily been removed by erosion. However, our observations indicate that the scarped margins of the LTR unit deposits probably exposed regions of the once protected phyllosilicate-bearing unit. These areas could be key science targets for the ExoMars Rosalind Franklin rover mission.
Collapse
Affiliation(s)
- E. Harris
- Department of ScienceNatural History MuseumLondonUK
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| | - J. M. Davis
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| | | | - P. Fawdon
- School of Physical SciencesThe Open UniversityMilton KeynesUK
| | - A. L. Roberts
- Department of Earth Science and EngineeringImperial College LondonLondonUK
| |
Collapse
|
2
|
Carrizo D, de Dios-Cubillas A, Sánchez-García L, López I, Prieto-Ballesteros O. Interpreting Molecular and Isotopic Biosignatures in Methane-Derived Authigenic Carbonates in the Light of a Potential Carbon Cycle in the Icy Moons. ASTROBIOLOGY 2022; 22:552-567. [PMID: 35325553 DOI: 10.1089/ast.2021.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Finding evidence of life beyond Earth is the aim of future space missions to icy moons. Icy worlds with an ocean underlying the icy crust and in contact with a rocky subsurface have great astrobiological interest due to the potential for water-rock interactions that may provide a source of nutrients necessary to sustain life. Such water-rock interactions in icy moons can be indirectly investigated using analogous environments on the deep seafloor on Earth. Here, we investigate the presence of molecular and isotopic biomarkers in two submarine cold seep systems with intense rock-fluid interactions and carbon sink as carbonates with the aim of gaining understanding of potential carbon cycles in the icy worlds' oceans. Authigenic carbonates associated to cold seeps (a chimney from the Gulf of Cádiz and a clathrite from the Pacific Hydrate Ridge) were investigated for their mineralogical composition and lipid biomarker distribution. Molecular and compound-specific isotopic composition of lipid biomarkers allowed us to infer different carbonate origins in both carbonate scenarios: biogenic methane (clathrite) versus thermogenic methane together with allochthonous carbon (chimney). In the Pacific cold seep, carbonate precipitation of the clathrite was deduced to result from the anaerobic oxidation of methane by syntrophic action of methanotrophic archaea with sulfate-reducing bacteria. The distinct carbon sources (thermogenic methane, pelagic biomass, etc.) and sinks (gas clathrates, clathrite, chimney carbonates) were discussed in the light of potentially similar carbon cycling pathways in analogous icy-moon oceans. We show how the isotopic analysis of carbon may be crucial for detecting biosignatures in icy-world carbon sinks. These considerations may affect the strategy of searching for biosignatures in future space missions to the icy worlds.
Collapse
Affiliation(s)
- D Carrizo
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - A de Dios-Cubillas
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
- Department of Biology, Geology, Physics and Inorganic Chemistry, King Juan Carlos University, Móstoles, Madrid, Spain
| | - L Sánchez-García
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - I López
- Department of Biology, Geology, Physics and Inorganic Chemistry, King Juan Carlos University, Móstoles, Madrid, Spain
| | | |
Collapse
|
3
|
Singh D, Sinha RK, Singh P, Roy N, Mukherjee S. Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site. ASTROBIOLOGY 2022; 22:579-597. [PMID: 35171004 DOI: 10.1089/ast.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Life is known to adapt in accordance with its surrounding environment and sustainable resources available to it. Since harsh conditions would have precluded any possible aerobic evolution of life at the martian surface, it is plausible that martian life, should it exist, would have evolved in such a way as to derive energy from more optimum resources. Iron is one of the most abundant elements present in the martian crust and occurs at about twice the amount present on Earth. Clay minerals contribute to about half the iron found in soils and sediments. On Earth, clay acts as an electron donor as well as an acceptor in the carbon cycles and thereby supports a wide variety of metabolic reactions. In this context, we consider the potential of Fe/Mg smectites, one of the most widely reported hydrated minerals on Mars, for preservation of macro- and microscopic biosignatures. We proceed by understanding the environmental conditions during the formation of smectites and various microbes and metabolic processes associated with them as indicated in Earth-based studies. We also explore the possibility of biosignatures and their identification within the Mars 2020 landing site (Jezero Crater) by using the astrobiological payloads on board the Perseverance rover.
Collapse
Affiliation(s)
- Deepali Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Priyadarshini Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Roy
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saumitra Mukherjee
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Mandon L, Parkes Bowen A, Quantin-Nataf C, Bridges JC, Carter J, Pan L, Beck P, Dehouck E, Volat M, Thomas N, Cremonese G, Tornabene LL, Thollot P. Morphological and Spectral Diversity of the Clay-Bearing Unit at the ExoMars Landing Site Oxia Planum. ASTROBIOLOGY 2021; 21:464-480. [PMID: 33646016 DOI: 10.1089/ast.2020.2292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The European Space Agency and Roscosmos' ExoMars rover mission, which is planned to land in the Oxia Planum region, will be dedicated to exobiology studies at the surface and subsurface of Mars. Oxia Planum is a clay-bearing site that has preserved evidence of long-term interaction with water during the Noachian era. Fe/Mg-rich phyllosilicates have previously been shown to occur extensively throughout the landing area. Here, we analyze data from the High Resolution Imaging Science Experiment (HiRISE) and from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instruments onboard NASA's Mars Reconnaissance Orbiter and the Colour and Stereo Surface Imaging System (CaSSIS) onboard ESA's Trace Gas Orbiter to characterize, at a high spatial resolution, the morphological and spectral variability of Oxia Planum's surface deposits. Two main types of bedrocks are identified within the clay-bearing, fractured unit observed throughout the landing site: (1) an orange type in HiRISE correlated with the strongest detections of secondary minerals (dominated by Fe/Mg-rich clay minerals) with, in some locations, an additional spectral absorption near 2.5 μm, suggesting the mixture with an additional mineral, plausibly carbonate or another type of clay mineral; (2) a more bluish bedrock associated with weaker detections of secondary minerals, which exhibits at certain locations a ∼1 μm broad absorption feature consistent with olivine. Coanalysis of the same terrains with the recently acquired CaSSIS images confirms the variability in the color and spectral properties of the fractured unit. Of interest for the ExoMars mission, both types of bedrocks are extensively outcropping in the Oxia Planum region, and the one corresponding to the most intense spectral signals of clay minerals (the primary scientific target) is well exposed within the landing area, including near its center.
Collapse
Affiliation(s)
- Lucia Mandon
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| | - Adam Parkes Bowen
- Space Research Centre, University of Leicester, Leicester, United Kingdom
| | | | - John C Bridges
- Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - John Carter
- Institut d'Astrophysique Spatiale, CNRS, Université Paris-Sud, Orsay, France
| | - Lu Pan
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| | - Pierre Beck
- Université Grenoble Alpes, CNRS, IPAG, UMR 5274, F-38041, Grenoble, France
- Institut Universitaire de France, Paris, France
| | - Erwin Dehouck
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| | - Matthieu Volat
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| | - Nicolas Thomas
- Physikalisches Institut, Sidlerstr. 5, University of Bern, 3012 Bern, Switzerland
| | | | | | | |
Collapse
|
5
|
Bishop JL, Gross C, Danielsen J, Parente M, Murchie SL, Horgan B, Wray JJ, Viviano C, Seelos FP. Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on early Mars. ICARUS 2020; 341:113634. [PMID: 34045770 PMCID: PMC8152300 DOI: 10.1016/j.icarus.2020.113634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Refined calibrations of CRISM images are enabling identification of smaller deposits of unique aqueous materials on Mars that reveal changing environmental conditions at the region surrounding Mawrth Vallis. Through characterization of these clay-sulfate assemblages and their association with the layered, phyllosilicate units of this region, more details of the aqueous geochemical history can be gleaned. A stratigraphy including five distinct mineral horizons is mapped using compositional data from CRISM over CTX and HRSC imagery across 100s of km and from CRISM over HiRISE imagery across 100s of meters. Transitions in mineralogic units were characterized using visible/near-infrared (VNIR) spectral properties and surface morphology. We identified and characterized complex "doublet" type spectral signatures with two bands between 2.2 and 2.3 μm at one stratigraphic horizon. Based on comparisons with terrestrial sites, the spectral "doublet" unit described here may reflect the remnants of a salty, evaporative period that existed on Mars during the transition from formation of Fe-rich phyllosilicates to Al-rich phyllosilicates. Layered outcrops observed at Mawrth Vallis are thicker than in other altered regions of Mars, but may represent processes that were more widespread in wet regions of the planet during its early history. The aqueous geochemical environments supporting the outcrops observed here include: (i) the formation of Fe3+-rich smectites in a warm and wet environment, (ii) overlain by a thin ferrous-bearing clay unit that could be associated with heating or reducing conditions, (iii) followed by a transition to salty and/or acidic alteration phases and sulfates (characterized by the spectral "doublet" shape) in an evaporative setting, (iv) formation of Al-rich phyllosilicates through pedogenesis or acid leaching, and (v) finally persistence of poorly crystalline aluminosilicates marking the end of the warm climate on early Mars. The "doublet" type units described here are likely composed of clay-sulfate assemblages formed in saline, acidic evaporative environments similar to those found in Western Australia and the Atacama desert. Despite the chemically extreme and variable waters present at these terrestrial, saline lake environments, active ecosystems are present; thus, these "doublet" type units may mark exciting areas for continued exploration important to astrobiology on Mars.
Collapse
Affiliation(s)
- Janice L. Bishop
- SETI Institute, Mountain View, CA, United States of America
- Freie Universität Berlin, Berlin, Germany
| | | | - Jacob Danielsen
- SETI Institute, Mountain View, CA, United States of America
- San Jose State University, San Jose, CA, United States of America
| | - Mario Parente
- University of Massachusetts at Amherst, Amherst, MA, United States of America
| | - Scott L. Murchie
- Johns Hopkins University Applied Physics Lab, Laurel, MD, United States of America
| | - Briony Horgan
- Purdue University, West Lafayette, IN, United States of America
| | - James J. Wray
- Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Christina Viviano
- Johns Hopkins University Applied Physics Lab, Laurel, MD, United States of America
| | - Frank P. Seelos
- Johns Hopkins University Applied Physics Lab, Laurel, MD, United States of America
| |
Collapse
|
6
|
Poulet F, Gross C, Horgan B, Loizeau D, Bishop JL, Carter J, Orgel C. Mawrth Vallis, Mars: A Fascinating Place for Future In Situ Exploration. ASTROBIOLOGY 2020; 20:199-234. [PMID: 31916851 DOI: 10.1089/ast.2019.2074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
After the successful landing of the Mars Science Laboratory rover, both NASA and ESA initiated a selection process for potential landing sites for the Mars2020 and ExoMars missions, respectively. Two ellipses located in the Mawrth Vallis region were proposed and evaluated during a series of meetings (three for Mars2020 mission and five for ExoMars). We describe here the regional context of the two proposed ellipses as well as the framework of the objectives of these two missions. Key science targets of the ellipses and their astrobiological interests are reported. This work confirms that the proposed ellipses contain multiple past martian wet environments of a subaerial, subsurface, and/or subaqueous character, in which to probe the past climate of Mars; build a broad picture of possible past habitable environments; evaluate their exobiological potentials; and search for biosignatures in well-preserved rocks. A mission scenario covering several key investigations during the nominal mission of each rover is also presented, as well as descriptions of how the site fulfills the science requirements and expectations of in situ martian exploration. These serve as a basis for potential future exploration of the Mawrth Vallis region with new missions and describe opportunities for human exploration of Mars in terms of resources and science discoveries.
Collapse
Affiliation(s)
- François Poulet
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France
| | - Christoph Gross
- Institute of Geological Sciences, Planetary Sciences and Remote Sensing Group, Freie Universität Berlin, Berlin, Germany
| | | | - Damien Loizeau
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France
| | | | - John Carter
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France
| | - Csilla Orgel
- Institute of Geological Sciences, Planetary Sciences and Remote Sensing Group, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Lowe DR, Bishop JL, Loizeau D, Wray JJ, Beyer RA. Deposition of >3.7 Ga clay-rich strata of the Mawrth Vallis Group, Mars, in lacustrine, alluvial, and aeolian environments. GEOLOGICAL SOCIETY OF AMERICA BULLETIN 2019; 132:17-30. [PMID: 33958812 PMCID: PMC8098079 DOI: 10.1130/b35185.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The presence of abundant phyllosilicate minerals in Noachian (>3.7 Ga) rocks on Mars has been taken as evidence that liquid water was stable at or near the surface early in martian history. This study investigates some of these clay-rich strata exposed in crater rim and inverted terrain settings in the Mawrth Vallis region of Mars. In Muara crater the 200-m-thick, clay-rich Mawrth Vallis Group (MVG) is subdivided into five informal units numbered 1 (base) to 5 (top). Unit 1 consists of interbedded sedimentary and volcanic or volcaniclastic units showing weak Fe/Mg-smectite alteration deposited in a range of subaerial depositional settings. Above a major unconformity eroded on Unit 1, the dark-toned sediments of Unit 2 and lower Unit 3 are inferred to represent mainly wind-blown sand. These are widely interlayered with and draped by thin layers of light-toned sediment representing fine suspended-load aeolian silt and clay. These sediments show extensive Fe/Mg-smectite alteration, probably reflecting subaerial weathering. Upper Unit 3 and units 4 and 5 are composed of well-layered, fine-grained sediment dominated by Al-phyllosilicates, kaolinite, and hydrated silica. Deposition occurred in a large lake or arm of a martian sea. In the inverted terrain 100 km to the NE, Unit 4 shows very young slope failures suggesting that the clay-rich sediments today retain a significant component of water ice. The MVG provides evidence for the presence of large, persistent standing bodies of water on early Mars as well as a complex association of flanking shoreline, alluvial, and aeolian systems. Some of the clays, especially the Fe/Mg smectites in upper units 1 and 2 appear to have formed through subaerial weathering whereas the aluminosilicates, kaolinite, and hydrated silica of units 3, 4, and 5 formed mainly through alteration of fine sediment in subaqueous environments.
Collapse
Affiliation(s)
- Donald R. Lowe
- Department of Geological Sciences, Stanford University, Stanford, California 94305-2115, USA
| | - Janice L. Bishop
- SETI & NASA-Ames Research Center, Mountain View, California, USA
| | - Damien Loizeau
- Université Claude Bernard Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL-TPE, F-69622, Villeurbanne, France
- Institut d’Astrophysique Spatiale, Université Paris Sud, F-91405 Orsay, France
| | - James J. Wray
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0340, USA
| | - Ross A. Beyer
- SETI & NASA-Ames Research Center, Mountain View, California, USA
| |
Collapse
|
8
|
Chojnacki M, Banks M, Urso A. Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2018; 123:468-488. [PMID: 29568719 PMCID: PMC5859260 DOI: 10.1002/2017je005460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aeolian processes have likely been the predominant geomorphic agent for most of Mars' history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low.
Collapse
Affiliation(s)
- Matthew Chojnacki
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Maria Banks
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Anna Urso
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Vago JL, Westall F. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. ASTROBIOLOGY 2017; 17:471-510. [PMID: 31067287 PMCID: PMC5685153 DOI: 10.1089/ast.2016.1533] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/05/2017] [Indexed: 05/19/2023]
Abstract
The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures-ExoMars-Landing sites-Mars rover-Search for life. Astrobiology 17, 471-510.
Collapse
|
10
|
Kereszturi A, Bradak B, Chatzitheodoridis E, Ujvari G. Indicators and Methods to Understand Past Environments from ExoMars Rover Drills. ORIGINS LIFE EVOL B 2016; 46:435-454. [PMID: 27029794 DOI: 10.1007/s11084-016-9492-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/15/2016] [Indexed: 11/26/2022]
Abstract
Great advances are expected during the analysis of drilled material acquired from 2 m depth by ExoMars rover, supported by the comparison to local context, and the joint use of different instruments. Textural information might be less detailed relatively to what is usually obtained at outcrops during classical geological field work on the Earth, partly because of the lack of optical imaging of the borehole wall and also because the collected samples are crushed. However sub-mm scale layering and some other sedimentary features might be identified in the borehole wall observations, or in the collected sample prior to crushing, and also at nearby outcrops. The candidate landing sites provide different targets and focus for research: Oxia Planum requires analysis of phyllosilicates and OH content, at Mawrth Vallis the layering of various phyllosilicates and the role of shallow-subsurface leaching should be emphasized. At Aram Dorsum the particle size and fluvial sedimentary features will be interesting. Hydrated perchlorates and sulphates are ideal targets possibly at every landing sites because of OH retention, especially if they are mixed with smectites, thus could point to even ancient wet periods. Extensive use of information from the infrared wall scanning will be complemented for geological context by orbital and rover imaging of nearby outcrops. Information from the context is especially useful to infer the possible action of past H2O. Separation of the ice and liquid water effects will be supported by cation abundance and sedimentary context. Shape of grains also helps here, and composition of transported grains points to the weathering potential of the environment in general. The work on Mars during the drilling and sample analysis will provide brand new experience and knowledge for future missions.
Collapse
Affiliation(s)
- A Kereszturi
- Research Centre for Astronomy and Earth Sciences, Budapest, Hungary.
| | - B Bradak
- Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
- Department of Planetology, Kobe University, Kobe, Japan
| | | | - G Ujvari
- Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
| |
Collapse
|
11
|
Chatzitheodoridis E, Haigh S, Lyon I. A conspicuous clay ovoid in Nakhla: evidence for subsurface hydrothermal alteration on Mars with implications for astrobiology. ASTROBIOLOGY 2014; 14:651-693. [PMID: 25046549 PMCID: PMC4126275 DOI: 10.1089/ast.2013.1069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Abstract A conspicuous biomorphic ovoid structure has been discovered in the Nakhla martian meteorite, made of nanocrystalline iron-rich saponitic clay and amorphous material. The ovoid is indigenous to Nakhla and occurs within a late-formed amorphous mesostasis region of rhyolitic composition that is interstitial to two clinopyroxene grains with Al-rich rims, and contains acicular apatite crystals, olivine, sulfides, Ti-rich magnetite, and a new mineral of the rhoenite group. To infer the origin of the ovoid, a large set of analytical tools was employed, including scanning electron microscopy and backscattered electron imaging, wavelength-dispersive X-ray analysis, X-ray mapping, Raman spectroscopy, time-of-flight secondary ion mass spectrometry analysis, high-resolution transmission electron microscope imaging, and atomic force microscope topographic mapping. The concentric wall of the ovoid surrounds an originally hollow volume and exhibits internal layering of contrasting nanotextures but uniform chemical composition, and likely inherited its overall shape from a preexisting vesicle in the mesostasis glass. A final fibrous layer of Fe-rich phases blankets the interior surfaces of the ovoid wall structure. There is evidence that the parent rock of Nakhla has undergone a shock event from a nearby bolide impact that melted the rims of pyroxene and the interstitial matter and initiated an igneous hydrothermal system of rapidly cooling fluids, which were progressively mixed with fluids from the melted permafrost. Sharp temperature gradients were responsible for the crystallization of Al-rich clinopyroxene rims, rhoenite, acicular apatites, and the quenching of the mesostasis glass and the vesicle. During the formation of the ovoid structure, episodic fluid infiltration events resulted in the precipitation of saponite rinds around the vesicle walls, altered pyrrhotite to marcasite, and then isolated the ovoid wall structure from the rest of the system by depositing a layer of iron oxides/hydroxides. Carbonates, halite, and sulfates were deposited last within interstitial spaces and along fractures. Among three plausible competing hypotheses here, this particular abiotic scenario is considered to be the most reasonable explanation for the formation of the ovoid structure in Nakhla, and although compelling evidence for a biotic origin is lacking, it is evident that the martian subsurface contains niche environments where life could develop.
Collapse
Affiliation(s)
- Elias Chatzitheodoridis
- Department of Geological Sciences, School of Mining and Metallurgical Engineering, National Technical University of Athens, Athens, Greece
| | - Sarah Haigh
- School of Materials, The University of Manchester, Manchester, UK
| | - Ian Lyon
- School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Westall F. Microbial Scale Habitability on Mars. HABITABILITY OF OTHER PLANETS AND SATELLITES 2013. [DOI: 10.1007/978-94-007-6546-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Ruesch O, Poulet F, Vincendon M, Bibring JP, Carter J, Erkeling G, Gondet B, Hiesinger H, Ody A, Reiss D. Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Greenberger RN, Mustard JF, Kumar PS, Dyar MD, Breves EA, Sklute EC. Low temperature aqueous alteration of basalt: Mineral assemblages of Deccan basalts and implications for Mars. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004127] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Mangold N, Adeli S, Conway S, Ansan V, Langlais B. A chronology of early Mars climatic evolution from impact crater degradation. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je004005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Le Deit L, Flahaut J, Quantin C, Hauber E, Mège D, Bourgeois O, Gurgurewicz J, Massé M, Jaumann R. Extensive surface pedogenic alteration of the Martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003983] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Planning for Mars returned sample science: final report of the MSR End-to-End International Science Analysis Group (E2E-iSAG). ASTROBIOLOGY 2012; 12:175-230. [PMID: 22468886 DOI: 10.1089/ast.2011.0805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
18
|
Che C, Glotch TD, Bish DL, Michalski JR, Xu W. Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003740] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Tirsch D, Jaumann R, Pacifici A, Poulet F. Dark aeolian sediments in Martian craters: Composition and sources. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2009je003562] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Cousins CR, Griffiths AD, Crawford IA, Prosser BJ, Storrie-Lombardi MC, Davis LE, Gunn M, Coates AJ, Jones AP, Ward JM. Astrobiological considerations for the selection of the geological filters on the ExoMars PanCam instrument. ASTROBIOLOGY 2010; 10:933-951. [PMID: 21118025 DOI: 10.1089/ast.2010.0517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The Panoramic Camera (PanCam) instrument will provide visible-near IR multispectral imaging of the ExoMars rover's surroundings to identify regions of interest within the nearby terrain. This multispectral capability is dependant upon the 12 preselected "geological" filters that are integrated into two wide-angle cameras. First devised by the Imager for Mars Pathfinder team to detect iron oxides, this baseline filter set has remained largely unchanged for subsequent missions (Mars Exploration Rovers, Beagle 2, Phoenix) despite the advancing knowledge of the mineralogical diversity on Mars. Therefore, the geological filters for the ExoMars PanCam will be redesigned to accommodate the astrobiology focus of ExoMars, where hydrated mineral terrains (evidence of past liquid water) will be priority targets. Here, we conduct an initial investigation into new filter wavelengths for the ExoMars PanCam and present results from tests performed on Mars analog rocks. Two new filter sets were devised: one with filters spaced every 50 nm ("F1-12") and another that utilizes a novel filter selection method based upon hydrated mineral reflectance spectra ("F2-12"). These new filter sets, along with the Beagle 2 filter set (currently the baseline for the ExoMars PanCam), were tested on their ability to identify hydrated minerals and biosignatures present in Mars analog rocks. The filter sets, with varying degrees of ability, detected the spectral features of minerals jarosite, opaline silica, alunite, nontronite, and siderite present in these rock samples. None of the filter sets, however, were able to detect fossilized biomat structures and small (<2 mm) mineralogical heterogeneities present in silica sinters. Both new filter sets outperformed the Beagle 2 filters, with F2-12 detecting the most spectral features produced by hydrated minerals and providing the best discrimination between samples. Future work involving more extensive testing on Mars analog samples that exhibit a wider range of mineralogies would be the next step in carefully evaluating the new filter sets.
Collapse
|
21
|
Michalski JR, Poulet F, Loizeau D, Mangold N, Dobrea EN, Bishop JL, Wray JJ, McKeown NK, Parente M, Hauber E, Altieri F, Carrozzo FG, Niles PB. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission. ASTROBIOLOGY 2010; 10:687-703. [PMID: 20950170 DOI: 10.1089/ast.2010.0491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 10⁶ km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.
Collapse
|
22
|
Noe Dobrea EZ, Bishop JL, McKeown NK, Fu R, Rossi CM, Michalski JR, Heinlein C, Hanus V, Poulet F, Mustard RJF, Murchie S, McEwen AS, Swayze G, Bibring JP, Malaret E, Hash C. Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003351] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Moore JM, Bullock MA, Newsom H, Nelson M. Laboratory simulations of Mars evaporite geochemistry. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2008je003208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
McKeown NK, Bishop JL, Noe Dobrea EZ, Ehlmann BL, Parente M, Mustard JF, Murchie SL, Swayze GA, Bibring JP, Silver EA. Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003301] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Murchie SL, Mustard JF, Ehlmann BL, Milliken RE, Bishop JL, McKeown NK, Noe Dobrea EZ, Seelos FP, Buczkowski DL, Wiseman SM, Arvidson RE, Wray JJ, Swayze G, Clark RN, Des Marais DJ, McEwen AS, Bibring JP. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009je003342] [Citation(s) in RCA: 356] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Baldridge AM, Christensen PR. A laboratory technique for thermal emission measurement of hydrated minerals. APPLIED SPECTROSCOPY 2009; 63:678-688. [PMID: 19531295 DOI: 10.1366/000370209788559665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Laboratory emission spectra are measured at Arizona State University's Mars Space Flight Facility for comparison to remotely sensed data from Earth and Mars. Such emission spectroscopy using an interferometric spectrometer measures the energy of the sample, including reflected and emitted background sources. The detector is uncooled at ambient temperature, which produces a very low signal when measuring the energy from a sample that has a temperature close to its own. In order to increase the energy difference between the sample and the detector, thereby increasing the signal received by the detector, samples are typically heated to between 60 and 80 degrees C for several hours prior to measurement. While this method is acceptable for most rock and mineral samples, some hydrous minerals dehydrate quickly at low relative humidity and temperatures above room temperature. This change is evident in both the physical appearance of the mineral and in the position and shape of its spectral absorptions. One solution to this problem is to heat samples to lower temperatures (e.g., 40 degrees C) for only a short time period. However, this approach results in a low signal from the sample and does not always avoid dehydration. For this reason, we have developed a technique for measuring and calibrating emission spectra of hydrated minerals that involves cooling samples to well below the temperature of the detector, which avoids dehydration, while creating a large delta temperature and a strong signal from the sample. Our method allows for accurate library spectra, with discrete, pronounced spectral features (high spectral contrast), of hydrated minerals that can be used for comparison to planetary surfaces.
Collapse
Affiliation(s)
- A M Baldridge
- Jet Propulsion Laboratory, Pasadena, California 91109, USA.
| | | |
Collapse
|
27
|
Bishop JL, Dobrea EZN, McKeown NK, Parente M, Ehlmann BL, Michalski JR, Milliken RE, Poulet F, Swayze GA, Mustard JF, Murchie SL, Bibring JP. Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 2008; 321:830-3. [PMID: 18687963 DOI: 10.1126/science.1159699] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Observations by the Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars in the Mawrth Vallis region show several phyllosilicate species, indicating a wide range of past aqueous activity. Iron/magnesium (Fe/Mg)-smectite is observed in light-toned outcrops that probably formed via aqueous alteration of basalt of the ancient cratered terrain. This unit is overlain by rocks rich in hydrated silica, montmorillonite, and kaolinite that may have formed via subsequent leaching of Fe and Mg through extended aqueous events or a change in aqueous chemistry. A spectral feature attributed to an Fe2+ phase is present in many locations in the Mawrth Vallis region at the transition from Fe/Mg-smectite to aluminum/silicon (Al/Si)-rich units. Fe2+-bearing materials in terrestrial sediments are typically associated with microorganisms or changes in pH or cations and could be explained here by hydrothermal activity. The stratigraphy of Fe/Mg-smectite overlain by a ferrous phase, hydrated silica, and then Al-phyllosilicates implies a complex aqueous history.
Collapse
Affiliation(s)
- Janice L Bishop
- SETI Institute and NASA Ames Research Center, Mountain View, CA 94043, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mangold N, Ansan V, Masson P, Quantin C, Neukum G. Geomorphic study of fluvial landforms on the northern Valles Marineris plateau, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002985] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE, Grant JA, Bibring JP, Poulet F, Bishop J, Dobrea EN, Roach L, Seelos F, Arvidson RE, Wiseman S, Green R, Hash C, Humm D, Malaret E, McGovern JA, Seelos K, Clancy T, Clark R, Marais DD, Izenberg N, Knudson A, Langevin Y, Martin T, McGuire P, Morris R, Robinson M, Roush T, Smith M, Swayze G, Taylor H, Titus T, Wolff M. Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 2008; 454:305-9. [DOI: 10.1038/nature07097] [Citation(s) in RCA: 552] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 05/08/2008] [Indexed: 11/09/2022]
|
30
|
Poulet F, Gomez C, Bibring JP, Langevin Y, Gondet B, Pinet P, Belluci G, Mustard J. Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002840] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- F. Poulet
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - C. Gomez
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - J.-P. Bibring
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - Y. Langevin
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - B. Gondet
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - P. Pinet
- Laboratoire Dynamique Terrestre et Planétaire/UMR5562; Centre National de la Recherche Scientifique; Toulouse France
| | - G. Belluci
- Istituto Nazionale Di Astrofiscia dello Spazio Interplanetario; Rome Italy
| | - J. Mustard
- Geological Sciences; Brown University; Providence Rhode Island USA
| |
Collapse
|