1
|
Singh D, Sinha RK, Singh P, Roy N, Mukherjee S. Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site. ASTROBIOLOGY 2022; 22:579-597. [PMID: 35171004 DOI: 10.1089/ast.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Life is known to adapt in accordance with its surrounding environment and sustainable resources available to it. Since harsh conditions would have precluded any possible aerobic evolution of life at the martian surface, it is plausible that martian life, should it exist, would have evolved in such a way as to derive energy from more optimum resources. Iron is one of the most abundant elements present in the martian crust and occurs at about twice the amount present on Earth. Clay minerals contribute to about half the iron found in soils and sediments. On Earth, clay acts as an electron donor as well as an acceptor in the carbon cycles and thereby supports a wide variety of metabolic reactions. In this context, we consider the potential of Fe/Mg smectites, one of the most widely reported hydrated minerals on Mars, for preservation of macro- and microscopic biosignatures. We proceed by understanding the environmental conditions during the formation of smectites and various microbes and metabolic processes associated with them as indicated in Earth-based studies. We also explore the possibility of biosignatures and their identification within the Mars 2020 landing site (Jezero Crater) by using the astrobiological payloads on board the Perseverance rover.
Collapse
Affiliation(s)
- Deepali Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Priyadarshini Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Roy
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saumitra Mukherjee
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Bishop JL, Gross C, Danielsen J, Parente M, Murchie SL, Horgan B, Wray JJ, Viviano C, Seelos FP. Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on early Mars. ICARUS 2020; 341:113634. [PMID: 34045770 PMCID: PMC8152300 DOI: 10.1016/j.icarus.2020.113634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Refined calibrations of CRISM images are enabling identification of smaller deposits of unique aqueous materials on Mars that reveal changing environmental conditions at the region surrounding Mawrth Vallis. Through characterization of these clay-sulfate assemblages and their association with the layered, phyllosilicate units of this region, more details of the aqueous geochemical history can be gleaned. A stratigraphy including five distinct mineral horizons is mapped using compositional data from CRISM over CTX and HRSC imagery across 100s of km and from CRISM over HiRISE imagery across 100s of meters. Transitions in mineralogic units were characterized using visible/near-infrared (VNIR) spectral properties and surface morphology. We identified and characterized complex "doublet" type spectral signatures with two bands between 2.2 and 2.3 μm at one stratigraphic horizon. Based on comparisons with terrestrial sites, the spectral "doublet" unit described here may reflect the remnants of a salty, evaporative period that existed on Mars during the transition from formation of Fe-rich phyllosilicates to Al-rich phyllosilicates. Layered outcrops observed at Mawrth Vallis are thicker than in other altered regions of Mars, but may represent processes that were more widespread in wet regions of the planet during its early history. The aqueous geochemical environments supporting the outcrops observed here include: (i) the formation of Fe3+-rich smectites in a warm and wet environment, (ii) overlain by a thin ferrous-bearing clay unit that could be associated with heating or reducing conditions, (iii) followed by a transition to salty and/or acidic alteration phases and sulfates (characterized by the spectral "doublet" shape) in an evaporative setting, (iv) formation of Al-rich phyllosilicates through pedogenesis or acid leaching, and (v) finally persistence of poorly crystalline aluminosilicates marking the end of the warm climate on early Mars. The "doublet" type units described here are likely composed of clay-sulfate assemblages formed in saline, acidic evaporative environments similar to those found in Western Australia and the Atacama desert. Despite the chemically extreme and variable waters present at these terrestrial, saline lake environments, active ecosystems are present; thus, these "doublet" type units may mark exciting areas for continued exploration important to astrobiology on Mars.
Collapse
Affiliation(s)
- Janice L. Bishop
- SETI Institute, Mountain View, CA, United States of America
- Freie Universität Berlin, Berlin, Germany
| | | | - Jacob Danielsen
- SETI Institute, Mountain View, CA, United States of America
- San Jose State University, San Jose, CA, United States of America
| | - Mario Parente
- University of Massachusetts at Amherst, Amherst, MA, United States of America
| | - Scott L. Murchie
- Johns Hopkins University Applied Physics Lab, Laurel, MD, United States of America
| | - Briony Horgan
- Purdue University, West Lafayette, IN, United States of America
| | - James J. Wray
- Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Christina Viviano
- Johns Hopkins University Applied Physics Lab, Laurel, MD, United States of America
| | - Frank P. Seelos
- Johns Hopkins University Applied Physics Lab, Laurel, MD, United States of America
| |
Collapse
|
3
|
Poulet F, Gross C, Horgan B, Loizeau D, Bishop JL, Carter J, Orgel C. Mawrth Vallis, Mars: A Fascinating Place for Future In Situ Exploration. ASTROBIOLOGY 2020; 20:199-234. [PMID: 31916851 DOI: 10.1089/ast.2019.2074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
After the successful landing of the Mars Science Laboratory rover, both NASA and ESA initiated a selection process for potential landing sites for the Mars2020 and ExoMars missions, respectively. Two ellipses located in the Mawrth Vallis region were proposed and evaluated during a series of meetings (three for Mars2020 mission and five for ExoMars). We describe here the regional context of the two proposed ellipses as well as the framework of the objectives of these two missions. Key science targets of the ellipses and their astrobiological interests are reported. This work confirms that the proposed ellipses contain multiple past martian wet environments of a subaerial, subsurface, and/or subaqueous character, in which to probe the past climate of Mars; build a broad picture of possible past habitable environments; evaluate their exobiological potentials; and search for biosignatures in well-preserved rocks. A mission scenario covering several key investigations during the nominal mission of each rover is also presented, as well as descriptions of how the site fulfills the science requirements and expectations of in situ martian exploration. These serve as a basis for potential future exploration of the Mawrth Vallis region with new missions and describe opportunities for human exploration of Mars in terms of resources and science discoveries.
Collapse
Affiliation(s)
- François Poulet
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France
| | - Christoph Gross
- Institute of Geological Sciences, Planetary Sciences and Remote Sensing Group, Freie Universität Berlin, Berlin, Germany
| | | | - Damien Loizeau
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France
| | | | - John Carter
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, Orsay, France
| | - Csilla Orgel
- Institute of Geological Sciences, Planetary Sciences and Remote Sensing Group, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Lowe DR, Bishop JL, Loizeau D, Wray JJ, Beyer RA. Deposition of >3.7 Ga clay-rich strata of the Mawrth Vallis Group, Mars, in lacustrine, alluvial, and aeolian environments. GEOLOGICAL SOCIETY OF AMERICA BULLETIN 2019; 132:17-30. [PMID: 33958812 PMCID: PMC8098079 DOI: 10.1130/b35185.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The presence of abundant phyllosilicate minerals in Noachian (>3.7 Ga) rocks on Mars has been taken as evidence that liquid water was stable at or near the surface early in martian history. This study investigates some of these clay-rich strata exposed in crater rim and inverted terrain settings in the Mawrth Vallis region of Mars. In Muara crater the 200-m-thick, clay-rich Mawrth Vallis Group (MVG) is subdivided into five informal units numbered 1 (base) to 5 (top). Unit 1 consists of interbedded sedimentary and volcanic or volcaniclastic units showing weak Fe/Mg-smectite alteration deposited in a range of subaerial depositional settings. Above a major unconformity eroded on Unit 1, the dark-toned sediments of Unit 2 and lower Unit 3 are inferred to represent mainly wind-blown sand. These are widely interlayered with and draped by thin layers of light-toned sediment representing fine suspended-load aeolian silt and clay. These sediments show extensive Fe/Mg-smectite alteration, probably reflecting subaerial weathering. Upper Unit 3 and units 4 and 5 are composed of well-layered, fine-grained sediment dominated by Al-phyllosilicates, kaolinite, and hydrated silica. Deposition occurred in a large lake or arm of a martian sea. In the inverted terrain 100 km to the NE, Unit 4 shows very young slope failures suggesting that the clay-rich sediments today retain a significant component of water ice. The MVG provides evidence for the presence of large, persistent standing bodies of water on early Mars as well as a complex association of flanking shoreline, alluvial, and aeolian systems. Some of the clays, especially the Fe/Mg smectites in upper units 1 and 2 appear to have formed through subaerial weathering whereas the aluminosilicates, kaolinite, and hydrated silica of units 3, 4, and 5 formed mainly through alteration of fine sediment in subaqueous environments.
Collapse
Affiliation(s)
- Donald R. Lowe
- Department of Geological Sciences, Stanford University, Stanford, California 94305-2115, USA
| | - Janice L. Bishop
- SETI & NASA-Ames Research Center, Mountain View, California, USA
| | - Damien Loizeau
- Université Claude Bernard Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL-TPE, F-69622, Villeurbanne, France
- Institut d’Astrophysique Spatiale, Université Paris Sud, F-91405 Orsay, France
| | - James J. Wray
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0340, USA
| | - Ross A. Beyer
- SETI & NASA-Ames Research Center, Mountain View, California, USA
| |
Collapse
|
5
|
Bishop JL, Fairén AG, Michalski JR, Gago-Duport L, Baker LL, Velbel MA, Gross C, Rampe EB. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars. NATURE ASTRONOMY 2018; 2:260-213. [PMID: 32042926 PMCID: PMC7008931 DOI: 10.1038/s41550-017-0377-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/27/2017] [Indexed: 05/28/2023]
Abstract
The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.
Collapse
Affiliation(s)
- Janice L. Bishop
- SETI Institute, Mountain View, CA, USA
- National Aeronautics and Space Administration’s Ames Research Center, Moffett Field, CA, USA
| | - Alberto G. Fairén
- Centro de Astrobiología (Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial), Madrid, Spain
- Cornell University, Ithaca, NY, USA
| | - Joseph R. Michalski
- Department of Earth Sciences & Laboratory for Space Research, University of Hong Kong, Hong Kong, China
| | | | | | - Michael A. Velbel
- Michigan State University, East Lansing, MI, USA
- Smithsonian Institution, Washington, DC, USA
| | | | - Elizabeth B. Rampe
- National Aeronautics and Space Administration-Johnson Space Center, Houston, TX, USA
| |
Collapse
|
6
|
Abstract
Spectral remote sensing in the visible/near-infrared (VNIR) and mid-IR (MIR) regions has enabled detection and characterisation of multiple clays and clay minerals on Earth and in the Solar System. Remote sensing on Earth poses the greatest challenge due to atmospheric absorptions that interfere with detection of surface minerals. Still, a greater variety of clay minerals have been observed on Earth than other bodies due to extensive aqueous alteration on our planet. Clay minerals have arguably been mapped in more detail on the planet Mars because they are not masked by vegetation on that planet and the atmosphere is less of a hindrance. Fe/Mg-smectite is the most abundant clay mineral on the surface of Mars and is also common in meteorites and comets where clay minerals are detected.
Collapse
Affiliation(s)
- Janice L Bishop
- SETI Institute, Carl Sagan Center, 189 Bernardo Ave, Suite 200, Mountain View, CA 94043, USA
| | | | - John Carter
- Institut d'Astrophysique Spatiale, CNRS/Paris-Sud University, Orsay, France
| |
Collapse
|
7
|
Fairén AG, Gil‐Lozano C, Uceda ER, Losa‐Adams E, Davila AF, Gago‐Duport L. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:1855-1879. [PMID: 29104844 PMCID: PMC5656915 DOI: 10.1002/2016je005229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC‐INTA)MadridSpain
- Department of AstronomyCornell UniversityIthacaNew YorkUSA
| | | | - Esther R. Uceda
- Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
| | | | | | | |
Collapse
|
8
|
Archer PD, Ming DW, Sutter B. The effects of instrument parameters and sample properties on thermal decomposition: interpreting thermal analysis data from Mars. ACTA ACUST UNITED AC 2013. [DOI: 10.1186/2191-2521-2-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Greenberger RN, Mustard JF, Kumar PS, Dyar MD, Breves EA, Sklute EC. Low temperature aqueous alteration of basalt: Mineral assemblages of Deccan basalts and implications for Mars. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004127] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Le Deit L, Flahaut J, Quantin C, Hauber E, Mège D, Bourgeois O, Gurgurewicz J, Massé M, Jaumann R. Extensive surface pedogenic alteration of the Martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003983] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
McGlynn IO, Fedo CM, McSween HY. Soil mineralogy at the Mars Exploration Rover landing sites: An assessment of the competing roles of physical sorting and chemical weathering. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003861] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Cousins CR, Crawford IA. Volcano-ice interaction as a microbial habitat on Earth and Mars. ASTROBIOLOGY 2011; 11:695-710. [PMID: 21877914 DOI: 10.1089/ast.2010.0550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Volcano-ice interaction has been a widespread geological process on Earth that continues to occur to the present day. The interaction between volcanic activity and ice can generate substantial quantities of liquid water, together with steep thermal and geochemical gradients typical of hydrothermal systems. Environments available for microbial colonization within glaciovolcanic systems are wide-ranging and include the basaltic lava edifice, subglacial caldera meltwater lakes, glacier caves, and subsurface hydrothermal systems. There is widespread evidence of putative volcano-ice interaction on Mars throughout its history and at a range of latitudes. Therefore, it is possible that life on Mars may have exploited these habitats, much in the same way as has been observed on Earth. The sedimentary and mineralogical deposits resulting from volcano-ice interaction have the potential to preserve evidence of any indigenous microbial populations. These include jökulhlaup (subglacial outflow) sedimentary deposits, hydrothermal mineral deposits, basaltic lava flows, and subglacial lacustrine deposits. Here, we briefly review the evidence for volcano-ice interactions on Mars and discuss the geomicrobiology of volcano-ice habitats on Earth. In addition, we explore the potential for the detection of these environments on Mars and any biosignatures these deposits may contain.
Collapse
Affiliation(s)
- Claire R Cousins
- Department of Earth and Planetary Sciences, Birkbeck College, University of London, London, UK.
| | | |
Collapse
|
13
|
Nunes DC, Smrekar SE, Fisher B, Plaut JJ, Holt JW, Head JW, Kadish SJ, Phillips RJ. Shallow Radar (SHARAD), pedestal craters, and the lost Martian layers: Initial assessments. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003690] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC, Baldridge AM, Chojnacki M, Bishop JL, Ehlmann BL, Murchie SL, Clark RN, Seelos FP, Tornabene LL, Squyres SW. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003694] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Story S, Bowen BB, Benison KC, Schulze DG. Authigenic phyllosilicates in modern acid saline lake sediments and implications for Mars. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003687] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
McSween HY, McGlynn IO, Rogers AD. Determining the modal mineralogy of Martian soils. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003582] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Michalski JR, Poulet F, Loizeau D, Mangold N, Dobrea EN, Bishop JL, Wray JJ, McKeown NK, Parente M, Hauber E, Altieri F, Carrozzo FG, Niles PB. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission. ASTROBIOLOGY 2010; 10:687-703. [PMID: 20950170 DOI: 10.1089/ast.2010.0491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 10⁶ km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.
Collapse
|
18
|
Warner NH, Farmer JD. Subglacial hydrothermal alteration minerals in Jökulhlaup deposits of Southern Iceland, with implications for detecting past or present habitable environments on Mars. ASTROBIOLOGY 2010; 10:523-547. [PMID: 20624060 DOI: 10.1089/ast.2009.0425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Jökulhlaups are terrestrial catastrophic outfloods, often triggered by subglacial volcanic eruptions. Similar volcano-ice interactions were likely important on Mars where magma/lava may have interacted with the planet's cryosphere to produce catastrophic floods. As a potential analogue to sediments deposited during martian floods, the Holocene sandurs of Iceland are dominated by basaltic clasts derived from the subglacial environment and deposited during jökulhlaups. Palagonite tuffs and breccias, present within the deposits, represent the primary alteration lithology. The surface abundance of palagonite on the sandurs is 1-20%. X-ray diffraction (XRD) analysis of palagonite breccias confirms a mineral assemblage of zeolites, smectites, low-quartz, and kaolinite. Oriented powder X-ray diffractograms (< 2 microm fraction) for palagonite breccia clasts and coatings reveal randomly ordered smectite, mixed layer smectite/illite, zeolites, and quartz. Visible light-near infrared (VNIR) and shortwave infrared (SWIR) lab spectroscopic data of the same palagonite samples show H2O/OH(-) absorptions associated with clays and zeolites. SWIR spectra derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images of the sandurs reveal Al-OH(-) and Si-OH(-) absorption features. The identified alteration mineral assemblage is consistent with low temperature (100-140 degrees C) hydrothermal alteration of basaltic material within the subglacial environment. These results suggest that potential martian analog sites that contain a similar suite of hydrated minerals may be indicative of past hydrothermal activity and locations where past habitable environments for microbial life may be found.
Collapse
Affiliation(s)
- Nicholas H Warner
- Department of Earth Science & Engineering, Imperial College London, South Kensington Campus, London, UK.
| | | |
Collapse
|
19
|
Seelos KD, Arvidson RE, Jolliff BL, Chemtob SM, Morris RV, Ming DW, Swayze GA. Silica in a Mars analog environment: Ka'u Desert, Kilauea Volcano, Hawaii. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003347] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|