1
|
Skipper TN, Hogrefe C, Henderson BH, Mathur R, Foley KM, Russell AG. Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ. GEOSCIENTIFIC MODEL DEVELOPMENT 2024; 17:8373-8397. [PMID: 39877238 PMCID: PMC11770594 DOI: 10.5194/gmd-17-8373-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
United States (US) background ozone (O3) is the counterfactual O3 that would exist with zero US anthropogenic emissions. Estimates of US background O3 typically come from chemical transport models (CTMs), but different models vary in their estimates of both background and total O3. Here, a measurement-model data fusion approach is used to estimate CTM biases in US anthropogenic O3 and multiple US background O3 sources, including natural emissions, long-range international emissions, short-range international emissions from Canada and Mexico, and stratospheric O3. Spatially and temporally varying bias correction factors adjust each simulated O3 component so that the sum of the adjusted components evaluates better against observations compared to unadjusted estimates. The estimated correction factors suggest a seasonally consistent positive bias in US anthropogenic O3 in the eastern US, with the bias becoming higher with coarser model resolution and with higher simulated total O3, though the bias does not increase much with higher observed O3. Summer average US anthropogenic O3 in the eastern US was estimated to be biased high by 2, 7, and 11 ppb (11%, 32%, and 49%) for one set of simulations at 12, 36, and 108 km resolutions and 1 and 6 ppb (10% and 37%) for another set of simulations at 12 and 108 km resolutions. Correlation among different US background O3 components can increase the uncertainty in the estimation of the source-specific adjustment factors. Despite this, results indicate a negative bias in modeled estimates of the impact of stratospheric O3 at the surface, with a western US spring average bias of -3.5 ppb (-25%) estimated based on a stratospheric O3 tracer. This type of data fusion approach can be extended to include data from multiple models to leverage the strengths of different data sources while reducing uncertainty in the US background ozone estimates.
Collapse
Affiliation(s)
- T. Nash Skipper
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Christian Hogrefe
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | | | - Rohit Mathur
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Kristen M. Foley
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Armistead G. Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Ninneman M, Lyman S, Hu L, Cope E, Ketcherside D, Jaffe D. Investigation of Ozone Formation Chemistry during the Salt Lake Regional Smoke, Ozone, and Aerosol Study (SAMOZA). ACS EARTH & SPACE CHEMISTRY 2023; 7:2521-2534. [PMID: 38148992 PMCID: PMC10749563 DOI: 10.1021/acsearthspacechem.3c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/13/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Salt Lake City (SLC), UT, is an urban area where ozone (O3) concentrations frequently exceed health standards. This study uses an observationally constrained photochemical box model to investigate the drivers of O3 production during the Salt Lake Regional Smoke, Ozone, and Aerosol Study (SAMOZA), which took place from August to September 2022 in SLC. During SAMOZA, a suite of volatile organic compounds (VOCs), oxides of nitrogen (NOx), and other parameters were measured at the Utah Technical Center, a high-NOx site in the urban core. We examined four high-O3 cases: 4 August and 3, 11, and 12 September, which were classified as a nonsmoky weekday, a weekend day with minimal smoke influence, a smoky weekend day, and a smoky weekday, respectively. The modeled O3 production on 4 August and 3 September was highly sensitive to VOCs and insensitive to NOx reductions of ≤50%. Box model results suggest that the directly emitted formaldehyde contributed to the rapid increase in morning O3 concentrations on 3 September. Model sensitivity tests for September 11-12 indicated that smoke-emitted VOCs, especially aldehydes, had a much larger impact on O3 production than NOx and/or anthropogenic VOCs. On 11 and 12 September, smoke-emitted VOCs enhanced model-predicted maximum daily 8 h average O3 concentrations by 21 and 13 parts per billion (ppb), respectively. Overall, our results suggest that regionwide VOC reductions of at least 30-50% or NOx reductions of at least 60% are needed to bring SLC into compliance with the national O3 standard of 70 ppb.
Collapse
Affiliation(s)
- Matthew Ninneman
- School
of Science, Technology, Engineering and Mathematics, University of Washington Bothell, 18115 Campus Way NE, Bothell, Washington 98011, United States
| | - Seth Lyman
- Bingham
Research Center, Utah State University, 320 North Aggie Boulevard, Vernal, Utah 84078, United States
- Department
of Chemistry and Biochemistry, Utah State
University, 4820 Old
Main Hill, Logan, Utah 84322, United States
| | - Lu Hu
- Department
of Chemistry and Biochemistry, University
of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Emily Cope
- Department
of Chemistry and Biochemistry, University
of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Damien Ketcherside
- Department
of Chemistry and Biochemistry, University
of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Daniel Jaffe
- School
of Science, Technology, Engineering and Mathematics, University of Washington Bothell, 18115 Campus Way NE, Bothell, Washington 98011, United States
- Department
of Atmospheric Sciences, University of Washington, 3920 Okanogan Lane, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Zhu S, Xu J, Zeng J, Yu C, Wang Y, Wang H, Shi J. LESO: A ten-year ensemble of satellite-derived intercontinental hourly surface ozone concentrations. Sci Data 2023; 10:741. [PMID: 37880252 PMCID: PMC10600137 DOI: 10.1038/s41597-023-02656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
This study presents a novel ensemble of surface ozone (O3) generated by the LEarning Surface Ozone (LESO) framework. The aim of this study is to investigate the spatial and temporal variation of surface O3. The LESO ensemble provides unique and accurate hourly (daily/monthly/yearly as needed) O3 surface concentrations on a fine spatial resolution of 0.1◦ × 0.1◦ across China, Europe, and the United States over a period of 10 years (2012-2021). The LESO ensemble was generated by establishing the relationship between surface O3 and satellite-derived O3 total columns together with high-resolution meteorological reanalysis data. This breakthrough overcomes the challenge of retrieving O3 in the lower atmosphere from satellite signals. A comprehensive validation indicated that the LESO datasets explained approximately 80% of the hourly variability of O3, with a root mean squared error of 19.63 μg/m3. The datasets convincingly captured the diurnal cycles, weekend effects, seasonality, and interannual variability, which can be valuable for research and applications related to atmospheric and climate sciences.
Collapse
Affiliation(s)
- Songyan Zhu
- National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China.
- School of GeoSciences, National Center for Earth Observations, University of Edinburgh, Edinburgh, EH9 3FF, UK.
| | - Jian Xu
- National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jingya Zeng
- Department of Economics, Business School, University of Exeter, Exeter, EX4 4PU, UK
| | - Chao Yu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
| | - Yapeng Wang
- Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center, China Meteorological Administration, Beijing, 100081, China
| | - Haolin Wang
- School of GeoSciences, National Center for Earth Observations, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Jiancheng Shi
- National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Xue K, Zhang X. The rationale behind updates to ambient ozone guidelines and standards. Front Public Health 2023; 11:1273826. [PMID: 38756739 PMCID: PMC11097954 DOI: 10.3389/fpubh.2023.1273826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 05/18/2024] Open
Abstract
Although air quality has gradually improved in recent years, as shown by the decrease in PM2.5 concentration, the problem of rising ambient ozone has become increasingly serious. To reduce hazards to human health and environmental welfare exposure to ozone, scientists and government regulators have developed ozone guidelines and standards. These answer the questions of which levels of exposure are hazardous to human health and the environment, and how can ambient ozone exposure be guaranteed, respectively. So what are the basis for the ozone guidelines and standards? This paper reviews in detail the process of revising ozone guidelines and standards by the World Health Organization (WHO) and the United States Environmental Protection Agency (EPA). The present study attempts to explore and analyze the scientific basis and empirical methods for updating guidelines and standards, in a view to guide the future revision process and provide directions for further scientific research. We found many epidemiological and toxicological studies and exposure-response relationships provided strong support for developing and revising the ozone guidelines. When setting standards, ozone exposure has been effectively considered, and the economic costs, health, and indirect economic benefits of standard compliance were reasonably estimated. Accordingly, epidemiological and toxicological studies and the establishment of exposure-response relationships, as well as exposure and risk assessment and benefit-cost estimates of standards compliance should be strengthened for the further update of guidelines and standards. In addition, with the increasing prominence of combined air pollution led by ozone and PM2.5, more joint exposure scientific research related to ozone guidelines and standards should be undertaken.
Collapse
Affiliation(s)
- Kaibing Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Yanshan Critical Zong Nation Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Chen Z, Xie Y, Liu J, Shen L, Cheng X, Han H, Yang M, Shen Y, Zhao T, Hu J. Distinct seasonality in vertical variations of tropospheric ozone over coastal regions of southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162423. [PMID: 36858237 DOI: 10.1016/j.scitotenv.2023.162423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The surface ozone pollution is strongly coupled with ozone variations above the ground. Using sufficient airborne ozone profiles during 2012-2018, this study reveals the tropospheric ozone distributions over four cities located in coastal regions of southern China. The 7-year mean tropospheric ozone profiles in the four cities consistently show a double-maxima profile, with a local maximum at 1 km altitude and the other in the middle-to-upper troposphere. Seasonally, springtime ozone is larger than the annual mean throughout the troposphere, while ozone in summer is high in the middle-to-upper troposphere, leading to largest vertical variations among seasons. Ozone in the middle-to-upper troposphere is lower in autumn than in spring and summer. The winter ozone is characterized with a minimum in the lower troposphere, and low values in the middle-to-upper troposphere, leading to least vertical variations among seasons. We untangle the causes for these complicated vertical ozone variations using the GEOS-Chem model. The tropospheric ozone over southern China is partitioned into locally produced ozone, regionally transported native ozone, imported ozone from outside of China (foreign ozone) and natural stratospheric ozone. The results suggest that the springtime ozone abundance is due to the enhanced import of foreign and stratospheric ozone and the intensified regional transport processes of native ozone. In summer, local ozone production is enhanced and regional transport of ozone in the middle-to-upper troposphere is strengthened due to upward air motions, while such transport becomes weaker in autumn leaving low ozone in the middle-to-upper troposphere. In winter, the intensive westerly jets promote foreign and stratospheric ozone again in the middle-to-upper troposphere, but the local ozone production and regional transport are sharply reduced, resulting in low ozone near the surface. This study provides new insights into regional ozone profiles and reveals the significance of vertical ozone variations on surface ozone prevention strategy.
Collapse
Affiliation(s)
- Zhixiong Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yangcheng Xie
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Jane Liu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China; Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada.
| | - Lijuan Shen
- Key Laboratory for Aerosol-Cloud-Precipitation of the China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xugeng Cheng
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Han Han
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Mengmiao Yang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Yukun Shen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Tianliang Zhao
- Key Laboratory for Aerosol-Cloud-Precipitation of the China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China
| | - Jun Hu
- Fujian Provincial Key Laboratory of Environmental Engineering, Fujian Academy of Environmental Sciences, Fuzhou, China
| |
Collapse
|
6
|
Veefkind JP, Serrano‐Calvo R, de Gouw J, Dix B, Schneising O, Buchwitz M, Barré J, van der A RJ, Liu M, Levelt PF. Widespread Frequent Methane Emissions From the Oil and Gas Industry in the Permian Basin. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2023; 128:e2022JD037479. [PMID: 37034455 PMCID: PMC10078246 DOI: 10.1029/2022jd037479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 06/19/2023]
Abstract
Emissions of methane (CH4) in the Permian basin (USA) have been derived for 2019 and 2020 from satellite observations of the Tropospheric Monitoring Instrument (TROPOMI) using the divergence method, in combination with a data driven method to estimate the background column densities. The resulting CH4 emission data, which have been verified using model data with known emissions, have a spatial resolution of approximately 10 km. The CH4 emissions show moderate spatial correlation with the locations of oil and gas production and drilling activities in the Permian basin, as well as with emissions of nitrogen oxides (NOx). Analysis of the emission maps and time series indicates that a significant fraction of methane emissions in the Permian basin is from frequent widespread emissions sources, rather than from a few infrequent very large unplanned releases, which is important considering possible CH4 emission mitigation strategies. In addition to providing spatially resolved emissions, the divergence method also provides the total emissions of the Permian basin and its main sub-basins. The total CH4 emission of the Permian is estimated as 3.0 ± 0.7 Tg yr-1 for 2019, which agrees with other independent estimates based on TROPOMI data. For the Delaware sub-basin, it is estimated as 1.4 ± 0.3 Tg yr-1 for 2019, and for the Midland sub-basin 1.2 ± 0.3 Tg yr-1. In 2020 the emissions are 9% lower compared to 2019 in the entire Permian basin, and respectively 19% and 27% for the Delaware and Midland sub-basins.
Collapse
Affiliation(s)
- J. P. Veefkind
- Royal Netherlands Meteorological Institute KNMIDe BiltThe Netherlands
- Department of Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands
| | - R. Serrano‐Calvo
- Department of Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands
| | - J. de Gouw
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado BoulderBoulderCOUSA
- Department of ChemistryUniversity of Colorado BoulderBoulderCOUSA
| | - B. Dix
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado BoulderBoulderCOUSA
| | - O. Schneising
- Institute of Environmental Physics (IUP)University of Bremen FB1BremenGermany
| | - M. Buchwitz
- Institute of Environmental Physics (IUP)University of Bremen FB1BremenGermany
| | - J. Barré
- University Cooperation for Atmospheric ResearchBoulderCOUSA
| | - R. J. van der A
- Royal Netherlands Meteorological Institute KNMIDe BiltThe Netherlands
| | - M. Liu
- Royal Netherlands Meteorological Institute KNMIDe BiltThe Netherlands
| | - P. F. Levelt
- Royal Netherlands Meteorological Institute KNMIDe BiltThe Netherlands
- Department of Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands
- National Center for Atmospheric ResearchBoulderCOUSA
| |
Collapse
|
7
|
Mathur R, Kang D, Napelenok SL, Xing J, Hogrefe C, Sarwar G, Itahashi S, Henderson BH. How have Divergent Global Emission Trends Influenced Long-range Transported Ozone to North America? JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:0. [PMID: 36275858 PMCID: PMC9580341 DOI: 10.1029/2022jd036926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/07/2022] [Indexed: 05/31/2023]
Abstract
Several locations across the United States in non-compliance with the national standard for ground-level ozone (O3) are thought to have sizeable influences from distant extra-regional emission sources or natural stratospheric O3, which complicates design of local emission control measures. To quantify the amount of long-range transported O3 (LRT O3), its origin, and change over time, we conduct and analyze detailed sensitivity calculations characterizing the response of O3 to emissions from different source regions across the Northern Hemisphere in conjunction with multi-decadal simulations of tropospheric O3 distributions and changes. Model calculations show that the amount of O3 at any location attributable to sources outside North America varies both spatially and seasonally. On a seasonal-mean basis, during 1990-2010, LRT O3 attributable to international sources steadily increased by 0.06-0.2 ppb yr-1 at locations across the United States and arose from superposition of unequal and contrasting trends in individual source-region contributions, which help inform attribution of the trend evident in O3 measurements. Contributions of emissions from Europe steadily declined through 2010, while those from Asian emissions increased and remained dominant. Steadily rising NOx emissions from international shipping resulted in increasing contributions to LRT O3, comparable to those from Asian emissions in recent years. Central American emissions contribute a significant fraction of LRT O3 in southwestern United States. In addition to the LRT O3 attributable to emissions outside of North America, background O3 across the continental United States is comprised of a sizeable and spatially variable fraction that is of stratospheric origin (29-78%).
Collapse
Affiliation(s)
- Rohit Mathur
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Daiwen Kang
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Sergey L. Napelenok
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Jia Xing
- Tsinghua University, Beijing, China
| | - Christian Hogrefe
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Golam Sarwar
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Syuichi Itahashi
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Japan
| | - Barron H. Henderson
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, RTP, NC, USA
| |
Collapse
|
8
|
Zhan C, Xie M. Exploring the link between ozone pollution and stratospheric intrusion under the influence of tropical cyclone Ampil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154261. [PMID: 35248632 DOI: 10.1016/j.scitotenv.2022.154261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/20/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Tropical cyclones (TCs) are synoptic-scale systems with a diameter of up to 2000 km, and may persist for several days to weeks. They can significantly affect the atmospheric conditions and ozone (O3) concentrations in coastal areas. They also induce stratospheric intrusion (SI, the injection of stratospheric O3 into the troposphere) by changing the height of the tropopause. Focusing on the Yangtze River Delta (YRD) region, a highly urbanized coastal area with severe O3 pollution, we systematically analyze the characteristics of O3 pollution and SIs as well as their connections under the influence of tropical cyclone Ampil. Based on surface observations, 120-h backward trajectories and ERA5 reanalysis meteorological data, the urban O3 pollution affected by tropical cyclone Ampil mainly resulted from active photochemical reactions inside the boundary layer and poor diffusion conditions characterized by weak winds. SIs induced by tropical cyclone Ampil were important for the upper and middle troposphere, where O3 concentration could increase up to 180 ppbv. But they hardly reached the ground over the YRD. Therefore, there was no direct connection between O3 pollution and SIs. However, the location of SIs can predict urban O3 pollution. SIs moved with tropical cyclone Ampil but appeared on the northwest side of Ampil, usually 500-1000 km away from tropical cyclone Ampil center. At 200 hPa, they corresponded to a high-PV (>2 PVU) air mass rich in O3 (>200 ppbv). Below this stratospheric PV signature, urban O3 concentration was usually high.
Collapse
Affiliation(s)
- Chenchao Zhan
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Min Xie
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Koplitz S, Simon H, Henderson B, Liljegren J, Tonnesen G, Whitehill A, Wells B. Changes in Ozone Chemical Sensitivity in the United States from 2007 to 2016. ACS ENVIRONMENTAL AU 2022; 2:206-222. [PMID: 35967933 PMCID: PMC9371464 DOI: 10.1021/acsenvironau.1c00029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anthropogenic nitrogen oxide (NOx) and volatile organic compound (VOC) emissions in the U.S. have declined substantially over the last decade, altering the NOx-VOC chemistry and ozone (O3) production characteristics of many areas. In this work we use multiple air quality analysis tools to assess how these large reductions in NOx and VOC have affected O3 production regimes across the U.S. between 2007 and 2016. We first compare observed and modeled evolution of NOx-limited and NOx-saturated O3 formation regimes using a day-of-week (DOW) analysis. This comparison builds confidence in the model's ability to qualitatively capture O3 changes due to chemistry and meteorology both within years and across periods of large emissions decreases. DOW analysis, however, cannot definitively differentiate between emissions and meteorology impacts. We therefore supplement this analysis with sensitivity calculations from CAMx-HDDM to characterize modeled shifts in O3 formation chemistry between 2007 and 2016 in different regions of the U.S. We also conduct a more detailed investigation of the O3 chemical behavior observed in Chicago and Detroit, two complex urban areas in the Midwest. Both the ambient and modeling data show that more locations across the U.S. have shifted towards NOx-limited regimes between 2007 and 2016. The model-based HDDM sensitivity analysis shows only a few locations remaining NOx-saturated on high-O3 days in 2016 including portions of New York City, Chicago, Minneapolis, San Francisco and Los Angeles. This work offers insights into the current state of O3 production chemistry in large population centers across the U.S., as well as how O3 chemistry in these areas may evolve in the future.
Collapse
Affiliation(s)
- Shannon Koplitz
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency
| | - Heather Simon
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency
| | - Barron Henderson
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency
| | | | | | - Andrew Whitehill
- Office of Research and Development, U.S. Environmental Protection Agency
| | - Benjamin Wells
- Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency
| |
Collapse
|
10
|
Parrish DD, Faloona IC, Derwent RG. Observational-based assessment of contributions to maximum ozone concentrations in the western United States. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:434-454. [PMID: 35263246 DOI: 10.1080/10962247.2022.2050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Archived Ozone Design Values (ODVs) provide smoothed temporal records of maximum ozone concentrations impacting monitoring sites throughout the US. Utilizing time series of ODVs recorded at sites along the US West Coast, we separately estimate ODV contributions from US background ozone and from production driven by US anthropogenic precursor emissions. Sondes launched from Trinidad Head in northern California measure the vertical distribution of baseline ozone transported ashore from the Pacific; this profile is reflected in the increase of the US background ODV contribution with monitoring site elevation in both rural and urban areas. The ODVs that would result from US background ozone alone are small at coastal, sea level locations (average ~45 ppb), but increase with altitude; above 1 km US background ODVs can exceed 60 ppb. US background ozone contributions now constitute the majority of the maximum ODVs throughout the US west coast region, including the Los Angeles urban area, which records the country's highest ODVs. US anthropogenic emissions presently cause enhancements of 35 to 55 ppb to the maximum ODVs in the Los Angeles area; thus, local emission controls can further reduce ozone even though the background contribution is larger. In other US west coast urban areas ODV enhancements from US anthropogenic emissions are much smaller than the US background ODV contribution. The past decrease in US anthropogenic ODV enhancements from emission controls is larger than generally realized - a factor of more than 6 from 1980 to 2020, while US background ODV contributions varied to only a small extent over those four decades. Wildfire impacts on ODVs are significant in urban areas of the Pacific Northwest, but not over the vast northern US rural region. There is an indication that agricultural emissions of nitrogen oxides in California's Salinas Valley increase downwind maximum ODVs by 5-10 ppb.Implications: In 2020 the ozone design values (ODVs) resulting from transported background ozone alone are now larger than the ODV enhancements from US anthropogenic precursor emissions, even in the Los Angeles urban area, where the nation's highest ODVs are recorded. The US anthropogenic ODV enhancements have been reduced by more than a factor of 6 from 1980 to 2020. The maximum US background ODV contributions have varied somewhat, but in each of the US west coast urban areas it was 60 ppb or larger in 2000. These contributions are so large that reducing maximum urban ODVs to the 70 ppb required by the 2015 ozone NAAQS is very difficult. There remains relatively little room for further reducing ODVs through domestic emission controls alone. From this perspective, degraded US ozone air quality in the western US is primarily due to the US background ozone contribution, with the US anthropogenic enhancement making a significant, but smaller contribution. Notably, the US background ODV has slowly decreased (~1 ppb decade-1; Parrish, Derwent, and Faloona 2021) since the mid-2000s; cooperative, international emission control efforts aimed at continuing or even accelerating this background ozone decrease may be an effective approach to further ODV reductions, since the US background ODV is largely due to a hemisphere-wide, transported reservoir of ozone with contributions from all northern midlatitude continents. Given the major contribution of background ozone to observed ODVs, future reviews of the ozone NAAQS will be better informed if observational-based estimates of background ODV contributions are considered, in addition to model-derived estimates upon which past reviews have solely relied.
Collapse
Affiliation(s)
- David D Parrish
- Air Quality Research Center, University of California, Davis, California, USA
- David.D.Parrish, LLC, Boulder, Corolado, USA
| | - Ian C Faloona
- Air Quality Research Center, University of California, Davis, California, USA
- Department of Land, Air, & Water Resources, University of California, Davis, California, USA
| | | |
Collapse
|
11
|
Investigation of Policy Relevant Background (PRB) Ozone in East Asia. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The concept of Policy Relevant Background (PRB) ozone has emerged in recent years to address the air quality baseline on the theoretical limits of air pollution controls. In this study, the influence of Long-range Transport (LRT) of air pollutants from North America and the effect of Stratosphere-Troposphere Transport (STT) on PRB ozone was investigated using GEOS-Chem coupled WRF-CMAQ modelling system. Four distinct seasons in 2006 were simulated to understand better the seasonal and geographical impacts of these externalities on PRB ozone over East Asia (EA). Overall, the LRT impact from North America has been found to be ~0.54 ppbv, while the maximum impacts were found at the mountain stations with values of 2.3 ppbv, 3.3 ppbv, 2.3 ppbv, and 3.0 ppbv for January, April, July, and October, respectively. In terms of PRB ozone, the effect of STT has enhanced the surface background ozone by ~3.0 ppbv, with a maximum impact of 7.8 ppbv found in the northeastern part of East Asia (near Korea and Japan). Springtime (i.e., April) has the most vital STT signals caused by relatively cold weather and unstable atmospheric condition resulting from the transition of the monsoon season. The simulated PRB ozone based on the mean values of the maximum daily 8-h average (MDA8) is 53 ppbv for spring (April) and 22 ppbv for summer (July). Up to ~1.0 ppbv and ~2.2 ppbv of MDA8 ozone were attributed to LRT and STT, respectively. Among the selected cities, Beijing and Guangzhou have received the most substantial anthropogenic enhancement in MDA8 ozone in summer, ranging from 40.0 ppbv to 56.0 ppbv.
Collapse
|
12
|
Chang K, Cooper OR, Gaudel A, Allaart M, Ancellet G, Clark H, Godin‐Beekmann S, Leblanc T, Van Malderen R, Nédélec P, Petropavlovskikh I, Steinbrecht W, Stübi R, Tarasick DW, Torres C. Impact of the COVID‐19 Economic Downturn on Tropospheric Ozone Trends: An Uncertainty Weighted Data Synthesis for Quantifying Regional Anomalies Above Western North America and Europe. AGU ADVANCES 2022; 3:e2021AV000542. [PMCID: PMC9111294 DOI: 10.1029/2021av000542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 05/17/2023]
Abstract
This study quantifies the association between the COVID‐19 economic downturn and 2020 tropospheric ozone anomalies above Europe and western North America, and their impact on long‐term trends. Anomaly detection for an atmospheric time series is usually carried out by identifying potentially aberrant data points relative to climatological values. However, detecting ozone anomalies from sparsely sampled ozonesonde profiles (once per week at most sites) is challenging due to ozone's high temporal variability. We first demonstrate the challenges for summarizing regional trends based on independent time series from multiple nearby ozone profiling stations. We then propose a novel regional‐scale anomaly detection framework based on generalized additive mixed models, which accounts for the sampling frequency and inherent data uncertainty associated with each vertical profile data set, measured by ozonesondes, lidar or commercial aircraft. This method produces a long‐term monthly time series with high vertical resolution that reports ozone anomalies from the surface to the middle‐stratosphere under a unified framework, which can be used to quantify the regional‐scale ozone anomalies during the COVID‐19 economic downturn. By incorporating extensive commercial aircraft data and frequently sampled ozonesonde profiles above Europe, we show that the complex interannual variability of ozone can be adequately captured by our modeling approach. The results show that free tropospheric ozone negative anomalies in 2020 are the most profound since the benchmark year of 1994 for both Europe and western North America, and positive trends over 1994–2019 are diminished in both regions by the 2020 anomalies. 2020 is the only year that both Europe and western North America show strong negative tropospheric ozone anomalies since 1994 Positive free tropospheric ozone trends above Europe and western North America since 1994 are diminished by the 2020 anomalies Data integration of multiple time series provides a better understanding of ozone variability compared to individual records
Collapse
Affiliation(s)
- Kai‐Lan Chang
- Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderCOUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
| | - Owen R. Cooper
- Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderCOUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
| | - Audrey Gaudel
- Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderCOUSA
- NOAA Chemical Sciences LaboratoryBoulderCOUSA
| | - Marc Allaart
- Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
| | | | | | | | - Thierry Leblanc
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyWrightwoodCAUSA
| | | | - Philippe Nédélec
- Laboratoire d’AérologieCNRS and Université de Toulouse IIIToulouseFrance
| | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderCOUSA
- NOAA Global Monitoring LaboratoryBoulderCOUSA
| | | | - René Stübi
- Federal Office of Meteorology and ClimatologyMeteoSwissPayerneSwitzerland
| | | | | |
Collapse
|
13
|
Zhu Q, Bi J, Liu X, Li S, Wang W, Zhao Y, Liu Y. Satellite-Based Long-Term Spatiotemporal Patterns of Surface Ozone Concentrations in China: 2005-2019. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27004. [PMID: 35138921 PMCID: PMC8827621 DOI: 10.1289/ehp9406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Although short-term ozone (O3) exposure has been associated with a series of adverse health outcomes, research on the health effects of chronic O3 exposure is still limited, especially in developing countries because of the lack of long-term exposure estimates. OBJECTIVES The present study aimed to estimate the spatiotemporal distribution of monthly mean daily maximum 8-h average O3 concentrations in China from 2005 to 2019 at a 0.05° spatial resolution. METHODS We developed a machine learning model with a satellite-derived boundary-layer O3 column, O3 precursors, meteorological conditions, land-use information, and proxies of anthropogenic emissions as predictors. RESULTS The random, spatial, and temporal cross-validation R2 of our model were 0.87, 0.86, and 0.76, respectively. Model-predicted spatial distribution of ground-level O3 concentrations showed significant differences across seasons. The highest summer peak of O3 occurred in the North China Plain, whereas southern regions were the most polluted in winter. Most large urban centers showed elevated O3 levels, but their surrounding suburban areas may have even higher O3 concentrations owing to nitrogen oxides titration. The annual trend of O3 concentrations fluctuated over 2005-2013, but a significant nationwide increase was observed afterward. DISCUSSION The present model had enhanced performance in predicting ground-level O3 concentrations in China. This national data set of O3 concentrations would facilitate epidemiological studies to investigate the long-term health effect of O3 in China. Our results also highlight the importance of controlling O3 in China's next round of the Air Pollution Prevention and Control Action Plan. https://doi.org/10.1289/EHP9406.
Collapse
Affiliation(s)
- Qingyang Zhu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jianzhao Bi
- Department of Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Xiong Liu
- Harvard–Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - Shenshen Li
- State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
| | - Wenhao Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Yu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Skipper TN, Hu Y, Odman MT, Henderson BH, Hogrefe C, Mathur R, Russell AG. Estimating US Background Ozone Using Data Fusion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4504-4512. [PMID: 33724832 PMCID: PMC8127949 DOI: 10.1021/acs.est.0c08625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
US background (US-B) ozone (O3) is the O3 that would be present in the absence of US anthropogenic (US-A) emissions. US-B O3 varies by location and season and can make up a large, sometimes dominant, portion of total O3. Typically, US-B O3 is quantified using a chemical transport model (CTM) though results are uncertain due to potential errors in model process descriptions and inputs, and there are significant differences in various model estimates of US-B O3. We develop and apply a method to fuse observed O3 with US-B O3 simulated by a regional CTM (CMAQ). We apportion the model bias as a function of space and time to US-B and US-A O3. Trends in O3 bias are explored across different simulation years and varying model scales. We found that the CTM US-B O3 estimate was typically biased low in spring and high in fall across years (2016-2017) and model scales. US-A O3 was biased high on average, with bias increasing for coarser resolution simulations. With the application of our data fusion bias adjustment method, we estimate a 28% improvement in the agreement of adjusted US-B O3. Across the four estimates, we found annual mean CTM-simulated US-B O3 ranging from 30 to 37 ppb with the spring mean ranging from 32 to 39 ppb. After applying the bias adjustment, we found annual mean US-B O3 ranging from 32 to 33 ppb with the spring mean ranging from 37 to 39 ppb.
Collapse
Affiliation(s)
- Tommy Nash Skipper
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yongtao Hu
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mehmet Talat Odman
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Christian Hogrefe
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rohit Mathur
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Armistead G. Russell
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
15
|
Craig K, Erdakos G, Chang SY, Baringer L. Air quality and source apportionment modeling of year 2017 ozone episodes in Albuquerque/Bernalillo County, New Mexico. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:1101-1120. [PMID: 32412852 DOI: 10.1080/10962247.2020.1764879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Albuquerque/Bernalillo County, New Mexico, is currently in attainment of the 2015 National Ambient Air Quality Standard (NAAQS) for ozone (70 ppb), but its ozone design values have increased in recent years. Air quality and source apportionment modeling with the Comprehensive Air Quality Model with Extensions (CAMx) was conducted for Albuquerque/Bernalillo County to develop a refined understanding of ozone source apportionment in the region, estimate ozone concentrations in the year 2025 based on projected changes in anthropogenic emissions, and evaluate the sensitivity of future ozone concentrations to various changes in local and non-local emissions. The study focused on two ozone episodes during June and July 2017 when 8-hr average ozone concentrations were greater than 70 ppb. Based on the modeling results, ozone during the June 2017 episode was found to be driven largely by contributions from non-local and regional emissions, whereas ozone during the July 2017 episode was driven more strongly by local emissions from within Albuquerque/Bernalillo County. On high ozone days, anthropogenic emissions from within Albuquerque/Bernalillo County contributed between 8% and 19% (6-14 ppb) of total ozone. Half of this local ozone contribution was from on-road mobile sources. Fire emissions contributed as much as 2 ppb of ozone on a given day. Contributions from large power plants in New Mexico were as large as 1 ppb on a given day but less than 0.5 ppb on most days. Modeled ozone concentrations in Albuquerque/Bernalillo County were also sensitive to emissions from oil and gas emissions in New Mexico. If projected emission reductions by 2025 materialize, these reductions could reduce future peak 8-hr average ozone concentrations by as much as 3-4% compared to 2017 values. Implications: The results of this study have important implications for air quality management in Albuquerque/Bernalillo County. Ozone in Albuquerque/Bernalillo County is the result of local and non-local emissions, is impacted by wildfires, and is sensitive to statewide oil and gas emissions. The magnitude of modeled contributions from anthropogenic emissions within Albuquerque/Bernalillo County is strongly influenced by meteorological conditions, transport pathways, and the presence of wildfire. This modeling is important for understanding the potential effectiveness of local emission controls in Albuquerque/Bernalillo County, and can serve as a basis for testing future regional and local emission control options.
Collapse
|
16
|
Luo H, Astitha M, Rao ST, Hogrefe C, Mathur R. Assessing the manageable portion of ground-level ozone in the contiguous United States. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:1136-1147. [PMID: 32749924 PMCID: PMC7681777 DOI: 10.1080/10962247.2020.1805375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Regional air quality models are widely being used to understand the spatial extent and magnitude of the ozone non-attainment problem and to design emission control strategies needed to comply with the relevant ozone standard through direct emission perturbations. In this study, we examine the manageable portion of ground-level ozone using two simulations of the Community Multiscale Air Quality (CMAQ) model for the year 2010 and a probabilistic analysis approach involving 29 years (1990-2018) of historical ozone observations. The modeling results reveal that the reduction in the peak ozone levels from total elimination of anthropogenic emissions within the model domain is around 13-21 ppb for the 90th-100th percentile range of the daily maximum 8-hr ozone concentrations across the contiguous United States (CONUS). Large reductions in the 4th highest 8-hr ozone are seen in the regions of West (interquartile range (IQR) of 17-33%), South (IQR 22-34%), Central (IQR 19-31%), Southeast (IQR 25-34%), and Northeast (IQR 24-37%). However, sites in the western portion of the domain generally show smaller reductions even when all anthropogenic emissions are removed, possibly due to the strong influence of global background ozone, including sources such as intercontinental ozone transport, stratospheric ozone intrusions, wildfires, and biogenic precursor emissions. Probabilistic estimates of the exceedances for several hypothetical thresholds of the 4th highest 8-hr ozone indicate that, in some areas, exceedances of such hypothetical thresholds may occur even with no anthropogenic emissions due to the ever-present atmospheric stochasticity and the current global tropospheric ozone burden. Implications: Because air pollution is intricately linked to adverse health effects, National Ambient Air Quality Standards (NAAQS) have been established for criteria pollutants to safeguard human health and the environment. Areas not in compliance with the relevant standards are required to develop plans and policies to reduce their air pollution levels. Regional-scale air quality models are currently being used routinely to inform policies to identify the emissions reduction required to meet and maintain the NAAQS throughout the country. This paper examines the feasibility of the 4th highest ozone, which is used to derive the ozone design value for NAAQS, complying with various current and hypothetical 8-hr ozone thresholds over CONUS based on the information embedded in 29 years of historical ozone observations and two modeling scenarios with and without anthropogenic emissions loading.
Collapse
Affiliation(s)
- Huiying Luo
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs-Mansfield, CT
| | - Marina Astitha
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs-Mansfield, CT
| | - S. Trivikrama Rao
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs-Mansfield, CT
- Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC
| | - Christian Hogrefe
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC
| | - Rohit Mathur
- Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC
| |
Collapse
|
17
|
Itahashi S, Mathur R, Hogrefe C, Napelenok SL, Zhang Y. Modeling stratospheric intrusion and trans-Pacific transport on tropospheric ozone using hemispheric CMAQ during April 2010 - Part 2: Examination of emission impacts based on the higher-order decoupled direct method. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:3397-3413. [PMID: 32328090 PMCID: PMC7180064 DOI: 10.5194/acp-20-3397-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The state-of-the-science Community Multiscale Air Quality (CMAQ) modeling system, which has recently been extended for hemispheric-scale modeling applications (referred to as H-CMAQ), is applied to study the trans-Pacific transport, a phenomenon recognized as a potential source of air pollution in the US, during April 2010. The results of this analysis are presented in two parts. In the previous paper (Part 1), model evaluation for tropospheric ozone (O3) was presented and an air mass characterization method was developed. Results from applying this newly established method pointed to the importance of emissions as the factor to enhance the surface O3 mixing ratio over the US. In this subsequent paper (Part 2), emission impacts are examined based on mathematically rigorous sensitivity analysis using the higher-order decoupled direct method (HDDM) implemented in H-CMAQ. The HDDM sensitivity coefficients indicate the presence of a NO x -sensitive regime during April 2010 over most of the Northern Hemisphere. By defining emission source regions over the US and east Asia, impacts from these emission sources are examined. At the surface, during April 2010, the emission impacts of the US and east Asia are comparable over the western US with a magnitude of about 3ppbv impacts on monthly mean O3 all-hour basis, whereas the impact of domestic emissions dominates over the eastern US with a magnitude of about 10ppbv impacts on monthly mean O3. The positive correlation (r = 0.63) between surface O3 mixing ratios and domestic emission impacts is confirmed. In contrast, the relationship between surface O3 mixing ratios and emission impacts from east Asia exhibits a flat slope when considering the entire US. However, this relationship has strong regional differences between the western and eastern US; the western region exhibits a positive correlation (r = 0.36-0.38), whereas the latter exhibits a flat slope (r <0.1). Based on the comprehensive evaluation of H-CMAQ, we extend the sensitivity analysis for O3 aloft. The results reveal the significant impacts of emissions from east Asia on the free troposphere (defined as 750 to 250hPa) over the US (impacts of more than 5ppbv) and the dominance of stratospheric air mass on upper model layer (defined as 250 to 50hPa) over the US (impacts greater than 10ppbv). Finally, we estimate changes of trans-Pacific transport by taking into account recent emission trends from 2010 to 2015 assuming the same meteorological condition. The analysis suggests that the impact of recent emission changes on changes in the contribution of trans-Pacific transport to US O3 levels was insignificant at the surface level and was small (less than 1ppbv) over the free troposphere.
Collapse
Affiliation(s)
- Syuichi Itahashi
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Abiko, Chiba 270–1194, Japan
| | - Rohit Mathur
- Environmental Protection Agency (EPA), Computational Exposure Division, National Exposure Research Laboratory, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Christian Hogrefe
- Environmental Protection Agency (EPA), Computational Exposure Division, National Exposure Research Laboratory, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Sergey L. Napelenok
- Environmental Protection Agency (EPA), Computational Exposure Division, National Exposure Research Laboratory, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Yang Zhang
- Department of Marine, Earth, and Atmospheric Sciences (MEAS), North Carolina State University (NCSU), Campus Box 8208, Raleigh, NC 27695, USA
- now at: Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
18
|
Itahashi S, Mathur R, Hogrefe C, Zhang Y. Modeling stratospheric intrusion and trans-Pacific transport on tropospheric ozone using hemispheric CMAQ during April 2010 - Part 1: Model evaluation and air mass characterization for stratosphere-troposphere transport. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:3373-3396. [PMID: 32328089 PMCID: PMC7180063 DOI: 10.5194/acp-20-3373-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stratospheric intrusion and trans-Pacific transport have been recognized as a potential source of tropospheric ozone over the US. The state-of-the-science Community Multiscale Air Quality (CMAQ) modeling system has recently been extended for hemispheric-scale modeling applications (referred to as H-CMAQ). In this study, H-CMAQ is applied to study the stratospheric intrusion and trans-Pacific transport during April 2010. The results will be presented in two companion papers. In this Part 1 paper, model evaluation for tropospheric ozone (O3) is presented. Observations at the surface, by ozonesondes and airplane, and by satellite across the Northern Hemisphere are used to evaluate the model performance for O3. H-CMAQ is able to capture surface and boundary layer (defined as surface to 750hPa) O3 with a normalized mean bias (NMB) of -10%; however, a systematic underestimation with an NMB up to -30% is found in the free troposphere (defined as 750-250hPa). In addition, a new air mass characterization method is developed to distinguish influences of stratosphere-troposphere transport (STT) from the effects of photochemistry on O3 levels. This method is developed based on the ratio of O3 and an inert tracer indicating stratospheric O3 to examine the importance of photochemistry, and sequential intrusion from upper layer. During April 2010, on a monthly average basis, the relationship between surface O3 mixing ratios and estimated stratospheric air masses in the troposphere show a slight negative slope, indicating that high surface O3 values are primarily affected by other factors (i.e., emissions), whereas this relationship shows a slight positive slope at elevated sites, indicating that STT has a possible impact at elevated sites. STT shows large day-to-day variations, and STT impacts can either originate from the same air mass over the entire US with an eastward movement found during early April, or stem from different air masses at different locations indicated during late April. Based on this newly established air mass characterization technique, this study can contribute to understanding the role of STT and also the implied importance of emissions leading to high surface O3. Further research focused on emissions is discussed in a subsequent paper (Part 2).
Collapse
Affiliation(s)
- Syuichi Itahashi
- Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Abiko, Chiba 270–1194, Japan
| | - Rohit Mathur
- Environmental Protection Agency (EPA), Computational Exposure Division, National Exposure Research Laboratory, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Christian Hogrefe
- Environmental Protection Agency (EPA), Computational Exposure Division, National Exposure Research Laboratory, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Yang Zhang
- Department of Marine, Earth, and Atmospheric Sciences (MEAS), North Carolina State University (NCSU), Campus Box 8208, Raleigh, NC 27695, USA
| |
Collapse
|
19
|
Wang H, Wang W, Huang X, Ding A. Impacts of stratosphere-to-troposphere-transport on summertime surface ozone over eastern China. Sci Bull (Beijing) 2020; 65:276-279. [PMID: 36659091 DOI: 10.1016/j.scib.2019.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Hongyue Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Wuke Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of Climate Change, Nanjing 210023, China.
| | - Xin Huang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of Climate Change, Nanjing 210023, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of Climate Change, Nanjing 210023, China.
| |
Collapse
|
20
|
A Stratospheric Intrusion-Influenced Ozone Pollution Episode Associated with an Intense Horizontal-Trough Event. ATMOSPHERE 2020. [DOI: 10.3390/atmos11020164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ozone pollution is currently a serious issue in China. As an important source of tropospheric ozone, the stratospheric ozone has received less concern. This study uses a combination of ground-based ozone measurements, the latest ERA5 reanalysis data as well as chemistry-climate model and Lagrangian Particle Dispersion Modeling (LPDM) simulations to investigate the potential impacts of stratospheric intrusion (SI) on surface ozone pollution episodes in eastern China. Station-based observations indicate that severe ozone pollution occurred from 27 April to 28 April 2018 in eastern China, with maximal values over 140 ppbv. ERA5 meteorological and ozone data suggest that a strong horizontal-trough exists at the same time, which leads to an evident SI event and brings ozone-rich air from the stratosphere to the troposphere. Using a stratospheric ozone tracer defined by NCAR’s Community Atmosphere Model with Chemistry (CAM-Chem), we conclude that this SI event contributed about 15 ppbv (15%) to the surface ozone pollution episode during 27–28 April in eastern China. The potential impacts of SI events on surface ozone variations should be therefore considered in ozone forecast and control.
Collapse
|
21
|
Gratz LE, Eckley CS, Schwantes SJ, Mattson E. Ambient Mercury Observations near a Coal-Fired Power Plant in a Western U.S. Urban Area. ATMOSPHERE 2019; 10:176. [PMID: 31456887 PMCID: PMC6711202 DOI: 10.3390/atmos10040176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We report on the continuous ambient measurements of total gaseous mercury (TGM) and several ancillary air quality parameters that were collected in Colorado Springs, CO. This urban area, which is located adjacent to the Front Range of the Rocky Mountains, is the second largest metropolitan area in Colorado and has a centrally located coal-fired power plant that installed mercury (Hg) emission controls the year prior to our study. There are few other Hg point sources within the city. Our results, which were obtained from a measurement site < 1 km from the power plant, show a distinct diel pattern in TGM, with peak concentrations occurring during the night (1.7 ± 0.3 ng m−3) and minimum concentrations mid-day (1.5 ± 0.2 ng m−3). The TGM concentrations were not correlated with wind originating from the direction of the plant or with sulfur dioxide (SO2) mixing ratios, and they were not elevated when the atmospheric mixing height was above the effective stack height. These findings suggest that the current Hg emissions from the CFPP did not significantly influence local TGM, and they are consistent with the facility’s relatively low reported annual emissions of 0.20 kg Hg per year. Instead, variability in the regional signal, diurnal meteorological conditions, and/or near-surface emission sources appears to more greatly influence TGM at this urban site.
Collapse
Affiliation(s)
- Lynne E. Gratz
- Colorado College, Environmental Studies Program, Colorado Springs, CO 80903, USA
- Correspondence:
| | - Chris S. Eckley
- U.S. Environmental Protection Agency, Region 10, Seattle, WA 98101, USA
| | - Story J. Schwantes
- Colorado College, Environmental Studies Program, Colorado Springs, CO 80903, USA
| | - Erick Mattson
- Colorado Department of Public Health and Environment, Air Pollution Control Division, Glendale, CO 80246, USA
| |
Collapse
|
22
|
Tarasick DW, Carey-Smith TK, Hocking WK, Moeini O, He H, Liu J, Osman M, Thompson AM, Johnson B, Oltmans SJ, Merrill JT. Quantifying stratosphere-troposphere transport of ozone using balloon-borne ozonesondes, radar windprofilers and trajectory models. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2019; 198:496-509. [PMID: 32457561 PMCID: PMC7250237 DOI: 10.1016/j.atmosenv.2018.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In a series of 10-day campaigns in Ontario and Quebec, Canada, between 2005 and 2007, ozonesondes were launched twice daily in conjunction with continuous high-resolution wind-profiling radar measurements. Windprofilers can measure rapid changes in the height of the tropopause, and in some cases follow stratospheric intrusions. Observed stratospheric intrusions were studied with the aid of a Lagrangian particle dispersion model and the Canadian operational weather forecast system. Definite stratosphere-troposphere transport (STT) events occurred approximately every 2-3 days during the spring and summer campaigns, whereas during autumn and winter, the frequency was reduced to every 4-5 days. Although most events reached the lower troposphere, only three events appear to have significantly contributed to ozone amounts in the surface boundary layer. Detailed calculations find that STT, while highly variable, is responsible for an average, over the seven campaigns, of 3.1% of boundary layer ozone (1.2 ppb), but 13% (5.4 ppb) in the lower troposphere and 34% (22 ppb) in the middle and upper troposphere, where these layers are defined as 0-1 km, 1-3 km, and 3-8 km respectively. Estimates based on counting laminae in ozonesonde profiles, with judicious choices of ozone and relative humidity thresholds, compare moderately well, on average, with these values. The lamina detection algorithm is then applied to a large dataset from four summer ozonesonde campaigns at 18 North American sites between 2006 and 2011. The results show some site-to-site and year-to-year variability, but stratospheric ozone contributions average 4.6% (boundary layer), 15% (lower troposphere) and 26% (middle/upper troposphere). Calculations were also performed based on the TOST global 3D trajectory-mapped ozone data product. Maps of STT in the same three layers of the troposphere suggest that the STT ozone flux is greater over the North American continent than Europe, and much greater in winter and spring than in summer or fall. When averaged over all seasons, magnitudes over North America show similar ratios between levels to the previous calculations, but are overall 3-4 times smaller. This may be because of limitations (trajectory length and vertical resolution) to the current TOST-based calculation.
Collapse
Affiliation(s)
- D W Tarasick
- Air Quality Research Division, Environment Canada, Downsview, ON, Canada M3H 5T4
| | - T K Carey-Smith
- National Institute of Water and Atmospheric Research Ltd., Private Bag 14901, Kilbirnie, Wellington, New Zealand
| | - W K Hocking
- Department of Physics and Astronomy, University of Western Ontario, London, ON, Canada N6A 3K7
| | - O Moeini
- Air Quality Research Division, Environment Canada, Downsview, ON, Canada M3H 5T4
| | - H He
- Air Quality Research Division, Environment Canada, Downsview, ON, Canada M3H 5T4
| | - J Liu
- Department of Geography and Planning, University of Toronto, Canada, and School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - M Osman
- Cooperative Institute for Mesoscale Meteorological Studies, The University of Oklahoma, and NOAA/National Severe Storms Laboratory, Norman, OK, USA
| | - A M Thompson
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - B Johnson
- Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
| | - S J Oltmans
- Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
| | - J T Merrill
- Graduate School of Oceanography, University of Rhode Island, RI, USA
| |
Collapse
|
23
|
An Assessment of Stratospheric Intrusions in Italian Mountain Regions Using STEFLUX. ATMOSPHERE 2018. [DOI: 10.3390/atmos9100413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Mediterranean basin is considered a global hot-spot region for climate change and air quality, especially concerning summer-time ozone (O3). Previous investigations indicated that the Mediterranean basin is a preferred region for stratosphere-to-troposphere exchange (STE) and deep stratospheric intrusion (SI) events. The Lagrangian tool STEFLUX, based on a STE climatology that uses the ERA Interim data, was hereby used to diagnose the occurrence of deep SI events in four mountain regions over the Italian peninsula, spanning from the Alpine region to the southern Apennines. By using near-surface O3 and relative humidity (RH) observations at three high-mountain observatories, we investigated the performance of STEFLUX in detecting deep SI events. Both experimental and STEFLUX detections agreed in describing the seasonal cycle of SI occurrence. Moreover, STEFLUX showed skills in detecting “long-lasting” SI events, especially in the Alps and in the northern Apennines. By using STEFLUX, we found positive tendencies in the SI occurrence during 1979–2017. However, in contrast to similar studies carried out in the Alpine region, the negative long-term (1996–2016) trend of O3 in the northern Apennines did not appear to be related to the SI’s variability.
Collapse
|
24
|
Astitha M, Kioutsioukis I, Fisseha GA, Bianconi R, Bieser J, Christensen JH, Cooper OR, Galmarini S, Hogrefe C, Im U, Johnson B, Liu P, Nopmongcol U, Petropavlovskikh I, Solazzo E, Tarasick DW, Yarwood G. Seasonal ozone vertical profiles over North America using the AQMEII3 group of air quality models: model inter-comparison and stratospheric intrusions. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:13925-13945. [PMID: 30800155 PMCID: PMC6382018 DOI: 10.5194/acp-18-13925-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study evaluates simulated vertical ozone profiles produced in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) against ozonesonde observations in North America for the year 2010. Four research groups from the United States (US) and Europe have provided modeled ozone vertical profiles to conduct this analysis. Because some of the modeling systems differ in their meteorological drivers, wind speed and temperature are also included in the analysis. In addition to the seasonal ozone profile evaluation for 2010, we also analyze chemically inert tracers designed to track the influence of lateral boundary conditions on simulated ozone profiles within the modeling domain. Finally, cases of stratospheric ozone intrusions during May-June 2010 are investigated by analyzing ozonesonde measurements and the corresponding model simulations at Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) experiment sites in the western United States. The evaluation of the seasonal ozone profiles reveals that, at a majority of the stations, ozone mixing ratios are underestimated in the 1-6 km range. The seasonal change noted in the errors follows the one seen in the variance of ozone mixing ratios, with the majority of the models exhibiting less variability than the observations. The analysis of chemically inert tracers highlights the importance of lateral boundary conditions up to 250 hPa for the lower-tropospheric ozone mixing ratios (0-2 km). Finally, for the stratospheric intrusions, the models are generally able to reproduce the location and timing of most intrusions but underestimate the magnitude of the maximum mixing ratios in the 2-6 km range and overestimate ozone up to the first kilometer possibly due to marine air influences that are not accurately described by the models. The choice of meteorological driver appears to be a greater predictor of model skill in this altitude range than the choice of air quality model.
Collapse
Affiliation(s)
- Marina Astitha
- University of Connecticut, Civil and Environmental Engineering, Storrs, CT 06269-3037, USA
| | | | - Ghezae Araya Fisseha
- University of Connecticut, Civil and Environmental Engineering, Storrs, CT 06269-3037, USA
| | | | - Johannes Bieser
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, Geesthacht, Germany
- German Aerospace Center (DLR), National Aeronautics and Space Center, Weßling, Germany
| | - Jesper H. Christensen
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Owen R. Cooper
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO 80305, USA
| | | | - Christian Hogrefe
- Environmental Protection Agency Research Triangle Park, Research Triangle Park, NC, USA
| | - Ulas Im
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Bryan Johnson
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Peng Liu
- NRC Fellowship Participant at Environmental Protection Agency Research Triangle Park, NC, USA
| | | | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | | | - David W. Tarasick
- Air Quality Research Division, Environment and Climate Change Canada, Downsview, Ontario, Canada
| | - Greg Yarwood
- Ramboll, 773 San Marin Dr., Suite 2115, Novato, CA 94945, USA
| |
Collapse
|
25
|
Laban TL, van Zyl PG, Beukes JP, Vakkari V, Jaars K, Borduas-Dedekind N, Josipovic M, Thompson AM, Kulmala M, Laakso L. Seasonal influences on surface ozone variability in continental South Africa and implications for air quality. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:15491-15514. [PMID: 32678379 PMCID: PMC7365263 DOI: 10.5194/acp-18-15491-2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although elevated surface ozone (O3) concentrations are observed in many areas within southern Africa, few studies have investigated the regional atmospheric chemistry and dominant atmospheric processes driving surface O3 formation in this region. Therefore, an assessment of comprehensive continuous surface O3 measurements performed at four sites in continental South Africa was conducted. The regional O3 problem was evident, with O3 concentrations regularly exceeding the South African air quality standard limit, while O3 levels were higher compared to other background sites in the Southern Hemisphere. The temporal O3 patterns observed at the four sites resembled typical trends for O3 in continental South Africa, with O3 concentrations peaking in late winter and early spring. Increased O3 concentrations in winter were indicative of increased emissions of O3 precursors from household combustion and other low-level sources, while a spring maximum observed at all the sites was attributed to increased regional biomass burning. Source area maps of O3 and CO indicated significantly higher O3 and CO concentrations associated with air masses passing over a region with increased seasonal open biomass burning, which indicated CO associated with open biomass burning as a major source of O3 in continental South Africa. A strong correlation between O3 on CO was observed, while O3 levels remained relatively constant or decreased with increasing NO x , which supports a VOC-limited regime. The instantaneous production rate of O3 calculated at Welgegund indicated that ~ 40 % of O3 production occurred in the VOC-limited regime. The relationship between O3 and precursor species suggests that continental South Africa can be considered VOC limited, which can be attributed to high anthropogenic emissions of NO x in the interior of South Africa. The study indicated that the most effective emission control strategy to reduce O3 levels in continental South Africa should be CO and VOC reduction, mainly associated with household combustion and regional open biomass burning.
Collapse
Affiliation(s)
- Tracey Leah Laban
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Pieter Gideon van Zyl
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Johan Paul Beukes
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | | - Kerneels Jaars
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | | - Miroslav Josipovic
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | | - Markku Kulmala
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Lauri Laakso
- Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
26
|
Stauffer RM, Thompson AM, Witte JC. Characterizing Global Ozonesonde Profile Variability from Surface to the UT/LS with a Clustering Technique and MERRA-2 Reanalysis. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2018; 123:6213-6229. [PMID: 33101823 PMCID: PMC7580826 DOI: 10.1029/2018jd028465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/24/2018] [Indexed: 06/10/2023]
Abstract
Our previous studies employing the self-organizing map (SOM) clustering technique to ozonesonde data have found significant links among meteorological and chemical regimes, and the shape of the ozone (O3) profile from the troposphere to the lower stratosphere. These studies, which focused on specific northern hemisphere mid-latitude geographical regions, demonstrated the advantages of SOM clustering by quantifying O3 profile variability and the O3/meteorological correspondence. We expand SOM to a global set of ozonesonde profiles spanning 1980-present from 30 sites to summarize the connections among O3 profiles, meteorology, and chemistry, using the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis and other ancillary data. Four clusters of O3 mixing ratio profiles from the surface to the upper troposphere/lower stratosphere (UT/LS) are generated for each site, which show dominant profile shapes and typical seasonality (or lack thereof) that generally correspond to latitude (i.e. Tropical, Subtropical, Mid-Latitude, Polar). Examination of MERRA-2 output reveals a clear relationship among SOM clusters and covarying meteorological fields (geopotential height, potential vorticity, and tropopause height) for Polar and Mid-latitude sites. However, these relationships break down within ±30° latitude. Carbon monoxide satellite data, along with velocity potential, a proxy for convection, calculated from MERRA-2 wind fields assist characterization of the Tropical and Subtropical sites, where biomass burning and convective transport linked to the Madden-Julian Oscillation (MJO) dominate O3 variability. In addition to geophysical characterization of O3 profile variability, these results can be used to evaluate chemical transport model output and satellite measurements of O3.
Collapse
Affiliation(s)
- Ryan M. Stauffer
- Universities Space Research Association c/o Atmospheric Chemistry and Dynamics Lab, NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | | | |
Collapse
|
27
|
Understanding Long-Term Variations in Surface Ozone in United States (U.S.) National Parks. ATMOSPHERE 2018. [DOI: 10.3390/atmos9040125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Long-term surface ozone observations at 25 National Park Service sites across the United States were analyzed for processes on varying time scales using a time scale decomposition technique, the Ensemble Empirical Mode Decomposition (EEMD). Time scales of interest include the seasonal cycle, large-scale climate oscillations, and long-term (>10 years) trends. Emission reductions were found to have a greater impact on sites that are nearest major urban areas. Multidecadal trends in surface ozone were increasing at a rate of 0.07 to 0.37 ppbv year−1 before 2004 and decreasing at a rate of −0.08 to −0.60 ppbv year−1 after 2004 for sites in the East, Southern California, and Northwestern Washington. Sites in the Intermountain West did not experience a reversal of trends from positive to negative until the mid- to late 2000s. The magnitude of the annual amplitude (=annual maximum–minimum) decreased at eight sites, two in the West, two in the Intermountain West, and four in the East, by 5–20 ppbv and significantly increased at three sites; one in Alaska, one in the West, and one in the Intermountain West, by 3–4 ppbv. Stronger decreases in the annual amplitude occurred at a greater proportion of sites in the East (4/6 sites) than in the West/Intermountain West (4/19 sites). The date of annual maximums and/or minimums has changed at 12 sites, occurring 10–60 days earlier in the year. There appeared to be a link between the timing of the annual maximum and the decrease in the annual amplitude, which was hypothesized to be related to a decrease in ozone titration resulting from NOx emission reductions. Furthermore, it was found that a phase shift of the Pacific Decadal Oscillation (PDO), from positive to negative, in 1998–1999 resulted in increased occurrences of La Niña-like conditions. This shift had the effect of directing more polluted air masses from East Asia to higher latitudes over the North American continent. The change in the Pacific Decadal Oscillation (PDO)/El Niño Southern Oscillation (ENSO) regime influenced surface ozone at an Alaskan site over its nearly 30-year data record.
Collapse
|
28
|
Hogrefe C, Liu P, Pouliot G, Mathur R, Roselle S, Flemming J, Lin M, Park RJ. Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:3839-3864. [PMID: 30079085 PMCID: PMC6071430 DOI: 10.5194/acp-18-3839-2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated sur face ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.
Collapse
Affiliation(s)
- Christian Hogrefe
- Computational Exposure Division, National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Peng Liu
- National Research Council Fellow at National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - George Pouliot
- Computational Exposure Division, National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rohit Mathur
- Computational Exposure Division, National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shawn Roselle
- Computational Exposure Division, National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Meiyun Lin
- Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
| | - Rokjin J. Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
29
|
Jaff DA, Cooper OR, Fiore AM, Henderson BH, Tonnesen GS, Russell AG, Henze DK, Langford AO, Lin M, Moore T. Scientific assessment of background ozone over the U.S.: Implications for air quality management. ELEMENTA (WASHINGTON, D.C.) 2018; 6:56. [PMID: 30364819 PMCID: PMC6198683 DOI: 10.1525/elementa.309] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ozone (O3) is a key air pollutant that is produced from precursor emissions and has adverse impacts on human health and ecosystems. In the U.S., the Clean Air Act (CAA) regulates O3 levels to protect public health and welfare, but unraveling the origins of surface O3 is complicated by the presence of contributions from multiple sources including background sources like stratospheric transport, wildfies, biogenic precursors, and international anthropogenic pollution, in addition to U.S. anthropogenic sources. In this report, we consider more than 100 published studies and assess current knowledge on the spatial and temporal distribution, trends, and sources of background O3 over the continental U.S., and evaluate how it inflattainment of the air quality standards. We conclude that spring and summer seasonal mean U.S. background O3 (USB O3), or O3 formed from natural sources plus anthropogenic sources in countries outside the U.S., is greatest at high elevation locations in the western U.S., with monthly mean maximum daily 8-hour average (MDA8) mole fractions approaching 50 parts per billion (ppb) and annual 4th highest MDA8s exceeding 60 ppb, at some locations. At lower elevation sites, e.g., along the West and East Coasts, seasonal mean MDA8 USB O3 is in the range of 20-40 ppb, with generally smaller contributions on the highest O3 days. The uncertainty in U.S. background O3 is around ±10 ppb for seasonal mean values and higher for individual days. Noncontrollable O3 sources, such as stratospheric intrusions or precursors from wildfires, can make significant contributions to O3 on some days, but it is challenging to quantify accurately these contributions. We recommend enhanced routine observations, focused fi studies, process-oriented modeling studies, and greater emphasis on the complex photochemistry in smoke plumes as key steps to reduce the uncertainty associated with background O3 in the U.S.
Collapse
Affiliation(s)
- Daniel A Jaff
- University of Washington, School of Science, Technology, Engineering and Mathematics, Bothell, Washington, US
- Department of Atmospheric Science, University of Washington, Seattle, Washington, US
| | - Owen R Cooper
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, US
- NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, Colorado, US
| | - Arlene M Fiore
- Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, New York, US
| | | | | | - Armistead G Russell
- Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta, Georgia, US
| | - Daven K Henze
- University of Colorado, Department of Mechanical Engineering, Boulder, Colorado, US
| | - Andrew O Langford
- NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, Colorado, US
| | - Meiyun Lin
- NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, US
| | - Tom Moore
- Western States Air Resources (WESTAR) Council and Western Regional Air Partnership (WRAP), Fort Collins, Colorado, US
| |
Collapse
|
30
|
Jaeglé L, Wood R, Wargan K. Multi-year composite view of ozone enhancements and stratosphere-to-troposphere transport in dry intrusions of northern hemisphere extratropical cyclones. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:13436-13457. [PMID: 29479506 PMCID: PMC5823518 DOI: 10.1002/2017jd027656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We examine the role of extratropical cyclones in stratosphere-to-troposphere (STT) exchange with cyclone-centric composites of O3 retrievals from the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES), contrasting them to composites obtained with the Modern-Era Retrospective-analysis for Research and Applications (MERRA and MERRA-2) reanalyses and the GEOS-Chem chemical transport model. We identify 15,978 extratropical cyclones in the northern hemisphere (NH) for 2005-2012. The lowermost stratosphere (261 hPa) and middle troposphere (424 hPa) composites feature a 1,000 km-wide O3 enhancement in the dry intrusion (DI) airstream to the southwest of the cyclone center, coinciding with a lowered tropopause, enhanced potential vorticity, and decreased H2O. MLS composites at 261 hPa show that the DI O3 enhancements reach a 210 ppbv maximum in April. At 424 hPa, TES composites display maximum O3 enhancements of 27 ppbv in May. The magnitude and seasonality of these enhancements are captured by MERRA and MERRA-2, but GEOS-Chem is a factor of two too low. The MERRA-2 composites show that the O3-rich DI forms a vertically aligned structure between 300 and 800 hPa, wrapping cyclonically with the warm conveyor belt. In winter and spring DIs, O3 is enhanced by 100 ppbv or 100-130% at 300 hPa, with significant enhancements below 500 hPa (6-20 ppbv or 15-30%). We estimate that extratropical cyclones result in a STT flux of 119±56 Tg O3 yr-1, accounting for 42±20 % of the NH extratropical O3 STT flux. The STT flux in cyclones displays a strong dependence on westerly 300 hPa wind speeds.
Collapse
Affiliation(s)
- Lyatt Jaeglé
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
| | - Robert Wood
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
| | - Krzysztof Wargan
- Science Systems and Applications Inc., Lanham, Maryland, USA
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
31
|
Stowell JD, Kim YM, Gao Y, Fu JS, Chang HH, Liu Y. The impact of climate change and emissions control on future ozone levels: Implications for human health. ENVIRONMENT INTERNATIONAL 2017; 108:41-50. [PMID: 28800413 PMCID: PMC8166453 DOI: 10.1016/j.envint.2017.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 05/17/2023]
Abstract
Overwhelming evidence has shown that, from the Industrial Revolution to the present, human activities influence ground-level ozone (O3) concentrations. Past studies demonstrate links between O3 exposure and health. However, knowledge gaps remain in our understanding concerning the impacts of climate change mitigation policies on O3 concentrations and health. Using a hybrid downscaling approach, we evaluated the separate impact of climate change and emission control policies on O3 levels and associated excess mortality in the US in the 2050s under two Representative Concentration Pathways (RCPs). We show that, by the 2050s, under RCP4.5, increased O3 levels due to combined climate change and emission control policies, could contribute to an increase of approximately 50 premature deaths annually nationwide in the US. The biggest impact, however, is seen under RCP8.5, where rises in O3 concentrations are expected to result in over 2,200 additional premature deaths annually. The largest increases in O3 are seen in RCP8.5 in the Northeast, the Southeast, the Central, and the West regions of the US. Additionally, when O3 increases are examined by climate change and emissions contributions separately, the benefits of emissions mitigation efforts may significantly outweigh the effects of climate change mitigation policies on O3-related mortality.
Collapse
Affiliation(s)
- Jennifer D Stowell
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Young-Min Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yang Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Joshua S Fu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yang Liu
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States.
| |
Collapse
|
32
|
Kuang S, Newchurch MJ, Thompson AM, Stauffer RM, Johnson BJ, Wang L. Ozone Variability and Anomalies Observed during SENEX and SEAC 4RS Campaigns in 2013. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:11227-11241. [PMID: 30057866 PMCID: PMC6058320 DOI: 10.1002/2017jd027139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tropospheric ozone variability occurs because of multiple forcing factors including surface emission of ozone precursors, stratosphere-to-troposphere transport (STT), and meteorological conditions. Analyses of ozonesonde observations made in Huntsville, AL, during the peak ozone season (May to September) in 2013 indicate that ozone in the planetary boundary layer was significantly lower than the climatological average, especially in July and August when the Southeastern United States (SEUS) experienced unusually cool and wet weather. Because of a large influence of the lower stratosphere, however, upper-tropospheric ozone was mostly higher than climatology, especially from May to July. Tropospheric ozone anomalies were strongly anti-correlated (or correlated) with water vapor (or temperature) anomalies with a correlation coefficient mostly about 0.6 throughout the entire troposphere. The regression slopes between ozone and temperature anomalies for surface up to mid-troposphere are within 3.0-4.1 ppbv·K-1. The occurrence rates of tropospheric ozone laminae due to STT are ≥50% in May and June and about 30% in July, August and September suggesting that the stratospheric influence on free-tropospheric ozone could be significant during early summer. These STT laminae have a mean maximum ozone enhancement over the climatology of 52±33% (35±24 ppbv) with a mean minimum relative humidity of 2.3±1.7%.
Collapse
Affiliation(s)
- Shi Kuang
- Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| | - Michael J Newchurch
- Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| | - Anne M Thompson
- Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - Ryan M Stauffer
- Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Bryan J Johnson
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO 80305, USA
| | - Lihua Wang
- Earth System Science Center, University of Alabama in Huntsville, Huntsville, AL 35805, USA
| |
Collapse
|
33
|
Knowland KE, Doherty RM, Hodges KI, Ott LE. The influence of mid-latitude cyclones on European background surface ozone. ATMOSPHERIC CHEMISTRY AND PHYSICS 2017; 17:12421-12447. [PMID: 32714379 PMCID: PMC7380074 DOI: 10.5194/acp-17-12421-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The relationship between springtime mid-latitude cyclones and background ozone (O3) is explored using a combination of observational and reanalysis data sets. First, the relationship between surface O3 observations at two rural monitoring sites on the west coast of Europe - Mace Head, Ireland and Monte Velho, Portugal - and cyclone track frequency in the surrounding regions is examined. Second, detailed case study examination of four individual mid-latitude cyclones and the influence of the associated frontal passage on surface O3 is performed. Cyclone tracks have a greater influence on the O3 measurements at the more northern coastal European station, Mace Head, located within the main North Atlantic (NA) storm track. In particular, when cyclones track north of 53° N, there is a significant relationship with high levels of surface O3 (> 75th percentile). The further away a cyclone is from the NA storm track, the more likely it will be associated with both high and low (< 25th percentile) levels of O3 at the observation site during the cyclone's life cycle. The results of the four case studies demonstrate a) the importance of the passage of a cyclone's cold front in relation to surface O3 measurements, b) the ability of mid-latitude cyclones to bring down high levels of O3 from the stratosphere and c) that accompanying surface high pressure systems and their associated transport pathways play an important role in the temporal variability of surface O3. The main source of high O3 to these two sites in springtime is from the stratosphere, either from direct injection into the cyclone or associated with aged airstreams from decaying downstream cyclones that can become entrained and descend toward the surface within new cyclones over the NA region.
Collapse
Affiliation(s)
- K. Emma Knowland
- Universities Space Research Association (USRA)/Goddard Earth Science Technology & Research (GESTAR)
- Global Modeling and Assimilation Office (GMAO), NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| | - Ruth M. Doherty
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | | | - Lesley E. Ott
- Global Modeling and Assimilation Office (GMAO), NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| |
Collapse
|
34
|
Knowland KE, Ott LE, Duncan BN, Wargan K. Stratospheric intrusion-influenced ozone air quality exceedances investigated in the NASA MERRA-2 Reanalysis. GEOPHYSICAL RESEARCH LETTERS 2017; 44:10691-10701. [PMID: 32692318 PMCID: PMC7370994 DOI: 10.1002/2017gl074532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stratospheric intrusions have been the interest of decades of research for their ability to bring stratospheric ozone (O3) into the troposphere with the potential to enhance surface O3 concentrations. However, these intrusions have been misrepresented in models and reanalyses until recently, as the features of a stratospheric intrusion are best identified in horizontal resolutions of 50 km or smaller. NASA's Modern-Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2) reanalysis is a publicly-available high-resolution dataset (~50 km) with assimilated O3 that characterizes O3 on the same spatiotemporal resolution as the meteorology. We demonstrate the science capabilities of the MERRA-2 reanalysis when applied to the evaluation of stratospheric intrusions that impact surface air quality. This is demonstrated through a case study analysis of stratospheric intrusion-influenced O3 exceedences in spring 2012 in Colorado, using a combination of observations, the MERRA-2 reanalysis and the Goddard Earth Observing System Model, Version 5 (GEOS-5) simulations.
Collapse
Affiliation(s)
- K E Knowland
- Universities Space Research Association (USRA)/Goddard Earth Science Technology & Research (GESTAR)
- Global Modeling and Assimilation Office (GMAO), NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| | - L E Ott
- Global Modeling and Assimilation Office (GMAO), NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
| | - B N Duncan
- Laboratory for Atmospheric Chemistry and Physics, NASA GSFC, Greenbelt, Maryland, USA
| | - K Wargan
- Global Modeling and Assimilation Office (GMAO), NASA Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
- Science Systems and Applications, Inc. (SSAI), Lanham, Maryland, USA
| |
Collapse
|
35
|
Huang M, Carmichael GR, Pierce RB, Jo DS, Park RJ, Flemming J, Emmons LK, Bowman KW, Henze DK, Davila Y, Sudo K, Jonson JE, Lund MT, Janssens-Maenhout G, Dentener FJ, Keating TJ, Oetjen H, Payne VH. Impact of intercontinental pollution transport on North American ozone air pollution: an HTAP phase 2 multi-model study. ATMOSPHERIC CHEMISTRY AND PHYSICS 2017; 17:5721-5750. [PMID: 29780406 PMCID: PMC5954439 DOI: 10.5194/acp-17-5721-2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The recent update on the US National Ambient Air Quality Standards (NAAQS) of the ground-level ozone (O3/ can benefit from a better understanding of its source contributions in different US regions during recent years. In the Hemispheric Transport of Air Pollution experiment phase 1 (HTAP1), various global models were used to determine the O3 source-receptor (SR) relationships among three continents in the Northern Hemisphere in 2001. In support of the HTAP phase 2 (HTAP2) experiment that studies more recent years and involves higher-resolution global models and regional models' participation, we conduct a number of regional-scale Sulfur Transport and dEposition Model (STEM) air quality base and sensitivity simulations over North America during May-June 2010. STEM's top and lateral chemical boundary conditions were downscaled from three global chemical transport models' (i.e., GEOS-Chem, RAQMS, and ECMWF C-IFS) base and sensitivity simulations in which the East Asian (EAS) anthropogenic emissions were reduced by 20 %. The mean differences between STEM surface O3 sensitivities to the emission changes and its corresponding boundary condition model's are smaller than those among its boundary condition models, in terms of the regional/period-mean (<10 %) and the spatial distributions. An additional STEM simulation was performed in which the boundary conditions were downscaled from a RAQMS (Realtime Air Quality Modeling System) simulation without EAS anthropogenic emissions. The scalability of O3 sensitivities to the size of the emission perturbation is spatially varying, and the full (i.e., based on a 100% emission reduction) source contribution obtained from linearly scaling the North American mean O3 sensitivities to a 20% reduction in the EAS anthropogenic emissions may be underestimated by at least 10 %. The three boundary condition models' mean O3 sensitivities to the 20% EAS emission perturbations are ~8% (May-June 2010)/~11% (2010 annual) lower than those estimated by eight global models, and the multi-model ensemble estimates are higher than the HTAP1 reported 2001 conditions. GEOS-Chem sensitivities indicate that the EAS anthropogenic NO x emissions matter more than the other EAS O3 precursors to the North American O3, qualitatively consistent with previous adjoint sensitivity calculations. In addition to the analyses on large spatial-temporal scales relative to the HTAP1, we also show results on subcontinental and event scales that are more relevant to the US air quality management. The EAS pollution impacts are weaker during observed O3 exceedances than on all days in most US regions except over some high-terrain western US rural/remote areas. Satellite O3 (TES, JPL-IASI, and AIRS) and carbon monoxide (TES and AIRS) products, along with surface measurements and model calculations, show that during certain episodes stratospheric O3 intrusions and the transported EAS pollution influenced O3 in the western and the eastern US differently. Free-running (i.e., without chemical data assimilation) global models underpredicted the transported background O3 during these episodes, posing difficulties for STEM to accurately simulate the surface O3 and its source contribution. Although we effectively improved the modeled O3 by incorporating satellite O3 (OMI and MLS) and evaluated the quality of the HTAP2 emission inventory with the Royal Netherlands Meteorological Institute-Ozone Monitoring Instrument (KNMI-OMI) nitrogen dioxide, using observations to evaluate and improve O3 source attribution still remains to be further explored.
Collapse
Affiliation(s)
- Min Huang
- George Mason University, Fairfax, VA, USA
- University of Maryland, College Park, MD, USA
| | | | - R. Bradley Pierce
- NOAA National Environmental Satellite, Data, and Information Service, Madison, WI, USA
| | | | | | | | | | - Kevin W. Bowman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Yanko Davila
- University of Colorado Boulder, Boulder, CO, USA
| | - Kengo Sudo
- Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | | - Hilke Oetjen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Vivienne H. Payne
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
36
|
Guo Y, Liu J, Mauzerall DL, Li X, Horowitz LW, Tao W, Tao S. Long-Lived Species Enhance Summertime Attribution of North American Ozone to Upwind Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5017-5025. [PMID: 28350955 DOI: 10.1021/acs.est.6b05664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ground-level ozone (O3), harmful to most living things, is produced from both domestic and foreign emissions of anthropogenic precursors. Previous estimates of the linkage from distant sources rely on the sensitivity approach (i.e., modeling the change of ozone concentrations that result from modifying precursor emissions) as well as the tagging approach (i.e., tracking ozone produced from specific O3 precursors emitted from one region). Here, for the first time, we tag all O3 precursors (i.e., nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs)) from East Asia and explicitly track their physicochemical evolution without perturbing the nonlinear O3 chemistry. We show that, even in summer, when intercontinental influence on ozone has typically been found to be weakest, nearly 3 parts per billion by volume (ppbv) seasonal average surface O3 over North America can be attributed to East Asian anthropogenic emissions, compared with 0.7 ppbv using the sensitivity approach and 0.5 ppbv by tagging reactive nitrogen oxides. Considering the acute effects of O3 exposure, approximately 670 cardiovascular and 300 respiratory premature mortalities within North America could be attributed to East Asia. CO and longer-lived VOCs, largely overlooked in previous studies, extend the influence of regional ozone precursors emissions and, thus, greatly enhance O3 attribution to source region.
Collapse
Affiliation(s)
| | | | | | | | - Larry W Horowitz
- NOAA Geophysical Fluid Dynamics Laboratory , Princeton, New Jersey 08540, United States
| | | | | |
Collapse
|
37
|
Milford JB, Knight D. Increasing the Use of Earth Science Data and Models in Air Quality Management. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2017; 67:431-444. [PMID: 28282284 DOI: 10.1080/10962247.2016.1248303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED In 2010, the U.S. National Aeronautics and Space Administration (NASA) initiated the Air Quality Applied Science Team (AQAST) as a 5-year, $17.5-million award with 19 principal investigators. AQAST aims to increase the use of Earth science products in air quality-related research and to help meet air quality managers' information needs. We conducted a Web-based survey and a limited number of follow-up interviews to investigate federal, state, tribal, and local air quality managers' perspectives on usefulness of Earth science data and models, and on the impact AQAST has had. The air quality managers we surveyed identified meeting the National Ambient Air Quality Standards for ozone and particulate matter, emissions from mobile sources, and interstate air pollution transport as top challenges in need of improved information. Most survey respondents viewed inadequate coverage or frequency of satellite observations, data uncertainty, and lack of staff time or resources as barriers to increased use of satellite data by their organizations. Managers who have been involved with AQAST indicated that the program has helped build awareness of NASA Earth science products, and assisted their organizations with retrieval and interpretation of satellite data and with application of global chemistry and climate models. AQAST has also helped build a network between researchers and air quality managers with potential for further collaborations. IMPLICATIONS NASA's Air Quality Applied Science Team (AQAST) aims to increase the use of satellite data and global chemistry and climate models for air quality management purposes, by supporting research and tool development projects of interest to both groups. Our survey and interviews of air quality managers indicate they found value in many AQAST projects and particularly appreciated the connections to the research community that the program facilitated. Managers expressed interest in receiving continued support for their organizations' use of satellite data, including assistance in retrieving and interpreting data from future geostationary platforms meant to provide more frequent coverage for air quality and other applications.
Collapse
Affiliation(s)
- Jana B Milford
- a Department of Mechanical Engineering , University of Colorado Boulder , Boulder , CO , USA
| | - Daniel Knight
- a Department of Mechanical Engineering , University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|
38
|
Galmarini S, Koffi B, Solazzo E, Keating T, Hogrefe C, Schulz M, Benedictow A, Griesfeller JJ, Janssens-Maenhout G, Carmichael G, Fu J, Dentener F. Technical note: Coordination and harmonization of the multi-scale, multi-model activities HTAP2, AQMEII3, and MICS-Asia3: simulations, emission inventories, boundary conditions, and model output formats. ACTA ACUST UNITED AC 2017. [PMID: 29541091 PMCID: PMC5846500 DOI: 10.5194/acp-17-1543-2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We present an overview of the coordinated global numerical modelling experiments performed during 2012–2016 by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP), the regional experiments by the Air Quality Model Evaluation International Initiative (AQMEII) over Europe and North America, and the Model Intercomparison Study for Asia (MICS-Asia). To improve model estimates of the impacts of intercontinental transport of air pollution on climate, ecosystems, and human health and to answer a set of policy-relevant questions, these three initiatives performed emission perturbation modelling experiments consistent across the global, hemispheric, and continental/regional scales. In all three initiatives, model results are extensively compared against monitoring data for a range of variables (meteorological, trace gas concentrations, and aerosol mass and composition) from different measurement platforms (ground measurements, vertical profiles, airborne measurements) collected from a number of sources. Approximately 10 to 25 modelling groups have contributed to each initiative, and model results have been managed centrally through three data hubs maintained by each initiative. Given the organizational complexity of bringing together these three initiatives to address a common set of policy-relevant questions, this publication provides the motivation for the modelling activity, the rationale for specific choices made in the model experiments, and an overview of the organizational structures for both the modelling and the measurements used and analysed in a number of modelling studies in this special issue.
Collapse
Affiliation(s)
| | - Brigitte Koffi
- European Commission, Joint Research Centre, Ispra, Italy
| | - Efisio Solazzo
- European Commission, Joint Research Centre, Ispra, Italy
| | - Terry Keating
- Environmental Protection Agency, Applied Science and Education Division, National Center for Environmental Research, Office of Research and Development, Headquarters, Federal Triangle, Washington, DC 20460, USA
| | - Christian Hogrefe
- Environmental Protection Agency, Computational Exposure Division, National Exposure Research Laboratory, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | | | | | | | | | - Greg Carmichael
- Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA 52242, USA
| | - Joshua Fu
- Department of Civil & Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Frank Dentener
- European Commission, Joint Research Centre, Ispra, Italy
| |
Collapse
|
39
|
Stauffer RM, Thompson AM, Oltmans SJ, Johnson BJ. Tropospheric ozonesonde profiles at long-term U.S. monitoring sites: 2. Links between Trinidad Head, CA, profile clusters and inland surface ozone measurements. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:1261-1280. [PMID: 29619290 PMCID: PMC5880040 DOI: 10.1002/2016jd025254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Much attention has been focused on the transport of ozone (O3) to the Western U.S., particularly given the latest revision of the National Ambient Air Quality Standard (NAAQS) to 70 parts per billion by volume (ppbv) of O3. This makes defining a "background" O3 amount essential so that the effects of stratosphere-to-troposphere exchange and pollution transport to this region can be quantified. To evaluate free-tropospheric and surface O3 in the Western U.S., we use self-organizing maps to cluster 18 years of ozonesonde profiles (940 samples) from Trinidad Head, CA. Two of nine O3 mixing ratio profile clusters exhibit thin laminae of high O3 above Trinidad Head. A third, consisting of background (~20 - 40 ppbv) O3, occurs in ~10% of profiles. The high O3 layers are located between 1 and 4 km amsl, and reside above a subsidence inversion associated with a northern location of the semi-permanent Pacific subtropical high. Several ancillary data sets are examined to identify the high O3 sources (reanalyses, trajectories, remotely-sensed carbon monoxide), but distinguishing chemical and stratospheric influences of the elevated O3 is difficult. There is marked and long-lasting impact of the elevated tropospheric O3 on high-altitude surface O3 monitors at Lassen Volcanic and Yosemite National Parks, and Truckee, CA. Days corresponding to the high O3 clusters exhibit hourly surface O3 anomalies of +5 - 10 ppbv compared to a climatology; the anomalies can last up to four days. The profile and surface O3 links demonstrate the importance of regular ozonesonde profiling at Trinidad Head.
Collapse
Affiliation(s)
- Ryan M Stauffer
- Earth System Science Interdisciplinary Center (ESSIC), University of Maryland - College Park, College Park, Maryland, USA
- Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anne M Thompson
- Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA
- NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Samuel J Oltmans
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, Colorado, USA
| | - Bryan J Johnson
- NOAA Earth System Research Laboratory, Global Monitoring Division, Boulder, Colorado, USA
| |
Collapse
|
40
|
Schroeder JR, Crawford JH, Fried A, Walega J, Weinheimer A, Wisthaler A, Müller M, Mikoviny T, Chen G, Shook M, Blake DR, Diskin G, Estes M, Thompson AM, Lefer BL, Long R, Mattson E. Formaldehyde column density measurements as a suitable pathway to estimate near-surface ozone tendencies from space. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:13088-13112. [PMID: 32812915 PMCID: PMC7430524 DOI: 10.1002/2016jd025419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r 2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for ~28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (±20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.
Collapse
Affiliation(s)
- Jason R Schroeder
- NASA Langley Research Center, Hampton, Virginia, USA
- NASA Postdoctoral Program, NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Alan Fried
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA
| | - James Walega
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Armin Wisthaler
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Markus Müller
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
| | - Tomas Mikoviny
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Gao Chen
- NASA Langley Research Center, Hampton, Virginia, USA
| | - Michael Shook
- NASA Langley Research Center, Hampton, Virginia, USA
| | - Donald R Blake
- Department of Chemistry, University of California, Irvine, California, USA
| | - Glenn Diskin
- NASA Langley Research Center, Hampton, Virginia, USA
| | - Mark Estes
- Texas Commission on Environmental Quality, Austin, Texas, USA
| | - Anne M Thompson
- Department of Meteorology, Penn State University, University Park, Pennsylvania, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Barry L Lefer
- Department of Earth and Atmospheric Science, University of Houston, Houston, Texas, USA
- Now at NASA Headquarters, Washington, DC, USA
| | - Russell Long
- National Exposure Research Laboratory, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Eric Mattson
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| |
Collapse
|
41
|
Abstract
The extent to which stratospheric intrusions on synoptic scales influence the tropospheric ozone (O3) levels remains poorly understood, because quantitative detection of stratospheric air has been challenging. Cosmogenic 35S mainly produced in the stratosphere has the potential to identify stratospheric air masses at ground level, but this approach has not yet been unambiguously shown. Here, we report unusually high 35S concentrations (7,390 atoms m-3; ∼16 times greater than annual average) in fine sulfate aerosols (aerodynamic diameter less than 0.95 µm) collected at a coastal site in southern California on May 3, 2014, when ground-level O3 mixing ratios at air quality monitoring stations across southern California (43 of 85) exceeded the recently revised US National Ambient Air Quality Standard (daily maximum 8-h average: 70 parts per billion by volume). The stratospheric origin of the significantly enhanced 35S level is supported by in situ measurements of air pollutants and meteorological variables, satellite observations, meteorological analysis, and box model calculations. The deep stratospheric intrusion event was driven by the coupling between midlatitude cyclones and Santa Ana winds, and it was responsible for the regional O3 pollution episode. These results provide direct field-based evidence that 35S is an additional sensitive and unambiguous tracer in detecting stratospheric air in the boundary layer and offer the potential for resolving the stratospheric influences on the tropospheric O3 level.
Collapse
|
42
|
Evaluating Summer-Time Ozone Enhancement Events in the Southeast United States. ATMOSPHERE 2016. [DOI: 10.3390/atmos7080108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Ott LE, Duncan BN, Thompson AM, Diskin G, Fasnacht Z, Langford AO, Lin M, Molod AM, Nielsen JE, Pusede SE, Wargan K, Weinheimer AJ, Yoshida Y. Frequency and Impact of Summertime Stratospheric Intrusions over Maryland during DISCOVER-AQ (2011): New Evidence from NASA's GEOS-5 Simulations. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; Volume 121:3687-3706. [PMID: 32021738 PMCID: PMC6999667 DOI: 10.1002/2015jd024052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Aircraft observations and ozonesonde profiles collected on July 14 and 27, 2011, during the Maryland month-long DISCOVER-AQ campaign, indicate the presence of stratospheric air just above the planetary boundary layer (PBL). This raises the question of whether summer stratospheric intrusions (SIs) elevate surface ozone levels and to what degree they influence background ozone levels and contribute to ozone production. We used idealized stratospheric air tracers, along with observations, to determine the frequency and extent of SIs in Maryland during July 2011. On 4 of 14 flight days, SIs were detected in layers that the aircraft encountered above the PBL from the coincidence of enhanced ozone, moderate CO, and low moisture. Satellite observations of lower tropospheric humidity confirmed the occurrence of synoptic scale influence of SIs as do simulations with the GEOS-5 Atmospheric General Circulation Model. The evolution of GEOS-5 stratospheric air tracers agree with the timing and location of observed stratospheric influence and indicate that more than 50% of air in SI layers above the PBL had resided in the stratosphere within the previous 14 days. Despite having a strong influence in the lower free troposphere, these events did not significantly affect surface ozone, which remained low on intrusion days. The model indicates similar frequencies of stratospheric influence during all summers from 2009-2013. GEOS-5 results suggest that, over Maryland, the strong inversion capping the summer PBL limits downward mixing of stratospheric air during much of the day, helping to preserve low surface ozone associated with frontal passages that precede SIs.
Collapse
Affiliation(s)
- Lesley E Ott
- NASA Goddard Space Flight Center, Greenbelt, MD USA
| | | | | | | | - Zachary Fasnacht
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD USA
| | - Andrew O Langford
- NOAA Earth System Research Laboratory Chemical Sciences Division, Boulder, CO USA
| | - Meiyun Lin
- Program in Atmospheric and Oceanic Sciences, Princeton University and NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
| | - Andrea M Molod
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park Park, MD USA
| | - J Eric Nielsen
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- Science Systems and Applications, Inc., Lanham, MD USA
| | - Sally E Pusede
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Krzysztof Wargan
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- Science Systems and Applications, Inc., Lanham, MD USA
| | | | - Yasuko Yoshida
- NASA Goddard Space Flight Center, Greenbelt, MD USA
- Science Systems and Applications, Inc., Lanham, MD USA
| |
Collapse
|
44
|
Baylon PM, Jaffe DA, Pierce RB, Gustin MS. Interannual Variability in Baseline Ozone and Its Relationship to Surface Ozone in the Western U.S. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2994-3001. [PMID: 26882468 DOI: 10.1021/acs.est.6b00219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Baseline ozone refers to observed concentrations of tropospheric ozone at sites that have a negligible influence from local emissions. The Mount Bachelor Observatory (MBO) was established in 2004 to examine baseline air masses as they arrive to North America from the west. In May 2012, we observed an O3 increase of 2.0-8.5 ppbv in monthly average maximum daily 8-hour average O3 mixing ratio (MDA8 O3) at MBO and numerous other sites in the western U.S. compared to previous years. This shift in the O3 distribution had an impact on the number of exceedance days. We also observed a good correlation between daily MDA8 variations at MBO and at downwind sites. This suggests that under specific meteorological conditions, synoptic variation in O3 at MBO can be observed at other surface sites in the western U.S. At MBO, the elevated O3 concentrations in May 2012 are associated with low CO values and low water vapor values, consistent with transport from the upper troposphere/lower stratosphere (UT/LS). Furthermore, the Real-time Air Quality Modeling System (RAQMS) analyses indicate that a large flux of O3 from the UT/LS in May 2012 contributed to the observed enhanced O3 across the western U.S. Our results suggest that a network of mountaintop observations, LiDAR and satellite observations of O3 could provide key data on daily and interannual variations in baseline O3.
Collapse
Affiliation(s)
- Pao M Baylon
- Department of Atmospheric Sciences, University of Washington , 408 Atmospheric Sciences-Geophysics Building, Seattle, Washington 98195, United States
| | - Daniel A Jaffe
- Department of Atmospheric Sciences, University of Washington , 408 Atmospheric Sciences-Geophysics Building, Seattle, Washington 98195, United States
- School of Science, Technology, Engineering and Mathematics, University of Washington Bothell , 18115 Campus Way NE, Bothell, Washington 98011, United States
| | - R Bradley Pierce
- NOAA/NESDIS , Center for Satellite Applications and Research, Advanced Satellite Products Branch, 1225 West Dayton Street, Madison, Wisconsin 53705, United States
| | - Mae S Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno , Reno, Nevada 89557, United States
| |
Collapse
|
45
|
Stauffer RM, Thompson AM, Young GS. Tropospheric ozonesonde profiles at long-term U.S. monitoring sites: 1. A climatology based on self-organizing maps. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:1320-1339. [PMID: 29619288 PMCID: PMC5880212 DOI: 10.1002/2015jd023641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sonde-based climatologies of tropospheric ozone (O3) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O3 climatologies average measurements by latitude or region, and season. Recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found clusters of O3 mixing ratio profiles are an excellent way to capture O3 variability and link meteorological influences to O3 profiles. Clusters correspond to distinct meteorological conditions, e.g. convection, subsidence, cloud cover, and transported pollution. Here, the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA) with 4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3×3 SOM (nine clusters). At each site, SOM clusters together O3 profiles with similar tropopause height, 500 hPa height/temperature, and amount of tropospheric and total column O3. Cluster means are compared to monthly O3 climatologies. For all four sites, near-tropopause O3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O3 mixing ratio in three clusters that contain 13 - 16% of profiles, mostly in winter and spring. Large mid-tropospheric deviations from monthly means (-6 ppbv, +7 - 10 ppbv O3 at 6 km) are found in two of the most populated clusters (combined 36 - 39% of profiles). These two clusters contain distinctly polluted (summer) and clean O3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O3 averages are often poor representations of U.S. O3 profile statistics.
Collapse
Affiliation(s)
- Ryan M Stauffer
- Earth System Science Interdisciplinary Center (ESSIC), University of Maryland - College Park, College Park, Maryland, USA
- Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anne M Thompson
- Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA
- Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - George S Young
- Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
46
|
Lapina K, Henze DK, Milford JB, Travis K. Impacts of Foreign, Domestic, and State-Level Emissions on Ozone-Induced Vegetation Loss in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:806-13. [PMID: 26694633 DOI: 10.1021/acs.est.5b04887] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Exposure to elevated levels of ozone leads to yield reduction in agricultural crops and biomass loss in trees. Here, we quantify the impact of ozone pollution on two major U.S. crops, wheat and soybean, and two ozone-sensitive tree species, ponderosa pine and quaking aspen, using simulations with the GEOS-Chem model for 2010. Using previously established exposure-response functions, we estimate nationwide relative yield reductions of 4.9% for wheat and 6.7% for soybean, and relative biomass loss of 2.5% and 2.9% for ponderosa pine and aspen seedlings, respectively. Adjoint model sensitivities are used to estimate the impact of emissions sources from different locations, species, and sectors. We find that the nationwide relative loss in each vegetation type is influenced most by domestic anthropogenic NOx (>75%). Long-range transport from foreign sources is small relative to domestic influences. More than half of the anthropogenic NOx responsible for vegetation damage originates from outside the states where the damage occurs. Texas and Missouri are the highest contributors to the nationwide loss of wheat and soybean, respectively. California "exports" ozone damage for all types of vegetation studied, due to its location, high share of anthropogenic NOx, and a relatively low share of vegetation.
Collapse
Affiliation(s)
- Kateryna Lapina
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Jana B Milford
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Katherine Travis
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
47
|
Liu J, Rodriguez JM, Thompson AM, Logan JA, Douglass AR, Olsen MA, Steenrod SD, Posny F. Origins of tropospheric ozone interannual variation (IAV) over Réunion: A model investigation. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2016; 121:521-537. [PMID: 29657911 PMCID: PMC5896576 DOI: 10.1002/2015jd023981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Observations from long-term ozonesonde measurements show robust variations and trends in the evolution of ozone in the middle and upper troposphere over Réunion Island (21.1°S, 55.5°E) in June-August. Here we examine possible causes of the observed ozone variation at Réunion Island using hindcast simulations by the stratosphere-troposphere Global Modeling Initiative chemical transport model (GMI-CTM) for 1992-2014, driven by assimilated Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields. Réunion Island is at the edge of the subtropical jet, a region of strong stratospheric-tropospheric exchange (STE). Our analysis implies that the large interannual variation (IAV) of upper tropospheric ozone over Réunion is driven by the large IAV of the stratospheric influence. The IAV of the large-scale, quasi-horizontal wind patterns also contributes to the IAV of ozone in the upper troposphere. Comparison to a simulation with constant emissions indicates that increasing emissions do not lead to the maximum trend in the middle and upper troposphere over Réunion during austral winter implied by the sonde data. The effects of increasing emission over southern Africa are limited to the lower troposphere near the surface in August - September.
Collapse
Affiliation(s)
- Junhua Liu
- Universities Space Research Association (USRA), GESTAR, Columbia, MD, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | | | | - Jennifer A. Logan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - Mark A. Olsen
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Morgan State University, Baltimore, MD, USA
| | - Stephen D. Steenrod
- Universities Space Research Association (USRA), GESTAR, Columbia, MD, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Francoise Posny
- Laboratoire de l’Atmosphère et des Cyclones (LACy), Université de La Réunion/CNRS, La Réunion, France
| |
Collapse
|
48
|
VanCuren RT, Gustin MS. Identification of sources contributing to PM2.5 and ozone at elevated sites in the western U.S. by receptor analysis: Lassen Volcanic National Park, California, and Great Basin National Park, Nevada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:505-518. [PMID: 25864796 DOI: 10.1016/j.scitotenv.2015.03.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/16/2015] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
The proposed revision of the United States (US) air quality standard for ozone will result in violations in sparsely populated remote rural areas in the Western US. Replicating air quality as measured at surface monitoring sites by modeling is particularly difficult in this region due to complex terrain, poorly represented in regional and global models, and uncertainties in emission rates and timing at all scales (locally as well as hundreds to thousands of km upwind). As an alternative method, a fully empirical, receptor-based scheme using in situ aerosol composition and simple meteorological variables to simulate ozone (O3) measurements was tested and found to produce O3 simulation results comparable in uncertainty to regional modeling, and supporting trajectory-based identification of O3 source regions. This approach was tested using two widely-separated (650 km) high altitude (approx. 2 km above sea level) monitoring sites, Lassen Volcanic National Park, in northern California (LAVO) and Great Basin National Park in eastern Nevada (GRBA). Comparing correlations between observed O3 and aerosols, and examining back-trajectories associated with peak concentrations for the two sites permitted distinguishing among local, distant North American, and Asian sources of particulate matter (PM2.5) and O3. This analysis indicates that anthropogenic enhancement of O3 at LAVO is primarily due to transport from Asia. Asia is also the dominant source of anthropogenic O3 at GRBA in spring, but regional North American sources of O3 appear to drive additional ozone peaks in late summer and fall at this more interior site.
Collapse
Affiliation(s)
| | - Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, NV 89557, USA
| |
Collapse
|
49
|
Christensen JN, Weiss-Penzias P, Fine R, McDade CE, Trzepla K, Brown ST, Gustin MS. Unraveling the sources of ground level ozone in the Intermountain Western United States using Pb isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:519-525. [PMID: 25934382 DOI: 10.1016/j.scitotenv.2015.04.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
Ozone as an atmospheric pollutant is largely produced by anthropogenic precursors and can significantly impact human and ecosystem health, and climate. The U.S. Environmental Protection Agency has recently proposed lowering the ozone standard from 75 ppbv (MDA8 = Maximum Daily 8-Hour Average) to between 65 and 70 ppbv. This will result in remote areas of the Intermountain West that includes many U.S. National Parks being out of compliance, despite a lack of significant local sources. We used Pb isotope fingerprinting and back-trajectory analysis to distinguish sources of imported ozone to Great Basin National Park in eastern Nevada. During discrete Chinese Pb events (> 1.1 ng/m(3) & > 80% Asian Pb) trans-Pacific transported ozone was 5 ± 5.5 ppbv above 19 year averages for those dates. In contrast, concentrations during regional transport from the Los Angeles and Las Vegas areas were 15 ± 2 ppbv above the long-term averages, and those characterized by high-altitude transport 3 days prior to sampling were 19 ± 4ppbv above. However, over the study period the contribution of trans-Pacific transported ozone increased at a rate of 0.8 ± 0.3 ppbv/year, suggesting that Asian inputs will exceed regional and high altitude sources by 2015-2020. All of these sources will impact regulatory compliance with a new ozone standard, given increasing global background.
Collapse
Affiliation(s)
| | | | | | - Charles E McDade
- University of California at Davis, Crocker Nuclear Laboratory, Davis, CA, United States
| | - Krystyna Trzepla
- University of California at Davis, Crocker Nuclear Laboratory, Davis, CA, United States
| | - Shaun T Brown
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | |
Collapse
|
50
|
Gustin MS, Fine R, Miller M, Jaffe D, Burley J. The Nevada Rural Ozone Initiative (NVROI): Insights to understanding air pollution in complex terrain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:455-470. [PMID: 25840481 DOI: 10.1016/j.scitotenv.2015.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 04/14/2023]
Abstract
The Nevada Rural Ozone Initiative (NVROI) was established to better understand O3 concentrations in the Western United States (US). The major working hypothesis for development of the sampling network was that the sources of O3 to Nevada are regional and global. Within the framework of this overarching hypothesis, we specifically address two conceptual meteorological hypotheses: (1) The high elevation, complex terrain, and deep convective mixing that characterize Nevada, make this state ideally located to intercept polluted parcels of air transported into the US from the free troposphere; and (2) site specific terrain features will influence O3 concentrations observed at surface sites. Here, the impact of complex terrain and site location on observations are discussed. Data collected in Nevada at 6 sites (1385 to 2082 m above sea level (asl)) are compared with that collected at high elevation sites in Yosemite National Park and the White Mountains, California. Average daily maximum 1-hour concentrations of O3 during the first year of the NVROI ranged from 58 to 69 ppbv (spring), 53 to 62 ppbv (summer), 44 to 49 ppbv (fall), and 37 to 45 ppbv (winter). These were similar to those measured at 3 sites in Yosemite National Park (2022 to 3031 m asl), and at 4 sites in the White Mountains (1237 to 4342 m asl) (58 to 67 ppbv (summer) and 47 to 58 ppbv (fall)). Results show, that in complex terrain, collection of data should occur at high and low elevation sites to capture surface impacts, and site location with respect to topography should be considered. Additionally, concentrations measured are above the threshold reported for causing a reduction in growth and visible injury for plants (40 ppbv), and sustained exposure at high elevation locations in the Western USA may be detrimental for ecosystems.
Collapse
Affiliation(s)
- Mae Sexauer Gustin
- Department of Natural Resources and Environmental Science, MS 186, University of Nevada-Reno, Reno, NV 89557, US.
| | - Rebekka Fine
- Department of Natural Resources and Environmental Science, MS 186, University of Nevada-Reno, Reno, NV 89557, US
| | - Matthieu Miller
- Department of Natural Resources and Environmental Science, MS 186, University of Nevada-Reno, Reno, NV 89557, US
| | - Dan Jaffe
- School of Science and Technology, University of Washington-Bothell, 18115 Campus Way NE, Bothell, Washington, US
| | - Joel Burley
- Department of Chemistry, Saint Mary's College of California, Moraga, CA 94575-4527, US
| |
Collapse
|