1
|
Chowdhury AA, Basak N, Mondal M, Islam E. Methylobacterium sp. EIKU22 as a strategic bioinoculant for uranium and arsenic mitigation in agricultural soil: a microbial solution for sustainable agriculture. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:132. [PMID: 40131474 DOI: 10.1007/s10653-025-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
Mitigation of potentially toxic elements (PTEs) such as uranium (U) and arsenic (As), and fulfilment of global food demand requires a sustainable approach. Therefore, a multiple PTE-tolerant Methylobacterium sp. EIKU22 was explored for its bioremediation and biofertilization potential. This multi-metal tolerant isolate removed 29.88% U (initial dose: 100 mg L-1, pH 4.0, biosorption 3.74 mg g-1) after 14 days, following pseudo-second-order (PSO) kinetics. The isolate also showed 54% As(III) [pseudo-first-order kinetic; 3.72 mg g-1]; and ~ 37% As(V) (PSO; 2.4 mg g-1) removal within 60 min with the same initial dosing of either As(III) or As(V). Moreover, the strain precipitated > 96.5% and ~ 97% of U using released phosphate from inorganic and organic sources, respectively. Further analysis with inorganic phosphate showed > 31%, > 41% and > 98% of U precipitation from initial doses of 1000, 500 and 100 mg L-1 within 5 min. Methylobacterium sp. EIKU22 expresses the potential to solubilize ~ 178% phosphate, 169.8% potassium, 156-213% zinc within 6 days, and was able to withstand a pH range of 4.0-8.0, temperature range of 20-35 °C, and exhibited resilience to up to 10% NaCl exposure despite being affected by UV exposure. Further, the isolate showed to grow in nitrogen-free media and produce IAA, ammonia, siderophore, ACC deaminase, cellulase and catalase, suggesting potential application in plant growth promotion. The isolate harbours amoA, and nifH genes and imparts better survivability and vegetative growth in the rice seedling. These findings showcase the strain's dual applicability. However, further investigation is needed to generalize the findings.
Collapse
Affiliation(s)
- Atif Aziz Chowdhury
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università, 1, 39100, Bolzano, Italy
| | - Nilendu Basak
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Monojit Mondal
- Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
2
|
Salazar-Hamm PS, Homan FE, Good SA, Hathaway JJM, Clements AE, Haugh EG, Caesar LK. Subterranean marvels: microbial communities in caves and underground mines and their promise for natural product discovery. Nat Prod Rep 2025; 42:592-622. [PMID: 39950737 DOI: 10.1039/d4np00055b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Covering: 2014 to 2024Since the dawn of human history, caves have played an intimate role in our existence. From our earliest ancestors seeking shelter from the elements to more recent generations harnessing cave substances for medicinal purposes, caves have served as essential resources and havens. The last 40 years of geomicrobiology research has replaced the outdated perception of subterranean environments as lifeless and unchanging with the realization that vibrant microbial communities have adapted to thrive in extreme conditions over millions of years. The ability of subterranean microbial communities to withstand nutrient deprivation and darkness creates a unique reservoir of untapped biosynthetic potential. These communities offer exciting prospects for medicine (e.g., antimicrobial and antitumor therapies) and biotechnology (e.g., redox chemical properties and biomineralization). This article highlights the significance of caves and mines as reservoirs of microbial diversity, the potential impact of their bioactive compounds on the fields of healthcare and biotechnology, and the significant challenges that must be overcome to access and harness the biotechnological potential of subterranean microbial communities. Additionally, it emphasizes the conservation efforts needed to protect these delicate ecosystems, ensuring the preservation of both ancient traditions and tomorrow's medicines.
Collapse
Affiliation(s)
| | - Frances E Homan
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Shyleigh A Good
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | | | - Ashley E Clements
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Evelyn G Haugh
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Lindsay K Caesar
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| |
Collapse
|
3
|
Liu FYL, Twible LE, Colenbrander Nelson TE, Whaley-Martin K, Yan Y, Arrey JLS, Warren LA. Microbial sulfur cycling determinants and implications for environmental impacts. CHEMOSPHERE 2025; 372:144084. [PMID: 39798717 DOI: 10.1016/j.chemosphere.2025.144084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Sulfur-oxidizing bacteria (SOB) play a vital role in the occurrence of sulfur oxidation intermediate (SOI) compounds often recalcitrant to currently available, abiotic treatment within metal mine tailings impoundments (TI). As inadvertent SOI discharge post-treatment can lead to the uncontrolled acidification of receiving environments, it becomes increasingly important to elucidate the environmental controls on SOB identities and sulfur cycling within these relatively unstudied systems. Here, results identified controlling factors on SOB community differentiation and associated metabolic pathway occurrence through integrated physicochemical, geochemical, and microbial field and experimental investigation across three summers (2016, 2017, 2021) in a stratified Northern Ontario base metal TI. Dynamic shifts in SOB communities and sulfur oxidation pathways were primarily driven by [S2O32-] and further influenced by pH, [O2], and conductivity. At [S2O32-] above 0.03 mM, Halothiobacillus spp. was observed to dominate in lower pH, higher conductivity conditions where complete SOI oxidation, mediated through the complete Sox pathway, is suggested to reduced [SOI] in treated discharge waters. At [S2O32-] below 0.03 mM, an SOB assemblage (Thiovirga spp., Thiobacillus spp., and Sediminibacterium spp.) was observed to collectively dominate under higher pH and lower conductivity, associated with SOI persistence due to SOI recycling pathways (incomplete Sox, rDSR, S4I). Targeted SOB enrichment cultures confirmed the importance of S2O32- availability in driving SOB community shifts and the capability of Halothiobacillus to outcompete other SOB under oxygenated, high [S2O32-] conditions. Trends observed here for mine TI associated SOB were found to also occur across a broader suite of contexts using literature data, indicating their wider ecological relevance in interpreting outcomes associated with SOB activity. Results also provide new insights into improved, biologically informed management of sulfur associated risks with potential SOB manipulation through [S2O32-], pH, and/or [O2] controls.
Collapse
Affiliation(s)
- Felicia Y L Liu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Lauren E Twible
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Tara E Colenbrander Nelson
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Kelly Whaley-Martin
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Yunyun Yan
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - James L S Arrey
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
4
|
Gambardella N, Costa J, Martins BM, Folhas D, Ribeiro AP, Hintelmann H, Canário J, Magalhães C. The role of prokaryotic mercury methylators and demethylators in Canadian Arctic thermokarst lakes. Sci Rep 2025; 15:7173. [PMID: 40021694 PMCID: PMC11871057 DOI: 10.1038/s41598-025-89438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
Permafrost soils are critical reservoirs for mercury (Hg), with the thawing process leading to the release of this element into the environment, posing significant environmental risks. Of particular concern is the methylated form of mercury, monomethylmercury (MMHg), known for its adverse effects on Human health. Microbial communities play a pivotal role in the formation of MMHg by facilitating Hg methylation and in the demethylation of MMHg, slowing the crossing of toxic threshold concentration in the environment. However, the specific microbes involved still need to be understood. This study aimed to identify the microbial drivers behind changes in Hg speciation (MMHg and Hg) in permafrost thaw lakes and assess the significance of the biotic component in Hg biogeochemistry. Sediment samples from two thermokarst lakes in the Canadian sub-Arctic were collected during the winter and summer of 2022. Gene-centric metagenomics using whole-genome sequencing (WGS) was employed to identify key genes involved in mercury methylation (hgcA and hgcB) and demethylation (merA and merB), supported by qPCR analyses. A seasonal decline in microbial diversity, involved in the Hg methylation, and hgcA gene coverage was observed from winter to summer, mirroring patterns in mercury methylation rates. Notably, hgcA sequences were significantly more abundant than merAB sequences, with contrasting seasonal trends. These results indicate a seasonal shift in the microbial community, transitioning from a dominance of mercury methylation in winter to a predominance of mercury demethylation in summer. Environmental drivers of these dynamics were integrated into a conceptual model. This study provide new insights on the microbial processes influencing the Hg cycle in Arctic permafrost undergoing degradation.
Collapse
Affiliation(s)
- Nicola Gambardella
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Joana Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Beatriz Malcata Martins
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Diogo Folhas
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Ana Patrícia Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Holger Hintelmann
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Water Quality Centre, Trent University, Peterborough, Canada
| | - João Canário
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.
- Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
5
|
Moreira VA, Cravo-Laureau C, de Carvalho ACB, Baldy A, Bidone ED, Sabadini-Santos E, Duran R. Greenhouse gas emission potential of tropical coastal sediments in densely urbanized area inferred from metabarcoding microbial community data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174341. [PMID: 38960166 DOI: 10.1016/j.scitotenv.2024.174341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Although benthic microbial community offers crucial insights into ecosystem services, they are underestimated for coastal sediment monitoring. Sepetiba Bay (SB) in Rio de Janeiro, Brazil, holds long-term metal pollution. Currently, SB pollution is majorly driven by domestic effluents discharge. Here, functional prediction analysis inferred from 16S rRNA gene metabarcoding data reveals the energy metabolism profiles of benthic microbial assemblages along the metal pollution gradient. Methanogenesis, denitrification, and N2 fixation emerge as dominant pathways in the eutrophic/polluted internal sector (Spearman; p < 0.05). These metabolisms act in the natural attenuation of sedimentary pollutants. The methane (CH4) emission (mcr genes) potential was found more abundant in the internal sector, while the external sector exhibited higher CH4 consumption (pmo + mmo genes) potential. Methanofastidiosales and Exiguobacterium, possibly involved in CH4 emission and associated with CH4 consumers respectively, are the main taxa detected in SB. Furthermore, SB exhibits higher nitrous oxide (N2O) emission potential since the norB/C gene proportions surpass nosZ up to 4 times. Blastopirellula was identified as the main responsible for N2O emissions. This study reveals fundamental contributions of the prokaryotic community to functions involved in greenhouse gas emissions, unveiling their possible use as sentinels for ecosystem monitoring.
Collapse
Affiliation(s)
- Vanessa Almeida Moreira
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Angelo Cezar Borges de Carvalho
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil; Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Alice Baldy
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Edison Dausacker Bidone
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Elisamara Sabadini-Santos
- Programa de Pós-Graduação em Geociências (Geoquímica), Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-150, Brazil
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
6
|
Frazzoli C, Bocca B, Battistini B, Ruggieri F, Rovira J, Amadi CN, Offor SJ, Orisakwe OE. Rare Earth and Platinum Group Elements In Sub-Saharan Africa and Global Health: The Dark Side of the Burgeoning of Technology. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241271553. [PMID: 39282214 PMCID: PMC11393805 DOI: 10.1177/11786302241271553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024]
Abstract
Despite steady progress in the development and promotion of the circular economy as a model, an overwhelming proportion of technological devices discarded by the Global North still finds its way to the Global South, where technology-related environmental health problems start from the predation of resources and continue all the way to recycling and disposal. We reviewed literature on TCEs in sub-Saharan Africa (SSA), focussing on: the sources and levels of environmental pollution; the extent of human exposure to these substances; their role in the aetiology of human diseases; their effects on the environment. Our review shows that even minor and often neglected technology-critical elements (TCEs), like rare earth elements (REEs) and platinum group elements (PGEs), reveal the environmental damage and detrimental health effects caused by the massive mining of raw materials, exacerbated by improper disposal of e-waste (from dumping to improper recycling and open burning). We draw attention of local research on knowledge gaps such as workable safer methods for TCE recovery from end-of-life products, secondary materials and e-waste, environmental bioremediation and human detoxification. The technical and political shortcomings in the management of TCEs in SSA is all the more alarming against the background of unfavourable determinants of health and a resulting higher susceptibility to diseases, especially among children who work in mines and e-waste recycling sites or who reside in dumping sites.This paper demonstrates, for the first time, that the role of unjust North-South dynamics is evident even in the environmental levels of minor trace elements and that the premise underlying attempts to solve the problem of e-waste dumped in Africa through recycling and disposal technology is in fact misleading. The influx of foreign electrical and electronic equipments should be controlled and limited by clearly defining what is a 'useful' second-hand device and what is e-waste; risks arising from device components or processing by-products should be managed differently, and scientific uncertainty and One Health thinking should be incorporated in risk assessment.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Environmental Engineering Laboratory, Department d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Turkey
| |
Collapse
|
7
|
Lauzon J, Caron D, Lazar CS. The Saint-Leonard Urban Glaciotectonic Cave Harbors Rich and Diverse Planktonic and Sedimentary Microbial Communities. Microorganisms 2024; 12:1791. [PMID: 39338466 PMCID: PMC11434022 DOI: 10.3390/microorganisms12091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The terrestrial subsurface harbors unique microbial communities that play important biogeochemical roles and allow for studying a yet unknown fraction of the Earth's biodiversity. The Saint-Leonard cave in Montreal City (Canada) is of glaciotectonic origin. Its speleogenesis traces back to the withdrawal of the Laurentide Ice Sheet 13,000 years ago, during which the moving glacier dislocated the sedimentary rock layers. Our study is the first to investigate the microbial communities of the Saint-Leonard cave. By using amplicon sequencing, we analyzed the taxonomic diversity and composition of bacterial, archaeal and eukaryote communities living in the groundwater (0.1 µm- and 0.2 µm-filtered water), in the sediments and in surface soils. We identified a microbial biodiversity typical of cave ecosystems. Communities were mainly shaped by habitat type and harbored taxa associated with a wide variety of lifestyles and metabolic capacities. Although we found evidence of a geochemical connection between the above soils and the cave's galleries, our results suggest that the community assembly dynamics are driven by habitat selection rather than dispersal. Furthermore, we found that the cave's groundwater, in addition to being generally richer in microbial taxa than sediments, contained a considerable diversity of ultra-small bacteria and archaea.
Collapse
Affiliation(s)
- Jocelyn Lauzon
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| | | | - Cassandre Sara Lazar
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
8
|
Chen M, Grégoire DS, Bain JG, Blowes DW, Hug LA. Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities. Appl Environ Microbiol 2024; 90:e0014324. [PMID: 38814057 PMCID: PMC11218620 DOI: 10.1128/aem.00143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
The oxidation of sulfide-bearing mine tailings catalyzed by acidophilic iron and sulfur-oxidizing bacteria releases toxic metals and other contaminants into soil and groundwater as acid mine drainage. Understanding the environmental variables that control the community structure and metabolic activity of microbes indigenous to tailings (especially the abiotic stressors of low pH and high dissolved metal content) is crucial to developing sustainable bioremediation strategies. We determined the microbial community composition along two continuous vertical gradients of Cu/Ni mine tailings at each of two tailings impoundments near Sudbury, Ontario. 16S rRNA amplicon data showed high variability in community diversity and composition between locations, as well as at different depths within each location. A temporal comparison for one tailings location showed low fluctuation in microbial communities across 2 years. Differences in community composition correlated most strongly with pore-water pH, Eh, alkalinity, salinity, and the concentration of several dissolved metals (including iron, but not copper or nickel). The relative abundances of individual genera differed in their degrees of correlation with geochemical factors. Several abundant lineages present at these locations have not previously been associated with mine tailings environments, including novel species predicted to be involved in iron and sulfur cycling.IMPORTANCEMine tailings represent a significant threat to North American freshwater, with legacy tailings areas generating acid mine drainage (AMD) that contaminates rivers, lakes, and aquifers. Microbial activity accelerates AMD formation through oxidative metabolic processes but may also ameliorate acidic tailings by promoting secondary mineral precipitation and immobilizing dissolved metals. Tailings exhibit high geochemical variation within and between mine sites and may harbor many novel extremophiles adapted to high concentrations of toxic metals. Characterizing the unique microbiomes associated with tailing environments is key to identifying consortia that may be used as the foundation for innovative mine-waste bioremediation strategies. We provide an in-depth analysis of microbial diversity at four copper/nickel mine tailings impoundments, describe how communities (and individual lineages) differ based on geochemical gradients, predict organisms involved in AMD transformations, and identify taxonomically novel groups present that have not previously been observed in mine tailings.
Collapse
Affiliation(s)
- Molly Chen
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel S. Grégoire
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jeffrey G. Bain
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - David W. Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Laura A. Hug
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
9
|
Prieto-Fernández F, Lambert S, Kujala K. Assessment of microbial communities from cold mine environments and subsequent enrichment, isolation and characterization of putative antimony- or copper-metabolizing microorganisms. Front Microbiol 2024; 15:1386120. [PMID: 38855773 PMCID: PMC11160943 DOI: 10.3389/fmicb.2024.1386120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Mining activities, even in arctic regions, create waste materials releasing metals and metalloids, which have an impact on the microorganisms inhabiting their surroundings. Some species can persist in these areas through tolerance to meta(loid)s via, e.g., metabolic transformations. Due to the interaction between microorganisms and meta(loid)s, interest in the investigation of microbial communities and their possible applications (like bioremediation or biomining) has increased. The main goal of the present study was to identify, isolate, and characterize microorganisms, from subarctic mine sites, tolerant to the metalloid antimony (Sb) and the metal copper (Cu). During both summer and winter, samples were collected from Finnish mine sites (site A and B, tailings, and site C, a water-treatment peatland) and environmental parameters were assessed. Microorganisms tolerant to Sb and Cu were successfully enriched under low temperatures (4°C), creating conditions that promoted the growth of aerobic and fermenting metal(loid) tolerating or anaerobic metal(loid) respiring organism. Microbial communities from the environment and Sb/Cu-enriched microorganisms were studied via 16S rRNA amplicon sequencing. Site C had the highest number of taxa and for all sites, an expected loss of biodiversity occurred when enriching the samples, with genera like Prauserella, Pseudomonas or Clostridium increasing their relative abundances and others like Corynebacterium or Kocuria reducing in relative abundance. From enrichments, 65 putative Sb- and Cu-metabolizing microorganisms were isolated, showing growth at 0.1 mM to 10 mM concentrations and 0°C to 40°C temperatures. 16S rRNA gene sequencing of the isolates indicated that most of the putative anaerobically Sb-respiring tolerators were related to the genus Clostridium. This study represents the first isolation, to our knowledge, of putative Sb-metabolizing cold-tolerant microorganisms and contributes to the understanding of metal (loid)-tolerant microbial communities in Arctic mine sites.
Collapse
|
10
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
11
|
Swain AA, Sharma P, Keswani C, Minkina T, Tukkaraja P, Gadhamshetty V, Kumar S, Bauddh K, Kumar N, Shukla SK, Kumar M, Dubey RS, Wong MH. The efficient applications of native flora for phytorestoration of mine tailings: a pan-global survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27653-27678. [PMID: 38598151 DOI: 10.1007/s11356-024-33054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Mine tailings are the discarded materials resulting from mining processes after minerals have been extracted. They consist of leftover mineral fragments, excavated land masses, and disrupted ecosystems. The uncontrolled handling or discharge of tailings from abandoned mine lands (AMLs) poses a threat to the surrounding environment. Numerous untreated mine tailings have been abandoned globally, necessitating immediate reclamation and restoration efforts. The limited feasibility of conventional reclamation methods, such as cost and acceptability, presents challenges in reclaiming tailings around AMLs. This study focuses on phytorestoration as a sustainable method for treating mine tailings. Phytorestoration utilizes existing native plants on the mine sites while applying advanced principles of environmental biotechnology. These approaches can remediate toxic elements and simultaneously improve soil quality. The current study provides a global overview of phytorestoration methods, emphasizing the specifics of mine tailings and the research on native plant species to enhance restoration ecosystem services.
Collapse
Affiliation(s)
- Ankit Abhilash Swain
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Pallavi Sharma
- School of Environment and Sustainable Development, Sector-30, Gandhinagar, 382030, Gujarat, India
| | - Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia
| | - Purushotham Tukkaraja
- Department of Mining Engineering and Management, South Dakota Mines, Rapid City, SD, 57701, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering Department, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
- 2D-Materials for Biofilm Engineering, Science and Technology Center, 501 E. St. Joseph Street, Rapid City, SD, USA
| | - Sanjeev Kumar
- Department of Geology, BB Ambedkar University, Lucknow, 226025, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India.
- Institute of Environment and Sustainable Development, RGSC, Banaras Hindu University, Barkachha, Mirzapur, 231001, India.
| | - Narendra Kumar
- Department of Environmental Science, BB Ambedkar University, Lucknow, 226025, India
| | - Sushil Kumar Shukla
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Manoj Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835222, India
| | - Rama Shanker Dubey
- Central University of Gujarat, Sector-29, Gandhinagar, 382030, Gujarat, India
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
12
|
Cebekhulu S, Gómez-Arias A, Matu A, Alom J, Valverde A, Caraballo MA, Ololade O, Schneider P, Castillo J. Role of indigenous microbial communities in the mobilization of potentially toxic elements and rare-earth elements from alkaline mine waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133504. [PMID: 38310848 DOI: 10.1016/j.jhazmat.2024.133504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
This study aims to evaluate the role of indigenous microorganisms in the mobilization of potentially toxic elements (PTE) and rare-earth elements (REE), the influence of the bioavailability of carbon sources that might boost microbial leaching, and the generation of neutral/alkaline mine drainage from alkaline tailings. These tailings, with significant concentrations of total organic carbon (TOC), were mainly colonized by bacteria belonging to the genera Sphingomonas, Novosphingobium and Solirubrobacter, and fungi of the genera Alternaria, Sarocladium and Aspergillus. Functionality analysis suggests the capability of these microorganisms to leach PTE and REE. Bio-/leaching tests confirmed the generation of neutral mine drainage, the influence of organic substrate, and the leaching of higher concentrations of PTE and REE due to the production of organic acids and siderophores by indigenous microorganisms. In addition, this study offers some insights into a sustainable alternative for reprocessing PMC alkaline tailings to recover REE.
Collapse
Affiliation(s)
- S Cebekhulu
- Centre for Environmental Management, University of the Free State, Bloemfontein, Republic of South Africa
| | - A Gómez-Arias
- Department of Chemistry, University of the Free State, Bloemfontein, Republic of South Africa
| | - A Matu
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Republic of South Africa
| | - J Alom
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Republic of South Africa
| | - A Valverde
- Instituto de Recursos Naturales y Agrobiologıa de Salamanca (IRNASA, CSIC), Salamanca, Spain
| | - M A Caraballo
- Department of Mining, Mechanic, Energetic and Construction Engineering, Higher Technical School of Engineering, University of Huelva, Huelva, Spain; Department of Water, Mining and Environment, Scientific and Technological Center of Huelva, University of Huelva, Huelva, Spain
| | - O Ololade
- Centre for Environmental Management, University of the Free State, Bloemfontein, Republic of South Africa
| | - P Schneider
- Department for Water, Environment, Civil Engineering and Safety, University of Applied Sciences Magdeburg-Stendal, Magdeburg, Germany
| | - J Castillo
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Republic of South Africa.
| |
Collapse
|
13
|
Olaya‐Abril A, Biełło K, Rodríguez‐Caballero G, Cabello P, Sáez LP, Moreno‐Vivián C, Luque‐Almagro VM, Roldán MD. Bacterial tolerance and detoxification of cyanide, arsenic and heavy metals: Holistic approaches applied to bioremediation of industrial complex wastes. Microb Biotechnol 2024; 17:e14399. [PMID: 38206076 PMCID: PMC10832572 DOI: 10.1111/1751-7915.14399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Cyanide is a highly toxic compound that is found in wastewaters generated from different industrial activities, such as mining or jewellery. These residues usually contain high concentrations of other toxic pollutants like arsenic and heavy metals that may form different complexes with cyanide. To develop bioremediation strategies, it is necessary to know the metabolic processes involved in the tolerance and detoxification of these pollutants, but most of the current studies are focused on the characterization of the microbial responses to each one of these environmental hazards individually, and the effect of co-contaminated wastes on microbial metabolism has been hardly addressed. This work summarizes the main strategies developed by bacteria to alleviate the effects of cyanide, arsenic and heavy metals, analysing interactions among these toxic chemicals. Additionally, it is discussed the role of systems biology and synthetic biology as tools for the development of bioremediation strategies of complex industrial wastes and co-contaminated sites, emphasizing the importance and progress derived from meta-omic studies.
Collapse
Affiliation(s)
- Alfonso Olaya‐Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Karolina Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Gema Rodríguez‐Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Conrado Moreno‐Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - Víctor Manuel Luque‐Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de RabanalesUniversidad de CórdobaCórdobaSpain
| |
Collapse
|
14
|
Rekadwad BN, Li WJ, Gonzalez JM, Punchappady Devasya R, Ananthapadmanabha Bhagwath A, Urana R, Parwez K. Extremophiles: the species that evolve and survive under hostile conditions. 3 Biotech 2023; 13:316. [PMID: 37637002 PMCID: PMC10457277 DOI: 10.1007/s13205-023-03733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Extremophiles possess unique cellular and molecular mechanisms to assist, tolerate, and sustain their lives in extreme habitats. These habitats are dominated by one or more extreme physical or chemical parameters that shape existing microbial communities and their cellular and genomic features. The diversity of extremophiles reflects a long list of adaptations over millions of years. Growing research on extremophiles has considerably uncovered and increased our understanding of life and its limits on our planet. Many extremophiles have been greatly explored for their application in various industrial processes. In this review, we focused on the characteristics that microorganisms have acquired to optimally thrive in extreme environments. We have discussed cellular and molecular mechanisms involved in stability at respective extreme conditions like thermophiles, psychrophiles, acidophiles, barophiles, etc., which highlight evolutionary aspects and the significance of extremophiles for the benefit of mankind.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune, 411007 Maharashtra India
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Ganeshkhind Road, Pune, 411007 Maharashtra India
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Juan M. Gonzalez
- Microbial Diversity and Microbiology of Extreme Environments Research Group, Agencia Estatal Consejo Superior De Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - Rekha Punchappady Devasya
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
| | - Arun Ananthapadmanabha Bhagwath
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- Yenepoya Institute of Arts, Science, Commerce and Management, A Constituent Unit of Yenepoya (Deemed to be University), Yenepoya Complex, Balmatta, Mangalore, 575002 Karnataka India
| | - Ruchi Urana
- Department of Environmental Science and Engineering, Faculty of Environmental and Bio Sciences and Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| | - Khalid Parwez
- Department of Microbiology, Shree Narayan Medical Institute and Hospital, Saharsa, Bihar 852201 India
| |
Collapse
|
15
|
Lee YY, Lee SY, Cho KS. Long-term comparison of the performance of biostimulation and phytoextraction in soil contaminated with diesel and heavy metals. CHEMOSPHERE 2023:139332. [PMID: 37364638 DOI: 10.1016/j.chemosphere.2023.139332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The long-term remediation performance under the natural conditions is required to establish the appropriate remediation strategy for contaminated soil. The objective of this study was to compare the long-term remediation efficiency of biostimulation and phytoextraction in contaminated soil containing petroleum hydrocarbons (PHs) and heavy metals. Two types of contaminated soil (soil contaminated with diesel only and co-contaminated with diesel and heavy metals) were prepared. For the biostimulation treatments, the soil was amended with compost, whereas maize, a representative phytoremediation plant, was cultivated for the phytoextraction treatments. There was no significant difference in remediation performance of biostimulation and phytoextraction in the diesel-contaminated soil, in which the maximum total petroleum hydrocarbon (TPH) removability was 94-96% (p < 0.05). However, phytoextraction exhibited the higher removability for TPH and heavy metals than biostimulation in the co-contaminated soil. There was no considerable change in the TPH removal in biostimulation (16-25%), while phytoextraction showed a 75% of TPH removal rate in the co-contaminated soil. Additionally, no significant changes were observed in heavy metals concentration of biostimulation, whereas the removability of heavy metals was 33-63% in phytoextraction. Meanwhile, maize, which is a suitable plant for phytoextraction, showed a translocation factor (translocating efficiency from roots to shoots) value of >1. Correlation analysis revealed that soil properties (pH, water content, and organic content) negatively correlated with pollutants removal. Additionally, the soil bacterial communities were changed over the investigated period, and the types of pollutants exerted a significant influence on the bacterial community dynamics. This study performed a pilot-scale comparison of two types of biological remediation technologies under natural environmental conditions and provided information on changes in the bacterial community structures. This study can be useful for establishing appropriate biological remediation methods to restore soil contaminated with PHs and heavy metals.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Soo Yeon Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
16
|
Tang QX, Gan CD, Yang JY, Huang Y. Dynamics of vanadium and response of inherent bacterial communities in vanadium-titanium magnetite tailings to beneficiation agents, temperature, and illumination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121743. [PMID: 37149251 DOI: 10.1016/j.envpol.2023.121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Vanadium-titanium (V-Ti) magnetite tailings contain toxic metals that could potentially pollute the surrounding environment. However, the impact of beneficiation agents, an integral part of mining activities, on the dynamics of V and the microbial community composition in tailings remains unclear. To fill this knowledge gap, we compared the physicochemical properties and microbial community structure of V-Ti magnetite tailings under different environmental conditions, including illumination, temperature, and residual beneficiation agents (salicylhydroxamic acid, sodium isobutyl xanthate, and benzyl arsonic acid) during a 28-day reaction. The results revealed that beneficiation agents exacerbated the acidification of the tailings and the release of V, among which benzyl arsonic acid had the greatest impact. The concentration of soluble V in the leachate of tailings with benzyl arsonic acid was 6.4 times higher than that with deionized water. Moreover, illumination, high temperatures, and beneficiation agents contributed to the reduction of V in V-containing tailings. High-throughput sequencing revealed that Thiobacillus and Limnohabitans adapted to the tailings environment. Proteobacteria was the most diverse phylum, and the relative abundance was 85.0%-99.1%. Desulfovibrio, Thiobacillus, and Limnohabitans survived in the V-Ti magnetite tailings with residual beneficiation agents. These microorganisms could contribute to the development of bioremediation technologies. The main factors affecting the diversity and composition of bacteria in the tailings were Fe, Mn, V, SO42-, total nitrogen, and pH of the tailings. Illumination inhibited microbial community abundance, while the high temperature (39.5 °C) stimulated microbial community abundance. Overall, this study strengthens the understanding of the geochemical cycling of V in tailings influenced by residual beneficiation agents and the application of inherent microbial techniques in the remediation of tailing-affected environments.
Collapse
Affiliation(s)
- Qi-Xuan Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua, 617000, Sichuan, China.
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| |
Collapse
|
17
|
Prosenkov A, Cagnon C, Gallego JLR, Pelaez AI. The microbiome of a brownfield highly polluted with mercury and arsenic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121305. [PMID: 36804142 DOI: 10.1016/j.envpol.2023.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Abandoned brownfields represent a challenge for their recovery. To apply sustainable remediation technologies, such as bioremediation or phytoremediation, indigenous microorganisms are essential agents since they are adapted to the ecology of the soil. Better understanding of microbial communities inhabiting those soils, identification of microorganisms that drive detoxification process and recognising their needs and interactions will significantly improve the outcome of the remediation. With this in mind we have carried out a detailed metagenomic analysis to explore the taxonomic and functional diversity of the prokaryotic and eukaryotic microbial communities in soils, several mineralogically distinct types of pyrometallurgic waste, and groundwater sediments of a former mercury mining and metallurgy site which harbour very high levels of arsenic and mercury pollution. Prokaryotic and eukaryotic communities were identified, which turned out to be more diverse in the surrounding contaminated soils compared to the pyrometallurgic waste. The highest diversity loss was observed in two environments most contaminated with mercury and arsenic (stupp, a solid mercury condenser residue and arsenic-rich soot from arsenic condensers). Interestingly, microbial communities in the stupp were dominated by an overwhelming majority of archaea of the phylum Crenarchaeota, while Ascomycota and Basidiomycota fungi comprised the fungal communities of both stump and soot, results that show the impressive ability of these previously unreported microorganisms to colonize these extreme brownfield environments. Functional predictions for mercury and arsenic resistance/detoxification genes show their increase in environments with higher levels of pollution. Our work establishes the bases to design sustainable remediation methods and, equally important, to study in depth the genetic and functional mechanisms that enable the subsistence of microbial populations in these extremely selective environments.
Collapse
Affiliation(s)
- Alexander Prosenkov
- Area of Microbiology, Department of Functional Biology, Environmental Biogeochemistry and Raw Materials Group and IUBA, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Christine Cagnon
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - José Luis R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus of Mieres, University of Oviedo, 33600 Mieres, Asturias, Spain
| | - Ana Isabel Pelaez
- Area of Microbiology, Department of Functional Biology, Environmental Biogeochemistry and Raw Materials Group and IUBA, University of Oviedo, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
18
|
Liu Y, Gu C, Liu H, Zhou Y, Nie Z, Wang Y, Chen L, Xia J. Fe/S Redox-Coupled Mercury Transformation Mediated by Acidithiobacillus ferrooxidans ATCC 23270 under Aerobic and/or Anaerobic Conditions. Microorganisms 2023; 11:microorganisms11041028. [PMID: 37110452 PMCID: PMC10141921 DOI: 10.3390/microorganisms11041028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Bioleaching processes or microbially mediated iron/sulfur redox processes in acid mine drainage (AMD) result in mineral dissolution and transformation, the release of mercury and other heavy metal ions, and changes in the occurrence forms and concentration of mercury. However, pertinent studies on these processes are scarce. Therefore, in this work, the Fe/S redox-coupled mercury transformation mediated by Acidithiobacillus ferrooxidans ATCC 23270 under aerobic and/or anaerobic conditions was studied by combining analyses of solution behavior (pH, redox potential, and Fe/S/Hg ion concentrations), the surface morphology and elemental composition of the solid substrate residue, the Fe/S/Hg speciation transformation, and bacterial transcriptomics. It was found that: (1) the presence of Hg2+ significantly inhibited the apparent iron/sulfur redox process; (2) the addition of Hg2+ caused a significant change in the composition of bacterial surface compounds and elements such as C, N, S, and Fe; (3) Hg mainly occurred in the form of Hg0, HgS, and HgSO4 in the solid substrate residues; and (4) the expression of mercury-resistant genes was higher in earlier stages of growth than in the later stages of growth. The results indicate that the addition of Hg2+ significantly affected the iron/sulfur redox process mediated by A. ferrooxidans ATCC 23270 under aerobic, anaerobic, and coupled aerobic-anaerobic conditions, which further promoted Hg transformation. This work is of great significance for the treatment and remediation of mercury pollution in heavy metal-polluted areas.
Collapse
Affiliation(s)
- Yue Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Chenyun Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hongchang Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha 410083, China
| | - Yuhang Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Zhenyuan Nie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha 410083, China
| | - Yirong Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Lu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jinlan Xia
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Key Lab of Biometallurgy of Ministry of Education of China, Central South University, Changsha 410083, China
| |
Collapse
|
19
|
Biełło KA, Cabello P, Rodríguez-Caballero G, Sáez LP, Luque-Almagro VM, Roldán MD, Olaya-Abril A, Moreno-Vivián C. Proteomic Analysis of Arsenic Resistance during Cyanide Assimilation by Pseudomonas pseudoalcaligenes CECT 5344. Int J Mol Sci 2023; 24:ijms24087232. [PMID: 37108394 PMCID: PMC10138600 DOI: 10.3390/ijms24087232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Wastewater from mining and other industries usually contains arsenic and cyanide, two highly toxic pollutants, thereby creating the need to develop bioremediation strategies. Here, molecular mechanisms triggered by the simultaneous presence of cyanide and arsenite were analyzed by quantitative proteomics, complemented with qRT-PCR analysis and determination of analytes in the cyanide-assimilating bacterium Pseudomonas pseudoalcaligenes CECT 5344. Several proteins encoded by two ars gene clusters and other Ars-related proteins were up-regulated by arsenite, even during cyanide assimilation. Although some proteins encoded by the cio gene cluster responsible for cyanide-insensitive respiration decreased in the presence of arsenite, the nitrilase NitC required for cyanide assimilation was unaffected, thus allowing bacterial growth with cyanide and arsenic. Two complementary As-resistance mechanisms were developed in this bacterium, the extrusion of As(III) and its extracellular sequestration in biofilm, whose synthesis increased in the presence of arsenite, and the formation of organoarsenicals such as arseno-phosphoglycerate and methyl-As. Tetrahydrofolate metabolism was also stimulated by arsenite. In addition, the ArsH2 protein increased in the presence of arsenite or cyanide, suggesting its role in the protection from oxidative stress caused by both toxics. These results could be useful for the development of bioremediation strategies for industrial wastes co-contaminated with cyanide and arsenic.
Collapse
Affiliation(s)
- Karolina A Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Gema Rodríguez-Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Lara P Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
20
|
Pang L, Sun Y, Yue Y, Liu C, An C, Yang T, Lu X, Xu Q, Mei J, Liu M, Zhang X. Stability of Aquatic Nitrogen Cycle Under Dramatic Changes of Water and Sediment Inflows to the Three Gorges Reservoir. GEOHEALTH 2022; 6:e2022GH000607. [PMID: 35991941 PMCID: PMC9376181 DOI: 10.1029/2022gh000607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Stability of nitrogen cycle is a key indicator to aquatic health. In recent years, water and sediment inflows to the Three Gorges Reservoir (TGR) have changed significantly. To reveal the effects of such dramatic hydrological changes on aquatic nitrogen cycle, this paper at first analyzed the changing trends of water and suspended sediment discharges of TGR based on dynamic harmonic regression, and found that the intra-year distribution of water flow was significantly homogenized between flood and dry seasons, with the seasonal variations narrowed by 43.5%-69.9% during 2007-2016, while sediment concentration sharply dropped (the non-periodic term decreased by 1.48%-2.07%/month). Modified with the effects of sediment concentration variations on nitrification/denitrification rates, the proposed numerical model surprisingly showed that ammonia nitrogen and total nitrogen concentrations in TGR were insensitive to either water flow homogenization or sediment reduction, implying relative stability of microbial community related to nitrogen cycle, which is a positive sign for aquatic health. However, N2 emission varied more violently. The variation range of nitrogen gas (N2) emitted from TGR enlarged by 30% with the homogenization of water inflow from 2010 to 2016, while the annual total N2 emission decreased by 7% due to the reduction of sediment concentration, indicating quick response and strong adaption of the microbial N2 producing process to the environmental changes of TGR, which is beneficial for maintaining ecological functions related to nitrogen cycling. This work helps understanding nitrogen cycle of reservoirs experiencing dramatic changes in water and sediment inflows.
Collapse
Affiliation(s)
- Lina Pang
- State Key Laboratory of Water Resources and Hydropower Engineering ScienceSchool of Water Resources and Hydropower EngineeringWuhan UniversityWuhanChina
- College of Architecture and EnvironmentSichuan UniversityChengduChina
| | - Yanxin Sun
- State Key Laboratory of Water Resources and Hydropower Engineering ScienceSchool of Water Resources and Hydropower EngineeringWuhan UniversityWuhanChina
| | - Yao Yue
- State Key Laboratory of Water Resources and Hydropower Engineering ScienceSchool of Water Resources and Hydropower EngineeringWuhan UniversityWuhanChina
| | - Caiqiong Liu
- State Key Laboratory of Water Resources and Hydropower Engineering ScienceSchool of Water Resources and Hydropower EngineeringWuhan UniversityWuhanChina
| | - Chenge An
- Department of Hydraulic EngineeringState Key Laboratory of Hydroscience and EngineeringTsinghua UniversityBeijingChina
| | - Tiantian Yang
- State Key Laboratory of Water Resources and Hydropower Engineering ScienceSchool of Water Resources and Hydropower EngineeringWuhan UniversityWuhanChina
| | - Xinhua Lu
- State Key Laboratory of Water Resources and Hydropower Engineering ScienceSchool of Water Resources and Hydropower EngineeringWuhan UniversityWuhanChina
| | - Quanxi Xu
- Bureau of Hydrology, Changjiang Water Resources CommissionWuhanChina
| | - Jie Mei
- State Key Laboratory of Water Resources and Hydropower Engineering ScienceSchool of Water Resources and Hydropower EngineeringWuhan UniversityWuhanChina
| | | | - Xiaofeng Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering ScienceSchool of Water Resources and Hydropower EngineeringWuhan UniversityWuhanChina
| |
Collapse
|
21
|
Evolution of Sulfidic Legacy Mine Tailings: A Review of the Wheal Maid Site, UK. MINERALS 2022. [DOI: 10.3390/min12070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Historic tailings dams and their associated mine waste can pose a significant risk to human and environmental health. The Wheal Maid mine site, Cornwall, UK, serves as an example of the temporal evolution of a tailings storage facility after mining has ceased and the acid-generating waste subjected to surficial processes. This paper discusses its designation as a contaminated land site and reviews our current understanding of the geochemistry, mineralogy, and microbiology of the Wheal Maid tailings, from both peer-reviewed journal articles and unpublished literature. We also present new data on waste characterisation and detailed mineral chemistry and data from laboratory oxidation experiments. Particularly of interest at Wheal Maid is the presence of pyrite-bearing “Grey Tailings”, which, under typical environmental conditions at the Earth’s surface, would be expected to have undergone oxidation and subsequently formed acidic and metalliferous mine drainage (AMD). The results identified a number of mechanisms that could explain the lack of pyrite oxidation in the Grey Tailings, including a lack of nutrients inhibiting microbial Fe(II) oxidation, passivation of pyrite mineral surfaces with tailings processing chemicals, and an abundance of euhedral pyrite grains. Such research areas need further scrutiny in order to inform the design of future tailings facilities and associated AMD management protocols.
Collapse
|
22
|
Gan CD, Cui SF, Wu ZZ, Yang JY. Multiple heavy metal distribution and microbial community characteristics of vanadium-titanium magnetite tailing profiles under different management modes. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128032. [PMID: 35077965 DOI: 10.1016/j.jhazmat.2021.128032] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Vanadium-titanium (V-Ti) magnetite tailings have caused great concern due to their safety hazards and environmental risks. However, the microbial community structure and the key geochemical factors of V-Ti magnetite tailing profiles under different management modes remain unclear. Therefore, we investigated the heavy metal distribution and the microbial community structure of the soils and tailings at varied depths of V-Ti magnetite tailing profiles with and without soil coverage. The results indicated that the topsoil covering measures retarded the acidification of tailings during stockpiling. However, As, Mn, and V in tailings have the ability to migrate to the overlying soil. Based on 16S rRNA gene amplicon sequencing, Proteobacteria was the dominant genus in the topsoil-covered tailings, whereas the most abundant genus in the exposed tailings was Betaproteobacteria. Furthermore, Rhodobacter, Hydrogenophaga, Novosphingobium, and Geobacter enriched in tailings may potentially contribute to V(V) biotransformation and the development of mine bioreremediation technologies. RDA and Spearman correlation analysis showed that pH, EC, Cd, Mn, Pb, and V were the main influencing factors regulating microbial community composition. Overall, this study provides insights for evaluating the soil covering management mode and the engineering applications of microbial technologies to manage V-Ti magnetite tailings.
Collapse
Affiliation(s)
- Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China
| | - Si-Fan Cui
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhen-Zhong Wu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644000, China.
| |
Collapse
|
23
|
Kölbl D, Memic A, Schnideritsch H, Wohlmuth D, Klösch G, Albu M, Giester G, Bujdoš M, Milojevic T. Thermoacidophilic Bioleaching of Industrial Metallic Steel Waste Product. Front Microbiol 2022; 13:864411. [PMID: 35495675 PMCID: PMC9043896 DOI: 10.3389/fmicb.2022.864411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The continuous deposition of hazardous metalliferous wastes derived from industrial steelmaking processes will lead to space shortages while valuable raw metals are being depleted. Currently, these landfilled waste products pose a rich resource for microbial thermoacidophilic bioleaching processes. Six thermoacidophilic archaea (Sulfolobus metallicus, Sulfolobus acidocaldarius, Metallosphaera hakonensis, Metallosphaera sedula, Acidianus brierleyi, and Acidianus manzaensis) were cultivated on metal waste product derived from a steelmaking process to assess microbial proliferation and bioleaching potential. While all six strains were capable of growth and bioleaching of different elements, A. manzaensis outperformed other strains and its bioleaching potential was further studied in detail. The ability of A. manzaensis cells to break down and solubilize the mineral matrix of the metal waste product was observed via scanning and transmission electron microscopy. Refinement of bioleaching operation parameters shows that changes in pH influence the solubilization of certain elements, which might be considered for element-specific solubilization processes. Slight temperature shifts did not influence the release of metals from the metal waste product, but an increase in dust load in the bioreactors leads to increased element solubilization. The formation of gypsum crystals in course of A. manzaensis cultivation on dust was observed and clarified using single-crystal X-ray diffraction analysis. The results obtained from this study highlight the importance of thermoacidophilic archaea for future small-scale as well as large-scale bioleaching operations and metal recycling processes in regard to circular economies and waste management. A thorough understanding of the bioleaching performance of thermoacidophilic archaea facilitates further environmental biotechnological advancements.
Collapse
Affiliation(s)
- Denise Kölbl
- Extremophiles/Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Alma Memic
- Extremophiles/Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | | | | | | | - Mihaela Albu
- Graz Centre for Electron Microscopy, Graz, Austria
| | - Gerald Giester
- Department of Mineralogy and Crystallography, University of Vienna, Vienna, Austria
| | - Marek Bujdoš
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Tetyana Milojevic
- Extremophiles/Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|