1
|
Oh SH, Choe S, Song M, Yu GH, Schauer JJ, Shin SA, Bae MS. Effects of long-range transport on carboxylic acids, chlorinated VOCs, and oxidative potential in air pollution events. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123666. [PMID: 38417601 DOI: 10.1016/j.envpol.2024.123666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
In the context of air quality research, the collection and analysis of fine particulate matter (PM2.5, with a diameter less than 2.5 μm) and volatile organic compound (VOCs) play a pivotal role in understanding and addressing environmental issues across the Korean Peninsula. PM2.5 and VOCs were collected over 4-hr intervals from October 17 to November 26, 2021 during the 2021 Satellite Integrated Joint Monitoring of Air Quality campaign at Olympic Park in the Republic of Korea to understand the factors controlling air quality over the Seoul Metropolitan Area. Source apportionment was performed using the positive matrix factorization (PMF) model incorporating PM2.5 and VOCs. The factor identified by chlorinated VOCs as a major component was presumed to be due to transboundary influx and was referred to as the long-range transport factor. The long-range transport factor of PM2.5 was composed of NO3-, SO42-, NH4+, and di-carboxylic acids. Back trajectory analysis showed that the airflows originated from China and passed through the west coast of Korea to the Korean Peninsula. In the PMF results using PM2.5 and VOCs, long-range transport factors were identified in both analyses, and the high correlation observed between these factors confirms that they were transported from abroad. The dithiothreitol oxidation potential normalized to quinine showed the highest oxidation potential during the same period as the long-range transport factors increased. In conclusion, PM2.5 from external sources significantly contribute to elevated levels of dithiothreitol assay-oxidative potential (DTT-OP) in Korea. The toxic concentration, expressed as the mean ± standard deviation, was determined to be 0.29 ± 0.05 μM/m³, peaking at 0.39 μM/m³. This level is 1.8 times higher than that observed outside the event period. A notable increase in secondary pollutants was observed during these periods. These pollutants are known to enhance oxidative potential, thereby potentially impacting human health.
Collapse
Affiliation(s)
- Sea-Ho Oh
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Seoyeong Choe
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Myoungki Song
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - Geun-Hye Yu
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea
| | - James J Schauer
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, 53705, USA
| | - Sun-A Shin
- Environmental Satellite Center, Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan, 58554, Republic of Korea.
| |
Collapse
|
2
|
Oh SH, Park K, Park M, Song M, Jang KS, Schauer JJ, Bae GN, Bae MS. Comparison of the sources and oxidative potential of PM 2.5 during winter time in large cities in China and South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160369. [PMID: 36414057 DOI: 10.1016/j.scitotenv.2022.160369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Regional air pollution is rising in Northeast Asia due to increasing energy consumption resulting from a growing population and intensifying industrialization. This study analyzes the sources of air pollution using fine particulate matter (PM2.5) sampling from the atmosphere over Korea and China. We then use this analysis to further investigate the relationship between organic compounds (source tracers) and the oxidative potential of PM2.5. The PM2.5 concentration during winter measured at a measurement stations in Korea showed no significant variation year-to-year. The PM2.5 concentrations measured during winter at a site near Beijing, China were 62.45 μg/m3 in 2018 and 33.07 μg/m3 in 2020. The sources, as determined from PMF, were analyzed at a site in Korea, the sources as secondary nitrate (34.10 %), secondary sulfate (20.20 %), coal combustion (4.01 %), vehicle emission (8.55 %), cooking and biomass burning (18.39 %), dust (8.45 %), and SOA (6.29 %) were identified. At a site in China, secondary nitrate (17.54 %), secondary sulfate (12.03 %), coal combustion (15.53 %), vehicle emission (12.43 %), cooking and biomass burning (9.25 %), dust (26.40 %), secondary organic aerosol (6.82 %) were identified. Our results show secondary organic carbon had a positive association with oxidative potential in Korea while primary organic carbon presented higher correlation with oxidative potential in China. Further, the ECMWF Reanalysis v5 (ERA5) wind field during the high PM2.5 events demonstrated airflow from the west coast of China resulting in high polar organic compounds at the Korean monitoring site. The results further support that aged PM2.5, which contains secondary products, leads to increased oxidative potential. The results presented explain the high concentrations of secondary products and the impact on the biological activities of PM2.5, supporting additional actions to address the impacts of long-range transport of PM2.5.
Collapse
Affiliation(s)
- Sea-Ho Oh
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - Kihong Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Minhan Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myoungki Song
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea
| | - Kyoung-Soon Jang
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - James J Schauer
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison 53705, USA
| | - Gwi-Nam Bae
- Center for FRIEND Project, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
3
|
Chen X, Millet DB, Neuman JA, Veres PR, Ray EA, Commane R, Daube BC, McKain K, Schwarz JP, Katich JM, Froyd KD, Schill GP, Kim MJ, Crounse JD, Allen HM, Apel EC, Hornbrook RS, Blake DR, Nault BA, Campuzano-Jost P, Jimenez JL, Dibb JE. HCOOH in the remote atmosphere: Constraints from Atmospheric Tomography (ATom) airborne observations. ACS EARTH & SPACE CHEMISTRY 2021; 5:1436-1454. [PMID: 34164590 PMCID: PMC8216292 DOI: 10.1021/acsearthspacechem.1c00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formic acid (HCOOH) is an important component of atmospheric acidity but its budget is poorly understood, with prior observations implying substantial missing sources. Here we combine pole-to-pole airborne observations from the Atmospheric Tomography Mission (ATom) with chemical transport model (GEOS-Chem CTM) and back trajectory analyses to provide the first global in-situ characterization of HCOOH in the remote atmosphere. ATom reveals sub-100 ppt HCOOH concentrations over most of the remote oceans, punctuated by large enhancements associated with continental outflow. Enhancements correlate with known combustion tracers and trajectory-based fire influences. The GEOS-Chem model underpredicts these in-plume HCOOH enhancements, but elsewhere we find no broad indication of a missing HCOOH source in the background free troposphere. We conclude that missing non-fire HCOOH precursors inferred previously are predominantly short-lived. We find indications of a wet scavenging underestimate in the model consistent with a positive HCOOH bias in the tropical upper troposphere. Observations reveal episodic evidence of ocean HCOOH uptake, which is well-captured by GEOS-Chem; however, despite its strong seawater undersaturation HCOOH is not consistently depleted in the remote marine boundary layer. Over fifty fire and mixed plumes were intercepted during ATom with widely varying transit times and source regions. HCOOH:CO normalized excess mixing ratios in these plumes range from 3.4 to >50 ppt/ppb CO and are often over an order of magnitude higher than expected primary emission ratios. HCOOH is thus a major reactive organic carbon reservoir in the aged plumes sampled during ATom, implying important missing pathways for in-plume HCOOH production.
Collapse
Affiliation(s)
- Xin Chen
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108
| | - Dylan B. Millet
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108
| | - J. Andrew Neuman
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | | | - Eric A. Ray
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Róisín Commane
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964
| | - Bruce C. Daube
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| | - Kathryn McKain
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- NOAA Global Monitoring Laboratory, Boulder, CO 80305
| | | | - Joseph M. Katich
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Karl D. Froyd
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Gregory P. Schill
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Michelle J. Kim
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - John D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Hannah M. Allen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Eric C. Apel
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307
| | - Rebecca S. Hornbrook
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307
| | - Donald R. Blake
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Benjamin A. Nault
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Pedro Campuzano-Jost
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Jose L. Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Jack E. Dibb
- Earth Systems Research Center/EOS, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
4
|
Li TY, Deng XJ, Li Y, Song YS, Li LY, Tan HB, Wang CL. Transport paths and vertical exchange characteristics of haze pollution in Southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1074-1087. [PMID: 29996404 DOI: 10.1016/j.scitotenv.2017.12.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/03/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
Transport paths and vertical exchange characteristics are important factors for understanding the long-term transport, dispersion capability for haze prediction. Many previous studies revealed that the Pearl River Delta (PRD) region, one of the major polluted areas in China, is largely affected by the long-range pollution transport. However, mostly of these studies focused on the source apportionment or horizontal transport path of pollutants by using short-term data, and the vertical exchange characteristics had been rarely analyzed. In this study, using HYSPLIT model, the transport paths and the vertical exchange characteristics of haze episodes over four sub-region of Guangdong (GD) Province in southern China of dry season and wet season were analyzed by using 10years data from 2005 to 2014. Three major transport paths can be statistically summarized based on the long-term data. The haze episodes in PRD and North-GD were distinguished by the characteristics of high frequency and long duration, while the West-GD and East-GD are relatively clean. The haze over North-GD and PRD were mainly influenced by the airflows from northern path, which could bring the pollution from Jiangxi, Anhui, and also influenced by the airflows from coastal path, which could bring the pollution of eastern coastal from Zhejiang and Fujian to Guangdong, while regional transport contributions from Guangdong province and adjacent areas can also be clearly observed. The haze pollution from the identified two major transport paths were mainly transported within the mixing layer (>80% trajectories, <500m), whereas the probability of haze trajectories across mixing layer was relatively low and generally associated with much longer transport distance and higher terrain height over Western China. Combing the vertical exchange analysis, results also show that Wuyi Mountains and Nanling Mountains played a role as barrier to obstruct the haze airflows from other regions of China to the Guangdong province.
Collapse
Affiliation(s)
- T Y Li
- Guangdong Ecological Meteorological Center, Guangzhou, China
| | - X J Deng
- Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou, China.
| | - Y Li
- Ocean Department of Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Y S Song
- Ocean Department of Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - L Y Li
- Panyu Meteorological Service, Guangzhou, China
| | - H B Tan
- Guangdong Ecological Meteorological Center, Guangzhou, China
| | - C L Wang
- Guangzhou Climate and Agrometeorology Center, Guangzhou, China
| |
Collapse
|
5
|
Yang X, Wang X, Yang W, Xu J, Ren L, He Y, Liu B, Bai Z, Meng F, Hu M. Aircraft measurements of SO2, NOx, CO, and O3 over the coastal and offshore area of Yellow Sea of China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:527. [PMID: 27544762 DOI: 10.1007/s10661-016-5533-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
In order to investigate long-range transport of the air pollution in the East Asia, air pollutants, including SO2, NOx, CO, and O3, were observed by aircraft measurement over the coastal and offshore area of Yellow Sea of China in April 2011. NOx and SO2 seemed to become moderate in recent years, and the concentrations during the whole observations ranged from 0.49 to 9.57 ppb and from 0.10 to 16.02 ppb, respectively. The high concentrations of CO were measured with an average value of 0.98 ppm. The measured O3 average concentration was 76.25 ppb, which showed a higher level comparing with the results from some previous studies. Most of the results for the concentration values generally followed the typical characteristic of vertical and spatial distribution, which were "low altitude > high altitude" and "land/coastal > sea," respectively. Transport of polluted air mass from the continent to the aircraft measurement area was confirmed in some days during the observation by the meteorological analysis, while the measurement results supposed to represent the background level of the pollutants in rest days. Additionally, some small-scale air pollution plumes were observed. Significant positive correlations between NOx and SO2 indicated that these two species originated from the same region. On the other hand, good positive correlations between NOx and O3 found during 2-day flight suggested that the O3 formation was probably under "NOx-limited" regime in these days.
Collapse
Affiliation(s)
- Xiaoyang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jun Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lihong Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Youjiang He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bing Liu
- China National Environmental Monitoring Center, Beijing, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fan Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Min Hu
- Peking University, Beijing, China
| |
Collapse
|
6
|
Qu Y, An J, He Y, Zheng J. An overview of emissions of SO2 and NOx and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia. J Environ Sci (China) 2016; 44:13-25. [PMID: 27266298 DOI: 10.1016/j.jes.2015.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 05/22/2023]
Abstract
The long-range transport of oxidized sulfur (sulfur dioxide (SO2) and sulfate) and oxidized nitrogen (nitrogen oxides (NOx) and nitrate) in East Asia is an area of increasing scientific interest and political concern. This paper reviews various published papers, including ground- and satellite-based observations and numerical simulations. The aim is to assess the status of the anthropogenic emissions of SO2 and NOx and the long-range transport of oxidized S and N pollutants over source and downwind region. China has dominated the emissions of SO2 and NOx in East Asia and urgently needs to strengthen the control of their emissions, especially NOx emissions. Oxidized S and N pollutants emitted from China are transported to Korea and Japan, due to persistent westerly winds, in winter and spring. However, the total contributions of China to S and N pollutants across Korea and Japan were not found to be dominant over longer time scales (e.g., a year). The source-receptor relationships for oxidized S and N pollutants in East Asia varied widely among the different studies. This is because: (1) the nonlinear effects of atmospheric chemistry and deposition processes were not well considered, when calculating the source-receptor relationships; (2) different meteorological and emission data inputs and solution schemes for key physical and chemical processes were used; and (3) different temporal and spatial scales were employed. Therefore, simulations using the same input fields and similar model configurations would be of benefit, to further evaluate the source-receptor relationships of the oxidized S and N pollutants.
Collapse
Affiliation(s)
- Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Youjiang He
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun Zheng
- China-ASEAN Environmental Cooperation Center, Ministry of Environmental Protection of the People's Republic of China, Beijing 100035, China
| |
Collapse
|
7
|
Pochanart P. Residence time analysis of photochemical buildup of ozone in central eastern China from surface observation at Mt. Tai, Mt. Hua, and Mt. Huang in 2004. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14087-14094. [PMID: 25960018 DOI: 10.1007/s11356-015-4642-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
Using data from surface observation, backward trajectories, and residence time analysis, the amounts of regional photochemical ozone buildup due to the large-scale anthropogenic sources in central eastern China (CEC, 30.5-40.5 N, 112.5-122.5 E) at Mt. Tai, Mt. Hua, and Mt. Huang in 2004 were quantified. It was found that the CEC anthropogenic sources influenced the air masses and the associated ozone production most at Mt. Tai, located at the center of CEC domain. At Mt. Hua to the west of CEC domain and at Mt. Huang to the south of CEC domain, the air masses and the associated ozone production showed less CEC anthropogenic influences on a regional scale. At Mt. Tai and Mt. Huang, the ozone mixing ratios in the air masses that passed over polluted source regions in CEC increased during the first 40-70 h after arrival and showed the highest production rate of 31.2 and 12.2 ppb/day, respectively, in May and June. It was estimated that the CEC anthropogenic sources contributed 34-42% of ozone at Mt. Tai and 8-14% at Mt. Huang during this ozone peak season. The large contributions from CEC sources during fall season (Sep-Nov) were also estimated as 31-44 and 17-23% but with the lower ozone production rate of 22.6 and 8.4 ppb/day, respectively, for Mt. Tai and Mt. Huang.
Collapse
Affiliation(s)
- Pakpong Pochanart
- School of Environmental Development Administration, National Institute of Development Administration (NIDA), 118 Serithai Rd., Klongchan, Bangkapi, Bangkok, 10240, Thailand,
| |
Collapse
|
8
|
MacKenzie AR, Langford B, Pugh TAM, Robinson N, Misztal PK, Heard DE, Lee JD, Lewis AC, Jones CE, Hopkins JR, Phillips G, Monks PS, Karunaharan A, Hornsby KE, Nicolas-Perea V, Coe H, Gabey AM, Gallagher MW, Whalley LK, Edwards PM, Evans MJ, Stone D, Ingham T, Commane R, Furneaux KL, McQuaid JB, Nemitz E, Seng YK, Fowler D, Pyle JA, Hewitt CN. The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo. Philos Trans R Soc Lond B Biol Sci 2012; 366:3177-95. [PMID: 22006961 DOI: 10.1098/rstb.2011.0053] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report measurements of atmospheric composition over a tropical rainforest and over a nearby oil palm plantation in Sabah, Borneo. The primary vegetation in each of the two landscapes emits very different amounts and kinds of volatile organic compounds (VOCs), resulting in distinctive VOC fingerprints in the atmospheric boundary layer for both landscapes. VOCs over the Borneo rainforest are dominated by isoprene and its oxidation products, with a significant additional contribution from monoterpenes. Rather than consuming the main atmospheric oxidant, OH, these high concentrations of VOCs appear to maintain OH, as has been observed previously over Amazonia. The boundary-layer characteristics and mixing ratios of VOCs observed over the Borneo rainforest are different to those measured previously over Amazonia. Compared with the Bornean rainforest, air over the oil palm plantation contains much more isoprene, monoterpenes are relatively less important, and the flower scent, estragole, is prominent. Concentrations of nitrogen oxides are greater above the agro-industrial oil palm landscape than over the rainforest, and this leads to changes in some secondary pollutant mixing ratios (but not, currently, differences in ozone). Secondary organic aerosol over both landscapes shows a significant contribution from isoprene. Primary biological aerosol dominates the super-micrometre aerosol over the rainforest and is likely to be sensitive to land-use change, since the fungal source of the bioaerosol is closely linked to above-ground biodiversity.
Collapse
Affiliation(s)
- A R MacKenzie
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lin YC, Lin CY, Lin PH, Engling G, Lan YY, Kuo TH, Hsu WT, Ting CC. Observations of ozone and carbon monoxide at Mei-Feng mountain site (2269 m a.s.l.) in Central Taiwan: seasonal variations and influence of Asian continental outflow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3033-3042. [PMID: 21601237 DOI: 10.1016/j.scitotenv.2011.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/10/2011] [Accepted: 04/11/2011] [Indexed: 05/30/2023]
Abstract
Continuous measurements of ozone (O(3)) and carbon monoxide (CO) were carried out at Mei-Feng (24.05°N, 120.10°E, 2269 m above sea level), a remote mountain site in central Taiwan, to investigate the influence of long-range transported air pollution on O(3) and CO variations in the subtropical Pacific region. Data collected from March 2009 to September 2010 revealed average mixing ratios of 37±14 ppb for O(3) and 188±82 ppb for CO at this remote site. Diurnal variations for both O(3) and CO were observed as well in all seasons. The higher levels for O(3) and CO in the afternoon were attributed to transport of boundary layer pollution to the site during daytime upslope flow. Monthly means of both O(3) and CO showed maxima in spring and in the continental air masses from Southeast Asia, coastal China, and Korea/Japan. On the contrary, the lower O(3) and CO levels found in summer were due to the marine air masses originating from the Philippine Sea and Pacific Ocean. The relationship between O(3) and CO was analyzed, using nighttime data to minimize any local influence. The results showed a fairly good correlation between O(3) and CO from March to September. The contribution of CO from the Asian outflow reached a maximum in spring (88 ppb) and had a minimum in summer (27 ppb). The photochemical buildup of O(3) resulting from anthropogenic emissions in continental Asia was estimated to be 15 ppb in spring, while its production was insignificant, with an average of 4 ppb, in summer. A positive correlation between O(3) and CO plus high ozone levels in springtime suggested that the enhancements of O(3) were likely due to O(3) which was photochemically produced over this region.
Collapse
Affiliation(s)
- Yu Chi Lin
- Research Center for Environmental Changes, Academia, Sinica, Nankang, Taipei, 115, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sikder HA, Suthawaree J, Kato S, Kajii Y. Surface ozone and carbon monoxide levels observed at Oki, Japan: regional air pollution trends in East Asia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:953-959. [PMID: 21129843 DOI: 10.1016/j.jenvman.2010.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 05/30/2023]
Abstract
Simultaneous ground-based measurements of ozone and carbon monoxide were performed at Oki, Japan, from January 2001 to September 2002 in order to investigate the O(3) and CO characteristics and their distributions. The observations revealed that O(3) and CO concentrations were maximum in springtime and minimum in the summer. The monthly averaged concentrations of O(3) and CO were 60 and 234 ppb in spring and 23 and 106 ppb in summer, respectively. Based on direction, 5-day isentropic backward trajectory analysis was carried out to determine the transport path of air masses, preceding their arrival at Oki. Comparison between classified results from present work and results from the year 1994-1996 was carried out. The O(3) and CO concentration results of classified air masses in our analysis show similar concentration trends to previous findings; highest in the WNW/W, lowest in N/NE and medium levels in NW. Moreover, O(3) levels are higher and CO levels are lower in the present study in all categories.
Collapse
Affiliation(s)
- Helena Akhter Sikder
- Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji City, Tokyo 192-0397, Japan.
| | | | | | | |
Collapse
|
11
|
Kundu S, Kawamura K, Lee M. Seasonal variation of the concentrations of nitrogenous species and their nitrogen isotopic ratios in aerosols at Gosan, Jeju Island: Implications for atmospheric processing and source changes of aerosols. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013323] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Kundu S, Kawamura K, Lee M. Seasonal variations of diacids, ketoacids, andα-dicarbonyls in aerosols at Gosan, Jeju Island, South Korea: Implications for sources, formation, and degradation during long-range transport. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd013973] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Lee SB, Kang CH, Jung DS, Ko HJ, Kim HB, Oh YS, Kang HL. Composition and pollution characteristics of TSP, PM2.5 atmospheric aerosols at Gosan site, Jeju Island. ANALYTICAL SCIENCE AND TECHNOLOGY 2010. [DOI: 10.5806/ast.2010.23.4.371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Huang J, Kang S, Shen C, Cong Z, Liu K, Wang W, Liu L. Concentration and seasonal variation of 10Be in surface aerosols of Lhasa, Tibet. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3233-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
|
16
|
Xiao Y, Logan JA, Jacob DJ, Hudman RC, Yantosca R, Blake DR. Global budget of ethane and regional constraints on U.S. sources. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009415] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Sawa Y, Tanimoto H, Yonemura S, Matsueda H, Wada A, Taguchi S, Hayasaka T, Tsuruta H, Tohjima Y, Mukai H, Kikuchi N, Katagiri S, Tsuboi K. Widespread pollution events of carbon monoxide observed over the western North Pacific during the East Asian Regional Experiment (EAREX) 2005 campaign. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008055] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Xiao Y, Jacob DJ, Turquety S. Atmospheric acetylene and its relationship with CO as an indicator of air mass age. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008268] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Singh HB, Brune WH, Crawford JH, Jacob DJ, Russell PB. Overview of the summer 2004 Intercontinental Chemical Transport Experiment–North America (INTEX-A). ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007905] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Han JS, Moon KJ, Kim YJ. Identification of potential sources and source regions of fine ambient particles measured at Gosan background site in Korea using advanced hybrid receptor model combined with positive matrix factorization. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Sparling LC, Wei JC, Avallone LM. Estimating the impact of small-scale variability in satellite measurement validation. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006943] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Kim KH, Mishra VK, Kang CH, Choi KC, Kim YJ, Kim DS, Youn YH, Lee JH. The metallic composition of aerosols at three monitoring sites in Korea during winter 2002. ENVIRONMENTAL MONITORING AND ASSESSMENT 2006; 121:381-99. [PMID: 16741786 DOI: 10.1007/s10661-005-9136-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 11/15/2005] [Indexed: 05/09/2023]
Abstract
In the present study, the distribution patterns of various metals were analyzed and compared using PM samples collected concurrently from three monitoring sites located in Korea (Seoul, Busan, and Jeju island) in December 2002. As these sites can represent metal pollution with different degrees of anthropogenic activities, their concentration levels were distinguished in a systematic manner in the order of Jeju, Busan, and Seoul. By comparing the present data sets with those measured previously from other locations in Korea and around the world, we attempted to diagnose the general status of elemental pollution on the Korean peninsula. Through an application of different statistical approaches, the major processes controlling elemental levels were assessed for each of the three study sites. The results indicated the importance of both crustal and anthropogenic sources in all sites with their relative roles varying significantly from each other. The results of the metal analysis data, when examined in relation to back trajectory analysis, confirmed that their concentration changes are affected quite sensitively with air mass movement patterns. The overall results of this study consistently indicated the contribution of a strong anthropogenic source area (e.g., China) to the observed metal concentration levels in the study area, but the strengths of such signals vary considerably across the Korean peninsula.
Collapse
Affiliation(s)
- K-H Kim
- Department of Earth & Environmental Sciences, Sejong University, Seoul 143-747, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Hudman RC, Jacob DJ, Cooper OR, Evans MJ, Heald CL, Park RJ, Fehsenfeld F, Flocke F, Holloway J, Hübler G, Kita K, Koike M, Kondo Y, Neuman A, Nowak J, Oltmans S, Parrish D, Roberts JM, Ryerson T. Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jd004974] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- R. C. Hudman
- Division of Engineering and Applied Science; Harvard University; Cambridge Massachusetts USA
| | - D. J. Jacob
- Division of Engineering and Applied Science; Harvard University; Cambridge Massachusetts USA
| | - O. R. Cooper
- Aeronomy Laboratory, National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - M. J. Evans
- Division of Engineering and Applied Science; Harvard University; Cambridge Massachusetts USA
| | - C. L. Heald
- Department of Earth and Planetary Sciences; Harvard University; Cambridge Massachusetts USA
| | - R. J. Park
- Division of Engineering and Applied Science; Harvard University; Cambridge Massachusetts USA
| | - F. Fehsenfeld
- Aeronomy Laboratory, National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - F. Flocke
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - J. Holloway
- Aeronomy Laboratory, National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - G. Hübler
- Aeronomy Laboratory, National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - K. Kita
- Department of Environmental Science; Ibaraki University; Mito Japan
| | - M. Koike
- Department of Earth and Planetary Sciences; University of Tokyo; Tokyo Japan
| | - Y. Kondo
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - A. Neuman
- Aeronomy Laboratory, National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - J. Nowak
- Aeronomy Laboratory, National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - S. Oltmans
- Climate Monitoring and Diagnostics Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - D. Parrish
- Aeronomy Laboratory, National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - J. M. Roberts
- Aeronomy Laboratory, National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - T. Ryerson
- Aeronomy Laboratory, National Oceanic and Atmospheric Administration; Boulder Colorado USA
| |
Collapse
|
25
|
Takegawa N, Kondo Y, Koike M, Chen G, Machida T, Watai T, Blake DR, Streets DG, Woo JH, Carmichael GR, Kita K, Miyazaki Y, Shirai T, Liley JB, Ogawa T. Removal of NOxand NOyin Asian outflow plumes: Aircraft measurements over the western Pacific in January 2002. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004jd004866] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- N. Takegawa
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - Y. Kondo
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - M. Koike
- Department of Earth and Planetary Science; University of Tokyo; Tokyo Japan
| | - G. Chen
- NASA Langley Research Center; Hampton Virginia USA
| | - T. Machida
- National Institute for Environmental Studies; Ibaraki Japan
| | - T. Watai
- Global Environmental Forum; Ibaraki Japan
| | - D. R. Blake
- Department of Chemistry; University of California; Irvine California USA
| | - D. G. Streets
- Decision and Information Sciences Division; Argonne National Laboratory; Argonne Illinois USA
| | - J.-H. Woo
- Center for Global and Regional Environmental Research; University of Iowa; Iowa City Iowa USA
| | - G. R. Carmichael
- Center for Global and Regional Environmental Research; University of Iowa; Iowa City Iowa USA
| | - K. Kita
- Department of Environmental Science; Ibaraki University; Ibaraki Japan
| | - Y. Miyazaki
- Research Center for Advanced Science and Technology; University of Tokyo; Tokyo Japan
| | - T. Shirai
- Earth Observation Research and Application Center; Japan Aerospace Exploration Agency; Tokyo Japan
| | - J. B. Liley
- National Institute of Water and Atmospheric Research; Lauder New Zealand
| | - T. Ogawa
- Earth Observation Research and Application Center; Japan Aerospace Exploration Agency; Tokyo Japan
| |
Collapse
|
26
|
Nowak JB, Parrish DD, Neuman JA, Holloway JS, Cooper OR, Ryerson TB, Nicks DK, Flocke F, Roberts JM, Atlas E, de Gouw JA, Donnelly S, Dunlea E, Hübler G, Huey LG, Schauffler S, Tanner DJ, Warneke C, Fehsenfeld FC. Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 over the eastern North Pacific Ocean. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004488] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. B. Nowak
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - D. D. Parrish
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - J. A. Neuman
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - J. S. Holloway
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - O. R. Cooper
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - T. B. Ryerson
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - D. K. Nicks
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - F. Flocke
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - J. M. Roberts
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
| | - E. Atlas
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - J. A. de Gouw
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - S. Donnelly
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - E. Dunlea
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - G. Hübler
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - L. G. Huey
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | - S. Schauffler
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - D. J. Tanner
- School of Earth and Atmospheric Sciences; Georgia Institute of Technology; Atlanta Georgia USA
| | - C. Warneke
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| | - F. C. Fehsenfeld
- Aeronomy Laboratory; National Oceanic and Atmospheric Administration; Boulder Colorado USA
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
| |
Collapse
|
27
|
Liang Q, Jaeglé L, Jaffe DA, Weiss-Penzias P, Heckman A, Snow JA. Long-range transport of Asian pollution to the northeast Pacific: Seasonal variations and transport pathways of carbon monoxide. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004402] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Liang
- Department of Atmospheric Sciences; University of Washington; Seattle Washington USA
| | - Lyatt Jaeglé
- Department of Atmospheric Sciences; University of Washington; Seattle Washington USA
| | - Daniel A. Jaffe
- Interdisciplinary Arts and Sciences; University of Washington; Bothell Washington USA
| | - Peter Weiss-Penzias
- Interdisciplinary Arts and Sciences; University of Washington; Bothell Washington USA
| | - Anna Heckman
- Interdisciplinary Arts and Sciences; University of Washington; Bothell Washington USA
| | - Julie A. Snow
- Science Department; United States Coast Guard Academy; New London Connecticut USA
| |
Collapse
|
28
|
Arimoto R. Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004323] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Igarashi Y. Monitoring the SO2concentration at the summit of Mt. Fuji and a comparison with other trace gases during winter. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004428] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
DeBell LJ. Asian dust storm events of spring 2001 and associated pollutants observed in New England by the Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) monitoring network. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd003733] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Liu H. Constraints on the sources of tropospheric ozone from210Pb-7Be-O3correlations. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd003988] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Wang T. Relationships of trace gases and aerosols and the emission characteristics at Lin'an, a rural site in eastern China, during spring 2001. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004119] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
|
34
|
Elliott S, Blake DR, Blake NJ, Dubey MK, Rowland FS, Sive BC, Smith FA. BIBLE A whole-air sampling as a window on Asian biogeochemistry. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2001jd000790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Scott Elliott
- Atmospheric and Climate Sciences Group; Los Alamos National Laboratory; Los Alamos New Mexico USA
| | - Donald R. Blake
- Department of Chemistry; University of California; Irvine California USA
| | - Nicola J. Blake
- Department of Chemistry; University of California; Irvine California USA
| | - Manvendra K. Dubey
- Atmospheric and Climate Sciences Group; Los Alamos National Laboratory; Los Alamos New Mexico USA
| | | | - Barkley C. Sive
- Department of Chemistry; University of California; Irvine California USA
| | - Felisa A. Smith
- Atmospheric and Climate Sciences Group; Los Alamos National Laboratory; Los Alamos New Mexico USA
| |
Collapse
|
35
|
Jacob DJ. Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd003276] [Citation(s) in RCA: 462] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Pochanart P. Regional background ozone and carbon monoxide variations in remote Siberia/East Asia. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2001jd001412] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Browell EV. Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd003290] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Tu FH. Dynamics and transport of sulfur dioxide over the Yellow Sea during TRACE-P. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd003227] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Talbot R. Reactive nitrogen in Asian continental outflow over the western Pacific: Results from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd003129] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
DiNunno B. Central/eastern North Pacific photochemical precursor distributions for fall/spring seasons as defined by airborne field studies. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2001jd001044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Tsutsumi Y. Vertical and latitudinal distributions of tropospheric ozone over the western Pacific: Case studies from the PACE aircraft missions. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2001jd001374] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Wang T. Chemical characterization of the boundary layer outflow of air pollution to Hong Kong during February–April 2001. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd003272] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Wei CF, Kotamarthi VR, Ogunsola OJ, Horowitz LW, Walters S, Wuebbles DJ, Avery MA, Blake DR, Browell EV, Sachse GW. Seasonal variability of ozone mixing ratios and budgets in the tropical southern Pacific: A GCTM perspective. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001jd000772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Miyazaki Y, Kita K, Kondo Y, Koike M, Ko M, Hu W, Kawakami S, Blake DR, Ogawa T. Springtime photochemical ozone production observed in the upper troposphere over east Asia. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001jd000811] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Wang T. Emission characteristics of CO, NOx, SO2and indications of biomass burning observed at a rural site in eastern China. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001jd000724] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Sillman S. Chapter 12 The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. AIR POLLUTION SCIENCE FOR THE 21ST CENTURY 2002. [DOI: 10.1016/s1474-8177(02)80015-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Raper JL, Kleb MM, Jacob DJ, Davis DD, Newell RE, Fuelberg HE, Bendura RJ, Hoell JM, McNeal RJ. Pacific Exploratory Mission in the Tropical Pacific: PEM-Tropics B, March-April 1999. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd900833] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Thouret V, Cho JYN, Evans MJ, Newell RE, Avery MA, Barrick JDW, Sachse GW, Gregory GL. Tropospheric ozone layers observed during PEM-Tropics B. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jd900011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Staudt AC, Jacob DJ, Logan JA, Bachiochi D, Krishnamurti TN, Sachse GW. Continental sources, transoceanic transport, and interhemispheric exchange of carbon monoxide over the Pacific. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jd900078] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Bey I, Jacob DJ, Yantosca RM, Logan JA, Field BD, Fiore AM, Li Q, Liu HY, Mickley LJ, Schultz MG. Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jd000807] [Citation(s) in RCA: 1659] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|