1
|
Subbiahanadar Chelladurai K, Selvan Christyraj JD, Rajagopalan K, Vadivelu K, Chandrasekar M, Das P, Kalimuthu K, Balamurugan N, Subramanian V, Selvan Christyraj JRS. Ex vivo functional whole organ in biomedical research: a review. J Artif Organs 2025; 28:131-145. [PMID: 39592544 DOI: 10.1007/s10047-024-01478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 11/28/2024]
Abstract
Model systems are critical in biomedical and preclinical research. Animal and in vitro models serve an important role in our current understanding of human physiology, disease pathophysiology, and therapy development. However, if the system is between cell culture and animal models, it may be able to overcome the knowledge gap that exists in the current system. Studies employing ex vivo organs as models have not been thoroughly investigated. Though the integration of other organs and systems has an impact on many biological mechanisms and disorders, it can add a new dimension to modeling and aid in the identification of new possible therapeutic targets. Here, we have discussed why the ex vivo organ model is desirable and the importance of the inclusion of organs from diverse species, described its historical aspects, studied organs as models in scientific research, and its ex vivo stability. We also discussed, how an ex vivo organ model might help researchers better understand organ physiology, as well as organ-specific diseases and therapeutic targets. We emphasized how this ex vivo organ dynamics will be more competent than existing models, as well as what tissues or organs would have potentially viable longevity for ex vivo modeling including human tissues, organs, and/or at least biopsies and its possible advantage in clinical medicine including organ transplantation procedure and precision medicine.
Collapse
Affiliation(s)
- Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India.
| | - Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Kayalvizhi Vadivelu
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Meikandan Chandrasekar
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Kalishwaralal Kalimuthu
- Rajiv Gandhi Centre for Biotechnology, Department of Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nivedha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Vijayalakshmi Subramanian
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
2
|
Kochunov P, Hong LE, Summerfelt A, Gao S, Brown PL, Terzi M, Acheson A, Woldorff MG, Fieremans E, Abdollahzadeh A, Sathyasaikumar KV, Clark SM, Schwarcz R, Shepard PD, Elmer GI. White matter and latency of visual evoked potentials during maturation: A miniature pig model of adolescent development. J Neurosci Methods 2024; 411:110252. [PMID: 39159872 PMCID: PMC11983141 DOI: 10.1016/j.jneumeth.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Continuous myelination of cerebral white matter (WM) during adolescence overlaps with the formation of higher cognitive skills and the onset of many neuropsychiatric disorders. We developed a miniature-pig model of adolescent brain development for neuroimaging and neurophysiological assessment during this critical period. Minipigs have gyroencephalic brains with a large cerebral WM compartment and a well-defined adolescence period. METHODS Eight Sinclair™ minipigs (Sus scrofa domestica) were evaluated four times during weeks 14-28 (40, 28 and 28 days apart) of adolescence using monocular visual stimulation (1 Hz)-evoked potentials and diffusion MRI (dMRI) of WM. The latency for the pre-positive 30 ms (PP30), positive 30 ms (P30) and negative 50 ms (N50) components of the flash visual evoked potentials (fVEPs) and their interhemispheric latency (IL) were recorded in the frontal, central and occipital areas during ten 60-second stimulations for each eye. The dMRI imaging protocol consisted of fifteen b-shells (b = 0-3500 s/mm2) with 32 directions/shell, providing measurements that included fractional anisotropy (FA), radial kurtosis, kurtosis anisotropy (KA), axonal water fraction (AWF), and the permeability-diffusivity index (PDI). RESULTS Significant reductions (p < 0.05) in the latency and IL of fVEP measurements paralleled significant rises in FA, KA, AWF and PDI over the same period. The longitudinal latency changes in fVEPs were primarily associated with whole-brain changes in diffusion parameters, while fVEP IL changes were related to maturation of the corpus callosum. CONCLUSIONS Good agreement between reduction in the latency of fVEPs and maturation of cerebral WM was interpreted as evidence for ongoing myelination and confirmation of the minipig as a viable research platform. Adolescent development in minipigs can be studied using human neuroimaging and neurophysiological protocols and followed up with more invasive assays to investigate key neurodevelopmental hypotheses in psychiatry.
Collapse
Affiliation(s)
- Peter Kochunov
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - L Elliot Hong
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - P Leon Brown
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Terzi
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marty G Woldorff
- Center for Cognitive Neuroscience, Duke University, Durham, NC. USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Korrapati V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah M Clark
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul D Shepard
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Greg I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Wang LS, Sun ZL. iDHS-FFLG: Identifying DNase I Hypersensitive Sites by Feature Fusion and Local-Global Feature Extraction Network. Interdiscip Sci 2023; 15:155-170. [PMID: 36166165 DOI: 10.1007/s12539-022-00538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 05/01/2023]
Abstract
The DNase I hypersensitive sites (DHSs) are active regions on chromatin that have been found to be highly sensitive to DNase I. These regions contain various cis-regulatory elements, including promoters, enhancers and silencers. Accurate identification of DHSs helps researchers better understand the transcriptional machinery of DNA and deepen the knowledge of functional DNA elements in non-coding sequences. Researchers have developed many methods based on traditional experiments and machine learning to identify DHSs. However, low prediction accuracy and robustness limit their application in genetics research. In this paper, a novel computational approach based on deep learning is proposed by feature fusion and local-global feature extraction network to identify DHSs in mouse, named iDHS-FFLG. First of all, multiple binary features of nucleotides are fused to better express sequence information. Then, a network consisting of the convolutional neural network (CNN), bidirectional long short-term memory (BiLSTM) and self-attention mechanism is designed to extract local features and global contextual associations. In the end, the prediction module is applied to distinguish between DHSs and non-DHSs. The results of several experiments demonstrate the superior performances of iDHS-FFLG compared to the latest methods.
Collapse
Affiliation(s)
- Lei-Shan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, China
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, Anhui, China
| | - Zhan-Li Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, Anhui, China.
- School of Electrical Engineering and Automation, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
4
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
5
|
JACK N, MUTO T, IEMITSU K, WATANABE T, UMEYAMA K, OHGANE J, NAGASHIMA H. Genetically engineered animal models for Marfan syndrome: challenges associated with the generation of pig models for diseases caused by haploinsufficiency. J Reprod Dev 2022; 68:233-237. [PMID: 35598970 PMCID: PMC9334321 DOI: 10.1262/jrd.2022-027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent developments in reproductive biology have enabled the generation of genetically engineered pigs as models for inherited human diseases. Although a variety of such models for
monogenic diseases are currently available, reproduction of human diseases caused by haploinsufficiency remains a major challenge. The present study compares the phenotypes of mouse and pig
models of Marfan syndrome (MFS), with a special focus on the expressivity and penetrance of associated symptoms. Furthermore, investigation of the gene regulation mechanisms associated with
haploinsufficiency will be of immense utility in developing faithful MFS pig models.
Collapse
Affiliation(s)
- Naomi JACK
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-7824, Japan
| | - Tomoyuki MUTO
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Keigo IEMITSU
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Tamaki WATANABE
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Kazuhiro UMEYAMA
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-7824, Japan
| | - Jun OHGANE
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-7824, Japan
| | - Hiroshi NAGASHIMA
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-7824, Japan
| |
Collapse
|
6
|
Peusner KD, Bell NM, Hirsch JC, Beraneck M, Popratiloff A. Understanding the Pathophysiology of Congenital Vestibular Disorders: Current Challenges and Future Directions. Front Neurol 2021; 12:708395. [PMID: 34589045 PMCID: PMC8475631 DOI: 10.3389/fneur.2021.708395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
In congenital vestibular disorders (CVDs), children develop an abnormal inner ear before birth and face postnatal challenges to maintain posture, balance, walking, eye-hand coordination, eye tracking, or reading. Only limited information on inner ear pathology is acquired from clinical imaging of the temporal bone or studying histological slides of the temporal bone. A more comprehensive and precise assessment and determination of the underlying mechanisms necessitate analyses of the disorders at the cellular level, which can be achieved using animal models. Two main criteria for a suitable animal model are first, a pathology that mirrors the human disorder, and second, a reproducible experimental outcome leading to statistical power. With over 40 genes that affect inner ear development, the phenotypic abnormalities resulting from congenital vestibular disorders (CVDs) are highly variable. Nonetheless, there is a large subset of CVDs that form a common phenotype of a sac-like inner ear with the semicircular canals missing or dysplastic, and discrete abnormalities in the vestibular sensory organs. We have focused the review on this subset, but to advance research on CVDs we have added other CVDs not forming a sac-like inner ear. We have included examples of animal models used to study these CVDs. Presently, little is known about the central pathology resulting from CVDs at the cellular level in the central vestibular neural network, except for preliminary studies on a chick model that show significant loss of second-order, vestibular reflex projection neurons.
Collapse
Affiliation(s)
- Kenna D Peusner
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Nina M Bell
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - June C Hirsch
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Mathieu Beraneck
- Université de Paris, Integrative Neuroscience and Cognition Center, CNRS UMR 8002, Paris, France
| | - Anastas Popratiloff
- The George Washington University Nanofabrication and Imaging Center, Washington, DC, United States
| |
Collapse
|
7
|
Molecular Characterization of Constipation Disease as Novel Phenotypes in CRISPR-Cas9-Generated Leptin Knockout Mice with Obesity. Int J Mol Sci 2020; 21:ijms21249464. [PMID: 33322729 PMCID: PMC7763920 DOI: 10.3390/ijms21249464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: We characterized a novel animal model with obesity-induced constipation because constipation is rarely known in genetically engineered mice (GEM); (2) Methods: The changes in the constipation parameters and mechanisms were analyzed in CRISPR-Cas9-mediated leptin (Lep) knockout (KO) mice from eight to 24 weeks; (3) Results: Significant constipation phenotypes were observed in the Lep KO mice since 16 weeks old. These mice showed a significant decrease in the gastrointestinal motility, mucosal layer thickness and ability for mucin secretion as well as the abnormal ultrastructure of Lieberkühn crypts in the transverse colon. The density or function of the enteric neurons, intestinal Cajal cells (ICC), smooth muscle cells, and the concentration of gastrointestinal (GI) hormones for the GI motility were remarkably changed in Lep KO mice. The downstream signaling pathway of muscarinic acetylcholine receptors (mAChRs) were activated in Lep KO mice, while the expression of adipogenesis-regulating genes were alternatively reduced in the transverse colon of the same mice; (4) Conclusions: These results provide the first strong evidence that Lep KO mice can represent constipation successfully through dysregulation of the GI motility mediated by myenteric neurons, ICC, and smooth muscle cells in the transverse colon during an abnormal function of the lipid metabolism.
Collapse
|
8
|
Cho K, Ro SW, Seo SH, Jeon Y, Moon H, Kim DY, Kim SU. Genetically Engineered Mouse Models for Liver Cancer. Cancers (Basel) 2019; 12:14. [PMID: 31861541 PMCID: PMC7016809 DOI: 10.3390/cancers12010014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the fourth leading cause of cancer-related death globally, accounting for approximately 800,000 deaths annually. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, comprising approximately 80% of cases. Murine models of HCC, such as chemically-induced models, xenograft models, and genetically engineered mouse (GEM) models, are valuable tools to reproduce human HCC biopathology and biochemistry. These models can be used to identify potential biomarkers, evaluate potential novel therapeutic drugs in pre-clinical trials, and develop molecular target therapies. Considering molecular target therapies, a novel approach has been developed to create genetically engineered murine models for HCC, employing hydrodynamics-based transfection (HT). The HT method, coupled with the Sleeping Beauty transposon system or the CRISPR/Cas9 genome editing tool, has been used to rapidly and cost-effectively produce a variety of HCC models containing diverse oncogenes or inactivated tumor suppressor genes. The versatility of these models is expected to broaden our knowledge of the genetic mechanisms underlying human hepatocarcinogenesis, allowing the study of premalignant and malignant liver lesions and the evaluation of new therapeutic strategies. Here, we review recent advances in GEM models of HCC with an emphasis on new technologies.
Collapse
Affiliation(s)
- Kyungjoo Cho
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Brain Korea 21 PLUS Project for Medical Science College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Simon Weonsang Ro
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sang Hyun Seo
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
| | - Youjin Jeon
- Department of Life Science, Sahmyook University, Seoul 03722, Korea;
| | - Hyuk Moon
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Brain Korea 21 PLUS Project for Medical Science College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Do Young Kim
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seung Up Kim
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul 03722, Korea; (K.C.); (S.W.R.); (S.H.S.); (H.M.)
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
9
|
Pylatiuk C, Zhao H, Gursky E, Reischl M, Peravali R, Foulkes N, Loosli F. DIY Automated Feeding and Motion Recording System for the Analysis of Fish Behavior. SLAS Technol 2019; 24:394-398. [PMID: 31013465 DOI: 10.1177/2472630319841412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fish species such as medaka or zebrafish are widely used as animal models to study physiology, disease development, and treatment efficacy. They are also used to study the rapidly growing field of behavior research, such as social interactions, anxiety, and the influence of environmental factors. Here we describe an automated experimental setup allowing the recording of general locomotor activity in combination with a food-on-demand system. It can simply be built with some basic electronic knowledge. Our setup enables the recording of locomotor and feeding activity of several fish for long-term studies, excluding disturbing external influences. A description of the automated recording system is given, as well as examples of recordings to illustrate its applicability for the study of fish behavior. The construction manual and operation instructions can be downloaded for free.
Collapse
Affiliation(s)
- Christian Pylatiuk
- 1 Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- 2 Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Eduard Gursky
- 2 Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Markus Reischl
- 1 Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Ravindra Peravali
- 2 Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Nicholas Foulkes
- 2 Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Felix Loosli
- 2 Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Rehmani T, Salih M, Tuana BS. Cardiac-Specific Cre Induces Age-Dependent Dilated Cardiomyopathy (DCM) in Mice. Molecules 2019; 24:molecules24061189. [PMID: 30917606 PMCID: PMC6471127 DOI: 10.3390/molecules24061189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022] Open
Abstract
The genetic modification of the mouse genome using the cre-lox system has been an invaluable tool in deciphering gene and protein function in a temporal and/or spatial manner. However, it has its pitfalls, as researchers have shown that the unregulated expression of cre recombinase can cause DNA damage, the consequences of which can be very detrimental to mouse health. Previously published literature on the most utilized cardiac-specific cre, αMHC-cre, mouse model exhibited a nonlethal hypertrophic cardiomyopathy (HCM) with aging. However, using the same αMHC-cre mice, we observed a cardiac pathology, resulting in complete lethality by 11 months of age. Echocardiography and histology revealed that the αMHC-cre mice were displaying symptoms of dilated cardiomyopathy (DCM) by seven months of age, which ultimately led to their demise in the absence of any HCM at any age. Molecular analysis showed that this phenotype was associated with the DNA damage response through the downregulation of activated p38 and increased expression of JNK, p53, and Bax, known inducers of myocyte death resulting in fibrosis. Our data urges strong caution when interpreting the phenotypic impact of gene responses using αMHC-cre mice, since a lethal DCM was induced by the cre driver in an age-dependent manner in this commonly utilized model system.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
11
|
Ryan MC, Kochunov P, Sherman PM, Rowland LM, Wijtenburg SA, Acheson A, Hong LE, Sladky J, McGuire S. Miniature pig magnetic resonance spectroscopy model of normal adolescent brain development. J Neurosci Methods 2018; 308:173-182. [PMID: 30099002 DOI: 10.1016/j.jneumeth.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND We are developing the miniature pig (Sus scrofa domestica), an in-vivo translational, gyrencephalic model for brain development, as an alternative to laboratory rodents/non-human primates. We analyzed longitudinal changes in adolescent pigs using proton magnetic resonance spectroscopy (1H-MRS) and examined the relationship with white matter (WM) integrity derived from diffusion weighted imaging (DWI). NEW METHOD Twelve female Sinclair™ pigs underwent three imaging/spectroscopy sessions every 23.95 ± 3.73 days beginning at three months of age using a clinical 3 T scanner. 1H-MRS data were collected using 1.2 × 1.0 × 3.0 cm voxels placed in left and right hemisphere WM using a Point Resolved Spectroscopy sequence (TR = 2000 ms, TE = 30 ms). Concentrations of N-acetylaspartate, myo-inositol (MI), glutamate + glutamine, choline, creatine, and macromolecules (MM) 09 and 14 were averaged from both hemispheres. DWI data were collected using 15 shells of b-values (b = 0-3500 s/mm2) with 32 directions/shell and fit using the WM Tract Integrity model to calculate fractional anisotropy (FA), kurtosis anisotropy (KA) and permeability-diffusivity index. RESULTS MI and MM09 significantly declined with age. Increased FA and KA significantly correlated with decline in MI and MM09. Correlations lost significance once corrected for age. COMPARISON WITH EXISTING METHODS MRI scanners/protocols can be used to collect 1H-MRS and DWI data in pigs. Pigs have a larger, more complex, gyrencephalic brain than laboratory rodents but are less complex than non-human primates, thus satisfying the "replacement" principle of animal research. CONCLUSIONS Longitudinal effects in MRS measurements were similar to those reported in adolescent humans. MRS changes correlated with diffusion measurements indicating ongoing WM myelination/maturation.
Collapse
Affiliation(s)
- Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Paul M Sherman
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Radiology, 59thMedical Wing, 1100 Wilford Hall Loop, Bldg 4551, Joint Base San Antonio, TX, 78236, United States.
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, 4301 W Markham St., Little Rock, AR, 72205, United States.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - John Sladky
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 1100 Wilford Hall Loop, Bldg 4551, Joint Base San Antonio, Lackland AFB, TX, 78236, United States.
| | - Stephen McGuire
- Department of Neurology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States.
| |
Collapse
|
12
|
Ryan MC, Sherman P, Rowland LM, Wijtenburg SA, Acheson A, Fieremans E, Veraart J, Novikov DS, Hong LE, Sladky J, Peralta PD, Kochunov P, McGuire SA. Miniature pig model of human adolescent brain white matter development. J Neurosci Methods 2018; 296:99-108. [PMID: 29277719 PMCID: PMC5817010 DOI: 10.1016/j.jneumeth.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuroscience research in brain development and disorders can benefit from an in vivo animal model that portrays normal white matter (WM) development trajectories and has a sufficiently large cerebrum for imaging with human MRI scanners and protocols. NEW METHOD Twelve three-month-old Sinclair™ miniature pigs (Sus scrofa domestica) were longitudinally evaluated during adolescent development using advanced diffusion weighted imaging (DWI) focused on cerebral WM. Animals had three MRI scans every 23.95 ± 3.73 days using a 3-T scanner. The DWI imaging protocol closely modeled advanced human structural protocols and consisted of fifteen b-shells (b = 0-3500 s/mm2) with 32-directions/shell. DWI data were analyzed using diffusion kurtosis and bi-exponential modeling that provided measurements that included fractional anisotropy (FA), radial kurtosis, kurtosis anisotropy (KA), axial kurtosis, tortuosity, and permeability-diffusivity index (PDI). RESULTS Significant longitudinal effects of brain development were observed for whole-brain average FA, KA, and PDI (all p < 0.001). There were expected regional differences in trends, with corpus callosum fibers showing the highest rate of change. COMPARISON WITH EXISTING METHOD(S) Pigs have a large, gyrencephalic brain that can be studied using clinical MRI scanners/protocols. Pigs are less complex than non-human primates thus satisfying the "replacement" principle of animal research. CONCLUSIONS Longitudinal effects were observed for whole-brain and regional diffusion measurements. The changes in diffusion measurements were interepreted as evidence for ongoing myelination and maturation of cerebral WM. Corpus callosum and superficial cortical WM showed the expected higher rates of change, mirroring results in humans.
Collapse
Affiliation(s)
- Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - Paul Sherman
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - Ashley Acheson
- Department of Psychiatry, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, United States
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, NY 10016, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States
| | - John Sladky
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| | - P Dana Peralta
- Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, 55 Wade Avenue, Catonsville, MD 21228, United States.
| | - Stephen A McGuire
- U.S. Air Force School of Aerospace Medicine, Aeromedical Research Department, 2510 5th Street, Building 840, Wright-Patterson AFB, OH 45433-7913, United States; Department of Neurology, 59th Medical Wing, 2200 Bergquist Drive, Suite 1, Joint Base San Antonio-Lackland AFB, TX 78236, United States
| |
Collapse
|
13
|
He L, Tian DA, Li PY, He XX. Mouse models of liver cancer: Progress and recommendations. Oncotarget 2016; 6:23306-22. [PMID: 26259234 PMCID: PMC4695120 DOI: 10.18632/oncotarget.4202] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/23/2015] [Indexed: 02/06/2023] Open
Abstract
To clarify the pathogenesis of hepatocellular carcinoma (HCC) and investigate the effects of potential therapies, a number of mouse models have been developed. Subcutaneous xenograft models are widely used in the past decades. Yet, with the advent of in vivo imaging technology, investigators are more and more concerned with the orthotopic models nowadays. Genetically engineered mouse models (GEM) have greatly facilitated studies of gene function in HCC development. Recently, GEM of miR-122 and miR-221 provided new approaches for better understanding of the in vivo functions of microRNA in hepatocarcinogenesis. Chemically induced liver tumors in animals share many of the morphological, histogenic, and biochemical features of human HCC. Yet, the complicated and obscure genomic alternation restricts their applications. In this review, we highlight both the frequently used mouse models and some emerging ones with emphasis on their merits or defects, and give advises for investigators to chose a “best-fit” animal model in HCC research.
Collapse
Affiliation(s)
- Li He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-An Tian
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-Yuan Li
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Bred to breed?! Implications of continuous mating on the emotional status of mouse offspring. Behav Brain Res 2015; 279:155-65. [DOI: 10.1016/j.bbr.2014.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/02/2023]
|
15
|
Vierstra J, Rynes E, Sandstrom R, Zhang M, Canfield T, Hansen RS, Stehling-Sun S, Sabo PJ, Byron R, Humbert R, Thurman RE, Johnson AK, Vong S, Lee K, Bates D, Neri F, Diegel M, Giste E, Haugen E, Dunn D, Wilken MS, Josefowicz S, Samstein R, Chang KH, Eichler EE, De Bruijn M, Reh TA, Skoultchi A, Rudensky A, Orkin SH, Papayannopoulou T, Treuting PM, Selleri L, Kaul R, Groudine M, Bender MA, Stamatoyannopoulos JA. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 2014; 346:1007-12. [PMID: 25411453 PMCID: PMC4337786 DOI: 10.1126/science.1246426] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes.
Collapse
Affiliation(s)
- Jeff Vierstra
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric Rynes
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Richard Sandstrom
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Miaohua Zhang
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Theresa Canfield
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - R Scott Hansen
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sandra Stehling-Sun
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Peter J Sabo
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rachel Byron
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Richard Humbert
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Robert E Thurman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Audra K Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Shinny Vong
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kristen Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Daniel Bates
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Fidencio Neri
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Morgan Diegel
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Erika Giste
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eric Haugen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Douglas Dunn
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Matthew S Wilken
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Steven Josefowicz
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute
| | - Robert Samstein
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute
| | - Kai-Hsin Chang
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute
| | - Marella De Bruijn
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Arthur Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alexander Rudensky
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute
| | - Stuart H Orkin
- Howard Hughes Medical Institute. Division of Hematology/Oncology, Children's Hospital Boston and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Rajinder Kaul
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark Groudine
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Radiation Oncology, University of Washington, Seattle, WA 98109, USA
| | - M A Bender
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - John A Stamatoyannopoulos
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Bolker JA. Models in Context: Biological and Epistemological Niches. HISTORY, PHILOSOPHY AND THEORY OF THE LIFE SCIENCES 2014. [DOI: 10.1007/978-94-007-7067-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Minelli C, De Grandi A, Weichenberger CX, Gögele M, Modenese M, Attia J, Barrett JH, Boehnke M, Borsani G, Casari G, Fox CS, Freina T, Hicks AA, Marroni F, Parmigiani G, Pastore A, Pattaro C, Pfeufer A, Ruggeri F, Schwienbacher C, Taliun D, Pramstaller PP, Domingues FS, Thompson JR. Importance of different types of prior knowledge in selecting genome-wide findings for follow-up. Genet Epidemiol 2013; 37:205-13. [PMID: 23307621 DOI: 10.1002/gepi.21705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/28/2012] [Accepted: 11/22/2012] [Indexed: 12/14/2022]
Abstract
Biological plausibility and other prior information could help select genome-wide association (GWA) findings for further follow-up, but there is no consensus on which types of knowledge should be considered or how to weight them. We used experts' opinions and empirical evidence to estimate the relative importance of 15 types of information at the single-nucleotide polymorphism (SNP) and gene levels. Opinions were elicited from 10 experts using a two-round Delphi survey. Empirical evidence was obtained by comparing the frequency of each type of characteristic in SNPs established as being associated with seven disease traits through GWA meta-analysis and independent replication, with the corresponding frequency in a randomly selected set of SNPs. SNP and gene characteristics were retrieved using a specially developed bioinformatics tool. Both the expert and the empirical evidence rated previous association in a meta-analysis or more than one study as conferring the highest relative probability of true association, whereas previous association in a single study ranked much lower. High relative probabilities were also observed for location in a functional protein domain, although location in a region evolutionarily conserved in vertebrates was ranked high by the data but not by the experts. Our empirical evidence did not support the importance attributed by the experts to whether the gene encodes a protein in a pathway or shows interactions relevant to the trait. Our findings provide insight into the selection and weighting of different types of knowledge in SNP or gene prioritization, and point to areas requiring further research.
Collapse
Affiliation(s)
- Cosetta Minelli
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Understanding human diseases with high-throughput quantitative measurement and analysis of molecular signatures. SCIENCE CHINA-LIFE SCIENCES 2013; 56:213-9. [DOI: 10.1007/s11427-013-4445-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/19/2012] [Indexed: 12/23/2022]
|
19
|
Abstract
In the field of regenerative medicine, the development of induced pluripotent stem (iPS) cells may represent a potential strategy to overcome the limitations of human embryonic stem cells (ESCs). iPS cells have the potential to mimic human disease, since they carry the genome of the donor. Hypothetically, with iPS cell technology it is possible to screen patients for a genetic cause of disease (genetic mutation), develop cell lines, reprogram them back to iPS cells, finally differentiate them into one or more cell types that develop the disease. Although the creation of multiple lineages with iPS cells can seem limitless, a number of challenges need to be addressed in order to effectively use these cell lines for disease modeling. These include the low efficiency of iPS cell generation without genetic alterations, the possibility of tumor formation in vivo, the random integration of retroviral-based delivery vectors into the genome, and unregulated growth of the remaining cells that are partially reprogrammed and refractory to differentiation. The establishment of protein or RNA-based reprogramming strategies will help generate human iPS cells without permanent genetic alterations. Finally, direct reprogramming strategies can provide rapid production of models of human "diseases in a dish", without first passing the cells through a pluripotent state, so avoiding the challenges of time-consumming and labor-intensive iPS cell line generation. This review will overview methods to develop iPS cells, current strategies for direct reprogramming, and main applications of iPS cells as human disease model, focusing on human cardiovascular diseases, with the aim to be a potential information resource for biomedical scientists and clinicians who exploit or intend to exploit iPS cell technology in a range of applications.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Cardiology, G. d'Annunzio University-Chieti, C/o Ospedale SS. Annunziata Via dei Vestini, 66013 Chieti, Italy.
| |
Collapse
|
20
|
Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B, Gingeras T, Gilbert DM, Groudine M, Bender M, Kaul R, Canfield T, Giste E, Johnson A, Zhang M, Balasundaram G, Byron R, Roach V, Sabo PJ, Sandstrom R, Stehling AS, Thurman RE, Weissman SM, Cayting P, Hariharan M, Lian J, Cheng Y, Landt SG, Ma Z, Wold BJ, Dekker J, Crawford GE, Keller CA, Wu W, Morrissey C, Kumar SA, Mishra T, Jain D, Byrska-Bishop M, Blankenberg D, Lajoie1 BR, Jain G, Sanyal A, Chen KB, Denas O, Taylor J, Blobel GA, Weiss MJ, Pimkin M, Deng W, Marinov GK, Williams BA, Fisher-Aylor KI, Desalvo G, Kiralusha A, Trout D, Amrhein H, Mortazavi A, Edsall L, McCleary D, Kuan S, Shen Y, Yue F, Ye Z, Davis CA, Zaleski C, Jha S, Xue C, Dobin A, Lin W, Fastuca M, Wang H, Guigo R, Djebali S, Lagarde J, Ryba T, Sasaki T, Malladi VS, Cline MS, Kirkup VM, Learned K, Rosenbloom KR, Kent WJ, Feingold EA, Good PJ, Pazin M, Lowdon RF, Adams LB. An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 2012; 13:418. [PMID: 22889292 PMCID: PMC3491367 DOI: 10.1186/gb-2012-13-8-418] [Citation(s) in RCA: 363] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.
Collapse
Affiliation(s)
- John A Stamatoyannopoulos
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Ross Hardison
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Thomas Gingeras
- Dept. of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Mark Groudine
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael Bender
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rajinder Kaul
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Theresa Canfield
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Erica Giste
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Audra Johnson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mia Zhang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Gayathri Balasundaram
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Rachel Byron
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Vaughan Roach
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Peter J Sabo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Richard Sandstrom
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - A Sandra Stehling
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Robert E Thurman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Philip Cayting
- Department of Genetics, Yale University, New Haven, Connecticut, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Manoj Hariharan
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Jin Lian
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Yong Cheng
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen G Landt
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Barbara J Wold
- Div. of Biology, California Institute of Technology, Pasadena, California, USA
| | - Job Dekker
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachussetts, USA
| | - Gregory E Crawford
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Cheryl A Keller
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Weisheng Wu
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Christopher Morrissey
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Swathi A Kumar
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Tejaswini Mishra
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Deepti Jain
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marta Byrska-Bishop
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel Blankenberg
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bryan R Lajoie1
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Gaurav Jain
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachussetts, USA
| | - Amartya Sanyal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachussetts, USA
| | - Kaun-Bei Chen
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, USA
| | - Olgert Denas
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, USA
| | - James Taylor
- Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia, USA
| | - Gerd A Blobel
- Div. of Hematology, Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Mitchell J Weiss
- Div. of Hematology, Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Max Pimkin
- Div. of Hematology, Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Wulan Deng
- Div. of Hematology, Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Georgi K Marinov
- Div. of Biology, California Institute of Technology, Pasadena, California, USA
| | - Brian A Williams
- Div. of Biology, California Institute of Technology, Pasadena, California, USA
| | | | - Gilberto Desalvo
- Div. of Biology, California Institute of Technology, Pasadena, California, USA
| | - Anthony Kiralusha
- Div. of Biology, California Institute of Technology, Pasadena, California, USA
| | - Diane Trout
- Div. of Biology, California Institute of Technology, Pasadena, California, USA
| | - Henry Amrhein
- Div. of Biology, California Institute of Technology, Pasadena, California, USA
| | - Ali Mortazavi
- Dept. of Developmental and Cell Biology, University of California Irvine, Irvine California, USA
| | - Lee Edsall
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - David McCleary
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Samantha Kuan
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Yin Shen
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Feng Yue
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Zhen Ye
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Carrie A Davis
- Dept. of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Chris Zaleski
- Dept. of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sonali Jha
- Dept. of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Chenghai Xue
- Dept. of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Alex Dobin
- Dept. of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Wei Lin
- Dept. of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Meagan Fastuca
- Dept. of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Huaien Wang
- Dept. of Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Roderic Guigo
- Division of Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Catalunya, Spain
| | - Sarah Djebali
- Division of Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Catalunya, Spain
| | - Julien Lagarde
- Division of Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Catalunya, Spain
| | - Tyrone Ryba
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Venkat S Malladi
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California, USA
| | - Melissa S Cline
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California, USA
| | - Vanessa M Kirkup
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California, USA
| | - Katrina Learned
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California, USA
| | - Kate R Rosenbloom
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California, USA
| | - W James Kent
- Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California, USA
| | - Elise A Feingold
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter J Good
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Pazin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca F Lowdon
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Leslie B Adams
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Osborne LR. Animal models of Williams syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2010; 154C:209-19. [PMID: 20425782 PMCID: PMC2894081 DOI: 10.1002/ajmg.c.30257] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, researchers have generated a variety of mouse models in an attempt to dissect the contribution of individual genes to the complex phenotype associated with Williams syndrome (WS). The mouse genome is easily manipulated to produce animals that are copies of humans with genetic conditions, be it with null mutations, hypomorphic mutations, point mutations, or even large deletions encompassing many genes. The existing mouse models certainly seem to implicate hemizygosity for ELN, BAZ1B, CLIP2, and GTF2IRD1 in WS, and new mice with large deletions of the WS region are helping us to understand both the additive and potential combinatorial effects of hemizygosity for specific genes. However, not all genes that are haploinsufficient in humans prove to be so in mice and the effect of genetic background can also have a significant effect on the penetrance of many phenotypes. Thus although mouse models are powerful tools, the information garnered from their study must be carefully interpreted. Nevertheless, mouse models look set to provide a wealth of information about the neuroanatomy, neurophysiology and molecular pathways that underlie WS and in the future will act as essential tools for the development and testing of therapeutics.
Collapse
Affiliation(s)
- Lucy R Osborne
- Department of Medicine and Molecular Genetics, University of Toronto, 7360 Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada.
| |
Collapse
|
22
|
Chavarrías C, Vaquero JJ, Sisniega A, Rodríguez-Ruano A, Soto-Montenegro ML, García-Barreno P, Desco M. Extraction of the respiratory signal from small-animal CT projections for a retrospective gating method. Phys Med Biol 2008; 53:4683-95. [DOI: 10.1088/0031-9155/53/17/015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Namati E, Chon D, Thiesse J, Hoffman EA, de Ryk J, Ross A, McLennan G. In vivo micro-CT lung imaging via a computer-controlled intermittent iso-pressure breath hold (IIBH) technique. Phys Med Biol 2006; 51:6061-75. [PMID: 17110770 DOI: 10.1088/0031-9155/51/23/008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Respiratory research with mice using micro-computed tomography (micro-CT) has been predominantly hindered by the limited resolution and signal-to-noise ratio (SNR) as a result of respiratory motion artefacts. In this study, we develop a novel technique for capturing the lung microstructure in vivo using micro-CT, through a computer-controlled intermittent iso-pressure breath hold (IIBH), to reduce respiratory motion, increasing resolution and SNR of reconstructed images. We compare four gating techniques, i.e. no gating, late expiratory (LE) gating, late inspiratory (LI) gating and finally intermittent iso-pressure breath hold (IIBH) gating. Quantitatively, we compare several common image analysis methods used to extract valuable physiologic and anatomic information from the respiratory system, and show that the IIBH technique produces the most representative and repeatable results.
Collapse
Affiliation(s)
- E Namati
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Orth AP, Batalov S, Perrone M, Chanda SK. The promise of genomics to identify novel therapeutic targets. Expert Opin Ther Targets 2005; 8:587-96. [PMID: 15584864 DOI: 10.1517/14728222.8.6.587] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The cataloguing of the human genome has provided an unprecedented prospectus for target identification and drug discovery. A current analysis indicates that slightly more than 3000 unique protein encoding loci are potentially amenable to pharmacological intervention (the 'druggable genome', which can be queried at http://function.gnf.org/druggable). However, the assessment of genome sequence data has not resulted in the anticipated acceleration of novel therapeutic developments. The basis for this shortfall lies in the significant attrition rates endemic to preclinical/clinical development, as well as the often underestimated complexity of gene function in higher order biological systems. To address the latter issue, a number of strategies have emerged to facilitate genomics-driven target identification and validation, including cellular profiling of gene function, in silico modelling of gene networks, and systematic analyses of protein complexes. The expectation is that the integration of these and other systems-based technologies may enable the conversion of potential genomic targets into functionally validated molecules, and result in practicable gene-based drug discovery pipelines.
Collapse
Affiliation(s)
- Anthony P Orth
- The Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Manipulation of the mouse genome through mis-expressing, knocking out, and introducing mutations into genes of interest has provided important insights into the genetic pathways responsible for human skeletal development. These pathways contribute to the sequential phases of skeletal morphogenesis that include patterning, condensation, and overt organogenesis of the membranous and endochondral embryonic skeletons and to subsequent linear growth. Disturbances in these pathways account for many developmental syndromes and disorders of the human skeleton. Recurrent themes include establishment of interlocking regulatory circuits involving growth factors, receptors, signalling pathways, and transcription factors that control cellular programmes such as migration, adhesion, proliferation, differentiation, and apoptosis, and use of common molecules for different purposes. Technical advances suggest that genetic engineering in mice will continue to be highly instructive in the field of skeletal biology.
Collapse
Affiliation(s)
- William A Horton
- Shriners Hospital for Children, Oregon Health and Science University, 3101 Sam Jackson Park Road, Portland, OR 97239-3009, USA.
| |
Collapse
|
26
|
Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002; 11:115-32. [PMID: 12464688 DOI: 10.1152/physiolgenomics.00067.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to engineer the mouse genome has profoundly transformed biomedical research. During the last decade, conventional transgenic and gene knockout technologies have become invaluable experimental tools for modeling genetic disorders, assigning functions to genes, evaluating drugs and toxins, and by and large helping to answer fundamental questions in basic and applied research. In addition, the growing demand for more sophisticated murine models has also become increasingly evident. Good state-of-principle knowledge about the enormous potential of second-generation conditional mouse technology will be beneficial for any researcher interested in using these experimental tools. In this review we will focus on practice, pivotal principles, and progress in the rapidly expanding area of conditional mouse technology. The review will also present an internet compilation of available tetracycline-inducible mouse models as tools for biomedical research (http://www.zmg.uni-mainz.de/tetmouse/).
Collapse
Affiliation(s)
- Ernesto Bockamp
- Laboratory of Molecular Mouse Genetics, Institute of Toxicology, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|