1
|
Zayou L, Prakash S, Vahed H, Dhanushkodi NR, Quadiri A, Belmouden A, Lemkhente Z, Chentoufi A, Gil D, Ulmer JB, BenMohamed L. Dynamics of spike-specific neutralizing antibodies across five-year emerging SARS-CoV-2 variants of concern reveal conserved epitopes that protect against severe COVID-19. Front Immunol 2025; 16:1503954. [PMID: 40040708 PMCID: PMC11876060 DOI: 10.3389/fimmu.2025.1503954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Since early 2020, several SARS-CoV-2 variants of concern (VOCs) continue to emerge, evading waning antibody mediated immunity produced by the current Spike-alone based COVID-19 vaccines. This caused a prolonged and persistent COVID-19 pandemic that is going to enter its fifth year. Thus, the need remains for innovative next generation vaccines that would incorporate protective Spike-derived B-cell epitopes that resist immune evasion. Methods Towards that goal, in this study we (i) Screened the sequences of Spike among many VOCs and identified conserved and non-conserved linear B-cell epitopes; (ii) Compared titers and neutralization antibodies specific to these conserved and non-conserved B-cell epitopes from serum of symptomatic and asymptomatic COVID-19 patients that were exposed to multiple VOCs across the 5-year COVID-19 pandemic, and (iii) Compared protective efficacy of conserved versus non-conserved B-cell epitopes against the most pathogenic Delta variant in a "humanized" ACE-2/HLA transgenic mouse model. Results We found robust conserved B-cell epitope-specific antibody titers and neutralization in sera from asymptomatic COVID-19 patients. In contrast, sera from symptomatic patients contained weaker antibody responses specific to conserved B-cell epitopes. A multi-epitope COVID-19 vaccine that incorporated the conserved B-cell epitopes, but not the non-conserved B-cell epitopes, significantly protected the ACE2/HLA transgenic mice against infection and COVID-19 like symptoms caused by the Delta variant. Discussion These findings underscore the importance of conserved B-cell epitopes in generating robust protective immunity against severe COVID-19 symptoms caused by various VOCs, providing valuable insights for the development of broad-spectrum next generation Coronavirus vaccines capable of conferring cross-variant protective immunity.
Collapse
Affiliation(s)
- Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ahmed Belmouden
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Zohra Lemkhente
- BIOMCI Lab., Faculty of Medicine and Pharmacy, Ibnou Zohr University, Agadir, Morocco
| | - Aziz Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Zayou L, Prakash S, Vahed H, Dhanushkodi NR, Quadiri A, Belmouden A, Lemkhente Z, Chentoufi A, Gil D, Ulmer JB, BenMohamed L. Dynamics of Spike-Specific Neutralizing Antibodies Across Five-Year Emerging SARS-CoV-2 Variants of Concern Reveal Conserved Epitopes that Protect Against Severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614369. [PMID: 39386567 PMCID: PMC11463540 DOI: 10.1101/2024.09.22.614369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Since early 2020, several SARS-CoV-2 variants of concern (VOCs) continue to emerge, evading waning antibody mediated immunity produced by the current Spike-alone based COVID-19 vaccines. This caused a prolonged and persistent COVID-19 pandemic that is going to enter its fifth year. Thus, the need remains for innovative next generation vaccines that would incorporate protective Spike-derived B-cell epitopes that resist immune evasion. Towards that goal, in this study we (i) Screened the sequences of Spike among many VOCs and identified conserved and non-conserved linear B-cell epitopes; (ii) Compared titers and neutralization antibodies specific to these conserved and non-conserved B-cell epitopes from serum of symptomatic and asymptomatic COVID-19 patients that were exposed to multiple VOCs across the 5-year COVID-19 pandemic, and (iii) Compared protective efficacy of conserved versus non-conserved B-cell epitopes against the most pathogenic Delta variant in a "humanized" ACE-2/HLA transgenic mouse model. We found robust conserved B-cell epitope-specific antibody titers and neutralization in sera from asymptomatic COVID-19 patients. In contrast, sera from symptomatic patients contained weaker antibody responses specific to conserved B-cell epitopes. A multi-epitope COVID-19 vaccine that incorporated the conserved B-cell epitopes, but not the non-conserved B-cell epitopes, significantly protected the ACE2/HLA transgenic mice against infection and COVID-19 like symptoms caused by the Delta variant. These findings underscore the importance of conserved B-cell epitopes in generating robust protective immunity against severe COVID-19 symptoms caused by various VOCs, providing valuable insights for the development of broad-spectrum next generation Coronavirus vaccines capable of conferring cross-variant protective immunity.
Collapse
Affiliation(s)
- Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Ahmed Belmouden
- Laboratory of Cell Biology and Molecular Genetics, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Zohra Lemkhente
- Laboratory of Medical-Surgical, Biomedicine and infectiology Research, Faculty of Medicine and Pharmacy, Ibnou Zohr University, Agadir, Morocco
| | - Aziz Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry
- Institute for Immunology; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
3
|
Coulon PG, Prakash S, Dhanushkodi NR, Srivastava R, Zayou L, Tifrea DF, Edwards RA, Figueroa CJ, Schubl SD, Hsieh L, Nesburn AB, Kuppermann BD, Bahraoui E, Vahed H, Gil D, Jones TM, Ulmer JB, BenMohamed L. High frequencies of alpha common cold coronavirus/SARS-CoV-2 cross-reactive functional CD4 + and CD8 + memory T cells are associated with protection from symptomatic and fatal SARS-CoV-2 infections in unvaccinated COVID-19 patients. Front Immunol 2024; 15:1343716. [PMID: 38605956 PMCID: PMC11007208 DOI: 10.3389/fimmu.2024.1343716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Background Cross-reactive SARS-CoV-2-specific memory CD4+ and CD8+ T cells are present in up to 50% of unexposed, pre-pandemic, healthy individuals (UPPHIs). However, the characteristics of cross-reactive memory CD4+ and CD8+ T cells associated with subsequent protection of asymptomatic coronavirus disease 2019 (COVID-19) patients (i.e., unvaccinated individuals who never develop any COVID-19 symptoms despite being infected with SARS-CoV-2) remains to be fully elucidated. Methods This study compares the antigen specificity, frequency, phenotype, and function of cross-reactive memory CD4+ and CD8+ T cells between common cold coronaviruses (CCCs) and SARS-CoV-2. T-cell responses against genome-wide conserved epitopes were studied early in the disease course in a cohort of 147 unvaccinated COVID-19 patients who were divided into six groups based on the severity of their symptoms. Results Compared to severely ill COVID-19 patients and patients with fatal COVID-19 outcomes, the asymptomatic COVID-19 patients displayed significantly: (i) higher rates of co-infection with the 229E alpha species of CCCs (α-CCC-229E); (ii) higher frequencies of cross-reactive functional CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells that cross-recognized conserved epitopes from α-CCCs and SARS-CoV-2 structural, non-structural, and accessory proteins; and (iii) lower frequencies of CCCs/SARS-CoV-2 cross-reactive exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells, detected both ex vivo and in vitro. Conclusions These findings (i) support a crucial role of functional, poly-antigenic α-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced following previous CCCs seasonal exposures, in protection against subsequent severe COVID-19 disease and (ii) provide critical insights into developing broadly protective, multi-antigen, CD4+, and CD8+ T-cell-based, universal pan-Coronavirus vaccines capable of conferring cross-species protection.
Collapse
Affiliation(s)
- Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Sebastian D. Schubl
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lanny Hsieh
- Department of Medicine, Division of Infectious Diseases and Hospitalist Program, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | | | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Université Paul Sabatier, Infinity, Inserm, Toulouse, France
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Institute for Immunology, The University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
4
|
Prakash S, Dhanushkodi NR, Zayou L, Ibraim IC, Quadiri A, Coulon PG, Tifrea DF, Suzer B, Shaik AM, Chilukuri A, Edwards RA, Singer M, Vahed H, Nesburn AB, Kuppermann BD, Ulmer JB, Gil D, Jones TM, BenMohamed L. Cross-protection induced by highly conserved human B, CD4 +, and CD8 + T-cell epitopes-based vaccine against severe infection, disease, and death caused by multiple SARS-CoV-2 variants of concern. Front Immunol 2024; 15:1328905. [PMID: 38318166 PMCID: PMC10839970 DOI: 10.3389/fimmu.2024.1328905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. METHODS We designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. RESULTS The pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529). CONCLUSION A multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Izabela Coimbra Ibraim
- High Containment Facility, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Pierre Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amruth Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Division of Infectious Diseases and Hospitalist Program, Department of Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
5
|
Prakash S, Dhanushkodi NR, Zayou L, Ibraim IC, Quadiri A, Coulon PG, Tifrea DF, Suzler B, Amin M, Chilukuri A, Edwards RA, Vahed H, Nesburn AB, Kuppermann BD, Ulmer JB, Gil D, Jones TM, BenMohamed L. Cross-Protection Induced by Highly Conserved Human B, CD4 +, and CD8 + T Cell Epitopes-Based Coronavirus Vaccine Against Severe Infection, Disease, and Death Caused by Multiple SARS-CoV-2 Variants of Concern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541850. [PMID: 37292861 PMCID: PMC10245830 DOI: 10.1101/2023.05.24.541850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background The Coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of SARS-CoV-2 infections has decreased significantly; the long-term outlook of COVID-19 remains a serious cause of high death worldwide; with the mortality rate still surpassing even the worst mortality rates recorded for the influenza viruses. The continuous emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, have prolonged the COVID-19 pandemic and outlines the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. Methods In the present study, we designed a multi-epitope-based Coronavirus vaccine that incorporated B, CD4+, and CD8+ T cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-Coronavirus vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. Results The Pan-Coronavirus vaccine: (i) is safe; (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells; and (iii) provides robust protection against virus replication and COVID-19-related lung pathology and death caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2) and Omicron (B.1.1.529). Conclusions A multi-epitope pan-Coronavirus vaccine bearing conserved human B and T cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that cleared the virus, and reduced COVID-19-related lung pathology and death caused by multiple SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Izabela Coimbra Ibraim
- High containment facility, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Pierre Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA
| | - Berfin Suzler
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Division of Trauma, Burns, Critical Care, and Acute Care Surgery, Department of Surgery, School of Medicine, University of California Irvine, Irvine, CA
| | - Mohamed Amin
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amruth Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Anthony B Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Baruch D Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Division of Infectious Diseases and Hospitalist Program, Department of Medicine, School of Medicine, the University of California Irvine, Irvine, CA
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| |
Collapse
|
6
|
Patel RS, Agrawal B. Heterologous immunity induced by 1 st generation COVID-19 vaccines and its role in developing a pan-coronavirus vaccine. Front Immunol 2022; 13:952229. [PMID: 36045689 PMCID: PMC9420909 DOI: 10.3389/fimmu.2022.952229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome virus-2 (SARS-CoV-2), the causative infectious agent of the COVID-19 pandemic, has led to multiple (4-6) waves of infections worldwide during the past two years. The development of vaccines against SARS-CoV-2 has led to successful mass immunizations worldwide, mitigating the worldwide mortality due the pandemic to a great extent. Yet the evolution of new variants highlights a need to develop a universal vaccine which can prevent infections from all virulent SARS-CoV-2. Most of the current first generation COVID-19 vaccines are based on the Spike protein from the original Wuhan-hu-1 virus strain. It is encouraging that they still protect from serious illnesses, hospitalizations and mortality against a number of mutated viral strains, to varying degrees. Understanding the mechanisms by which these vaccines provide heterologous protection against multiple highly mutated variants can reveal strategies to develop a universal vaccine. In addition, many unexposed individuals have been found to harbor T cells that are cross-reactive against SARS-CoV-2 antigens, with a possible protective role. In this review, we will discuss various aspects of natural or vaccine-induced heterologous (cross-reactive) adaptive immunity against SARS-CoV-2 and other coronaviruses, and their role in achieving the concept of a pan-coronavirus vaccine.
Collapse
Affiliation(s)
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Coulon PG, Roy S, Prakash S, Srivastava R, Dhanushkodi N, Salazar S, Amezquita C, Nguyen L, Vahed H, Nguyen AM, Warsi WR, Ye C, Carlos-Cruz EA, Mai UT, BenMohamed L. Upregulation of Multiple CD8 + T Cell Exhaustion Pathways Is Associated with Recurrent Ocular Herpes Simplex Virus Type 1 Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:454-468. [PMID: 32540992 DOI: 10.4049/jimmunol.2000131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023]
Abstract
A large proportion of the world's population harbors latent HSV type 1 (HSV-1). Cross-talk between antiviral CD8+ T cells and HSV-1 appear to control latency/reactivation cycles. We found that compared with healthy asymptomatic individuals, in symptomatic (SYMP) patients, the CD8+ T cells with the same HLA-A*0201-restricted HSV-1 epitope specificities expressed multiple genes and proteins associated to major T cell exhaustion pathways and were dysfunctional. Blockade of immune checkpoints with anti-LAG-3 and anti-PD-1 antagonist mAbs synergistically restored the frequency and function of antiviral CD8+ T cells, both 1) ex vivo, in SYMP individuals and SYMP HLA-A*0201 transgenic mice; and 2) in vivo in HSV-1-infected SYMP HLA-A*0201 transgenic mice. This was associated with a significant reduction in virus reactivation and recurrent ocular herpetic disease. These findings confirm antiviral CD8+ T cell exhaustion during SYMP herpes infection and pave the way to targeting immune checkpoints to combat recurrent ocular herpes.
Collapse
Affiliation(s)
- Pierre-Grégoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Nisha Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Stephanie Salazar
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Cassandra Amezquita
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Lan Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Angela M Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Wasay R Warsi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Caitlin Ye
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Edgar A Carlos-Cruz
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Uyen T Mai
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697; .,Department of Molecular Biology and Biochemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697; and.,Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
8
|
Luo X, Cui H, Cai L, Zhu W, Yang WC, Patrick M, Zhu S, Huang J, Yao X, Yao Y, He Y, Ji Y. Selection of a Clinical Lead TCR Targeting Alpha-Fetoprotein-Positive Liver Cancer Based on a Balance of Risk and Benefit. Front Immunol 2020; 11:623. [PMID: 32425926 PMCID: PMC7203609 DOI: 10.3389/fimmu.2020.00623] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with a poor prognosis and limited therapeutic options. Alpha-fetoprotein (AFP), an established clinical biomarker of HCC, has been employed as an attractive target for T cell-based immunotherapy against this disease given its high expression in the tumor and restricted expression in normal tissues. We have identified a number of T cell receptors (TCRs) recognizing the HLA-A*02:01 restricted AFP158-166 peptide FMNKFIYEI, providing a TCR candidate pool for identifying TCRs with optimal clinical benefit. To select the ideal AFP TCR for clinical use, we evaluated the efficacy and safety profile of 7 TCRs by testing their potency toward AFP-expressing HCC cells and their specificity based upon reactivity to normal and transformed cells covering a wide variety of primary cell types and HLA serotypes. Furthermore, we assessed their cross-reactivity to potential protein candidates in the human genome by an extensive alanine scan (X-scan). We first selected three TCR candidates based on the in vitro anti-tumor activity. Next we eliminated two potential cross-reactive TCRs based on their reactivity against normal and transformed cells covering a variety of primary cell types and HLA serotypes, respectively. We then excluded the potential cross-reactivity of the selected TCR with a protein candidate identified by X-scan. At present we have selected an AFP TCR with the optimal affinity, function, and safety profile, bearing properties that are expected to allow AFP TCR redirected T cells to specifically differentiate between AFP levels on tumor and normal tissues. An early phase clinical trial using T cells transduced with this TCR to treat HCC patients (NCT03971747) has been initiated.
Collapse
Affiliation(s)
- Xiaobing Luo
- Cellular Biomedicine Group Inc., Gaithersburg, MD, United States
| | - Huijuan Cui
- Cellular Biomedicine Group Inc., Gaithersburg, MD, United States
| | - Lun Cai
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, United States
| | - Wei Zhu
- CodexSage LLC., Germantown, MD, United States
| | - Wei-Chih Yang
- Cellular Biomedicine Group Inc., Gaithersburg, MD, United States
| | - Michael Patrick
- Cellular Biomedicine Group Inc., Gaithersburg, MD, United States
| | - Shigui Zhu
- Cellular Biomedicine Group Inc., Gaithersburg, MD, United States
| | - Jiaqi Huang
- Cellular Biomedicine Group Inc., Gaithersburg, MD, United States
| | - Xin Yao
- Cellular Biomedicine Group Inc., Gaithersburg, MD, United States
| | - Yihong Yao
- Cellular Biomedicine Group Inc., Gaithersburg, MD, United States
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yun Ji
- Cellular Biomedicine Group Inc., Gaithersburg, MD, United States
| |
Collapse
|
9
|
Matsuzaki J, Tsuji T, Chodon T, Ryan C, Koya RC, Odunsi K. A rare population of tumor antigen-specific CD4 +CD8 + double-positive αβ T lymphocytes uniquely provide CD8-independent TCR genes for engineering therapeutic T cells. J Immunother Cancer 2019; 7:7. [PMID: 30626427 PMCID: PMC6325755 DOI: 10.1186/s40425-018-0467-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/28/2018] [Indexed: 11/27/2022] Open
Abstract
Background High-affinity tumor antigen-specific T-cell receptor (TCR) gene is required to engineer potent T cells for therapeutic treatment of cancer patients. However, discovery of suitable therapeutic TCR genes is hampered by the fact that naturally occurring tumor antigen-specific TCRs are generally of low-affinity, and artificial modification of TCRs can mediate cross-reactivity to other antigens expressed in normal tissues. Here, we discovered a naturally occurring T-cell clone which expressed high-affinity HLA-A*02:01 (A*02)-restricted TCR against NY-ESO-1 from a patient who had NY-ESO-1-expressing ovarian tumor. Methods A*02-restricted NY-ESO-1-specific T-cell clones were established from peripheral blood of patients who had NY-ESO-1-expressing ovarian tumors. TCR α and β chain genes were retrovirally transduced into polyclonally activated T cells. Phenotype and function of the parental and TCR-transduced T cells were analyzed by flow cytometry, ELISA and cytotoxicity assay. In vivo therapeutic efficacy was investigated in a xenograft model using NOD/SCID/IL-2Rγ-deficient (NSG) mice. Results A rare population of NY-ESO-1-specific T cells, which we named 19305DP, expressed cell surface CD4, CD8α, and CD8β but not CD56 and recognized A*02+NY-ESO-1+ cancer cell lines in a CD4- and CD8-independent manner. 19305DP showed a gene expression profile that is consistent with a mixed profile of CD4+ and CD8+ single-positive T cells. Both CD4+ and CD8+ T cells that were retrovirally transduced with 19305DP-derived TCR gene (19305DP-TCR) showed strong reactivity against A*02+NY-ESO-1+ cancer cells, whereas TCR genes from the conventional A*02-restricted NY-ESO-1-specific CD8+ single-positive T-cell clones functioned only in CD8+ T cells. Both 19305DP-TCR gene-engineered CD4+ and CD8+ T cells eliminated A*02+NY-ESO-1+ tumor xenografts in NSG mice. Finally, based on reactivity against a series of alanine-substituted peptides and a panel of normal human tissue-derived primary cells, 19305DP-TCR was predicted to have no cross-reactivity against any human non-NY-ESO-1 proteins. Conclusion Together, our results indicate that the naturally occurring 19305DP-TCR derived from CD4+CD8+ double-positive αβ T cells, is a promising therapeutic TCR gene for effective and safe adoptive T-cell therapy in A*02+ patients with NY-ESO-1-expressing tumor. Electronic supplementary material The online version of this article (10.1186/s40425-018-0467-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junko Matsuzaki
- Center for Immunotherapy, Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Takemasa Tsuji
- Center for Immunotherapy, Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA.
| | - Thinle Chodon
- Center for Immunotherapy, Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Courtney Ryan
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Richard C Koya
- Center for Immunotherapy, Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Kunle Odunsi
- Center for Immunotherapy, Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, USA. .,Center for Immunotherapy, Department of Immunology, Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, USA.
| |
Collapse
|
10
|
Shi G, Zhou C, Wang D, Ma W, Zhang S. LAPTM4B-35 protein is a weak tumor-associated antigen candidate. Exp Ther Med 2014; 7:491-495. [PMID: 24396432 PMCID: PMC3881050 DOI: 10.3892/etm.2013.1427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 11/13/2013] [Indexed: 11/19/2022] Open
Abstract
Lysosome-associated protein transmembrane 4β (LAPTM4B) is a gene that has been indicated to be involved in cancer. It is located at chromosome 8q22 and is composed of seven exons and six introns. LAPTM4B encodes two protein isoforms: LAPTM4B-35 and LAPTM4B-24. LAPTM4B-35 is markedly upregulated and LAPTM4B-24 is downregulated in several types of cancer. LAPTM4B-35 is 91 amino acids (N91) longer than LAPTM4B-24 at the N-terminus. In the present study, western blotting, enzyme-linked immunosorbent spot analysis and the B16F10-N91 tumor bearing-mice experiments were used to evaluate whether the overexpression of N91 indicates its potential as a candidate tumor-associated antigen. The results revealed that N91 was expressed in a wide range of normal mouse tissues and human peripheral blood mononuclear cells, with varying expression levels. The weak immunogenicity of N91 protein suggested it was a weak candidate antigen; however, the N91 protein was associated with cell proliferation.
Collapse
Affiliation(s)
- Guilan Shi
- Department of Immunology, Zibo Vocational Institute, Zibo, Shandong 255314, P.R. China ; Department of Immunology, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Chunxia Zhou
- Department of Immunology, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Dongmei Wang
- Department of Immunology, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Wenbo Ma
- Department of Immunology, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Shuren Zhang
- Department of Immunology, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| |
Collapse
|
11
|
Song S, Han M, Zhang H, Wang Y, Jiang H. Full screening and accurate subtyping of HLA-A*02 alleles through group-specific amplification and mono-allelic sequencing. Cell Mol Immunol 2013; 10:490-6. [PMID: 23954948 DOI: 10.1038/cmi.2013.33] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/13/2013] [Indexed: 11/09/2022] Open
Abstract
HLA-A*02 is the most prevalent and polymorphic major histocompatibility complex (MHC) allele family in humans. Functional differences have been revealed among subtypes, demanding further subtyping of HLA-A*02 in basic and clinical settings. However, the fast growing polymorphisms render traditional primer- or probe-based typing methods impractical and result in increasing ambiguities in direct sequence-based typing. In this study, we combined group-specific amplification and mono-allelic sequencing to design and validate a simple scheme for the complete screening and accurate subtyping of all 540 reported HLA-A*02 alleles. This scheme could be performed in routine labs to facilitate studies with an interest in HLA-A*02.
Collapse
|
12
|
Seyed N, Zahedifard F, Safaiyan S, Gholami E, Doustdari F, Azadmanesh K, Mirzaei M, Saeedi Eslami N, Khadem Sadegh A, Eslami far A, Sharifi I, Rafati S. In silico analysis of six known Leishmania major antigens and in vitro evaluation of specific epitopes eliciting HLA-A2 restricted CD8 T cell response. PLoS Negl Trop Dis 2011; 5:e1295. [PMID: 21909442 PMCID: PMC3167772 DOI: 10.1371/journal.pntd.0001295] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 07/19/2011] [Indexed: 11/18/2022] Open
Abstract
Background As a potent CD8+ T cell activator, peptide vaccine has found its way in vaccine development against intracellular infections and cancer, but not against leishmaniasis. The first step toward a peptide vaccine is epitope mapping of different proteins according to the most frequent HLA types in a population. Methods and Findings Six Leishmania (L.) major-related candidate antigens (CPB,CPC,LmsTI-1,TSA,LeIF and LPG-3) were screened for potential CD8+ T cell activating 9-mer epitopes presented by HLA-A*0201 (the most frequent HLA-A allele). Online software including SYFPEITHI, BIMAS, EpiJen, Rankpep, nHLApred, NetCTL and Multipred were used. Peptides were selected only if predicted by almost all programs, according to their predictive scores. Pan-A2 presentation of selected peptides was confirmed by NetMHCPan1.1. Selected peptides were pooled in four peptide groups and the immunogenicity was evaluated by in vitro stimulation and intracellular cytokine assay of PBMCs from HLA-A2+ individuals recovered from L. major. HLA-A2− individuals recovered from L. major and HLA-A2+ healthy donors were included as control groups. Individual response of HLA-A2+ recovered volunteers as percent of CD8+/IFN-γ+ T cells after in vitro stimulation against peptide pools II and IV was notably higher than that of HLA-A2− recovered individuals. Based on cutoff scores calculated from the response of HLA-A2− recovered individuals, 31.6% and 13.3% of HLA-A2+ recovered persons responded above cutoff in pools II and IV, respectively. ELISpot and ELISA results confirmed flow cytometry analysis. The response of HLA-A2− recovered individuals against peptide pools I and III was detected similar and even higher than HLA-A2+ recovered individuals. Conclusion Using in silico prediction we demonstrated specific response to LmsTI-1 (pool II) and LPG-3- (pool IV) related peptides specifically presented in HLA-A*0201 context. This is among the very few reports mapping L. major epitopes for human HLA types. Studies like this will speed up polytope vaccine idea towards leishmaniasis. Leishmaniasis is currently a serious health as well as economic problem in underdeveloped and developing countries in Africa, Asia, the Near and Middle East, Central and South America and the Mediterranean region. Cutaneous leishmaniasis is highly endemic in Iran, remarkably in Isfahan, Fars, Khorasan, Khozestan and Kerman provinces. Since effective prevention is not available and current curative therapy is expensive, often poorly tolerated and not always effective, alternative therapies including vaccination against leishmaniasis are of priority to overcome the problem. Although Th1 dominant response is so far considered as a pre-requisite for the immune system to overcome the infection, CD8+ T cell response could also be considered as a potent arm of immune system fighting against intracellular Leishmania. Polytope vaccine strategy may open up a new way in vaccine design against leishmaniasis, since they act as a potent tool to stimulate multi-CD8 T cell responses. Clearly there is a substantial need to evaluate the promising epitopes from different proteins of Leishmania parasite species. Some new immunoinformatic tools are now available to speed up this process, and we have shown here that in silico prediction can effectively evaluate HLA class I-restricted epitopes out of Leishmania proteins.
Collapse
Affiliation(s)
- Negar Seyed
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Shima Safaiyan
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Gholami
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Doustdari
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | - Akbar Khadem Sadegh
- Department of Electron Microscopy and Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Eslami far
- Department of Electron Microscopy and Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Iraj Sharifi
- School of Medicine, Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
13
|
Nakatsugawa M, Hirohashi Y, Torigoe T, Inoda S, Kiriyama K, Tamura Y, Sato E, Takahashi H, Sato N. Comparison of speedy PCR-ssp method and serological typing of HLA-A24 for Japanese cancer patients. J Immunoassay Immunochem 2011; 32:93-102. [PMID: 21391046 DOI: 10.1080/15321819.2010.543219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human leukocyte antigen (HLA) typing is essential to carry out HLA-class I restricted antigenic peptide-based cancer immunotherapy. To establish a one-step polymerase chain reaction-sequence-specific primer (PCR-SSP) method, we designed two novel HLA-A24-specific primer sets and determined the optimal conditions for specific amplification. Then, we performed HLA-A24 typing of two healthy donors' and 17 cancer patients' peripheral blood with serological typing and PCR-SSP typing. Eleven of the 19 cases were determined HLA-A24-positive by the PCR-SSP method precisely; however, five cases showed false positive with serological analysis. Thus, for HLA-A24 typing in the Japanese population, the PCR-SSP method is faster and more accurate than serological typing.
Collapse
Affiliation(s)
- Munehide Nakatsugawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Buchner A, Pohla H, Willimsky G, Frankenberger B, Frank R, Baur-Melnyk A, Siebels M, Stief CG, Hofstetter A, Kopp J, Pezzutto A, Blankenstein T, Oberneder R, Schendel DJ. Phase 1 trial of allogeneic gene-modified tumor cell vaccine RCC-26/CD80/IL-2 in patients with metastatic renal cell carcinoma. Hum Gene Ther 2010; 21:285-97. [PMID: 19788391 DOI: 10.1089/hum.2008.192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Preclinical studies showed that the allogeneic tumor cell line RCC-26 displayed natural immunogenic potential that was enhanced through expression of CD80 costimulatory molecules and secretion of interleukin-2. Here we report the study of RCC-26/CD80/IL-2 cells in a phase 1 vaccine trial of renal cell carcinoma patients with metastatic disease (mRCC). Fifteen patients of the HLA-A*0201 allotype, with at least one metastatic lesion, were included. Irradiated vaccine cells were applied in increasing doses of 2.5, 10, and 40 x 10(6) cells over 22 weeks. Primary study parameters included safety and toxicity. Sequential blood samples were analyzed by interferon-gamma enzyme-linked immunospot assays to detect tumor antigen-associated (TAA) effector cells. The vaccine was well tolerated and the designated vaccination course was completed in 9 of 15 patients. Neither vaccine-induced autoimmunity nor systemic side effects were observed. Delayed-type hypersensitivity skin reactions were detected in 11 of 12 evaluated patients and were particularly strong in patients with prolonged survival. In parallel, vaccine-induced immune responses against vaccine or overexpressed TAA were detected in 9 of 12 evaluated patients. No tumor regressions occurred according to RECIST (Response Evaluation Criteria in Solid Tumors) criteria; however, median time to progression was 5.3 months and median survival was 15.6 months, indicating substantial disease stabilization. We conclude that vaccine use was safe and feasible in mRCC. Clinical benefits were limited in these patients with advanced disease; however, immune monitoring revealed vaccine-induced responses against multiple TAAs in the majority of study participants. These results suggest that this vaccine could be useful in combination therapies and/or minimal residual disease.
Collapse
Affiliation(s)
- Alexander Buchner
- Department of Urology, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang R, Xia T, Xu G, Li Z, Ying Z, Xu X. Human Cytomegalovirus Specific CD8+ T Lymphocytes Display Interferon-γ Secretion Impairment in Kidney Transplant Recipients With pp65 Antigenemia. Transplant Proc 2008; 40:3500-4. [DOI: 10.1016/j.transproceed.2008.03.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 03/26/2008] [Indexed: 10/21/2022]
|
16
|
Generation of cytotoxic T lymphocytes specific for B-cell acute lymphoblastic leukemia family-shared peptides derived from immunoglobulin heavy chain framework region. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200704020-00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Wu AH, Hall WA, Low WC. Identification of HLA a*0201 glioblastoma multiforme cell lines for immunotherapy by PCR-SSP and DNA sequencing. J Neurooncol 2004; 66:1-8. [PMID: 15015764 DOI: 10.1023/b:neon.0000013460.53527.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Most tumor specific antigens characterized to date are restricted by HLA a*0201, which is the major HLA subtype in many ethnic groups. Cancer cells that express tumor antigens in association with the HLA a*0201 subtype have been shown to be responsive to various immunotherapies. We therefore sought to identify glioma cell lines that also express this HLA subtype and determine whether they had the molecular properties needed for tumor-peptide presentation. The HLA a*0201 allele was identified with PCR using sequence-specific primers followed by DNA sequencing. With this method, we screened 15 glioma cell lines to determine if they were of the HLA a*0201 genotype. Glioma cell lines that express the HLA a*0201 subtype were further studied for the expression of MHC class I and beta-2-microglobulin (beta2m) molecules by flow cytometry, and peptide presentation molecules TAP-1, TAP-2, and tapasin by RT-PCR. We identified six out of fifteen cell lines that were of the HLA a*0201 subtype. These cell lines are U87, T98, U373, U138, CRL2365 and UMN-4. All these six cell lines exhibited high levels of MHC class I and beta2m molecules. In addition, these cell lines all expressed molecules required for peptide presentation as shown by the presence of peptide presentation-related molecules TAP-1, TAP-2 and tapasin. The identification of glioma cell lines that express the HLA a*0201 subtype along with the necessary molecules for peptide-presentation will enable their use in developing new immunotherapeutic approaches for treating brain tumors. The method used to identify HLA a*0201 glioma cells is rapid and inexpensive, and suitable for screening tumor cells.
Collapse
Affiliation(s)
- An-Hua Wu
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
18
|
A method to generate mature dendritic cells from cryopreserved PBMC. Chin J Cancer Res 2003. [DOI: 10.1007/s11670-003-0003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
19
|
Mbawuike IN, Zhang Y, Wang Y, Song L. Cationic liposome-mediated enhanced generation of human HLA-restricted RSV-specific CD8+ CTL+. J Clin Immunol 2002; 22:164-75. [PMID: 12078858 DOI: 10.1023/a:1015424130339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Generation of human CD8+ cytotoxic T-lymphocyte (CTL) activity against respiratory syncytial virus (RSV) using peripheral blood leukocytes (PBL) in vitro is inefficient. Lipofectamine, a polycationic liposome, previously shown to enhance the transfection efficiency of DNA in cells, was evaluated for enhancing RSV CTL activity. Stimulator cells were prepared by infecting human PBL with RSV with or without Lipofectamine for 3 hr and then transferred to responder cells. After 8 days of incubation, CTL lysis of autologous target cells infected with RSV (also treated with Lipofectamine) was determined in a 4-hr 5'chromium release assay. Lipofectamine treatment significantly enhanced HLA-restricted RSV-specific CD8+ CTL activity (up to sevenfold, P < 0.05-0.001). Lipofectamine treatment also enhanced cell surface RSV antigen expression and increased the frequencies of HLA-A,B,C+/RSV+ and HLA-DR+/RSV+ leukocytes as demonstrated by flow cytometry. These results demonstrate the usefulness of cationic liposomes in augmenting cell surface antigen expression and increasing the efficiency of generation of human RSV-specific CD8+ CTL activity.
Collapse
Affiliation(s)
- Innocent N Mbawuike
- Influenza Research Center, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|