1
|
Tu Y, Chen Y, Li X, Wang Y, Fang B, Ren Y, Wang C. Advances in acute COPD exacerbation: clarifying specific immune mechanisms of infectious and noninfectious factors. Ther Adv Respir Dis 2025; 19:17534666241308408. [PMID: 40098281 PMCID: PMC11915264 DOI: 10.1177/17534666241308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 11/20/2024] [Indexed: 03/19/2025] Open
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is the main cause of hospitalization and death of patients with chronic obstructive pulmonary disease. This is largely due to bacterial resistance caused by clinical antibiotic abuse and the limited efficacy of current treatment strategies in managing noninfectious AECOPD, which presents a significant challenge for clinicians. Therefore, it is urgent for clinical treatment and prevention of AECOPD to fully understand the specific mechanism of AECOPD in the immune system and master the key differences between infectious factors and noninfectious factors. This article systematically discusses AECOPD triggered by various factors, including the activation of immune system, the recruitment and activation of inflammatory cells and the role of specific inflammatory responses, and through a comprehensive review of the literature, this article expounds the existing targeted diagnosis and treatment methods and technologies at different stages in order to provide new ideas and strategies for clinical prevention and treatment of AECOPD.
Collapse
Affiliation(s)
- Yadan Tu
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yong Chen
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xuanhan Li
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yigang Wang
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bangjiang Fang
- Emergency Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Ren
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing 400021, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chenghu Wang
- Department of Classic Chinese Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing, China
- Classic Department of Traditional Chinese Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
2
|
Martino EA, Bruzzese A, Labanca C, Mendicino F, Lucia E, Olivito V, Stanzione G, Zimbo A, Pozzi S, Neri A, Morabito F, Vigna E, Gentile M. Investigational CXCR4 inhibitors in early phase development for the treatment of hematological malignancies. Expert Opin Investig Drugs 2024; 33:915-924. [PMID: 39096094 DOI: 10.1080/13543784.2024.2388567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION CXCR4/CXCL12 axis regulates cell proliferation, survival, and differentiation, as well as the homing and mobilization of hematopoietic stem cells (HSCs) from bone marrow niches to the peripheral blood. Furthermore, CXCR4 and CXCL12 are key mediators of cross-talk between hematological malignancies and their microenvironments. CXCR4 overexpression drives disease progression, boosts tumor cell survival, and promotes chemoresistance, leading to poor prognosis. AREAS COVERED In light of these discoveries, scientific investigations, and clinical trials have underscored the therapeutic promise found in small-molecule antagonists like plerixafor, peptides/peptidomimetics, such as BKT140, monoclonal antibodies like PF-06747143 and ulocuplumab, as well as microRNAs. Their efficacy is evident in reducing tumor burden, inducing apoptosis and sensitizing malignant cells to conventional chemotherapies. This overview delves into the pathogenic role of the CXC4/CXCL12 axis in hematological neoplasms and examines the clinical application of key CXCR4 antagonists. EXPERT OPINION The information collectively emphasizes the potential of CXCR4 antagonists as a therapeutic strategy for hematologic malignancies, showcasing advancements in preclinical and clinical studies. As these therapeutic strategies progress through clinical trials, their potential to reshape the prognosis of hematologic malignancies will become increasingly apparent.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Gaia Stanzione
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Division of Hematology, Azienda Policlinico-S. Marco, University of Catania, Catania, Italy
| | - Annamaria Zimbo
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- UOC Laboratorio Analisi Cliniche, Biomolecolari e Genetica, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Stefano Pozzi
- Ematologia Azienda USL-IRCSS Reggio Emilia, Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Reggio Emilia, EmiliaRomagna, Italy
| | | | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
3
|
Bakinowska E, Krompiewski M, Boboryko D, Kiełbowski K, Pawlik A. The Role of Inflammatory Mediators in the Pathogenesis of Obesity. Nutrients 2024; 16:2822. [PMID: 39275140 PMCID: PMC11396809 DOI: 10.3390/nu16172822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Obesity is a pandemic of the 21st century, and the prevalence of this metabolic condition has enormously increased over the past few decades. Obesity is associated with a number of comorbidities and complications, such as diabetes and cardiovascular disorders, which can be associated with severe and fatal outcomes. Adipose tissue is an endocrine organ that secretes numerous molecules and proteins that are capable of modifying immune responses. The progression of obesity is associated with adipose tissue dysfunction, which is characterised by enhanced inflammation and apoptosis. Increased fat-tissue mass is associated with the dysregulated secretion of substances by adipocytes, which leads to metabolic alterations. Importantly, the adipose tissue contains immune cells, the profile of which changes with the progression of obesity. For instance, increasing fat mass enhances the presence of the pro-inflammatory variants of macrophages, major sources of tumour necrosis factor α and other inflammatory mediators that promote insulin resistance. The pathogenesis of obesity is complex, and understanding the pathophysiological mechanisms that are involved may provide novel treatment methods that could prevent the development of serious complications. The aim of this review is to discuss current evidence describing the involvement of various inflammatory mediators in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Mariusz Krompiewski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Fellhofer-Hofer J, Franz C, Vey JA, Kahlert C, Kalkum E, Mehrabi A, Halama N, Probst P, Klupp F. Chemokines as Prognostic Factor in Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5374. [PMID: 38791414 PMCID: PMC11121014 DOI: 10.3390/ijms25105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Chemokines orchestrate many aspects of tumorigenic processes such as angiogenesis, apoptosis and metastatic spread, and related receptors are expressed on tumor cells as well as on inflammatory cells (e.g., tumor-infiltrating T cells, TILs) in the tumor microenvironment. Expressional changes of chemokines and their receptors in solid cancers are common and well known, especially in affecting colorectal cancer patient outcomes. Therefore, the aim of this current systematic review and meta-analysis was to classify chemokines as a prognostic biomarker in colorectal cancer patients. A systematic literature search was conducted in PubMed, CENTRAL and Web of Science. Information on the chemokine expression of 25 chemokines in colorectal cancer tissue and survival data of the patients were investigated. The hazard ratio of overall survival and disease-free survival with chemokine expression was examined. The risk of bias was analyzed using Quality in Prognosis Studies. Random effects meta-analysis was performed to determine the impact on overall respectively disease survival. For this purpose, the pooled hazard ratios (HR) and their 95% confidence intervals (CI) were used for calculation. Twenty-five chemokines were included, and the search revealed 5556 publications. A total of thirty-one publications were included in this systematic review and meta-analysis. Overexpression of chemokine receptor CXCR4 was associated with both a significantly reduced overall survival (HR = 2.70, 95%-CI: 1.57 to 4.66, p = 0.0003) as well as disease-free survival (HR = 2.68, 95%-CI: 1.41 to 5.08, p = 0.0026). All other chemokines showed either heterogeneous results or few studies were available. The overall risk of bias for CXCR4 was rated low. At the current level of evidence, this study demonstrates that CXCR4 overexpression in patients with colorectal cancer is associated with a significantly diminished overall as well as disease-free survival. Summed up, this systematic review and meta-analysis reveals CXCR4 as a promising prognostic biomarker. Nevertheless, more evidence is needed to evaluate CXCR4 and its antagonists serving as new therapeutic targets.
Collapse
Affiliation(s)
- Johanna Fellhofer-Hofer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Clemens Franz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Johannes A. Vey
- Institute of Medical Biometry (IMBI), University Hospital Heidelberg, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany;
| | - Christoph Kahlert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Eva Kalkum
- Study Center of the German Society of Surgery (SDGC), University of Heidelberg, Im Neuenheimer Feld 130/3, 69120 Heidelberg, Germany;
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| | - Niels Halama
- National Center for Tumor Diseases, Medical Oncology and Internal Medicine VI, Tissue Imaging and Analysis Center, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany;
- Helmholtz Institute for Translational Oncology (HI-TRON), Department of Cancer Immunology & Cancer Immunotherapy, German Cancer Research Center (DKFZ), 55131 Mainz, Germany
| | - Pascal Probst
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
- Department of Surgery, Cantonal Hospital Thurgau, Pfaffenholzstrasse 4, 8501 Frauenfeld, Switzerland
| | - Fee Klupp
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (J.F.-H.); (C.F.); (C.K.); (A.M.); (P.P.)
| |
Collapse
|
5
|
Mayo KH. Heterologous Interactions with Galectins and Chemokines and Their Functional Consequences. Int J Mol Sci 2023; 24:14083. [PMID: 37762385 PMCID: PMC10531749 DOI: 10.3390/ijms241814083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Extra- and intra-cellular activity occurs under the direction of numerous inter-molecular interactions, and in any tissue or cell, molecules are densely packed, thus promoting those molecular interactions. Galectins and chemokines, the focus of this review, are small, protein effector molecules that mediate various cellular functions-in particular, cell adhesion and migration-as well as cell signaling/activation. In the past, researchers have reported that combinations of these (and other) effector molecules act separately, yet sometimes in concert, but nevertheless physically apart and via their individual cell receptors. This view that each effector molecule functions independently of the other limits our thinking about functional versatility and cooperation, and, in turn, ignores the prospect of physiologically important inter-molecular interactions, especially when both molecules are present or co-expressed in the same cellular environment. This review is focused on such protein-protein interactions with chemokines and galectins, the homo- and hetero-oligomeric structures that they can form, and the functional consequences of those paired interactions.
Collapse
Affiliation(s)
- Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Minor BMN, LeMoine D, Seger C, Gibbons E, Koudouovoh J, Taya M, Kurtz D, Xu Y, Hammes SR. Estradiol Augments Tumor-Induced Neutrophil Production to Promote Tumor Cell Actions in Lymphangioleiomyomatosis Models. Endocrinology 2023; 164:bqad061. [PMID: 37042477 PMCID: PMC10164661 DOI: 10.1210/endocr/bqad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/13/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease caused by smooth muscle cell-like tumors containing tuberous sclerosis (TSC) gene mutations and found almost exclusively in females. Patient studies suggest LAM progression is estrogen dependent, an observation supported by in vivo mouse models. However, in vitro data using TSC-null cell lines demonstrate modest estradiol (E2) responses, suggesting E2 effects in vivo may involve pathways independent of direct tumor stimulation. We previously reported tumor-dependent neutrophil expansion and promotion of TSC2-null tumor growth in an E2-sensitive LAM mouse model. We therefore hypothesized that E2 stimulates tumor growth in part by promoting neutrophil production. Here we report that E2-enhanced lung colonization of TSC2-null cells is indeed dependent on neutrophils. We demonstrate that E2 induces granulopoiesis via estrogen receptor α in male and female bone marrow cultures. With our novel TSC2-null mouse myometrial cell line, we show that factors released from these cells drive E2-sensitive neutrophil production. Last, we analyzed single-cell RNA sequencing data from LAM patients and demonstrate the presence of tumor-activated neutrophils. Our data suggest a powerful positive feedback loop whereby E2 and tumor factors induce neutrophil expansion, which in turn intensifies tumor growth and production of neutrophil-stimulating factors, resulting in continued TSC2-null tumor growth.
Collapse
Affiliation(s)
- Briaunna M N Minor
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dana LeMoine
- Division of Comparative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christina Seger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Erin Gibbons
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jules Koudouovoh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Manisha Taya
- Division of Hematology and Oncology, Department of Internal Medicine, UTSW Medical Center, Dallas, TX 75390, USA
| | - Daniel Kurtz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yan Xu
- Divisions of Pulmonary Biology & Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Wang H, Dai Y, Wu X, Hu B, Wang Z, Yan M. Multiomics analysis of ferroptosis-related molecular subtypes in muscle-invasive bladder cancer immunotherapy. Transl Cancer Res 2022; 11:4089-4104. [PMID: 36523302 PMCID: PMC9745360 DOI: 10.21037/tcr-22-1653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 03/22/2024]
Abstract
BACKGROUND The purpose of this study was to identify the ferroptosis-related molecular subtypes in muscle invasive bladder cancer (MIBC) associated with the tumor microenvironment (TME) and immunotherapy. METHODS Expression profiles and corresponding clinical information were obtained from The Cancer Genome Atlas (TCGA) dataset and the Gene Expression Omnibus (GEO) dataset. Nonnegative matrix factorization (NMF) analysis was performed to identify two molecular subtypes based on 41 ferroptosis-related prognostic genes. The differences between the two subtypes were compared in terms of prognosis, somatic mutations, gene ontology (GO), cytokines, pathways, immune cell infiltrations, stromal/immune scores, tumor purity and response to immunotherapy. We also constructed a risk prediction model using multivariate Cox regression analysis to analyze survival data based on differentially expressed genes (DEGs) between subtypes. In combination with clinicopathological features, a nomogram was constructed to provide a more accurate prediction for overall survival (OS). RESULTS Two molecular subtypes (C1 and C2) of MIBC were identified according to the expression of ferroptosis-related genes. The C2 subtype manifested poor prognosis, high enrichment in the cytokine-cytokine receptor interaction pathway, high abundance of immune cell infiltration, immune/stromal scores and low tumor purity. Additionally, C2 is less sensitive to immunotherapy. The risk prediction model based on five pivotal genes (SLC1A6, UPK3A, SLC19A3, CCL17 and UGT2B4) effectively predicted the prognosis of MIBC patients. CONCLUSIONS A novel MIBC classification approach based on ferroptosis-related gene expression profiles was established to provide guidance for patients who are more sensitive to immunotherapy. A nomogram with a five-gene signature was built to predict the prognosis of MIBC patients, which would be more accurate when combined with clinical factors.
Collapse
Affiliation(s)
- Haojie Wang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiang Wu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Bowen Hu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zi Wang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Minbo Yan
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
8
|
Karimabad MN, Hassanshahi G, Kounis NG, Mplani V, Roditis P, Gogos C, Lagadinou M, Assimakopoulos SF, Dousdampanis P, Koniari I. The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses. Vaccines (Basel) 2022; 10:vaccines10081299. [PMID: 36016187 PMCID: PMC9416781 DOI: 10.3390/vaccines10081299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is one of the progressive viral pandemics that originated from East Asia. COVID-19 or SARS-CoV-2 has been shown to be associated with a chain of physio-pathological mechanisms that are basically immunological in nature. In addition, chemokines have been proposed as a subgroup of chemotactic cytokines with different activities ranging from leukocyte recruitment to injury sites, irritation, and inflammation to angiostasis and angiogenesis. Therefore, researchers have categorized the chemotactic elements into four classes, including CX3C, CXC, CC, and C, based on the location of the cysteine motifs in their structures. Considering the severe cases of COVID-19, the hyperproduction of particular chemokines occurring in lung tissue as well as pro-inflammatory cytokines significantly worsen the disease prognosis. According to the studies conducted in the field documenting the changing expression of CXC and CC chemokines in COVID-19 cases, the CC and CXC chemokines contribute to this pandemic, and their impact could reflect the development of reasonable strategies for COVID-19 management. The CC and the CXC families of chemokines are important in host immunity to viral infections and along with other biomarkers can serve as the surrogates of vaccine-induced innate and adaptive protective responses, facilitating the improvement of vaccine efficacy. Furthermore, the immunogenicity elicited by the chemokine response to adenovirus vector vaccines may constitute the basis of vaccine-induced immune thrombotic thrombocytopaenia.
Collapse
Affiliation(s)
- Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Nicholas G. Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, 26500 Patras, Greece
- Correspondence:
| | - Virginia Mplani
- Intensive Care Unit, Patras University Hospital, 26500 Patras, Greece
| | - Pavlos Roditis
- Department of Cardiology, Mamatsio Kozanis General Hospital, 50100 Kozani, Greece
| | - Christos Gogos
- COVID-19 Unit, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
| | - Maria Lagadinou
- Department of Internal Medicine, Division of Infectious Diseases, University of Patras Medical School, 26500 Patras, Greece
| | - Stelios F. Assimakopoulos
- Department of Internal Medicine, Division of Infectious Diseases, University of Patras Medical School, 26500 Patras, Greece
| | - Periklis Dousdampanis
- Department of Nephrology, Saint Andrews State General Hospital, 26221 Patras, Greece
| | - Ioanna Koniari
- Department of Cardiology, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| |
Collapse
|
9
|
Perna F, Espinoza-Gutarra MR, Bombaci G, Farag SS, Schwartz JE. Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia. Cancer Treat Res 2022; 183:225-254. [PMID: 35551662 DOI: 10.1007/978-3-030-96376-7_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, clonally heterogeneous, myeloid malignancy, with a 5-year overall survival of approximately 27%. It constitutes the most common acute leukemia in adults, with an incidence of 3-5 cases per 100,000 in the United States. Despite great advances in understanding the molecular mechanisms underpinning leukemogenesis, the past several decades had seen little change to the backbone of therapy, comprised of an anthracycline-based induction regimen for those who are fit enough to receive it, followed by risk-stratified post-remission therapy with consolidation cytarabine or allogeneic stem cell transplantation (allo-SCT). Allo-SCT is the most fundamental form of immunotherapy in which donor cytotoxic T and NK cells recognize and eradicate residual AML in the graft-versus-leukemia (GvL) effect. Building on that, several alternative or synergistic approaches to exploit both self and foreign immunity against AML have been developed. Checkpoint inhibitors, for example, CTLA-4 inhibitors, PD-1 inhibitors, and PD-L1 inhibitors block proteins found on T cells or cancer cells that stop the immune system from attacking the cancer cells. They have been used with limited success in both the AML relapsed/refractory (R/R) and post SCT settings. AML tumor mutational burden is low compared to solid tumors and thus, it is less likely to generate neoantigens and respond to antibody-mediated checkpoint blockade that has shown unprecedented results in solid tumors. Therefore, alternative therapeutic strategies that work independently of the T cell receptor (TCR) specificity have been developed. They include bispecific antibodies, which recruit T cells through CD3 engagement, and in AML have shown an overall response rate ranging between 14 and 30% in early phase trials. Chimeric Antigen Receptor (CAR) T cell therapy is a type of treatment in which T cells are genetically engineered to produce a recombinant receptor that redirects the specificity and function of T lymphocytes. However, lack of cell surface targets exclusively expressed on AML cells including Leukemic Stem Cells (LSCs) combined with clonal heterogeneity represents the biggest challenge in developing CAR therapy for AML. Antibody-Drug Conjugates (ADC) constitute the only FDA-approved immunotherapy to treat AML with Gemtuzumab Ozogamicin, a CD33-specific ADC used in CEBPα-mutated AML. The identification of additional cell surface targets is critical for the development of other ADC's potentially useful in the induction and maintenance regimens, given the ease at which these reagents can be generated and managed. Here, we will review those immune-based therapeutic interventions and highlight active areas of research investigations toward fulfillment of the great promise of immunotherapy to AML.
Collapse
Affiliation(s)
- Fabiana Perna
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA.
| | - Manuel R Espinoza-Gutarra
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Giuseppe Bombaci
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Sherif S Farag
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| | - Jennifer E Schwartz
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
10
|
Zhu Y, Wang Y, Lu Z. Injection of Stromal Cell-Derived Factor-1 (SDF-1) Nanoparticles After Traumatic Brain Injury Stimulates Recruitment of Neural Stem Cells. J Biomed Nanotechnol 2022; 18:498-503. [PMID: 35484757 DOI: 10.1166/jbn.2022.3243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Traumatic brain injury (TBI) usually results from direct mechanical damage to the brain, which leads to degeneration and death of the central nervous system (CNS). The migration of neural stem/progenitor cells (NSCs) to brain is essential to various physiological and pathological processes of the CNS. Therefore, NSCs are considered as a promising alternative option for neurological diseases. SDF-1α is one of known chemokines whose receptor CXCR4 is detected in the CNS. We explored the efficacy of nanoparticles loaded with SDF-1 on TBI and analyzed its potential mechanism. After synthesis of SDF-1-loaded microspheres (MS) and -nanoparticles and establishment of animal model of TBI, 50 modeled mice were randomly injected with MS bovine serum albumin (BSA), MS SDF1, or SDF1-loaded nanoparticles and 10 TBI animals were taken as control group. After that, we observed the lesions and examined the characteristics of the nanoparticles and MS. Transwell assay and immunofluorescence were conducted to determine the migration and invasion upon treatments. Nanoparticles and MS encapsulated most of SDF-1, but MS released 100% SDF-1 and the nanoparticles alone released minority (25%) within 2 weeks. As only SDF-1 nanoparticles could induce NSCs to migrate to the injured area, this approach could enhance healing of the lesion with more NSCs around the lesion. Collectively, this study used particles to deliver SDF-1 to the central nervous system with nanoparticles having a longer-lasting release. Injection of nanoparticleloaded SDF-1 would retain the biological activity of SDF-1 and improve neuroblast migration, thereby improving the TBI condition. These findings show great prospect for nanoparticles application in brain injury.
Collapse
Affiliation(s)
- Yitong Zhu
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Yaqiong Wang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Zhaofeng Lu
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan, China
| |
Collapse
|
11
|
Mehrpouri M. The contributory roles of the CXCL12/CXCR4/CXCR7 axis in normal and malignant hematopoiesis: A possible therapeutic target in hematologic malignancies. Eur J Pharmacol 2022; 920:174831. [PMID: 35183534 DOI: 10.1016/j.ejphar.2022.174831] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
|
12
|
Paudel S, Ghimire L, Jin L, Jeansonne D, Jeyaseelan S. Regulation of emergency granulopoiesis during infection. Front Immunol 2022; 13:961601. [PMID: 36148240 PMCID: PMC9485265 DOI: 10.3389/fimmu.2022.961601] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
During acute infectious and inflammatory conditions, a large number of neutrophils are in high demand as they are consumed in peripheral organs. The hematopoietic system rapidly responds to the demand by turning from steady state to emergency granulopoiesis to expedite neutrophil generation in the bone marrow (BM). How the hematopoietic system integrates pathogenic and inflammatory stress signals into the molecular cues of emergency granulopoiesis has been the subject of investigations. Recent studies in the field have highlighted emerging concepts, including the direct sensing of pathogens by BM resident or sentinel hematopoietic stem and progenitor cells (HSPCs), the crosstalk of HSPCs, endothelial cells, and stromal cells to convert signals to granulopoiesis, and the identification of novel inflammatory molecules, such as C/EBP-β, ROS, IL-27, IFN-γ, CXCL1 with direct effects on HSPCs. In this review, we will provide a detailed account of emerging concepts while reassessing well-established cellular and molecular players of emergency granulopoiesis. While providing our views on the discrepant results and theories, we will postulate an updated model of granulopoiesis in the context of health and disease.
Collapse
Affiliation(s)
- Sagar Paudel
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Laxman Ghimire
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Liliang Jin
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Duane Jeansonne
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Pathobiological Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, LA, United States.,Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
13
|
Broxmeyer HE, Cooper SH, Ropa J. CXCL15/Lungkine has suppressive activity on proliferation and expansion of multi-potential, erythroid, granulocyte and macrophage progenitors in S-phase specific manner. Blood Cells Mol Dis 2021; 91:102594. [PMID: 34520986 PMCID: PMC9231597 DOI: 10.1016/j.bcmd.2021.102594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
Cytokines/chemokines regulate hematopoiesis, most having multiple cell actions. Numerous but not all chemokine family members act as negative regulators of hematopoietic progenitor cell (HPC) proliferation, but very little is known about such effects of the chemokine, CXCL15/Lungkine. We found that CXCL15/Lungkine-/- mice have greatly increased cycling of multi cytokine-stimulated bone marrow and spleen hematopoietic progenitor cells (HPCs: CFU-GM, BFU-E, and CFU-GEMM) and CXCL15 is expressed in many bone marrow progenitor and other cell types. This suggests that CXCL15/Lungkine acts as a negative regulator of the cell cycling of these HPCs in vivo. Recombinant murine CXCL15/Lungkine, decreased numbers of functional HPCs during cytokine-enhanced ex-vivo culture of lineage negative mouse bone marrow cells. Moreover, CXCL15/Lungkine, through S-Phase specific actions, was able to suppress in vitro colony formation of normal wildtype mouse bone marrow CFU-GM, CFU-G, CFU-M, BFU-E, and CFU-GEMM. This clearly identifies the negative regulatory activity of CXCL15/Lungkine on proliferation of multiple types of mouse HPCs.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.
| | - Scott H Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA
| | - James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA
| |
Collapse
|
14
|
Zangouei AS, Hamidi AA, Rahimi HR, Saburi E, Mojarrad M, Moghbeli M. Chemokines as the critical factors during bladder cancer progression: an overview. Int Rev Immunol 2021; 40:344-358. [PMID: 33591855 DOI: 10.1080/08830185.2021.1877287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bladder cancer (BCa) is one of the most frequent urogenital malignancies which is mainly observed among men. There are various genetic and environmental risk factors associated with BCa progression. Transurethral endoscopic resection and open ablative surgery are the main treatment options for muscle invasive BCa. BCG therapy is also employed following the endoscopic resection to prevent tumor relapse. The tumor microenvironment is the main interaction site of tumor cells and immune system in which the immune cells are recruited via chemokines and chemokine receptors. In present review we summarized the main chemokines and chemokine receptors which have been associated with histopathological features of BCa patients in the world. This review highlights the chemokines and chemokine receptors as critical markers in early detection and therapeutic purposes among BCa patients and clarifies their molecular functions during BCa progression and metastasis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Rajendiran S, Smith-Berdan S, Kunz L, Risolino M, Selleri L, Schroeder T, Forsberg EC. Ubiquitous overexpression of CXCL12 confers radiation protection and enhances mobilization of hematopoietic stem and progenitor cells. Stem Cells 2020; 38:1159-1174. [PMID: 32442338 DOI: 10.1002/stem.3205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
C-X-C motif chemokine ligand 12 (CXCL12; aka SDF1α) is a major regulator of a number of cellular systems, including hematopoiesis, where it influences hematopoietic cell trafficking, proliferation, and survival during homeostasis and upon stress and disease. A variety of constitutive, temporal, ubiquitous, and cell-specific loss-of-function models have documented the functional consequences on hematopoiesis upon deletion of Cxcl12. Here, in contrast to loss-of-function experiments, we implemented a gain-of-function approach by generating a doxycycline-inducible transgenic mouse model that enables spatial and temporal overexpression of Cxcl12. We demonstrated that ubiquitous CXCL12 overexpression led to an increase in multipotent progenitors in the bone marrow and spleen. The CXCL12+ mice displayed reduced reconstitution potential as either donors or recipients in transplantation experiments. Additionally, we discovered that Cxcl12 overexpression improved hematopoietic stem and progenitor cell mobilization into the blood, and conferred radioprotection by promoting quiescence. Thus, this new CXCL12+ mouse model provided new insights into major facets of hematopoiesis and serves as a versatile resource for studying CXCL12 function in a variety of contexts.
Collapse
Affiliation(s)
- Smrithi Rajendiran
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Stephanie Smith-Berdan
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Leo Kunz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Maurizio Risolino
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine and Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, California, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute of Human Genetics, Eli and Edyth Broad Center of Regeneration Medicine and Stem Cell Research, Departments of Orofacial Sciences and Anatomy, University of California, San Francisco, California, USA
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
16
|
Iron and Sphingolipids as Common Players of (Mal)Adaptation to Hypoxia in Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21010307. [PMID: 31906427 PMCID: PMC6981703 DOI: 10.3390/ijms21010307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, or lack of oxygen, can occur in both physiological (high altitude) and pathological conditions (respiratory diseases). In this narrative review, we introduce high altitude pulmonary edema (HAPE), acute respiratory distress syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD), and Cystic Fibrosis (CF) as examples of maladaptation to hypoxia, and highlight some of the potential mechanisms influencing the prognosis of the affected patients. Among the specific pathways modulated in response to hypoxia, iron metabolism has been widely explored in recent years. Recent evidence emphasizes hepcidin as highly involved in the compensatory response to hypoxia in healthy subjects. A less investigated field in the adaptation to hypoxia is the sphingolipid (SPL) metabolism, especially through Ceramide and sphingosine 1 phosphate. Both individually and in concert, iron and SPL are active players of the (mal)adaptation to physiological hypoxia, which can result in the pathological HAPE. Our aim is to identify some pathways and/or markers involved in the physiological adaptation to low atmospheric pressures (high altitudes) that could be involved in pathological adaptation to hypoxia as it occurs in pulmonary inflammatory diseases. Hepcidin, Cer, S1P, and their interplay in hypoxia are raising growing interest both as prognostic factors and therapeutical targets.
Collapse
|
17
|
Bonavita O, Mollica Poeta V, Massara M, Mantovani A, Bonecchi R. Regulation of hematopoiesis by the chemokine system. Cytokine 2019; 109:76-80. [PMID: 29429849 DOI: 10.1016/j.cyto.2018.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/16/2022]
Abstract
Although chemokines are best known for their role in directing cell migration, accumulating evidence indicate their involvement in many other processes. This review focus on the role of chemokines in hematopoiesis with an emphasis on myelopoiesis. Indeed, many chemokine family members are an important component of the cytokine network present in the bone marrow that controls proliferation, retention, and mobilization of hematopoietic progenitors.
Collapse
Affiliation(s)
- Ornella Bonavita
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Valeria Mollica Poeta
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano (MI), Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20090 Pieve Emanuele (MI), Italy
| | - Matteo Massara
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano (MI), Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20090 Pieve Emanuele (MI), Italy; The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, via Manzoni 56, 20089 Rozzano (MI), Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20090 Pieve Emanuele (MI), Italy.
| |
Collapse
|
18
|
Szucs B, Szucs C, Petrekanits M, Varga JT. Molecular Characteristics and Treatment of Endothelial Dysfunction in Patients with COPD: A Review Article. Int J Mol Sci 2019; 20:E4329. [PMID: 31487864 PMCID: PMC6770145 DOI: 10.3390/ijms20184329] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) show systemic consequences, such as chronic systemic inflammation leading to changes in the airway, airway penetrability, and endothelial function. Endothelial dysfunction is characterized by a list of alterations of endothelium towards reduced vasodilation, proinflammatory state, detachment and apoptosis of endothelial cells, and development of atherosclerosis. COPD-induced endothelial dysfunction is associated with elevated cardiovascular risk. The increment of physical activities such as pulmonary rehabilitation (PR) training have a significant effect on COPD, thus, PR can be an integrative part of COPD treatment. In this narrative review the focus is on the function of endothelial inflammatory mediators [cytokines, chemokines, and cellular proteases] and pulmonary endothelial cells and endothelial dysfunction in COPD as well as the effects of dysfunction of the endothelium may play in COPD-related pulmonary hypertension. The relationship between smoking and endothelial dysfunction is also discussed. The connection between different pulmonary rehabilitation programs, arterial stiffness and pulse wave velocity (PWV) is presented. Endothelial dysfunction is a significant prognostic factor of COPD, which can be characterized by PWV. We discuss future considerations, like training programs, as an important part of the treatment that has a favorable impact on the endothelial function.
Collapse
Affiliation(s)
- Botond Szucs
- PharmaFlight Research and Training Center, H-4030 Debrecen, Hungary
| | - Csilla Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Mate Petrekanits
- Institute of Exercise Physiology and Sport Medicine, University of Physical Education, H-1123 Budapest, Hungary
| | - Janos T Varga
- Department of Pulmonary Rehabilitation, National Koranyi Institute for Pulmonology, H-1121 Budapest, Hungary.
| |
Collapse
|
19
|
Chemokines in COPD: From Implication to Therapeutic Use. Int J Mol Sci 2019; 20:ijms20112785. [PMID: 31174392 PMCID: PMC6600384 DOI: 10.3390/ijms20112785] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Chronic Obstructive Pulmonary Disease (COPD) represents the 3rd leading cause of death in the world. The underlying pathophysiological mechanisms have been the focus of extensive research in the past. The lung has a complex architecture, where structural cells interact continuously with immune cells that infiltrate into the pulmonary tissue. Both types of cells express chemokines and chemokine receptors, making them sensitive to modifications of concentration gradients. Cigarette smoke exposure and recurrent exacerbations, directly and indirectly, impact the expression of chemokines and chemokine receptors. Here, we provide an overview of the evidence regarding chemokines involvement in COPD, and we hypothesize that a dysregulation of this tightly regulated system is critical in COPD evolution, both at a stable state and during exacerbations. Targeting chemokines and chemokine receptors could be highly attractive as a mean to control both chronic inflammation and bronchial remodeling. We present a special focus on the CXCL8-CXCR1/2, CXCL9/10/11-CXCR3, CCL2-CCR2, and CXCL12-CXCR4 axes that seem particularly involved in the disease pathophysiology.
Collapse
|
20
|
Chen W, Zhang J, Fan HN, Zhu JS. Function and therapeutic advances of chemokine and its receptor in nonalcoholic fatty liver disease. Therap Adv Gastroenterol 2018; 11:1756284818815184. [PMID: 30574191 PMCID: PMC6295708 DOI: 10.1177/1756284818815184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/24/2018] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of hepatic pathology, ranging from simple accumulation of fat in its most benign form, steatohepatitis, to cirrhosis in its most advanced form. The prevalence of NAFLD is 20-30% in adults, and 10-20% of patients with NAFLD progress to nonalcoholic steatohepatitis (NASH) which is predicted to be the leading cause of liver transplantation over the next 10 years. Therefore, it is essential to explore effective diagnostic and treatment strategies for NAFLD patients. Chemokines are a family of small and highly conserved proteins (molecular weight ranging from 8 to 12 kDa) involved in regulating the migration and activities of hepatocytes, Kupffer cells (KCs), hepatic stellate cells (HSCs), endothelial cells and circulating immune cells. Accumulating data show that chemokine and its receptor act vital roles in the pathogenesis of NAFLD. Herein, we summarize the involvement of the chemokine and its receptor in the pathogenesis of NAFLD and explore the novel pharmacotherapeutic avenues for patients with NAFLD.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | | |
Collapse
|
21
|
Phosphatidylinositol transfer proteins regulate megakaryocyte TGF-β1 secretion and hematopoiesis in mice. Blood 2018; 132:1027-1038. [PMID: 30042096 DOI: 10.1182/blood-2017-09-806257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
We hypothesized that megakaryocyte (MK) phosphoinositide signaling mediated by phosphatidylinositol transfer proteins (PITPs) contributes to hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) regulation. Conditional knockout mice lacking PITPs specifically in MKs and platelets (pitpα-/- and pitpα-/-/β-/-) bone marrow (BM) manifested decreased numbers of HSCs, MK-erythrocyte progenitors, and cycling HPCs. Further, pitpα-/-/β-/- BM had significantly reduced engrafting capability in competitive transplantation and limiting dilution analysis. Conditioned media (CM) from cultured pitpα-/- and pitpα-/-/β-/- BM MKs contained higher levels of transforming growth factor β1 (TGF-β1) and interleukin-4 (IL-4), among other myelosuppressive cytokines, than wild-type BM MKs. Correspondingly, BM flush fluid from pitpα-/- and pitpα-/-/β-/- mice had higher concentrations of TGF-β1. CM from pitpα-/- and pitpα-/-/β-/- MKs significantly suppressed HPC colony formation, which was completely extinguished in vitro by neutralizing anti-TGF-β antibody, and treatment of pitpα-/-/β-/- mice in vivo with anti-TGF-β antibodies completely reverted their defects in BM HSC and HPC numbers. TGF-β and IL-4 synergized to inhibit HPC colony formation in vitro. Electron microscopy analysis of pitpα-/-/β-/- MKs revealed ultrastructural defects with depleted α-granules and large, misshaped multivesicular bodies. Von Willebrand factor and thrombospondin-1, like TGF-β, are stored in MK α-granules and were also elevated in CM of cultured pitpα-/-/β-/- MKs. Altogether, these data show that ablating PITPs in MKs indirectly dysregulates hematopoiesis in the BM by disrupting α-granule physiology and secretion of TGF-β1.
Collapse
|
22
|
Miller MC, Mayo KH. Chemokines from a Structural Perspective. Int J Mol Sci 2017; 18:ijms18102088. [PMID: 28974038 PMCID: PMC5666770 DOI: 10.3390/ijms18102088] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 01/04/2023] Open
Abstract
Chemokines are a family of small, highly conserved cytokines that mediate various biological processes, including chemotaxis, hematopoiesis, and angiogenesis, and that function by interacting with cell surface G-Protein Coupled Receptors (GPCRs). Because of their significant involvement in various biological functions and pathologies, chemokines and their receptors have been the focus of therapeutic discovery for clinical intervention. There are several sub-families of chemokines (e.g., CXC, CC, C, and CX3C) defined by the positions of sequentially conserved cysteine residues. Even though all chemokines also have a highly conserved, three-stranded β-sheet/α-helix tertiary structural fold, their quarternary structures vary significantly with their sub-family. Moreover, their conserved tertiary structures allow for subunit swapping within and between sub-family members, thus promoting the concept of a “chemokine interactome”. This review is focused on structural aspects of CXC and CC chemokines, their functional synergy and ability to form heterodimers within the chemokine interactome, and some recent developments in structure-based chemokine-targeted drug discovery.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Duchene J, Novitzky-Basso I, Thiriot A, Casanova-Acebes M, Bianchini M, Etheridge SL, Hub E, Nitz K, Artinger K, Eller K, Caamaño J, Rülicke T, Moss P, Megens RTA, von Andrian UH, Hidalgo A, Weber C, Rot A. Atypical chemokine receptor 1 on nucleated erythroid cells regulates hematopoiesis. Nat Immunol 2017; 18:753-761. [PMID: 28553950 PMCID: PMC5480598 DOI: 10.1038/ni.3763] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Healthy individuals of African ancestry have neutropenia that has been linked with the variant rs2814778(G) of the gene encoding atypical chemokine receptor 1 (ACKR1). This polymorphism selectively abolishes the expression of ACKR1 in erythroid cells, causing a Duffy-negative phenotype. Here we describe an unexpected fundamental role for ACKR1 in hematopoiesis and provide the mechanism that links its absence with neutropenia. Nucleated erythroid cells had high expression of ACKR1, which facilitated their direct contact with hematopoietic stem cells. The absence of erythroid ACKR1 altered mouse hematopoiesis including stem and progenitor cells, which ultimately gave rise to phenotypically distinct neutrophils that readily left the circulation, causing neutropenia. Individuals with a Duffy-negative phenotype developed a distinct profile of neutrophil effector molecules that closely reflected the one observed in the ACKR1-deficient mice. Thus, alternative physiological patterns of hematopoiesis and bone marrow cell outputs depend on the expression of ACKR1 in the erythroid lineage, findings with major implications for the selection advantages that have resulted in the paramount fixation of the ACKR1 rs2814778(G) polymorphism in Africa.
Collapse
Affiliation(s)
- Johan Duchene
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Igor Novitzky-Basso
- Blood and Marrow Transplant Unit, Queen Elizabeth University Hospital, Glasgow UK
| | - Aude Thiriot
- Department of Microbiology and Immunobiology and Center for Immune Imaging, Harvard Medical School, Boston, MA, USA
- The Ragon Institute, Cambridge, MA, USA
| | - Maria Casanova-Acebes
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Mariaelvy Bianchini
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - S. Leah Etheridge
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, UK
| | - Elin Hub
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, UK
| | - Katrin Nitz
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katharina Artinger
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, UK
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jorge Caamaño
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Remco T. A. Megens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Ulrich H. von Andrian
- Department of Microbiology and Immunobiology and Center for Immune Imaging, Harvard Medical School, Boston, MA, USA
- The Ragon Institute, Cambridge, MA, USA
| | - Andres Hidalgo
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Antal Rot
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, UK
- Center for Advanced Studies, Ludwig-Maximilians-University, Munich, Germany
- Address from July 2017: William Harvey Research Institute, Queen Mary University of London. London, UK
| |
Collapse
|
24
|
De Luca L, Trino S, Laurenzana I, Simeon V, Calice G, Raimondo S, Podestà M, Santodirocco M, Di Mauro L, La Rocca F, Caivano A, Morano A, Frassoni F, Cilloni D, Del Vecchio L, Musto P. MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation. Oncotarget 2017; 7:6676-92. [PMID: 26760763 PMCID: PMC4872742 DOI: 10.18632/oncotarget.6791] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/05/2015] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cells (HSC), including umbilical cord blood CD34+ stem cells (UCB-CD34+), are used for the treatment of several diseases. Although different studies suggest that bone marrow mesenchymal stem cells (BM-MSC) support hematopoiesis, the exact mechanism remains unclear. Recently, extracellular vesicles (EVs) have been described as a novel avenue of cell communication, which may mediate BM-MSC effect on HSC. In this work, we studied the interaction between UCB-CD34+ cells and BM-MSC derived EVs. First, by sequencing EV derived miRNAs and piRNAs we found that EVs contain RNAs able to influence UCB-CD34+ cell fate. Accordingly, a gene expression profile of UCB-CD34+ cells treated with EVs, identified about 100 down-regulated genes among those targeted by EV-derived miRNAs and piRNAs (e.g. miR-27b/MPL, miR-21/ANXA1, miR-181/EGR2), indicating that EV content was able to modify gene expression profile of receiving cells. Moreover, we demonstrated that UCB-CD34+ cells, exposed to EVs, significantly changed different biological functions, becoming more viable and less differentiated. UCB-CD34+ gene expression profile also identified 103 up-regulated genes, most of them codifying for chemokines, cytokines and their receptors, involved in chemotaxis of different BM cells, an essential function of hematopoietic reconstitution. Finally, the exposure of UCB-CD34+ cells to EVs caused an increased expression CXCR4, paralleled by an in vivo augmented migration from peripheral blood to BM niche in NSG mice. This study demonstrates the existence of a powerful cross talk between BM-MSC and UCB-CD34+ cells, mediated by EVs, providing new insight in the biology of cord blood transplantation.
Collapse
Affiliation(s)
- Luciana De Luca
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Vittorio Simeon
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin 10126, Italy
| | - Marina Podestà
- Stem Cell Center, S. Martino Hospital, Genova 16132, Italy
| | - Michele Santodirocco
- Transfusion Medicine Unit, Puglia Cord Blood Bank, IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 (FG), Italy
| | - Lazzaro Di Mauro
- Transfusion Medicine Unit, Puglia Cord Blood Bank, IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 (FG), Italy
| | - Francesco La Rocca
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Antonella Caivano
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Annalisa Morano
- Laboratory of Preclinical and Translational Research, IRCCS-Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| | - Francesco Frassoni
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, Giannina Gaslini Institute, Genova 16148, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin 10126, Italy
| | - Luigi Del Vecchio
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Naples, 80145, Italy.,Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy
| | - Pellegrino Musto
- Scientific Direction, IRCCS-Centro di Riferimento Oncologico Basilicata (CROB), Rionero in Vulture, 85028 (PZ), Italy
| |
Collapse
|
25
|
Dong L, Yu WM, Zheng H, Loh ML, Bunting ST, Pauly M, Huang G, Zhou M, Broxmeyer HE, Scadden DT, Qu CK. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature 2016; 539:304-308. [PMID: 27783593 DOI: 10.1038/nature20131] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
Germline activating mutations of the protein tyrosine phosphatase SHP2 (encoded by PTPN11), a positive regulator of the RAS signalling pathway, are found in 50% of patients with Noonan syndrome. These patients have an increased risk of developing leukaemia, especially juvenile myelomonocytic leukaemia (JMML), a childhood myeloproliferative neoplasm (MPN). Previous studies have demonstrated that mutations in Ptpn11 induce a JMML-like MPN through cell-autonomous mechanisms that are dependent on Shp2 catalytic activity. However, the effect of these mutations in the bone marrow microenvironment remains unclear. Here we report that Ptpn11 activating mutations in the mouse bone marrow microenvironment promote the development and progression of MPN through profound detrimental effects on haematopoietic stem cells (HSCs). Ptpn11 mutations in mesenchymal stem/progenitor cells and osteoprogenitors, but not in differentiated osteoblasts or endothelial cells, cause excessive production of the CC chemokine CCL3 (also known as MIP-1α), which recruits monocytes to the area in which HSCs also reside. Consequently, HSCs are hyperactivated by interleukin-1β and possibly other proinflammatory cytokines produced by monocytes, leading to exacerbated MPN and to donor-cell-derived MPN following stem cell transplantation. Remarkably, administration of CCL3 receptor antagonists effectively reverses MPN development induced by the Ptpn11-mutated bone marrow microenvironment. This study reveals the critical contribution of Ptpn11 mutations in the bone marrow microenvironment to leukaemogenesis and identifies CCL3 as a potential therapeutic target for controlling leukaemic progression in Noonan syndrome and for improving stem cell transplantation therapy in Noonan-syndrome-associated leukaemias.
Collapse
Affiliation(s)
- Lei Dong
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Wen-Mei Yu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hong Zheng
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mignon L Loh
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California at San Francisco, San Francisco, California 94122, USA
| | - Silvia T Bunting
- Department of Pathology, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia 30322, USA
| | - Melinda Pauly
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Gang Huang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Muxiang Zhou
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - David T Scadden
- Center for Regenerative Medicine and MGH Cancer Center, Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Boston, Massachusetts 02114, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
26
|
Broxmeyer HE, Capitano M, Campbell TB, Hangoc G, Cooper S. Modulation of Hematopoietic Chemokine Effects In Vitro and In Vivo by DPP-4/CD26. Stem Cells Dev 2016; 25:575-85. [PMID: 26943017 DOI: 10.1089/scd.2016.0026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP4)/CD26 truncates certain proteins, and this posttranslational modification can influence their activity. Truncated (T) colony-stimulating factors (CSFs) are decreased in potency for stimulating proliferation of hematopoietic progenitor cells (HPCs). T-CXCL12, a modified chemokine, is inactive as an HPC chemotactic, survival, and enhancing factor for replating or ex-vivo expansion of HPCs. Moreover, T-CSFs and T-CXCL12 specifically downmodulates the positively acting effects of their own full-length molecule. Other chemokines have DPP4 truncation sites. In the present study, we evaluated effects of DPP4 inhibition (by Diprotin A) or gene deletion of HPC on chemokine inhibition of multicytokine-stimulated HPC, and on chemokine-enhancing effects on single CSF-stimulated HPC proliferation, as well as effects of DPP4 treatment of a number of chemokines. Myelosuppressive effects of chemokines with, but not without, a DPP4 truncation site were greatly enhanced in inhibitory potency by pretreating target bone marrow (BM) cells with Diprotin A, or by assaying their activity on dpp4/cd26(-/-) BM cells. DPP4 treatment of myelosuppressive chemokines containing a DPP4 truncation site produced a nonmyelosuppressive molecule, but one which had the capacity to block suppression by that unmodified chemokine both in vitro and in vivo. Additionally, DPP4 treatment ablated the single cytokine-stimulated HPC-enhancing activity of CCL3/MIP-1α and CCL4/MIP-1β, and blocked the enhancing activity of each unmodified molecule, in vitro and in vivo. These results highlight the functional posttranslational modulating effects of DPP4 on chemokine activities, and information offering additional biological insight into chemokine regulation of hematopoiesis.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Maegan Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Timothy B Campbell
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Giao Hangoc
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
27
|
Jarocha D, Zuba-Surma E, Majka M. Dimethyl Sulfoxide (DMSO) Increases Percentage of CXCR4(+) Hematopoietic Stem/Progenitor Cells, Their Responsiveness to an SDF-1 Gradient, Homing Capacities, and Survival. Cell Transplant 2015; 25:1247-57. [PMID: 26345294 DOI: 10.3727/096368915x689424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cryopreservation of bone marrow (BM), mobilized peripheral blood (mPB), and cord blood (CB) hematopoietic stem/progenitor cells (HSPCs) is a routine procedure before transplantation. The most commonly used cryoprotectant for HSPCs is dimethyl sulfoxide (DMSO). The objective of this study was to evaluate the influence of DMSO on surface receptor expression and chemotactic activities of HSPCs. We found that 10 min of incubation of human mononuclear cells (MNCs) with 10% DMSO significantly increases the percentage of CXCR4(+), CD38(+), and CD34(+) cells, resulting in an increase of CD34(+), CD34(+)CXCR4(+), and CD34(+)CXCR4(+)CD38(-) subpopulations. Furthermore, DMSO significantly increased chemotactic responsiveness of MNCs and CXCR4(+) human hematopoietic Jurkat cell line to a stromal cell-derived factor-1 (SDF-1) gradient. Furthermore, we demonstrated enhanced chemotaxis of human clonogenic progenitor cells to an SDF-1 gradient, which suggests that DMSO directly enhances the chemotactic responsiveness of early human progenitors. DMSO preincubation also caused lower internalization of the CXCR4 receptor. In parallel experiments, we found that approximately 30% more of DMSO-preincubated human CD45(+) and CD45(+)CD34(+) cells homed to the mouse BM 24 h after transplantation in comparison to control cells. Finally, we demonstrated considerably higher (25 days) survival of mice transplanted with DMSO-exposed MNCs than those transplanted with the control cells. We show in this study an unexpected beneficial influence of DMSO on HSPC homing and suggest that a short priming with DMSO before transplantation could be considered a new strategy to enhance cell homing and engraftment.
Collapse
Affiliation(s)
- Danuta Jarocha
- Department of Transplantation, Jagiellonian University Medical College, Cracow, Poland
| | | | | |
Collapse
|
28
|
Feng S, Yadav SK, Gao F, Yi Q. Plasma levels of monokine induced by interferon-gamma/chemokine (C-X-X motif) ligand 9, thymus and activation-regulated chemokine/chemokine (C-C motif) ligand 17 in children with Kawasaki disease. BMC Pediatr 2015; 15:109. [PMID: 26337791 PMCID: PMC4560122 DOI: 10.1186/s12887-015-0424-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/18/2015] [Indexed: 12/04/2022] Open
Abstract
Background Monokines induced by interferon-gamma/Chemokine (C-X-C motif) ligand 9 (MIG/CXCL9), thymus and activation-regulated chemokine/Chemokine (C-C motif) ligand 17 (TARC/CCL17) are chemotactic factors that specifically collect and activate leukocytes, which are considered as chemoattractants of T helper cells. In the present study, we have investigated the effects of T helper type-1 (Th1) cells and T helper type-2 (Th2) cells in Kawasaki disease (KD) by determining plasma levels of MIG/CXCL9 and TARC/CCL17 and exploring the relationship between MIG/CXCL9, TARC/CCL17 levels and coronary artery lesions (CAL). Methods Forty-three children patients with KD and 19 healthy controls were included in this study. General characteristics were obtained from all subjects. Plasma concentrations of chemotactic factors of MIG/CXCL9 and TARC/CCL17 were measured by enzyme-linked immunosorbent assay (ELISA) for all subjects. Results Plasma levels of MIG/CXCL9, TARC/CCL17, and the ratios of MIG/TARC were significantly elevated in pediatric patients with KD compared to those in the control group. There were also significantly higher levels of MIG/CXCL9, TARC/CCL17, MIG/TARC ratios and prominently lower hemoglobin (Hb) levels in KD with CAL compared to KD without coronary artery lesions (NCAL). Hb was significantly decreased and plasma MIG/CXCL9 levels had a significantly negative correlation with CRP in KD with CAL patients (KD-CAL), whereas a positive correlation of plasma MIG/CXCL 9 with WBC was observed in KD without CAL patients (KD-NCAL). Conclusion Th1 and Th2 cells may be involved in an imbalanced activation in pediatric KD patients during an acute period of the disease. Furthermore, immune lesions of vessels in KD patients may be mediated by the imbalanced activation of Th1 and Th2 cells.
Collapse
Affiliation(s)
- Siqi Feng
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, PR China. .,Present address: Children's Hospital of Chongqing Medical University, Zhongshan Er Road, No.136, Yuzhong District, Chongqing, 400014, PR China.
| | - Shiv Kumar Yadav
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, PR China. .,Present address: Children's Hospital of Chongqing Medical University, Zhongshan Er Road, No.136, Yuzhong District, Chongqing, 400014, PR China.
| | - Fang Gao
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, PR China. .,Present address: Children's Hospital of Chongqing Medical University, Zhongshan Er Road, No.136, Yuzhong District, Chongqing, 400014, PR China.
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China. .,Present address: Children's Hospital of Chongqing Medical University, Zhongshan Er Road, No.136, Yuzhong District, Chongqing, 400014, PR China.
| |
Collapse
|
29
|
Ahmadzadeh A, Kast RE, Ketabchi N, Shahrabi S, Shahjahani M, Jaseb K, Saki N. Regulatory effect of chemokines in bone marrow niche. Cell Tissue Res 2015; 361:401-10. [DOI: 10.1007/s00441-015-2129-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/16/2015] [Indexed: 12/31/2022]
|
30
|
Liu S, Wang X, Lu Y, Xiao J, Liang J, Zhong X, Chen Y. The combined use of cytokine-induced killer cells and cyclosporine a for the treatment of aplastic anemia in a mouse model. J Interferon Cytokine Res 2015; 35:401-10. [PMID: 25714796 DOI: 10.1089/jir.2014.0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we investigated the combined use of cytokine-induced killer (CIK) cells and cyclosporine A (CsA) to treat a mouse model of aplastic anemia (AA). CIK cells were cultured and injected alone or in combination with CsA into mice that had previously been induced into AA by busulfan and mouse interferon-γ (IFN-γ). The CIK cell-treated group had a survival rate of 55%, which was similar to the 60% survival rate observed in the CsA-treated group. The combination group showed a survival rate as high as 90%, while none of the mice in the no-treatment group survived to the end of the experiment. The CIK cells produced multiple cytokines, including several hematopoietic growth factors, which could promote the expansion of mouse bone marrow mononuclear cells in vitro. CsA reduced the proportion of CD4(+) T cells and the level of IFN-γ. The combined CIK cell and CsA treatment exhibited the best curative effect, a finding that might be due to the influence of these factors on both hematopoiesis and immunity. These data suggest that the combination of CIK cells and immunosuppressive therapy might be a candidate therapy for AA in the future.
Collapse
Affiliation(s)
- Shousheng Liu
- 1 Department of Hematology, First Affiliated Hospital of Sun Yat-sen University , Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Trenchevska O, Sherma ND, Oran PE, Reaven PD, Nelson RW, Nedelkov D. Quantitative mass spectrometric immunoassay for the chemokine RANTES and its variants. J Proteomics 2014; 116:15-23. [PMID: 25549571 DOI: 10.1016/j.jprot.2014.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/12/2014] [Accepted: 12/19/2014] [Indexed: 01/27/2023]
Abstract
UNLABELLED The chemokine RANTES plays a key role in inflammation, cell recruitment and T cell activation. RANTES is heterogenic and exists as multiple variants in vivo. Herein we describe the development and characterization of a fully quantitative mass spectrometric immunoassay (MSIA) for analysis of intact RANTES and its proteoforms in human serum and plasma samples. The assay exhibits linearity over a wide concentration range (1.56-200ng/mL), intra- and inter-assay precision with CVs <10%, and good linearity and recovery correlations. The assay was tested in different biological matrices, and it was benchmarked against an existing RANTES ELISA. The new RANTES MSIA was used to analyze RANTES and its proteoforms in a small clinical cohort, revealing the quantitative distribution and frequency of the native and truncated RANTES proteoforms. BIOLOGICAL SIGNIFICANCE In the last two decades, RANTES has been studied extensively due to its association with numerous clinical conditions, including kidney-related, autoimmune, cardiovascular, viral and metabolic pathologies. Although a single gene product, RANTES is expressed in a range of cells and tissues presenting with different endogenously produced variants and PTMs. The structural variety and population diversity that has been identified for RANTES necessitate developing advanced methodologies that can provide insight into the protein heterogeneity and its function and regulation in disease. In this work we present a simple, efficient and high-throughput mass spectrometric immunoassay (MSIA) method for analysis of RANTES proteoforms. RANTES MSIA can detect and analyze RANTES proteoforms and provide an insight into the endogenous protein modifications.
Collapse
Affiliation(s)
- Olgica Trenchevska
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States.
| | - Nisha D Sherma
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Paul E Oran
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | | | - Randall W Nelson
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Dobrin Nedelkov
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
32
|
[CXCR4: a new therapeutic target of the leukaemic cell? Role of the SDF-1/CXCR4 axis in acute myeloid leukaemia]. Bull Cancer 2014; 101:593-604. [PMID: 24977448 DOI: 10.1684/bdc.2014.1925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CXCR4, receptor of the chemokine SDF-1 (stromal cell-derived factor 1) plays a major role in the normal hematopoiesis but also in the biology of the leukaemic cell. This receptor is expressed on the surface of blasts and is a key molecule in "the anchoring" of the leukaemic stem cell (LSC) within the bone marrow niche. The interactions of the LSC with the bone marrow microenvironment promote survival signals and drug resistance. Recent flow cytometry analyses reported that CXCR4 expression levels have a major prognostic impact in acute myeloid leukaemia (AML). CXCR4 expression is associated with poor prognosis and can be useful to stratify patients, according to their phenotype, in order to establish risk-adapted strategies. Newly diagnosed AML are now routinely stratified according to molecular markers which guide prognosis and treatment. Many leukaemia are composed of multiples subclones with differential susceptibility to treatment and specific targeted therapies are missing. Despite therapeutic improvements for the treatment of AML, long term survival remains poor. Targeting CXCR4 is a novel promising approach of therapy. CXCR4 antagonists are used in combination with chemotherapy in preclinical and clinical studies. This review summarises our current knowledge regarding the key role of CXCR4 in AML and discusses how targeting this pathway could provide an interesting approach to eradicate the LSC.
Collapse
|
33
|
Risalde MA, Molina V, Sónchez-Cordón PJ, Pedrera M, Romero-Palomo F, Bautista MJ, Moreno A, Gómez-Villamandos JC. Comparison of pathological changes and viral antigen distribution in tissues of calves with and without preexisting bovine viral diarrhea virus infection following challenge with bovine herpesvirus-1. Am J Vet Res 2013; 74:598-610. [PMID: 23531068 DOI: 10.2460/ajvr.74.4.598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare pathological changes and viral antigen distribution in tissues of calves with and without preexisting subclinical bovine viral diarrhea virus (BVDV) infection following challenge with bovine herpesvirus-1 (BHV-1). ANIMALS 24 Friesian calves. PROCEDURES 12 calves were inoculated intranasally with noncytopathic BVDV-1a; 12 days later, 10 of these calves were challenged intranasally with BHV-1 subtype 1. Two calves were euthanized before and 1, 2, 4, 7, or 14 days after BHV-1 inoculation. Another 10 calves were inoculated intranasally with BHV-1 only and euthanized 1, 2, 4, 7, or 14 days later. Two calves were inoculated intranasally with virus-free tissue culture fluid and euthanized as negative controls. Pathological changes and viral antigen distribution in various tissue samples from calves with and without BVDV infection (all of which had been experimentally inoculated with BHV-1) were compared. RESULTS Following BHV-1 challenge, calves with preexisting subclinical BVDV infection had earlier development of more severe inflammatory processes and, consequently, more severe tissue lesions (limited to lymphoid tissues and respiratory and digestive tracts) and greater dissemination of BHV-1, compared with calves without preexisting BVDV infection. Moreover, coinfected calves had an intense lymphoid depletion in the Peyer patches of the ileum as well as the persistence of BVDV in target organs and the reappearance of digestive tract changes during disease progression. CONCLUSIONS AND CLINICAL RELEVANCE In calves, preexisting infection with BVDV facilitated the establishment of BHV-1 infection, just as the presence of BHV-1 favors BVDV persistence, thereby synergistically potentiating effects of both viruses and increasing the severity of the resultant clinical signs.
Collapse
Affiliation(s)
- María A Risalde
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Edificio Sanidad Animal, Campus de Rabanales, 14014, Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Itoh T, Satou T, Ishida H, Nishida S, Tsubaki M, Hashimoto S, Ito H. The relationship between SDF-1α/CXCR4 and neural stem cells appearing in damaged area after traumatic brain injury in rats. Neurol Res 2013; 31:90-102. [DOI: 10.1179/174313208x332995] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
35
|
Yang XT, Pan DC, Chen ET, Bi YY, Feng DF. Glial cells activation potentially contributes to the upregulation of stromal cell-derived factor-1α after optic nerve crush in rats. Neurochem Res 2013; 38:1996-2008. [PMID: 23832528 DOI: 10.1007/s11064-013-1106-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/17/2013] [Accepted: 06/29/2013] [Indexed: 02/04/2023]
Abstract
Stromal cell-derived factor-1α (SDF-1α) plays an important role after injury. However, little is known regarding its temporal and spatial expression patterns or how it interacts with glial cells after optic nerve crush injury. We characterized the temporal and spatial expression pattern of SDF-1α in the retina and optic nerve following optic nerve crush and demonstrated that SDF-1α is localized to the glial cells that are distributed in the retina and optic nerve. CXCR4, the receptor for SDF-1α, is expressed along the ganglion cell layer (GCL). The relative expression levels of Sdf-1α mRNA and SDF-1α protein in the retina and optic nerve 1, 2, 3, 5, 7, 10 and 14 days after injury were determined using real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay, respectively, and the Cxcr4 mRNA expression was determined using real-time PCR. Immunofluorescence and immunohistochemical approaches were used to detect the localization of SDF-1α and CXCR4 after injury. The upregulation of Sdf-1α and Cxcr4 mRNA was detected as early as day one after injury in the retina and day two in the optic nerve, the expression peaks 5-7 days after injury. The expression of Sdf-1α and Cxcr4 mRNA was maintained for at least 14 days after the optic nerve crush injury. Furthermore, SDF-1α-positive zones were distributed locally in the reactive glial cells, which suggested potential autocrine stimulation. CXCR4 was mainly expressed in the GCL, which was also adjacent to the the glial cells. These findings suggest that following optic nerve crush, the levels of endogenous SDF-1α and CXCR4 increase in the retina and optic nerve, where activated glial cells may act as a source of increased SDF-1α protein.
Collapse
Affiliation(s)
- Xi-Tao Yang
- Department of Neurosurgery, Shanghai Third People's Hospital, Shanghai Jiaotong University School of Medicine, 280 Mo-He Road, Shanghai, 201900, China,
| | | | | | | | | |
Collapse
|
36
|
Bubb KJ, Khambata RS, Ahluwalia A. Sexual dimorphism in rodent models of hypertension and atherosclerosis. Br J Pharmacol 2013; 167:298-312. [PMID: 22582712 DOI: 10.1111/j.1476-5381.2012.02036.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Approximately one third of all deaths are attributed to cardiovascular disease (CVD), making it the biggest killer worldwide. Despite a number of therapeutic options available, the burden of CVD morbidity continues to grow indicating the need for continued research to address this unmet need. In this respect, investigation of the mechanisms underlying the protection that premenopausal females enjoy from cardiovascular-related disease and mortality is of interest. In this review, we discuss the essential role that rodent animal models play in enabling this field of research. In particular, we focus our discussion on models of hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Kristen J Bubb
- William Harvey Research Institute, Clinical Pharmacology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | | | | |
Collapse
|
37
|
Carlson J, Baxter SA, Dréau D, Nesmelova IV. The heterodimerization of platelet-derived chemokines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:158-68. [PMID: 23009808 DOI: 10.1016/j.bbapap.2012.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/14/2012] [Accepted: 09/16/2012] [Indexed: 11/19/2022]
Abstract
Chemokines encompass a large family of proteins that act as chemoattractants and are involved in many biological processes. In particular, chemokines guide the migration of leukocytes during normal and inflammatory conditions. Recent studies reveal that the heterophilic interactions between chemokines significantly affect their biological activity, possibly representing a novel regulatory mechanism of the chemokine activities. The co-localization of platelet-derived chemokines in vivo allows them to interact. Here, we used nano-spray ionization mass spectrometry to screen eleven different CXC and CC platelet-derived chemokines for possible interactions with the two most abundant chemokines present in platelets, CXCL4 and CXCL7. Results indicate that many screened chemokines, although not all of them, form heterodimers with CXCL4 and/or CXCL7. In particular, a strong heterodimerization was observed between CXCL12 and CXCL4 or CXCL7. Compared to other chemokines, the main structural difference of CXCL12 is in the orientation and packing of the C-terminal alpha-helix in relation to the beta-sheet. The analysis of one possible structure of the CXCL4/CXCL12 heterodimer, CXC-type structure, using molecular dynamics (MD) trajectory reveals that CXCL4 may undergo a conformational transition to alter the alpha helix orientation. In this new orientation, the alpha-helix of CXCL4 aligns in parallel with the CXCL12 alpha-helix, an energetically more favorable conformation. Further, we determined that CXCL4 and CXCL12 physically interact to form heterodimers by co-immunoprecipitations from human platelets. Overall, our results highlight that many platelet-derived chemokines are capable of heterophilic interactions and strongly support future studies of the biological impact of these interactions.
Collapse
Affiliation(s)
- James Carlson
- Analytical Sciences Laboratory, David H. Murdock Research Institute, 150 Research Campus Dr., Kannapolis, NC 28081, USA
| | | | | | | |
Collapse
|
38
|
Human NK cells at early stages of differentiation produce CXCL8 and express CD161 molecule that functions as an activating receptor. Blood 2012; 119:3987-96. [DOI: 10.1182/blood-2011-09-379693] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Human natural killer (NK) cell development is a step-by-step process characterized by phenotypically identified stages. CD161 is a marker informative of the NK cell lineage commitment, whereas CD56, CD117, and CD94/NKG2A contribute to define discrete differentiation stages. In cells undergoing in vitro differentiation from CD34+ umbilical cord blood (UCB) progenitors, LFA-1 expression allowed to discriminate between immature noncytolytic CD161+CD56+LFA-1− and more differentiated cytolytic CD161+CD56+LFA-1+ NK cells. CD161+CD56+LFA-1− NK cells produce large amounts of CXCL8 after phorbol myristate acetate (PMA) or cytokine treatment. Remarkably, CXCL8 mRNA expression was also detected in fresh stage III immature NK cells isolated from tonsils and these cells expressed CXCL8 protein on PMA stimulation. Within in vitro UCB-derived CD161+CD56+LFA-1− NK cells, CXCL8 release was also induced on antibody-mediated cross-linking of NKp44 and CD161. Such unexpected activating function of CD161 was confined to the CD161+CD56+LFA-1− subset, because it did not induce cytokine release or CD107a expression in CD161+CD56+LFA-1+ cells or in mature peripheral blood NK cells. Anti-CXCL8 neutralizing antibody induced a partial inhibition of NK cell differentiation, which suggests a regulatory role of CXCL8 during early NK cell differentiation. Altogether, these data provide novel information that may offer clues to optimize NK cell maturation in hematopoietic stem cell transplantation.
Collapse
|
39
|
Kumar CC. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer 2011; 2:95-107. [PMID: 21779483 DOI: 10.1177/1947601911408076] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/17/2011] [Indexed: 01/31/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic disorder in which there are too many immature blood-forming cells accumulating in the bone marrow and interfering with the production of normal blood cells. It has long been recognized that AML is a clinically heterogeneous disease characterized by a multitude of chromosomal abnormalities and gene mutations, which translate to marked differences in responses and survival following chemotherapy. The cytogenetic and molecular genetic aberrations associated with AML are not mutually exclusive and often coexist in the leukemic cells. AML is a disease of the elderly, with a mean age of diagnosis of 70 years. Adverse cytogenetic abnormalities increase with age, and within each cytogenetic group, prognosis with standard treatment worsens with age. In the past 20 years, there has been little improvement in chemotherapeutic regimens and hence the overall survival for patients with AML. A huge unmet need exists for efficacious targeted therapies for elderly patients that are less toxic than available chemotherapy regimens. The multitude of chromosomal and genetic abnormalities makes the treatment of AML a challenging prospect. A detailed understanding of the molecular changes associated with the chromosomal and genetic abnormalities in AML is likely to provide a rationale for therapy design and biomarker development. This review summarizes the variety of cytogenetic and genetic changes observed in AML and gives an overview of the clinical status of new drugs in development.
Collapse
|
40
|
Moriconi A, Bigogno C, Bianchini G, Caligiuri A, Resconi A, Dondio MG, D’Anniballe G, Allegretti M. Aryltriflates as a Neglected Moiety in Medicinal Chemistry: A Case Study from a Lead Optimization of CXCL8 Inhibitors. ACS Med Chem Lett 2011; 2:768-73. [PMID: 24900265 DOI: 10.1021/ml2001533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/07/2011] [Indexed: 11/29/2022] Open
Abstract
Interleukin-8 and growth related oncogene-α-chemokines (formerly CXCL8 and CXCL1, respectively) mediate chemotaxis of neutrophils to inflammatory sites via interactions with two transmembrane receptors, the type A CXCL8 receptor (CXCR1) and the type B CXCL8 receptor (CXCR2). In a previous work, we published the molecular modeling-driven structure activity relationship (SAR) results culminated in the discovery of R-(-)-2-[(4'-trifluoromethanesulphonyloxy)phenyl]-N-methanesulfonyl propionamide (19), in which an unusual aryltriflate moiety was embedded. Although triflates are broadly used in organic synthesis, this group is scarcely used in medicinal chemistry programs. Here we detail the drug profiling-driven approach used for the selection and characterization of 19, the most potent dual CXCR1 and CXCR2 noncompetitive inhibitor described to date. Reported data suggest that the aryltriflate moiety might represent a valid choice for the selection of clinical candidates with suitable druglike properties.
Collapse
Affiliation(s)
- Alessio Moriconi
- Research Center, Dompé s.p.a., via Campo di Pile, 67100 L’Aquila, Italy
| | - Chiara Bigogno
- DMPK and Developability Department, Nikem Research Srl Via Zambeletti 25, 20021 Baranzate, Milan, Italy
| | | | - Antonio Caligiuri
- DMPK and Developability Department, Nikem Research Srl Via Zambeletti 25, 20021 Baranzate, Milan, Italy
| | - Anna Resconi
- DMPK and Developability Department, Nikem Research Srl Via Zambeletti 25, 20021 Baranzate, Milan, Italy
| | - Massimo G. Dondio
- DMPK and Developability Department, Nikem Research Srl Via Zambeletti 25, 20021 Baranzate, Milan, Italy
| | | | | |
Collapse
|
41
|
CCR7 alters hematopoietic potential. Blood 2010; 116:5086-7. [DOI: 10.1182/blood-2010-09-307801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion. J Ovarian Res 2010; 3:15. [PMID: 20565782 PMCID: PMC2914045 DOI: 10.1186/1757-2215-3-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 06/17/2010] [Indexed: 02/01/2023] Open
Abstract
Background Cisplatin is more often used to treat ovarian cancer (OvCa), which provides modest survival advantage primarily due to chemo-resistance and up regulated anti-apoptotic machineries in OvCa cells. Therefore, targeting the mechanisms responsible for cisplatin resistance in OvCa cell may improve therapeutic outcomes. We have shown that ovarian cancer cells express CC chemokine receptor-9 (CCR9). Others have also shown that CCL25, the only natural ligand for CCR9, up regulates anti-apoptotic proteins in immature T lymphocytes. Hence, it is plausible that CCR9-mediated cell signals might be involved in OvCa cell survival and inhibition of cisplatin-induced apoptosis. In this study, we investigated the potential role and molecular mechanisms of CCR9-mediated inhibition of cisplatin-induced apoptosis in OvCa cells. Methods Cell proliferation, vibrant apoptosis, and TUNEL assays were performed with or without cisplatin treatment in presence or absence of CCL25 to determine the role of the CCR9-CCL25 axis in cisplatin resistance. In situ Fast Activated cell-based ELISA (FACE) assays were performed to determine anti-apoptotic signaling molecules responsible for CCL25-CCR9 mediated survival. Results Our results show interactions between CCR9 and CCL25 increased anti-apoptotic signaling cascades in OvCa cells, which rescued cells from cisplatin-induced cell death. Specifically, CCL25-CCR9 interactions mediated Akt, activation as well as GSK-3β and FKHR phosphorylation in a PI3K-dependent and FAK-independent fashion. Conclusions Our results suggest the CCR9-CCL25 axis plays an important role in reducing cisplatin-induced apoptosis of OvCa cells.
Collapse
|
43
|
Li G, Wang D, Sun M, Li G, Hu J, Zhang Y, Yuan Y, Ji H, Chen N, Liu G. Discovery and optimization of novel 3-piperazinylcoumarin antagonist of chemokine-like factor 1 with oral antiasthma activity in mice. J Med Chem 2010; 53:1741-54. [PMID: 20099827 DOI: 10.1021/jm901652p] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemokine-like factor 1 (CKLF1) is a novel functional cytokine that acts through its receptor CC chemokine receptor 4 (CCR4). Activation of CCR4 by CKLF1 plays an important role in diseases such as asthma and multiple sclerosis. This article describes a cell-based screening assay using an FITC-labeled CCR4 agonist (CKLF1-C27), a CKLF1 peptide fragment. Screening of our in-stock small-molecule library identified a 3-piperazinylcoumarin analogue 1 (IC(50) = 4.36 x 10(-6) M) that led to the discovery of orally active compound 41 (IC(50) = 2.12 x 10(-8) M) through systematic optimization. Compound 41 blocked the calcium mobilization and chemotaxis induced by CKLF1-C27 and reduced the asthmatic pathologic changes in lung tissue of human CKLF1-transfected mice. Further studies indicated that compound 41 ameliorated pathological changes via inhibition of the NF-kappaB signal pathway.
Collapse
Affiliation(s)
- Gang Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2 Nanwei Rd, Beijing 100050, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Adam F, Villiers E, Watson S, Coyne K, Blackwood L. Clinical pathological and epidemiological assessment of morphologically and immunologically confirmed canine leukaemia. Vet Comp Oncol 2009; 7:181-95. [PMID: 19691647 DOI: 10.1111/j.1476-5829.2009.00189.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Traditionally, classification of leukaemia in dogs has relied on morphological examination and cytochemical staining patterns, but aberrant cellular morphology and stain uptake often curtails accurate categorization, and historical data based on this classification may be unreliable. Immunophenotyping is now the gold standard for classification of leukaemias. The purpose of this prospective study was to assess the clinical pathological and epidemiological features of a population of dogs with morphologically and immunologically confirmed leukaemia and to compare them within categories: acute and chronic lymphoid leukaemia (ALL and CLL), and acute and chronic myeloid leukaemia (AML and CML). There were 64 cases of morphologically and immunologically confirmed leukaemia: 25 cases of ALL, 17 cases of CLL and 22 cases of AML. Prevalence of B and T immunophenotypes in ALL and CLL was not statistically different. Dogs with AML were significantly younger than those with ALL at presentation (P = 0.04). Golden Retriever dogs in the study population were overrepresented in comparison with a control population of dogs (6/25 ALL cases, 8/64 leukaemia cases). No sex was overrepresented. Dogs with ALL had significantly more severe neutropenia (P = 0.001) and thrombocytopenia (P = 0.002) than those with CLL and had significantly more cytopenias. The severity and numbers of cytopenias seen in ALL and AML were not significantly different. Twenty-one of the leukaemia cases showed one cytopenia, fourteen had two cytopenias and twenty-one cases had pancytopenia. Anaemia was the most common cytopenia seen in isolation (17/21). No dogs had neutropenia without anaemia and/or thrombocytopenia. Total white blood cell counts were not different between the groups. The atypical cell counts within the peripheral blood were significantly higher in ALL than AML; both in isolation and as a percentage of the total white blood cell count (P = 0.03). This study strengthens the hypothesis that acute leukaemias give rise to more profound cytopenias, affecting more cell lines, than chronic leukaemias.
Collapse
Affiliation(s)
- F Adam
- Small Animal Teaching Hospital, University of Liverpool, Neston CH647TE, UK
| | | | | | | | | |
Collapse
|
45
|
Stumpo DJ, Broxmeyer HE, Ward T, Cooper S, Hangoc G, Chung YJ, Shelley WC, Richfield EK, Ray MK, Yoder MC, Aplan PD, Blackshear PJ. Targeted disruption of Zfp36l2, encoding a CCCH tandem zinc finger RNA-binding protein, results in defective hematopoiesis. Blood 2009; 114:2401-10. [PMID: 19633199 PMCID: PMC2746470 DOI: 10.1182/blood-2009-04-214619] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/07/2009] [Indexed: 12/19/2022] Open
Abstract
Members of the tristetraprolin family of tandem CCCH finger proteins can bind to AU-rich elements in the 3'-untranslated region of mRNAs, leading to their deadenylation and subsequent degradation. Partial deficiency of 1 of the 4 mouse tristetraprolin family members, Zfp36l2, resulted in complete female infertility because of early embryo death. We have now generated mice completely deficient in the ZFP36L2 protein. Homozygous Zfp36l2 knockout (KO) mice died within approximately 2 weeks of birth, apparently from intestinal or other hemorrhage. Analysis of peripheral blood from KO mice showed a decrease in red and white cells, hemoglobin, hematocrit, and platelets. Yolk sacs from embryonic day 11.5 (E11.5) Zfp36l2 KO mice and fetal livers from E14.5 KO mice gave rise to markedly reduced numbers of definitive multilineage and lineage-committed hematopoietic progenitors. Competitive reconstitution experiments demonstrated that Zfp36l2 KO fetal liver hematopoietic stem cells were unable to adequately reconstitute the hematopoietic system of lethally irradiated recipients. These data establish Zfp36l2 as a critical modulator of definitive hematopoiesis and suggest a novel regulatory pathway involving control of mRNA stability in the life cycle of hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- Deborah J Stumpo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lu X, Liu T, Gu L, Huang C, Zhu H, Meng W, Xi Y, Li S, Liu Y. Immunomodulatory effects of mesenchymal stem cells involved in favoring type 2 T cell subsets. Transpl Immunol 2009; 22:55-61. [PMID: 19695330 DOI: 10.1016/j.trim.2009.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 08/01/2009] [Accepted: 08/04/2009] [Indexed: 02/05/2023]
Abstract
Graft-vs.-host disease (GVHD) caused by immunologic activated cells remains a real problem in human allogeneic hematopoetic stem cell transplantation. Mesenchymal stem cells (MSCs) play some important roles on immunomodulatory. We developed a parent-into-F1 model of acute GVHD to evaluate the mechanisms involved in immunological mediated damage and the immunomodulatory effect of the MSCs on GVHD. The recipients, BABL/cxC57BL/6 (H-2(bxd)) F1 mice, received 8.5Gy total-body gamma irradiation ((6)(0)C(O)), then rescued with C57BL/6 (H-2(b)) mice (donors) bone marrow cells and induced acute GVHD by adding donor splenocytes. The MSCs culture-expanded from C57BL/6 (H-2(b)) mice were infused to recipients simultaneity in the experimental group. The severity of GVHD was evaluated by histopathologic examination of target organs including liver, intestine, and claw skin and a clinical manifestation scoring system. We analyzed the distribution of peripheral blood T cell subsets of recipients by flow cytometry and measured the expression of CXCR3 on activated T cells in target organs by immunohistochemistry staining. Our results suggested the tissue damage initiated by GVHD was significantly alleviated in the MSCs treated mice, and the proportion of type 2 T cells in peripheral blood was higher in the MSCs treated mice than in the control group. Although the overall survival rate did not significantly improved in the mice with MSCs infusion, the immunomodulatory effect of MSCs was possibly related to favor type 2 T cell subsets and decrease chemokine receptor CXCR3 expression on activated T cells.
Collapse
Affiliation(s)
- Xiaoxi Lu
- Department of Hematology, West China Hospital of Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Edvardsson L, Olofsson T. Real-time PCR analysis for blood cell lineage specific markers. Methods Mol Biol 2009; 496:313-22. [PMID: 18839120 DOI: 10.1007/978-1-59745-553-4_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We here describe the methods for the isolation of distinct hematopoietic subpopulations, as defined by their immune phenotype by fluorescence-activated cell sorting, and how these cells can be analyzed even at a single-cell level for the gene expression of a number of transcription factors and other differentiation markers.
Collapse
Affiliation(s)
- Louise Edvardsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Biomedical Center, Lund University, Lund, Sweden
| | | |
Collapse
|
48
|
Goswami RS, Sukhai MA, Thomas M, Reis PP, Kamel-Reid S. Applications of microarray technology to Acute Myelogenous Leukemia. Cancer Inform 2008; 7:13-28. [PMID: 19352456 PMCID: PMC2664704 DOI: 10.4137/cin.s1015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microarray technology is a powerful tool, which has been applied to further the understanding of gene expression changes in disease. Array technology has been applied to the diagnosis and prognosis of Acute Myelogenous Leukemia (AML). Arrays have also been used extensively in elucidating the mechanism of and predicting therapeutic response in AML, as well as to further define the mechanism of AML pathogenesis. In this review, we discuss the major paradigms of gene expression array analysis, and provide insights into the use of software tools to annotate the array dataset and elucidate deregulated pathways and gene interaction networks. We present the application of gene expression array technology to questions in acute myelogenous leukemia; specifically, disease diagnosis, treatment and prognosis, and disease pathogenesis. Finally, we discuss several new and emerging array technologies, and how they can be further utilized to improve our understanding of AML.
Collapse
Affiliation(s)
- Rashmi S Goswami
- Division of Applied Molecular Oncology, Princess Margaret Hospital/Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
49
|
Maximal STAT5-induced proliferation and self-renewal at intermediate STAT5 activity levels. Mol Cell Biol 2008; 28:6668-80. [PMID: 18779318 DOI: 10.1128/mcb.01025-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34(+) cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34(+) cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.
Collapse
|
50
|
Nesmelova IV, Sham Y, Gao J, Mayo KH. CXC and CC chemokines form mixed heterodimers: association free energies from molecular dynamics simulations and experimental correlations. J Biol Chem 2008; 283:24155-66. [PMID: 18550532 DOI: 10.1074/jbc.m803308200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CXC and CC chemokines are involved in numerous biological processes, and their function in situ may be significantly influenced by heterodimer formation, as was recently reported, for example, for CXC chemokines CXCL4/PF4 and CXCL8/IL8 that interact to form heterodimers that modulate chemotactic and cell proliferation activities. Here we used molecular dynamics simulations to determine relative association free energies (overall average and per residue) for homo- and heterodimer pairs of CXC (CXCL4/PF4, CXCL8/IL8, CXCL1/Gro-alpha, and CXCL7/NAP-2) and CC (CCL5/RANTES, CCL2/MCP-1, and CCL8/MCP-2) chemokines. Even though structural homology among monomer folds of all CXC and CC chemokines permits heterodimer assembly, our calculated association free energies depend upon the particular pair of chemokines in terms of the net electrostatic and nonelectrostatic forces involved, as well as (for CC/CXC mixed chemokines) the selection of dimer type (CC or CXC). These relative free energies indicate that association of some pairs of chemokines is more favorable than others. Our approach is validated by correlation of calculated and experimentally determined free energies. Results are discussed in terms of CXC and CC chemokine function and have significant biological implications.
Collapse
Affiliation(s)
- Irina V Nesmelova
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|