1
|
Abstract
ssRNA phages belonging to the family Leviviridae are among the tiniest viruses, infecting various Gram-negative bacteria by adsorption to their pilus structures. Due to their simplicity, they have been intensively studied as models for understanding various problems in molecular biology and virology. Several of the studied ssRNA characteristics, such as coat protein–RNA interactions and the ability to readily form virus-like particles in recombinant expression systems, have fueled many practical applications such as RNA labeling and tracking systems and vaccine development. In this chapter, we review the life cycle, structure and applications of these small yet fascinating viruses.
Collapse
|
2
|
Function of the RNA Coliphage Qβ Proteins in Medical In Vitro Evolution. Methods Protoc 2018; 1:mps1020018. [PMID: 31164561 PMCID: PMC6526423 DOI: 10.3390/mps1020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Qβ is a positive (+) single-stranded RNA bacteriophage covered by a 25 nm icosahedral shell. Qβ belongs to the family of Leviviridae and is found throughout the world (bacterial isolates and sewage). The genome of Qβ is about 4.2 kb, coding for four proteins. This genome is surrounded by 180 copies of coat proteins (capsomers) each comprised of 132 residues of amino acids. The other proteins, the subunit II (β) of a replicase, the maturation protein (A2) and the read-through or minor coat protein (A1), play a key role in phage infection. With the replicase protein, which lacks proofreading activity, as well as its short replication time, and high population size, Qβ phage has attractive features for in vitro evolution. The A1 protein gene shares the same initiation codon with the coat protein gene and is produced during translation when the coat protein’s UGA stop codon triplet (about 400 nucleotides from the initiation) is suppressed by a low level of ribosome misincorporation of tryptophan. Thus, A1 is termed the read-through protein. This RNA phage platform technology not only serves to display foreign peptides but is also exceptionally suited to address questions about in vitro evolution. The C-terminus of A1 protein confers to this RNA phage platform an exceptional feature of not only a linker for foreign peptide to be displayed also a model for evolution. This platform was used to present a peptide library of the G-H loop of the capsid region P1 of the foot-and-mouth disease virus (FMDV) called VP1 protein. The library was exposed on the exterior surface of Qβ phages, evolved and selected with the monoclonal antibodies (mAbs) SD6 of the FMDV. These hybrid phages could principally be good candidates for FMDV vaccine development. Separately, the membrane proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) epitopes was fused with the A1 proteins and exposed on the Qβ phage exterior surface. The engineered phages with MPER epitopes were recognized by anti-MPER specific antibodies. This system could be used to overcome the challenge of effective presentation of MPER to the immune system. A key portion of this linear epitope could be randomized and evolved with the Qβ system. Overall, antigens and epitopes of RNA viruses relevant to public health can be randomized, evolved and selected in pools using the proposed Qβ model to overcome their plasticity and the challenge of vaccine development. Major epitopes of a particular virus can be engineered or displayed on the Qβ phage surface and used for vaccine efficacy evaluation, thus avoiding the use of live viruses.
Collapse
|
3
|
Abstract
Bacteriophages of the Leviviridae family are small viruses with short single-stranded RNA (ssRNA) genomes. Protein-RNA interactions play a key role throughout the phage life cycle, and all of the conserved phage proteins - the maturation protein, the coat protein and the replicase - are able to recognize specific structures in the RNA genome. The phage-coded replicase subunit associates with several host proteins to form a catalytically active complex. Recognition of the genomic RNA by the replicase complex is achieved in a remarkably complex manner that exploits the RNA-binding properties of host proteins and the particular three-dimensional structure of the phage genome. The coat protein recognizes a hairpin structure at the beginning of the replicase gene. The binding interaction serves to regulate the expression of the replicase gene and can be remarkably different in various ssRNA phages. The maturation protein is a minor structural component of the virion that binds to the genome, mediates attachment to the host and guides the genome into the cell. The maturation protein has two distinct RNA-binding surfaces that are in contact with different regions of the genome. The maturation and coat proteins also work together to ensure the encapsidation of the phage genome in new virus particles. In this chapter, the different ssRNA phage protein-RNA interactions, as well as some of their practical applications, are discussed in detail.
Collapse
Affiliation(s)
| | - Kaspars Tārs
- Biomedical Research and Study Center, Riga, Latvia.
| |
Collapse
|
4
|
Dallaire P, Tan H, Szulwach K, Ma C, Jin P, Major F. Structural dynamics control the MicroRNA maturation pathway. Nucleic Acids Res 2016; 44:9956-9964. [PMID: 27651454 PMCID: PMC5175353 DOI: 10.1093/nar/gkw793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are crucial gene expression regulators and first-order suspects in the development and progression of many diseases. Comparative analysis of cancer cell expression data highlights many deregulated miRNAs. Low expression of miR-125a was related to poor breast cancer prognosis. Interestingly, a single nucleotide polymorphism (SNP) in miR-125a was located within a minor allele expressed by breast cancer patients. The SNP is not predicted to affect the ground state structure of the primary transcript or precursor, but neither the precursor nor mature product is detected by RT-qPCR. How this SNP modulates the maturation of miR-125a is poorly understood. Here, building upon a model of RNA dynamics derived from nuclear magnetic resonance studies, we developed a quantitative model enabling the visualization and comparison of networks of transient structures. We observed a high correlation between the distances between networks of variants with that of their respective wild types and their relative degrees of maturation to the latter, suggesting an important role of transient structures in miRNA homeostasis. We classified the human miRNAs according to pairwise distances between their networks of transient structures.
Collapse
Affiliation(s)
- Paul Dallaire
- Institute for Research in Immunology and Cancer, and Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Huiping Tan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Keith Szulwach
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher Ma
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - François Major
- Institute for Research in Immunology and Cancer, and Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
5
|
Crystal structure of the bacteriophage Qβ coat protein in complex with the RNA operator of the replicase gene. J Mol Biol 2013; 426:1039-49. [PMID: 24035813 DOI: 10.1016/j.jmb.2013.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/20/2022]
Abstract
The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein-RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA.
Collapse
|
6
|
Abstract
Riboswitches were discovered in 2002 in bacteria as RNA-based intracellular sensors of vitamin derivatives. During the last decade, naturally occurring RNA sensor elements have been found to bind a range of small metabolites and ions and to exert regulatory control of transcription, translation, splicing, and RNA stability. Extensive biochemical, structural, and genetic studies have established the basic principles underpinning riboswitch function in all three kingdoms of life with implications for developing antibiotics, designing new molecular sensors, and integrating riboswitches into synthetic circuits.
Collapse
Affiliation(s)
- Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
7
|
Borodavka A, Tuma R, Stockley PG. A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence. RNA Biol 2013; 10:481-9. [PMID: 23422316 PMCID: PMC3710354 DOI: 10.4161/rna.23838] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Long RNAs often exist as multiple conformers in equilibrium. For the genomes of single-stranded RNA viruses, one of these conformers must include a compacted state allowing the RNA to be confined within the virion. We have used single molecule fluorescence correlation spectroscopy to monitor the conformations of viral genomes and sub-fragments in the absence and presence of coat proteins. Cognate RNA-coat protein interactions in two model viruses cause a rapid collapse in the hydrodynamic radii of their respective RNAs. This is caused by protein binding at multiple sites on the RNA that facilitate additional protein-protein contacts. The collapsed species recruit further coat proteins to complete capsid assembly with great efficiency and fidelity. The specificity in RNA-coat protein interactions seen at single-molecule concentrations reflects the packaging selectivity seen for such viruses in vivo. This contrasts with many in vitro reassembly measurements performed at much higher concentrations. RNA compaction by coat protein or polycation binding are distinct processes, implying that defined RNA-coat protein contacts are required for assembly.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
8
|
Rolfsson Ó, Toropova K, Ranson NA, Stockley PG. Mutually-induced conformational switching of RNA and coat protein underpins efficient assembly of a viral capsid. J Mol Biol 2010; 401:309-322. [PMID: 20684044 PMCID: PMC4793595 DOI: 10.1016/j.jmb.2010.05.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Single-stranded RNA viruses package their genomes into capsids enclosing fixed volumes. We assayed the ability of bacteriophage MS2 coat protein to package large, defined fragments of its genomic, single-stranded RNA. We show that the efficiency of packaging into a T=3 capsid in vitro is inversely proportional to RNA length, implying that there is a free-energy barrier to be overcome during assembly. All the RNAs examined have greater solution persistence lengths than the internal diameter of the capsid into which they become packaged, suggesting that protein-mediated RNA compaction must occur during assembly. Binding ethidium bromide to one of these RNA fragments, which would be expected to reduce its flexibility, severely inhibited packaging, consistent with this idea. Cryo-EM structures of the capsids assembled in these experiments with the sub-genomic RNAs show a layer of RNA density beneath the coat protein shell but lack density for the inner RNA shell seen in the wild-type virion. The inner layer is restored when full-length virion RNA is used in the assembly reaction, implying that it becomes ordered only when the capsid is filled, presumably because of the effects of steric and/or electrostatic repulsions. The cryo-EM results explain the length dependence of packaging. In addition, they show that for the sub-genomic fragments the strongest ordered RNA density occurs below the coat protein dimers forming the icosahedral 5-fold axes of the capsid. There is little such density beneath the proteins at the 2-fold axes, consistent with our model in which coat protein dimers binding to RNA stem-loops located at sites throughout the genome leads to switching of their preferred conformations, thus regulating the placement of the quasi-conformers needed to build the T=3 capsid. The data are consistent with mutual chaperoning of both RNA and coat protein conformations, partially explaining the ability of such viruses to assemble so rapidly and accurately.
Collapse
Affiliation(s)
- Óttar Rolfsson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Katerina Toropova
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Keene FR, Smith JA, Collins JG. Metal complexes as structure-selective binding agents for nucleic acids. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.01.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Gell C, Sabir T, Westwood J, Rashid A, Smith DAM, Harris SA, Stockley PG. Single-molecule fluorescence resonance energy transfer assays reveal heterogeneous folding ensembles in a simple RNA stem-loop. J Mol Biol 2008; 384:264-78. [PMID: 18805425 DOI: 10.1016/j.jmb.2008.08.088] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/25/2008] [Accepted: 08/27/2008] [Indexed: 11/30/2022]
Abstract
We have examined the folding ensembles present in solution for a series of RNA oligonucleotides that encompass the replicase translational operator stem-loop of the RNA bacteriophage MS2. Single-molecule (SM) fluorescence assays suggest that these RNAs exist in solution as ensembles of differentially base-paired/base-stacked states at equilibrium. There are two distinct ensembles for the wild-type sequence, implying the existence of a significant free energy barrier between "folded" and "unfolded" ensembles. Experiments with sequence variants are consistent with an unfolding mechanism in which interruptions to base-paired duplexes, in this example by the single-stranded loop and a single-base bulge in the base-paired stem, as well as the free ends, act as nucleation points for unfolding. The switch between folded and unfolded ensembles is consistent with a transition that occurs when all base-pairing and/or base-stacking interactions that would orientate the legs of the RNA stem are broken. Strikingly, a U-to-C replacement of a residue in the loop, which creates a high-affinity form of the operator for coat protein binding, results in dramatically different (un)folding behaviour, revealing distinct subpopulations that are either stabilised or destabilised with respect to the wild-type sequence. This result suggests additional reasons for selection against the C-variant stem-loop in vivo and provides an explanation for the increased affinity.
Collapse
Affiliation(s)
- Christopher Gell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS29JT, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Schumacher G, Ehring R. Effect of different conformations of galactose messenger RNA on gene expression and messenger half-life in vitro. ACTA ACUST UNITED AC 2005; 136:41-54. [PMID: 16094965 DOI: 10.1007/bf00275447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
From a DNA-directed cell-free system, functional gal mRNA is obtained which directs the cell-free synthesis of the three galactose enzymes of Escherichia coli. A substantial fraction of this gal mRNA has the properties of a polycistronic messenger. Exposure to elevated temperatures in the presence or absence of magnesium ion results in pronounced changes of the capacity of this mRNA to give rise to the synthesis of the three enzymes. Depending on the conditions of the pre-treatment, the absolute amounts as well as the ratio of the three gene products synthesized can be changed. The different forms of gal messenger so obtained also exhibit different susceptibilities towards functional inactivation during the enzyme synthesis reaction. As the changes in template activity are reversible, it is concluded that the different treatments cause reversible transitions between different conformations of the gal mRNA.
Collapse
Affiliation(s)
- G Schumacher
- Institut für Genetik der Universität zu Köln, Köln, Germany
| | | |
Collapse
|
12
|
Lindemann BF, Klug C, Schwienhorst A. Evolution of bacteriophage in continuous culture: a model system to test antiviral gene therapies for the emergence of phage escape mutants. J Virol 2002; 76:5784-92. [PMID: 11992006 PMCID: PMC137063 DOI: 10.1128/jvi.76.11.5784-5792.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of viral escape mutants is usually a highly undesirable phenomenon. This phenomenon is frequently observed in antiviral drug applications for the treatment of viral infections and can undermine long-term therapeutic success. Here, we propose a strategy for evaluating a given antiviral approach in terms of its potential to provoke the appearance of resistant virus mutants. By use of Q beta RNA phage as a model system, the effect of an antiviral gene therapy, i.e., a virus-specific repressor protein expressed by a recombinant Escherichia coli host, was studied over the course of more than 100 generations. In 13 experiments carried out in parallel, 12 phage populations became resistant and 1 became extinct. Sequence analysis revealed that only two distinct phage mutants emerged in the 12 surviving phage populations. For both escape mutants, sequence variations located in the repressor binding site of the viral genomic RNA, which decrease affinity for the repressor protein, conferred resistance to translational repression. The results clearly suggest the feasibility of the proposed strategy for the evaluation of antiviral approaches in terms of their potential to allow resistant mutants to appear. In addition, the strategy proved to be a valuable tool for observing virus-specific molecular targets under the impact of antiviral drugs.
Collapse
Affiliation(s)
- Björn F Lindemann
- Department of Biochemical Kinetics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
13
|
Wulczyn FG, Kahmann R. Translational stimulation: RNA sequence and structure requirements for binding of Com protein. Cell 1991; 65:259-69. [PMID: 1826635 DOI: 10.1016/0092-8674(91)90160-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Translation of the bacteriophage Mu mom gene is positively regulated by the phage Com protein. We report here that purified Com protein specifically stimulates mom gene expression in vitro. Furthermore, Com is shown to bind a site in the mom translational initiation region (TIR) in a sequence-specific manner. In vitro RNA footprint experiments have been used to define the Com-binding site and to study mRNA secondary structure in the mom TIR. Com binding is shown to correlate with a conformational change in the mom TIR both in vivo and in vitro. The role of secondary structure was further examined by testing the effects of mutations in the TIR on translation and stimulation. The results support a model for translational stimulation in which Com binding induces a conformational change in the mom mRNA, thereby enhancing ribosome binding.
Collapse
Affiliation(s)
- F G Wulczyn
- Institut für Genbiologische Forschung Berlin GmbH, Federal Republic of Germany
| | | |
Collapse
|
14
|
Woodson SA, Cech TR. Alternative secondary structures in the 5' exon affect both forward and reverse self-splicing of the Tetrahymena intervening sequence RNA. Biochemistry 1991; 30:2042-50. [PMID: 1998665 DOI: 10.1021/bi00222a006] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The natural splice junction of the Tetrahymena large ribosomal RNA is flanked by hairpins that are phylogenetically conserved. The stem immediately preceding the splice junction involves nucleotides that also base pair with the internal guide sequence of the intervening sequence during splicing. Thus, precursors which contain wild-type exons can form two alternative helices. We have constructed a series of RNAs where the stem-loop in the 5' exon is more or less stable than in the wild-type precursor, and tested them in both forward and reverse self-splicing reactions. The presence of a stable hairpin in ligated exon substrates interferes with the ability of the intervening sequence to integrate at the splice junction. Similarly, the presence of the wild-type hairpin in the 5' exon reduces the rate of splicing 20-fold in short precursors. The data are consistent with a competition between unproductive formation of a hairpin in the 5' exon and productive pairing of the 5' exon with the internal guide sequence. The reduction of splicing by a hairpin that is a normal feature of rRNA structure is surprising; we propose that this attenuation is relieved in the natural splicing environment.
Collapse
Affiliation(s)
- S A Woodson
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder 80309-0215
| | | |
Collapse
|
15
|
Witherell GW, Gott JM, Uhlenbeck OC. Specific interaction between RNA phage coat proteins and RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 40:185-220. [PMID: 2031083 DOI: 10.1016/s0079-6603(08)60842-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- G W Witherell
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309
| | | | | |
Collapse
|
16
|
Berkhout B, Jeang KT. Down modulation of HIV-1 gene expression using a procaryotic RNA-binding protein. Nucleic Acids Res 1990; 18:6903-7. [PMID: 2124673 PMCID: PMC332748 DOI: 10.1093/nar/18.23.6903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The coat protein of the single stranded RNA bacteriophages acts as a translational repressor by binding with high affinity to a target RNA that encompasses the ribosomal binding site of the replicase gene. We have expressed this procaryotic RNA-binding protein in mammalian cells. Using the coat protein binding site attached to the HIV-1 5' leader RNA, we tested for the biological effect of co-expressed bacteriophage protein. We found that HIV-1 LTR-directed expression within this context was inhibited in trans by the coat protein. This example suggests the feasibility of using procaryotic RNA-binding proteins as genetic modulators in eucaryotic cells.
Collapse
Affiliation(s)
- B Berkhout
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
17
|
Skripkin EA, Adhin MR, de Smit MH, van Duin J. Secondary structure of the central region of bacteriophage MS2 RNA. Conservation and biological significance. J Mol Biol 1990; 211:447-63. [PMID: 2407856 DOI: 10.1016/0022-2836(90)90364-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The RNA of the Escherichia coli RNA phages is highly structured with 75% of the nucleotides estimated to take part in base-pairing. We have used enzymatic and chemical sensitivity of nucleotides, phylogenetic sequence comparison and the phenotypes of constructed mutants to develop a secondary structure model for the central region (900 nucleotides) of the group I phage MS2. The RNA folds into a number of, mostly irregular, helices and is further condensed by several long-distance interactions. There is substantial conservation of helices between the related groups I and II, attesting to the relevance of discrete RNA folding. In general, the secondary structure is thought to be needed to prevent annealing of plus and minus strand and to confer protection against RNase. Superimposed, however, are features required to regulate translation and replication. The MS2 RNA section studied here contains three translational start sites, as well as the binding sites for the coat protein and the replicase enzyme. Considering the density of helices along the RNA, it is not unexpected to find that all these sites lie in helical regions. This fact, however, does not mean that these sites are recognized as secondary structure elements by their interaction partners. This holds true only for the coat protein binding site. The other four sites function in the unfolded state and the stability of the helix in which they are contained serves to negatively control their accessibility. Mutations that stabilize helices containing ribosomal binding sites reduce their efficiency and vice versa. Comparison of homologous helices in different phage RNAs indicates that base substitutions have occurred in such a way that the thermodynamic stability of the helix is maintained. The evolution of individual helices shows several distinct size-reduction patterns. We have observed codon deletions from loop areas and shortening of hairpins by base-pair deletions from either the bottom, the middle or the top of stem structures. Evidence for the coaxial stacking of some helical segments is discussed.
Collapse
Affiliation(s)
- E A Skripkin
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
18
|
Kreienberg R. [New knowledge on immunology in gynecologic cancer]. Arch Gynecol Obstet 1987; 242:215-26. [PMID: 3318719 DOI: 10.1007/bf01783097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
|
20
|
Berkhout B, van Duin J. Mechanism of translational coupling between coat protein and replicase genes of RNA bacteriophage MS2. Nucleic Acids Res 1985; 13:6955-67. [PMID: 3840590 PMCID: PMC322015 DOI: 10.1093/nar/13.19.6955] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have analyzed the molecular mechanism that makes translation of the MS2 replicase cistron dependent on the translation of the upstream coat cistron. Deletion mapping on cloned cDNA of the phage shows that the ribosomal binding site of the replicase cistron is masked by a long distance basepairing to an internal coat cistron region. Removal of the internal coat cistron region leads to uncoupled replicase synthesis. Our results confirm the model as originally proposed by Min Jou et al. (1). Activation of the replicase start is sensitive to the frequency of upstream translation, but never reaches the level of uncoupled replicase synthesis.
Collapse
|
21
|
|
22
|
Nussinov R, Pieczenik G. Structural and combinatorial constraints on base pairing in large nucleotide sequences. J Theor Biol 1984; 106:245-59. [PMID: 6201680 DOI: 10.1016/0022-5193(84)90029-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this paper we discuss the constraints and combinatorial problems of folding long RNA and single stranded DNA molecules into base paired structures. A computer code FOLD-A was designed to perform base pairing foldings of very long sequence chains and search for low energy configurations. The logic of the FOLD-A algorithm is described in some detail. The applications of FOLD-A to the A-protein gene of MS2 and the whole genome of the phi X 174 phage with over 5300 bases are discussed in the accompanying paper.
Collapse
|
23
|
Abstract
We have already described the FOLD-A code designed for folding mRNA's and single stranded DNA molecules (Nussinov & Pieczenik, 1984). In this paper we describe its application to two long polynucleotide chains: the A protein gene of the MS2 RNA and the whole genome of the phi X 174 phage. The folded form of the single stranded DNA of the phi X 174 is a six armed star with the origin of replication in its center.
Collapse
|
24
|
Abstract
The structural aspects of recognition by E. coli ribosomes of translational initiation regions on homologous messenger RNAs have been reviewed. Also discussed is the location of initiation region on mRNA, its confines, typical nucleotide sequences responsible for initiation signal, and the influence of RNA macrostructure on protein synthesis initiation. Most of the published DNA nucleotide sequences surrounding the start of various E. coli genes and those of its phages have been collected.
Collapse
|
25
|
Carey J, Cameron V, Krug M, de Haseth PL, Uhlenbeck OC. Failure of translational repression in the phage f2 op3 mutant is not due to an altered coat protein-RNA interaction. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)43614-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Uhlenbeck OC, Carey J, Romaniuk PJ, Lowary PT, Beckett D. Interaction of R17 coat protein with its RNA binding site for translational repression. J Biomol Struct Dyn 1983; 1:539-52. [PMID: 6401118 DOI: 10.1080/07391102.1983.10507460] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The interaction between bacteriophage R17 coat protein and its RNA binding site for translational repression was studied as an example of a sequence-specific RNA-protein interaction. A nitrocellulose filter retention assay is used to demonstrate equimolar binding between the coat protein and a synthetic 21 nucleotide RNA fragment. The Kd at 2 degrees C in a buffer containing 0.19 M salt is about 1 nM. The relatively weak ionic strength dependence of Ka and a delta H = -19 kcal/mole indicates that most of the binding free energy is due to non-electrostatic interactions. Since a variety of RNAs failed to compete with the 21 nucleotide fragment for coat protein binding, the interaction appears highly sequence specific. We have synthesized more than 30 different variants of the binding site sequence in order to identify the portions of the RNA molecule which are important for protein binding. Out of the five single stranded residues examined, four were essential for protein binding whereas the fifth could be replaced by any nucleotide. One variant was found to bind better than the wild type sequence. Substitution of nucleotides which disrupted the secondary structure of the binding fragment resulted in very poor binding to the protein. These data indicated that there are several points of contact between the RNA and the protein and the correct hairpin secondary structure of the RNA is essential for protein binding.
Collapse
Affiliation(s)
- O C Uhlenbeck
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | | | | | | | |
Collapse
|
27
|
Berzin V, Cielens I, Jansone I, Gren EJ. The regulatory region of phage fr replicase cistron. III. Initiation activity of specific fr RNA fragments. Nucleic Acids Res 1982; 10:7763-75. [PMID: 6760130 PMCID: PMC327044 DOI: 10.1093/nar/10.23.7763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RNA fragments from phage fr covering the complete or part of the replicase cistron initiation region have been used as templates in the formation of a ribosomal initiation complex in vitro. The results so obtained together with our earlier findings in a similar approach applied to fragments of the structurally related RNA from phage MS2 have allowed us to pinpoint the boundaries of the replicase cistron initiation region on phage RNA. A structural model of the above initiation region has been provided which shows that besides the minimal initiation region (comprises the Shine-Dalgarno sequence and initiator AUG), the flanking regions are also involved and are responsible for additional interactions with the ribosome. The flanking regions possibly contribute to the stability of specific contact between the ribosome and template realized by the minimal initiation region.
Collapse
|
28
|
Peattie DA, Douthwaite S, Garrett RA, Noller HF. A "bulged" double helix in a RNA-protein contact site. Proc Natl Acad Sci U S A 1981; 78:7331-5. [PMID: 7038676 PMCID: PMC349260 DOI: 10.1073/pnas.78.12.7331] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The binding of ribosomal protein L18 affects specific nucleotides in Escherichia coli 5S RNA as detected by dimethyl sulfate alkylation and RNase A digestion of the 5S-L18 complex. Most of the affected nucleotides are clustered and localize a site of RNA-protein interaction in and around the defined central helix [Fox, G. E. & Woese, C. (1975) Nature (London) 256, 505-507] of 5S RNA. Chemical carbethoxylation of the native 5S RNA with diethyl pyrocarbonate shows that a striking feature of this region is an unstacked adenosine residue at position 66. We propose that this residue exists as a singly bulged nucleotide extending the Fox and Woese central helix by two base pairs in the E. coli sequence (to positions 16-23/60-68) as well as in each of 61 (prokaryotic and eukaryotic) aligned 5S RNA sequences. In each case, the single bulged nucleotide is at the relative position of adenosine-66 in the RNA sequences. The presence of this putative bulged nucleotide appears to have been conserved in 5S RNA sequences throughout evolution, and its identity varies with major phylogenetic divisions. This residue is likely involved in specific 5S RNA-protein recognition or interaction in prokaryotic and eukaryotic ribosomes. The uridine-65 to adenosine-66 internucleotide bond is protected from RNase A digestion in the complex, and carbethoxylation of E. coli adenosine-66 prior to L18 binding affects formation of a stable RNA-protein complex. Thus, we identify a region of E. coli 5S RNA protected by the ribosomal protein L18 and propose that it contains a bulged nucleotide residue important in stable formation of this RNA-protein complex. This bulged residue appears to be evolutionarily conserved and phylogenetically defined in 5S RNA sequences in general, and consideration of other known RNA-protein binding sites shows that such a "bulged helix" may be a common feature of RNA-protein contact sites.
Collapse
|
29
|
Karam J, Gold L, Singer BS, Dawson M. Translational regulation: identification of the site on bacteriophage T4 rIIB mRNA recognized by the regA gene function. Proc Natl Acad Sci U S A 1981; 78:4669-73. [PMID: 7029523 PMCID: PMC320220 DOI: 10.1073/pnas.78.8.4669] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The bacteriophage T4 gene regA encodes a protein that diminishes the expression of many unlinked early T4 genes. Previous work demonstrated that regA-mediated repression occurs after transcription. We report here on the identification of the target site on one regA-sensitive mRNA, the message encoding the phage T4 rIIB protein. The target for regA-mediated action overlaps the translational initiation domain of the rIIB messenger. The regA protein may be a repressor that operates translationally on a significant and interesting set of early phage T4 mRNAs.
Collapse
|
30
|
Abstract
Expression of the int gene after phage lambda infection normally requires the products of genes cII and cIII. However, when the phage carries a deletion in the nonessential b2 region adjacent to int, efficient synthesis of active Int protein does not require cII and cIII function. This inhibition of Int synthesis by nucleotide sequences downstream from the int structural gene behaves in a cis-dominant fashion in mixed infections. It is specific for PL- and not pI-initiated transcripts. Based on these observations, and those of others, a model is proposed in which Int translation from the pL transcript is inhibited by the interaction of downstream b2 nucleotide sequences and nucleotide sequences in the int region. The data imply a novel temporal mechanism regulating prophage lambda induction: circularization of the prophage genome results in the transposition of inhibitory b2 region sequences next to int and blocks further Int protein synthesis beyond the low level required for excision. As a consequence of this process, the control of int expression is transferred from the pL promoter to pI and the cII/cIII system. Such a genetic regulatory mechanism involving the rearrangement of genetic elements downstream from a structural gene may be of general use during development in other systems.
Collapse
|
31
|
Nomura M, Yates JL, Dean D, Post LE. Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA. Proc Natl Acad Sci U S A 1980; 77:7084-8. [PMID: 7012833 PMCID: PMC350445 DOI: 10.1073/pnas.77.12.7084] [Citation(s) in RCA: 158] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Certain ribosomal proteins (r proteins) in Escherichia coli, such as S4 and S7, function as feedback repressors in the regulation of r-protein synthesis. These proteins inhibit the translation of their own mRNA. The repressor r proteins so far identified are also known to bind specifically to rRNA at an initial stage in ribosome assembly. We have found structural homology between the S7 binding region on 16S rRNA and a region of the mRNA where S7 acts as a translational repressor. Similarly, there is structural homology between one of the reported S4 binding regions on 16S rRNA and the mRNA target site for S4. The observed homology supports the concept that regulation by repressor r proteins is based on competition between rRNA and mRNA for these proteins and that the same structural features and of the r proteins are used in their interactions with both rRNA and mRNA.
Collapse
|
32
|
Suau P, Toulmé JJ, Hélène C. The binding of T4 gene 32 protein to MS2 virus RNA and transfer RNA. Nucleic Acids Res 1980; 8:1357-72. [PMID: 6159594 PMCID: PMC323996 DOI: 10.1093/nar/8.6.1357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fluorescence titrations, absorption spectroscopy and stopped-flow techniques were used to study the interaction of T4 coded 32-protein (P 32) with MS2 RNA and total tRNA from E. coli under different ionic conditions. It is shown that the amount of MS2 RNA and tRNA secondary structure melted by P 32 varies markedly and reversibly within a range of ionic conditions under which the binding constant of P 32 to single-stranded nucleic acids unable to form stable hairpins remains higher than 10(8) M-1. Kinetic experiments suggest that P 32 dissociates from the MS2 RNA rewinding strand with a similar rate constant as calculated for the dissociation from single-stranded regions. Possible in vivo consequences of these findings are discussed.
Collapse
|
33
|
Atkins JF, Steitz JA, Anderson CW, Model P. Binding of mammalian ribosomes to MS2 phage RNA reveals an overlapping gene encoding a lysis function. Cell 1979; 18:247-56. [PMID: 498271 DOI: 10.1016/0092-8674(79)90044-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The main binding site for mammalian ribosomes on the single-stranded RNA of bacteriophage MS2 is located nine tenths of the way through the coat protein gene. Translation initiated at an AUG triplet in the +1 frame yields a 75 amino acid polypeptide which terminates within the synthetase gene at a UAA codon, also in the +1 frame. Partial amino acid sequence analysis of the product synthesized in relatively large amounts by mammalian ribosomes confirms this assignment of the overlapping cistron. The same protein is made in an E. coli cell-free system, but only in very small amounts. Analysis of the translation products directed by RNA from op3, a UGA nonsense mutant of phage f2, identifies the overlapping cistron as a lysis gene. In this paper we show that the op3 mutation is a C yield U transition occurring in the second codon of the synthetase cistron, which explains the lowered production of phage replicase (as well as lack of lysis) upon op3 infection of nonpermissive cells. We discuss the properties of the overlapping gene in relation to its lysis function, recognition of the lysis initiator region by E. coli versus eucaryotic ribosomes and op3 as a ribosome binding site mutant for the f2 synthetase cistron.
Collapse
|
34
|
|
35
|
Berzin V, Borisova GP, Cielens I, Gribanov VA, Jansone I, Rosenthal G, Gren EJ. The regulatory region of MS2 phage RNA replicase cistron. Functional activity of individual MS2 RNA fragments. J Mol Biol 1978; 119:101-31. [PMID: 633365 DOI: 10.1016/0022-2836(78)90272-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Steitz JA, Steege DA. Characterization of two mRNA-rRNA complexes implicated in the initiation of protein biosynthesis. J Mol Biol 1977; 114:545-58. [PMID: 335077 DOI: 10.1016/0022-2836(77)90177-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Abstract
This review is concerned primarily with the physical structure and changes in the structure of RNA molecules. It will be evident that we have not attempted comprehensive coverage of what amounts to a vast literature. We have tried to stay away from particular areas that have been recently reviewed elsewhere. Citations to and information from them are included, however, so that access to the literature is available. Much of what we treat in depth deals with the crystal structures and solution behaviour of model RNA compounds, including synthetic polymers and molecular fragments such as dinucleoside phosphates. Sequence data on natural RNA are cited, but not in detail. Similarly, apart from tRNA, natural RNAs the structural determinations of which are presently not so far advanced, are not dwelt upon. We have tried to present in detail the available structural data with scaled drawings that permit facile comparisons of molecular geometries.
Collapse
|
38
|
Scherberg N, Refetoff S. Iodination-deiodination. A radiochemical method for detection of structure and changes in structure in RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 475:337-51. [PMID: 14687 DOI: 10.1016/0005-2787(77)90024-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bound iodine is released from radioiodinated nucleotides in polymers exposed to sodium bisulfite. The rate of bisulfite-catalyzed deiodination of pyrimidines can be controlled both by change of temperature of pH and is also dependent on the molecular association of the nucleotide. The rate of release of iodine from iodocytidine in polycytidylate is greater than the rate of elimination from RNA. Experiments testing the influence of base-pairing of the iodopyrimidines in synthetic polynucleotides showed that pairing of the substituted nucleotide protected the iodine bond. The rates of bisulfite-catalyzed deiodination of several radioiodinated RNAs were measured. The action of bisulfite on all single stranded RNAs tested was multiphasic consisting of a rapid early deiodination reaction supplanted by a slower phase which was followed by reacceleration of release. The release of iodine from double stranded RNA and DNA-RNA duplexes was retarded in comparison with the release from ribosomal and messenger RNA fractions. The deiodination profiles of single and double stranded RNA suggested that the intermediate stage iodine release is governed by melting of paired zones of low stability. Late release may result from destablization of the molecule through the addition of bisulfite to the pyrimidine ring or deamination. The effect of several substances expected to complex with polynucleotides was tested. Acridine orange and ethidium bromide increased loss of iodine from ribosomal RNA but slightly decreased elimination from double stranded viral RNA. A basic protein fraction isolated from ribosomal particles accelerated the deiodination of ribosomal RNA. While the destabilization caused by this protein fraction was greater than that caused by an equal amount of albumin, as tested the effect was non-specific. The results show that a change in sensitivity to chemical deiodination may folow the interaction of small amounts of protein with polynucleotides.
Collapse
|
39
|
|
40
|
Vournakis JN, Flashner MS, Katopes M, Kitos GA, Vamvakopoulos NC, Sell MS, Wurst RM. Structural studies on intact and deadenylylated rabbit globin mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1977; 19:233-52. [PMID: 1019346 DOI: 10.1016/s0079-6603(08)60922-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Wells RD, Blakesley RW, Hardies SC, Horn GT, Larson JE, Selsing E, Burd JF, Chan HW, Dodgson JB, Jensen KF, Nes IF, Wartell RM. The role of DNA structure in genetic regulation. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1977; 4:305-40. [PMID: 319949 DOI: 10.3109/10409237709102561] [Citation(s) in RCA: 134] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Platt T, Squires C, Yanofsky C. Ribosome-protected regions in the leader-trpE sequence of Escherichia coli tryptophan operon messenger RNA. J Mol Biol 1976; 103:411-20. [PMID: 781274 DOI: 10.1016/0022-2836(76)90320-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Fiers W, Contreras R, Duerinck F, Haegeman G, Iserentant D, Merregaert J, Min Jou W, Molemans F, Raeymaekers A, Van den Berghe A, Volckaert G, Ysebaert M. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 1976; 260:500-7. [PMID: 1264203 DOI: 10.1038/260500a0] [Citation(s) in RCA: 482] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteriophage MS2 RNA is 3,569 nucleotides long. The nucleotide sequence has been established for the third and last gene, which codes for the replicase protein. A secondary structure model has also been proposed. Biological properties, such as ribosome binding and codon interactions can now be discussed on a molecular basis. As the sequences for the other regions of this RNA have been published already, the complete, primary chemical structure of a viral genome has now been established.
Collapse
|
44
|
Jacobson AB. Studies on secondary structure of single-stranded RNA from bacteriophage MS2 by electron microscopy. Proc Natl Acad Sci U S A 1976; 73:307-11. [PMID: 1061134 PMCID: PMC335896 DOI: 10.1073/pnas.73.2.307] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A method allowing the demonstration and study by electron microscopy of secondary structure of viral RNA has been developed. Single-stranded RNA from the bacteriophage MS2 has been analyzed in the electron microscope in the presence of various concentrations of MgCl2. Depending on the salt concentration, the molecules display one to three large open loops which range in size from 10 to 20% of the total RNA length, and smaller closed loops which are approximately 3-5% of the total RNA length. Within one spreading, the conformation of the molecules is variable. However, the average complexity of the molecules increases with increasing salt, and individual loops which are infrequent at low salt increase in frequency with increasing salt. By analyzing the manner in which the individual loop appeared, it was possible to show that all molecules could be described by one basic pattern of secondary structure formation.
Collapse
|
45
|
Weber H. The binding site for coat protein on bacteriophage Qbeta RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 418:175-83. [PMID: 1247542 DOI: 10.1016/0005-2787(76)90067-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The site of interaction of phage Qbeta coat protein with Qbeta RNA was determined by ribonuclease T1 degradation of complexes of coat protein and [32P]-RNA obtained by codialysis of the components from urea into buffer solutions. The degraded complexes were recovered by filtration through nitrocellulose filters, and bound [32P]RNA fragments were extracted and separated by polyacrylamide gel electrophoresis. Fingerprinting and further sequence analysis established that the three main fragments obtained (chain lengths 88, 71 and 27 nucleotides) all consist of sequences extending from the intercistronic region to the beginning of the replicase cistron. These results suggest that in the replication of Qbeta, as in the case of R17, coat protein acts as a translational repressor by binding to the ribosomal initiation site of the replicase cistron.
Collapse
|
46
|
Malcolm AD. Biochemical applications of relaxation kinetics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1976; 30:205-25. [PMID: 792952 DOI: 10.1016/0079-6107(76)90010-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
47
|
Platt T, Yanofsky C. An intercistronic region and ribosome-binding site in bacterial messenger RNA. Proc Natl Acad Sci U S A 1975; 72:2399-403. [PMID: 1094468 PMCID: PMC432766 DOI: 10.1073/pnas.72.6.2399] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A messenger RNA fragment about 220 nucleotides long has been isolated from 32-P-labeled tryptophan operon mRNA of Escherichia coli. When point mutations at the end of trpB and the beginning of trpA were introduced, the resulting nucleotide changes were found; hence the mRNA fragment must include the trpB-trpA intercistronic region. Most of the nucleotide sequences can be assigned to specific locations in the structural genes, based on the amino-acid sequences of the trpB and trpA proteins. In vitro, ribosomes bind to this piece of mRNA and protect from nuclease attack a region about 40 nucleotides long, containing a central AUG codon. The triplet codons to the 3' side of this AUG correspond to the first seven amino acids of the trpA protein; the codons to the 5' side correspond to the last six amino acids of the trpB protein. Translation of trpB is terminated by single UGA codon, which overlaps the trpA AUG initiation codon: UGAUG. Thus the untranslated "intercistronic" region consists of only two nucleotides. The RNA sequence spanning this region undoubtedly fulfills two functions, specifying ribosome recognition signals as well as encoding amino-acid sequences.
Collapse
|
48
|
Abstract
We report a method for predicting the most stable secondary structure of RNA from its primary sequence of nucleotides. The technique consists of a series of three computer programs interfaced to take the nucleotide sequence of any RNA and (a) list all possible helical regions, using modified Watson-Crick base-pairing rules; (b) create all possible secondary structures by forming permutations of compatible helical regions; and (c)evaluate each structure for total free energy of formation from a completely extended chain. A free energy distribution and the base-by-base bonding interactions of each possible structure are catalogued by the system and are readily available for examination. The method has been applied to 62 tRNA sequences. The total free-energy of the predicted most stable structures ranged from -19 to -41 kcal/mole (-22 to -49 kJ/mole). The number of structures created was also highly sequence-dependent and ranged from 200 to 13,000. In nearly all cases the cloverleaf is predicted to be the structure with the lowest free energy of formation.
Collapse
|
49
|
Abstract
The sequence of the 3'-terminus of 16S RNA from different bacteria has been determined. Complementarity relationships between this sequence and a purine-rich tract in the ribosome binding site of different bacterial mRNAs suggest that the 3'-end of 16S RNA determines the intrinsic capacity of ribosomes to translate a particular cistron.
Collapse
|
50
|
Zagórska L, Chroboczek J, Zagórski W. Template activity of complexes formed between bacteriophage f2 RNA and coat protein. J Virol 1975; 15:509-14. [PMID: 1113377 PMCID: PMC354487 DOI: 10.1128/jvi.15.3.509-514.1975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Formation of complexes between f2 RNA polymerase cistron was partially inhibited, some RNA and coat protein was studied using salt conditions which are optimum for phage protein synthesis. In this ionic environment, coat protein precipitation can be prevented by sulfhydryl group-protecting agents. Complexes formed at different protein-RNA input molar ratios were isolated and tested for template activity in an in vitro protein synthesizing system. Simultaneously, the number of protein molecules bound per RNA strand in such complexes was measured by the membrane (Millipore) filtration technique. Under conditions in which translation of the RNA strands were complexed with six molecules of coat protein, whereas some remained unbound. Strong inhibition of the translation of the RNA polymerase cistron was observed when each of the RNA strands present in the mixture was associated with six molecules of coat protein.
Collapse
|