1
|
Molinari M, Lieberman OJ, Sulzer D, Santini E, Borgkvist A. 5-HT1B receptors mediate dopaminergic inhibition of vesicular fusion and GABA release from striatonigral synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584991. [PMID: 38559006 PMCID: PMC10980074 DOI: 10.1101/2024.03.14.584991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The substantia nigra pars reticulata (SNr), a crucial basal ganglia output nucleus, contains a dense expression of dopamine D1 receptors (D1Rs), along with dendrites belonging to dopaminergic neurons of substantia nigra pars compacta. These D1Rs are primarily located on the terminals of striatonigral medium spiny neurons, suggesting their involvement in the regulation of neurotransmitter release from the direct pathway in response to somatodendritic dopamine release. To explore the hypothesis that D1Rs modulate GABA release from striatonigral synapses, we conducted optical recordings of striatonigral activity and postsynaptic patch-clamp recordings from SNr neurons in the presence of dopamine and D1R agonists. We found that dopamine inhibits optogenetically triggered striatonigral GABA release by modulating vesicle fusion and Ca 2+ influx in striatonigral boutons. Notably, the effect of DA was independent of D1R activity but required activation of 5-HT1B receptors. Our results suggest a serotonergic mechanism involved in the therapeutic actions of dopaminergic medications for Parkinson's disease and psychostimulant-related disorders.
Collapse
|
2
|
Salvatore MF. Dopamine Signaling in Substantia Nigra and Its Impact on Locomotor Function-Not a New Concept, but Neglected Reality. Int J Mol Sci 2024; 25:1131. [PMID: 38256204 PMCID: PMC10815979 DOI: 10.3390/ijms25021131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The mechanistic influences of dopamine (DA) signaling and impact on motor function are nearly always interpreted from changes in nigrostriatal neuron terminals in striatum. This is a standard practice in studies of human Parkinson's disease (PD) and aging and related animal models of PD and aging-related parkinsonism. However, despite dozens of studies indicating an ambiguous relationship between changes in striatal DA signaling and motor phenotype, this perseverating focus on striatum continues. Although DA release in substantia nigra (SN) was first reported almost 50 years ago, assessment of nigral DA signaling changes in relation to motor function is rarely considered. Whereas DA signaling has been well-characterized in striatum at all five steps of neurotransmission (biosynthesis and turnover, storage, release, reuptake, and post-synaptic binding) in the nigrostriatal pathway, the depth of such interrogations in the SN, outside of cell counts, is sparse. However, there is sufficient evidence that these steps in DA neurotransmission in the SN are operational and regulated autonomously from striatum and are present in human PD and aging and related animal models. To complete our understanding of how nigrostriatal DA signaling affects motor function, it is past time to include interrogation of nigral DA signaling. This brief review highlights evidence that changes in nigral DA signaling at each step in DA neurotransmission are autonomous from those in striatum and changes in the SN alone can influence locomotor function. Accordingly, for full characterization of how nigrostriatal DA signaling affects locomotor activity, interrogation of DA signaling in SN is essential.
Collapse
Affiliation(s)
- Michael F Salvatore
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Zhai S, Cui Q, Simmons DV, Surmeier DJ. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson's disease. Curr Opin Neurobiol 2023; 83:102798. [PMID: 37866012 PMCID: PMC10842063 DOI: 10.1016/j.conb.2023.102798] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The degeneration of mesencephalic dopaminergic neurons that innervate the basal ganglia is responsible for the cardinal motor symptoms of Parkinson's disease (PD). It has been thought that loss of dopaminergic signaling in one basal ganglia region - the striatum - was solely responsible for the network pathophysiology causing PD motor symptoms. While our understanding of dopamine (DA)'s role in modulating striatal circuitry has deepened in recent years, it also has become clear that it acts in other regions of the basal ganglia to influence movement. Underscoring this point, examination of a new progressive mouse model of PD shows that striatal dopamine DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. This review summarizes recent advances in the effort to understand basal ganglia circuitry, its modulation by DA, and how its dysfunction drives PD motor symptoms.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - DeNard V Simmons
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
4
|
Zald DH. The influence of dopamine autoreceptors on temperament and addiction risk. Neurosci Biobehav Rev 2023; 155:105456. [PMID: 37926241 PMCID: PMC11330662 DOI: 10.1016/j.neubiorev.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As a major regulator of dopamine (DA), DA autoreceptors (DAARs) exert substantial influence over DA-mediated behaviors. This paper reviews the physiological and behavioral impact of DAARs. Individual differences in DAAR functioning influences temperamental traits such as novelty responsivity and impulsivity, both of which are associated with vulnerability to addictive behavior in animal models and a broad array of externalizing behaviors in humans. DAARs additionally impact the response to psychostimulants and other drugs of abuse. Human PET studies of D2-like receptors in the midbrain provide evidence for parallels to the animal literature. These data lead to the proposal that weak DAAR regulation is a risk factor for addiction and externalizing problems. The review highlights the potential to build translational models of the functional role of DAARs in behavior. It also draws attention to key limitations in the current literature that would need to be addressed to further advance a weak DAAR regulation model of addiction and externalizing risk.
Collapse
Affiliation(s)
- David H Zald
- Center for Advanced Human Brain Imaging and Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
5
|
Kasanga EA, Han Y, Shifflet MK, Navarrete W, McManus R, Parry C, Barahona A, Nejtek VA, Manfredsson FP, Kordower JH, Richardson JR, Salvatore MF. Nigral-specific increase in ser31 phosphorylation compensates for tyrosine hydroxylase protein and nigrostriatal neuron loss: Implications for delaying parkinsonian signs. Exp Neurol 2023; 368:114509. [PMID: 37634696 DOI: 10.1016/j.expneurol.2023.114509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Compensatory mechanisms that augment dopamine (DA) signaling are thought to mitigate onset of hypokinesia prior to major loss of tyrosine hydroxylase (TH) in striatum that occurs in Parkinson's disease. However, the identity of such mechanisms remains elusive. In the present study, the rat nigrostriatal pathway was unilaterally-lesioned with 6-hydroxydopamine (6-OHDA) to determine whether differences in DA content, TH protein, TH phosphorylation, or D1 receptor expression in striatum or substantia nigra (SN) aligned with hypokinesia onset and severity at two time points. In striatum, DA and TH loss reached its maximum (>90%) 7 days after lesion induction. However, in SN, no DA loss occurred, despite ∼60% TH loss. Hypokinesia was established at 21 days post-lesion and maintained at 28 days. At this time, DA loss was ∼60% in the SN, but still of lesser magnitude than TH loss. At day 7 and 28, ser31 TH phosphorylation increased only in SN, corresponding to less DA versus TH protein loss. In contrast, ser40 TH phosphorylation was unaffected in either region. Despite DA loss in both regions at day 28, D1 receptor expression increased only in lesioned SN. These results support the concept that augmented components of DA signaling in the SN, through increased ser31 TH phosphorylation and D1 receptor expression, contribute as compensatory mechanisms against progressive nigrostriatal neuron and TH protein loss, and may mitigate hypokinesia severity.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Yoonhee Han
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Marla K Shifflet
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Walter Navarrete
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Robert McManus
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Caleb Parry
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Arturo Barahona
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Vicki A Nejtek
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85287, USA
| | - Jason R Richardson
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA.
| |
Collapse
|
6
|
Surmeier DJ, Zhai S, Cui Q, Simmons DV. Rethinking the network determinants of motor disability in Parkinson's disease. Front Synaptic Neurosci 2023; 15:1186484. [PMID: 37448451 PMCID: PMC10336242 DOI: 10.3389/fnsyn.2023.1186484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.
Collapse
Affiliation(s)
- Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | |
Collapse
|
7
|
Mazzeo F, Meccariello R, Guatteo E. Molecular and Epigenetic Aspects of Opioid Receptors in Drug Addiction and Pain Management in Sport. Int J Mol Sci 2023; 24:ijms24097831. [PMID: 37175536 PMCID: PMC10178540 DOI: 10.3390/ijms24097831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Opioids are substances derived from opium (natural opioids). In its raw state, opium is a gummy latex extracted from Papaver somniferum. The use of opioids and their negative health consequences among people who use drugs have been studied. Today, opioids are still the most commonly used and effective analgesic treatments for severe pain, but their use and abuse causes detrimental side effects for health, including addiction, thus impacting the user's quality of life and causing overdose. The mesocorticolimbic dopaminergic circuitry represents the brain circuit mediating both natural rewards and the rewarding aspects of nearly all drugs of abuse, including opioids. Hence, understanding how opioids affect the function of dopaminergic circuitry may be useful for better knowledge of the process and to develop effective therapeutic strategies in addiction. The aim of this review was to summarize the main features of opioids and opioid receptors and focus on the molecular and upcoming epigenetic mechanisms leading to opioid addiction. Since synthetic opioids can be effective for pain management, their ability to induce addiction in athletes, with the risk of incurring doping, is also discussed.
Collapse
Affiliation(s)
- Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples "Parthenope", 80133 Naples, Italy
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
| | - Ezia Guatteo
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
- IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
8
|
Modulation of nigral dopamine signaling mitigates parkinsonian signs of aging: evidence from intervention with calorie restriction or inhibition of dopamine uptake. GeroScience 2023; 45:45-63. [PMID: 35635679 PMCID: PMC9886753 DOI: 10.1007/s11357-022-00583-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 02/03/2023] Open
Abstract
Identifying neurobiological mechanisms of aging-related parkinsonism, and lifestyle interventions that mitigate them, remain critical knowledge gaps. No aging study, from rodent to human, has reported loss of any dopamine (DA) signaling marker near the magnitude associated with onset of parkinsonian signs in Parkinson's disease (PD). However, in substantia nigra (SN), similar loss of DA signaling markers in PD or aging coincide with parkinsonian signs. Alleviation of these parkinsonian signs may be possible by interventions such as calorie restriction (CR), which augment DA signaling markers like tyrosine hydroxylase (TH) expression in the SN, but not striatum. Here, we interrogated respective contributions of nigral and striatal DA mechanisms to aging-related parkinsonian signs in aging (18 months old) rats in two studies: by the imposition of CR for 6 months, and inhibition of DA uptake within the SN or striatum by cannula-directed infusion of nomifensine. Parkinsonian signs were mitigated within 12 weeks after CR and maintained until 24 months old, commensurate with increased D1 receptor expression in the SN alone, and increased GDNF family receptor, GFR-α1, in the striatum, suggesting increased GDNF signaling. Nomifensine infusion into the SN or striatum selectively increased extracellular DA. However, only nigral infusion increased locomotor activity. These results indicate mechanisms that increase components of DA signaling in the SN alone mitigate parkinsonian signs in aging, and are modifiable by interventions, like CR, to offset parkinsonian signs, even at advanced age. Moreover, these results give evidence that changes in nigral DA signaling may modulate some parameters of locomotor activity autonomously from striatal DA signaling.
Collapse
|
9
|
Rice ME. Seeing a Tree Within the Forest: Selective Detection and Function of Somatodendritic Cholecystokinin Release From Dopamine Neurons in the Ventral Tegmental Area. Biol Psychiatry 2023; 93:110-112. [PMID: 36517176 DOI: 10.1016/j.biopsych.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Margaret E Rice
- Departments of Neurosurgery and Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York.
| |
Collapse
|
10
|
Le Gratiet KL, Anderson CK, Puente N, Grandes P, Copas C, Nahirney PC, Delaney KR, Nashmi R. Differential Subcellular Distribution and Release Dynamics of Cotransmitted Cholinergic and GABAergic Synaptic Inputs Modify Dopaminergic Neuronal Excitability. J Neurosci 2022; 42:8670-8693. [PMID: 36195440 PMCID: PMC9671585 DOI: 10.1523/jneurosci.2514-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
We identified three types of monosynaptic cholinergic inputs spatially arranged onto medial substantia nigra dopaminergic neurons in male and female mice: cotransmitted acetylcholine (ACh)/GABA, GABA-only, and ACh only. There was a predominant GABA-only conductance along lateral dendrites and soma-centered ACh/GABA cotransmission. In response to repeated stimulation, the GABA conductance found on lateral dendrites decremented less than the proximally located GABA conductance, and was more effective at inhibiting action potentials. While soma-localized ACh/GABA cotransmission showed depression of the GABA component with repeated stimulation, ACh-mediated nicotinic responses were largely maintained. We investigated whether this differential change in inhibitory/excitatory inputs leads to altered neuronal excitability. We found that a depolarizing current or glutamate preceded by cotransmitted ACh/GABA was more effective in eliciting an action potential compared with current, glutamate, or ACh/GABA alone. This enhanced excitability was abolished with nicotinic receptor inhibitors, and modulated by T- and L-type calcium channels, thus establishing that activity of multiple classes of ion channels integrates to shape neuronal excitability.SIGNIFICANCE STATEMENT Our laboratory has previously discovered a population of substantia nigra dopaminegic neurons (DA) that receive cotransmitted ACh and GABA. This study used subcellular optogenetic stimulation of cholinergic presynaptic terminals to map the functional ACh and GABA synaptic inputs across the somatodendritic extent of substantia nigra DA neurons. We determined spatially clustered GABA-only inputs on the lateral dendrites while cotransmitted ACh and GABA clustered close to the soma. We have shown that the action of GABA and ACh in cotransmission spatially clustered near the soma play a critical role in enhancing glutamate-mediated neuronal excitability through the activation of T- and L-type voltage-gated calcium channels.
Collapse
Affiliation(s)
| | | | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country Universidad del Pais Vasco / Euskal Herriko Unibertsitatea, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, E-48940, Leioa, Spain
| | - Charlotte Copas
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Patrick C Nahirney
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Kerry R Delaney
- Department of Biology
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Raad Nashmi
- Department of Biology
- Division of Medical Sciences
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
11
|
Brandi E, Torres-Garcia L, Svanbergsson A, Haikal C, Liu D, Li W, Li JY. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Front Aging Neurosci 2022; 14:910988. [PMID: 36092814 PMCID: PMC9459169 DOI: 10.3389/fnagi.2022.910988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia cells are the macrophage population within the central nervous system, which acts as the first line of the immune defense. These cells present a high level of heterogeneity among different brain regions regarding morphology, cell density, transcriptomes, and expression of different inflammatory mediators. This region-specific heterogeneity may lead to different neuroinflammatory responses, influencing the regional involvement in several neurodegenerative diseases. In this study, we aimed to evaluate microglial response in 16 brain regions. We compared different aspects of the microglial response, such as the extension of their morphological changes, sensitivity, and ability to convert an acute inflammatory response to a chronic one. Then, we investigated the synaptic alterations followed by acute and chronic inflammation in substantia nigra. Moreover, we estimated the effect of partial ablation of fractalkine CX3C receptor 1 (CX3CR1) on microglial response. In the end, we briefly investigated astrocytic heterogeneity and activation. To evaluate microglial response in different brain regions and under the same stimulus, we induced a systemic inflammatory reaction through a single intraperitoneal (i.p.) injection of lipopolysaccharides (LPS). We performed our study using C57BL6 and CX3CR1+/GFP mice to investigate microglial response in different regions and the impact of CX3CR1 partial ablation. We conducted a topographic study quantifying microglia alterations in 16 brain regions through immunohistochemical examination and computational image analysis. Assessing Iba1-immunopositive profiles and the density of the microglia cells, we have observed significant differences in region-specific responses of microglia populations in all parameters considered. Our results underline the peculiar microglial inflammation in the substantia nigra pars reticulata (SNpr). Here and in concomitance with the acute inflammatory response, we observed a transient decrease of dopaminergic dendrites and an alteration of the striato-nigral projections. Additionally, we found a significant decrease in microglia response and the absence of chronic inflammation in CX3CR1+/GFP mice compared to the wild-type ones, suggesting the CX3C axis as a possible pharmacological target against neuroinflammation induced by an increase of systemic tumor necrosis factor-alpha (TNFα) or/and LPS. Finally, we investigated astrocytic heterogeneity in this model. We observed different distribution and morphology of GFAP-positive astrocytes, a heterogeneous response under inflammatory conditions, and a decrease in their activation in CX3CR1 partially ablated mice compared with C57BL6 mice. Altogether, our data confirm that microglia and astrocytes heterogeneity lead to a region-specific inflammatory response in presence of a systemic TNFα or/and LPS treatment.
Collapse
Affiliation(s)
- Edoardo Brandi
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Di Liu
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
- *Correspondence: Jia-Yi Li, ,
| |
Collapse
|
12
|
Hikima T, Witkovsky P, Khatri L, Chao MV, Rice ME. Synaptotagmins 1 and 7 Play Complementary Roles in Somatodendritic Dopamine Release. J Neurosci 2022; 42:3919-3930. [PMID: 35361702 PMCID: PMC9097777 DOI: 10.1523/jneurosci.2416-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.
Collapse
Affiliation(s)
- Takuya Hikima
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
| | - Moses V Chao
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
13
|
Dagher M, Perrotta KA, Erwin SA, Hachisuka A, Iyer R, Masmanidis SC, Yang H, Andrews AM. Optogenetic Stimulation of Midbrain Dopamine Neurons Produces Striatal Serotonin Release. ACS Chem Neurosci 2022; 13:946-958. [PMID: 35312275 PMCID: PMC9040469 DOI: 10.1021/acschemneuro.1c00715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Targeting neurons with light-driven opsins is widely used to investigate cell-specific responses. We transfected midbrain dopamine neurons with the excitatory opsin Chrimson. Extracellular basal and stimulated neurotransmitter levels in the dorsal striatum were measured by microdialysis in awake mice. Optical activation of dopamine cell bodies evoked terminal dopamine release in the striatum. Multiplexed analysis of dialysate samples revealed that the evoked dopamine was accompanied by temporally coupled increases in striatal 3-methoxytyramine, an extracellular dopamine metabolite, and in serotonin. We investigated a mechanism for dopamine-serotonin interactions involving striatal dopamine receptors. However, the evoked serotonin associated with optical stimulation of dopamine neurons was not abolished by striatal D1- or D2-like receptor inhibition. Although the mechanisms underlying the coupling of striatal dopamine and serotonin remain unclear, these findings illustrate advantages of multiplexed measurements for uncovering functional interactions between neurotransmitter systems. Furthermore, they suggest that the output of optogenetic manipulations may extend beyond opsin-expressing neuronal populations.
Collapse
Affiliation(s)
- Merel Dagher
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Katie A. Perrotta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Sara A. Erwin
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Ayaka Hachisuka
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Rahul Iyer
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, 94720
| | - Sotiris C. Masmanidis
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Hongyan Yang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Anne M. Andrews
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, United States
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
14
|
Lebowitz JJ, Trinkle M, Bunzow JR, Balcita-Pedicino JJ, Hetelekides S, Robinson B, De La Torre S, Aicher SA, Sesack SR, Williams JT. Subcellular localization of D2 receptors in the murine substantia nigra. Brain Struct Funct 2022; 227:925-941. [PMID: 34854963 PMCID: PMC8930450 DOI: 10.1007/s00429-021-02432-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
G-protein-coupled D2 autoreceptors expressed on dopamine neurons (D2Rs) inhibit transmitter release and cell firing at axonal endings and somatodendritic compartments. Mechanistic details of somatodendritic dopamine release remain unresolved, partly due to insufficient information on the subcellular distribution of D2Rs. Previous studies localizing D2Rs have been hindered by a dearth of antibodies validated for specificity in D2R knockout animals and have been limited by the small sampling areas imaged by electron microscopy. This study utilized sub-diffraction fluorescence microscopy and electron microscopy to examine D2 receptors in a superecliptic pHlourin GFP (SEP) epitope-tagged D2 receptor knockin mouse. Incubating live slices with an anti-SEP antibody achieved the selective labeling of plasma membrane-associated receptors for immunofluorescent imaging over a large area of the substantia nigra pars compacta (SNc). SEP-D2Rs appeared as puncta-like structures along the surface of dendrites and soma of dopamine neurons visualized by antibodies to tyrosine hydroxylase (TH). TH-associated SEP-D2Rs displayed a cell surface density of 0.66 puncta/µm2, which corresponds to an average frequency of 1 punctum every 1.50 µm. Separate ultrastructural experiments using silver-enhanced immunogold revealed that membrane-bound particles represented 28% of total D2Rs in putative dopamine cells within the SNc. Structures immediately adjacent to dendritic membrane gold particles were unmyelinated axons or axon varicosities (40%), astrocytes (19%), other dendrites (7%), or profiles unidentified (34%) in single sections. Some apposed profiles also expressed D2Rs. Fluorescent and ultrastructural analyses also provided the first visualization of membrane D2Rs at the axon initial segment, a compartment critical for action potential generation. The punctate appearance of anti-SEP staining indicates there is a population of D2Rs organized in discrete signaling sites along the plasma membrane, and for the first time, a quantitative estimate of spatial frequency is provided.
Collapse
Affiliation(s)
- Joseph J Lebowitz
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Mason Trinkle
- Departments of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - James R Bunzow
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | | | - Savas Hetelekides
- Departments of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Brooks Robinson
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Santiago De La Torre
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sue A Aicher
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Susan R Sesack
- Departments of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Departments of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
15
|
Lloyd JT, Yee AG, Kalligappa PK, Jabed A, Cheung PY, Todd KL, Karunasinghe RN, Vlajkovic SM, Freestone PS, Lipski J. Dopamine dysregulation and altered responses to drugs affecting dopaminergic transmission in a new dopamine transporter knockout (DAT-KO) rat model. Neuroscience 2022; 491:43-64. [DOI: 10.1016/j.neuroscience.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022]
|
16
|
Hobson BD, Kong L, Angelo MF, Lieberman OJ, Mosharov EV, Herzog E, Sulzer D, Sims PA. Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Rep 2022; 38:110208. [PMID: 35021090 PMCID: PMC8844886 DOI: 10.1016/j.celrep.2021.110208] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Midbrain dopaminergic (mDA) neurons exhibit extensive dendritic and axonal arborizations, but local protein synthesis is not characterized in these neurons. Here, we investigate messenger RNA (mRNA) localization and translation in mDA neuronal axons and dendrites, both of which release dopamine (DA). Using highly sensitive ribosome-bound RNA sequencing and imaging approaches, we find no evidence for mRNA translation in mDA axons. In contrast, mDA neuronal dendrites in the substantia nigra pars reticulata (SNr) contain ribosomes and mRNAs encoding the major components of DA synthesis, release, and reuptake machinery. Surprisingly, we also observe dendritic localization of mRNAs encoding synaptic vesicle-related proteins, including those involved in exocytic fusion. Our results are consistent with a role for local translation in the regulation of DA release from dendrites, but not from axons. Our translatome data define a molecular signature of sparse mDA neurons in the SNr, including the enrichment of Atp2a3/SERCA3, an atypical ER calcium pump.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Linghao Kong
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA
| | - Maria Florencia Angelo
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Ori J Lieberman
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Etienne Herzog
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France.
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
17
|
Hikima T, Lee CR, Witkovsky P, Chesler J, Ichtchenko K, Rice ME. Activity-dependent somatodendritic dopamine release in the substantia nigra autoinhibits the releasing neuron. Cell Rep 2021; 35:108951. [PMID: 33826884 PMCID: PMC8189326 DOI: 10.1016/j.celrep.2021.108951] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Somatodendritic dopamine (DA) release from midbrain DA neurons activates D2 autoreceptors on these cells to regulate their activity. However, the source of autoregulatory DA remains controversial. Here, we test the hypothesis that D2 autoreceptors on a given DA neuron in the substantia nigra pars compacta (SNc) are activated primarily by DA released from that same cell, rather than from its neighbors. Voltage-clamp recording allows monitoring of evoked D2-receptor-mediated inhibitory currents (D2ICs) in SNc DA neurons as an index of DA release. Single-cell application of antibodies to Na+ channels via the recording pipette decreases spontaneous activity of recorded neurons and attenuates evoked D2ICs; antibodies to SNAP-25, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, also decrease D2IC amplitude. Evoked D2ICs are nearly abolished by the light chain of botulinum neurotoxin A, which cleaves SNAP-25, whereas synaptically activated GABAB-receptor-mediated currents are unaffected. Thus, somatodendritic DA release in the SNc autoinhibits the neuron that releases it.
Collapse
Affiliation(s)
- Takuya Hikima
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christian R Lee
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Chesler
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Konstantin Ichtchenko
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
18
|
Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020; 9:cells9092045. [PMID: 32911641 PMCID: PMC7564460 DOI: 10.3390/cells9092045] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Degeneration of substantia nigra (SN) dopaminergic (DAergic) neurons is responsible for the core motor deficits of Parkinson’s disease (PD). These neurons are autonomous pacemakers that have large cytosolic Ca2+ oscillations that have been linked to basal mitochondrial oxidant stress and turnover. This review explores the origin of Ca2+ oscillations and their role in the control of mitochondrial respiration, bioenergetics, and mitochondrial oxidant stress.
Collapse
|
19
|
Ted Sourkes, Moussa Youdim and I. J Neural Transm (Vienna) 2020; 127:119-123. [DOI: 10.1007/s00702-019-02135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
|
20
|
Goaillard JM, Moubarak E, Tapia M, Tell F. Diversity of Axonal and Dendritic Contributions to Neuronal Output. Front Cell Neurosci 2020; 13:570. [PMID: 32038171 PMCID: PMC6987044 DOI: 10.3389/fncel.2019.00570] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
Our general understanding of neuronal function is that dendrites receive information that is transmitted to the axon, where action potentials (APs) are initiated and propagated to eventually trigger neurotransmitter release at synaptic terminals. Even though this canonical division of labor is true for a number of neuronal types in the mammalian brain (including neocortical and hippocampal pyramidal neurons or cerebellar Purkinje neurons), many neuronal types do not comply with this classical polarity scheme. In fact, dendrites can be the site of AP initiation and propagation, and even neurotransmitter release. In several interneuron types, all functions are carried out by dendrites as these neurons are devoid of a canonical axon. In this article, we present a few examples of "misbehaving" neurons (with a non-canonical polarity scheme) to highlight the diversity of solutions that are used by mammalian neurons to transmit information. Moreover, we discuss how the contribution of dendrites and axons to neuronal excitability may impose constraints on the morphology of these compartments in specific functional contexts.
Collapse
Affiliation(s)
- Jean-Marc Goaillard
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Estelle Moubarak
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Mónica Tapia
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Fabien Tell
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| |
Collapse
|
21
|
A dopaminergic mechanism of antipsychotic drug efficacy, failure, and failure reversal: the role of the dopamine transporter. Mol Psychiatry 2020; 25:2101-2118. [PMID: 30038229 PMCID: PMC7473845 DOI: 10.1038/s41380-018-0114-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022]
Abstract
Antipsychotic drugs are effective interventions in schizophrenia. However, the efficacy of these agents often decreases over time, which leads to treatment failure and symptom recurrence. We report that antipsychotic efficacy in rat models declines in concert with extracellular striatal dopamine levels rather than insufficient dopamine D2 receptor occupancy. Antipsychotic efficacy was associated with a suppression of dopamine transporter activity, which was reversed during failure. Antipsychotic failure coincided with reduced dopamine neuron firing, which was not observed during antipsychotic efficacy. Synaptic field responses in dopamine target areas declined during antipsychotic efficacy and showed potentiation during failure. Antipsychotics blocked synaptic vesicle release during efficacy but enhanced this release during failure. We found that the pharmacological inhibition of the dopamine transporter rescued antipsychotic drug treatment outcomes, supporting the hypothesis that the dopamine transporter is a main target of antipsychotic drugs and predicting that dopamine transporter blockers may be an adjunct treatment to reverse antipsychotic treatment failure.
Collapse
|
22
|
Faynveitz A, Lavian H, Jacob A, Korngreen A. Proliferation of Inhibitory Input to the Substantia Nigra in Experimental Parkinsonism. Front Cell Neurosci 2019; 13:417. [PMID: 31572130 PMCID: PMC6753199 DOI: 10.3389/fncel.2019.00417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
The substantia nigra pars reticulata (SNr) is one of the output nuclei of the basal ganglia (BG) and plays a vital role in movement execution. Death of dopaminergic neurons in the neighboring nucleus, the substantia nigra pars compacta (SNc), leads to Parkinson's disease. The ensuing dopamine depletion affects all BG nuclei. However, the long-term effects of dopamine depletion on BG output are less characterized. In this in vitro study, we applied electrophysiological and immunohistochemical techniques to investigate the long-term effects of dopamine depletion on GABAergic transmission to the SNr. The findings showed a reduction in firing rate and regularity in SNr neurons after unilateral dopamine depletion with 6-OHDA, which we associate with homeostatic mechanisms. The strength of the GABAergic synapses between the globus pallidus (GP) and the SNr increased but not their short-term dynamics. Consistent with this observation, there was an increase in the frequency and amplitude of spontaneous inhibitory synaptic events to SNr neurons. Immunohistochemistry revealed an increase in the density of vGAT-labeled puncta in dopamine depleted animals. Overall, these results may suggest that synaptic proliferation can explain how dopamine depletion augments GABAergic transmission in the SNr.
Collapse
Affiliation(s)
- Anna Faynveitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Hagar Lavian
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Alon Korngreen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
23
|
Yang J, Xiao Y, Li L, He Q, Li M, Shu Y. Biophysical Properties of Somatic and Axonal Voltage-Gated Sodium Channels in Midbrain Dopaminergic Neurons. Front Cell Neurosci 2019; 13:317. [PMID: 31354436 PMCID: PMC6636218 DOI: 10.3389/fncel.2019.00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/27/2019] [Indexed: 01/14/2023] Open
Abstract
Spiking activities of midbrain dopaminergic neurons are critical for key brain functions including motor control and affective behaviors. Voltage-gated Na+ channels determine neuronal excitability and action potential (AP) generation. Previous studies on dopaminergic neuron excitability mainly focused on Na+ channels at the somatodendritic compartments. Properties of axonal Na+ channels, however, remain largely unknown. Using patch-clamp recording from somatic nucleated patches and isolated axonal blebs from the axon initial segment (AIS) of dopaminergic neurons in mouse midbrain slices, we found that AIS channel density is approximately 4–9 fold higher than that at the soma. Similar voltage dependence of channel activation and inactivation was observed between somatic and axonal channels in both SNc and VTA cells, except that SNc somatic channels inactivate at more hyperpolarized membrane potentials (Vm). In both SNc and VTA, axonal channels take longer time to inactivate at a subthreshold depolarization Vm level, but are faster to recover from inactivation than somatic channels. Moreover, we found that immunosignals of Nav1.2 accumulate at the AIS of dopaminergic neurons. In contrast, Nav1.1 and Nav1.6 immunosignals are not detectible. Together, our results reveal a high density of Na+ channels at the AIS and their molecular identity. In general, somatic and axonal channels of both SNc and VTA dopaminergic neurons share similar biophysical properties. The relatively delayed inactivation onset and faster recovery from inactivation of axonal Na+ channels may ensure AP initiation at high frequencies and faithful signal conduction along the axon.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yujie Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liang Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Quansheng He
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Min Li
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
24
|
West KS, Lu C, Olson DP, Roseberry AG. Alpha-melanocyte stimulating hormone increases the activity of melanocortin-3 receptor-expressing neurons in the ventral tegmental area. J Physiol 2019; 597:3217-3232. [PMID: 31054267 DOI: 10.1113/jp277193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/19/2019] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Alpha-melanocyte stimulating hormone (α-MSH) is an anorexigenic peptide. Injection of the α-MSH analog MTII into the ventral tegmental area (VTA) decreases food and sucrose intake and food reward. Melanocortin-3 receptors (MC3R) are highly expressed in the VTA, suggesting that the effects of intra-VTA α-MSH may be mediated by α-MSH changing the activity of MC3R-expressing VTA neurons. α-MSH increased the firing rate of MC3R VTA neurons in acute brain slices from mice, although it did not affect the firing rate of non-MC3R VTA neurons. The α-MSH induced increase in MC3R neuron firing rate is probably activity-dependent, and was independent of fast synaptic transmission and intracellular Ca2+ levels. These results help us to better understand how α-MSH acts in the VTA to affect feeding and other dopamine-dependent behaviours. ABSTRACT The mesocorticolimbic dopamine system, the brain's reward system, regulates multiple behaviours, including food intake and food reward. There is substantial evidence that the melanocortin system of the hypothalamus, an important neural circuit controlling feeding and body weight, interacts with the mesocorticolimbic dopamine system to affect feeding, food reward and body weight. For example, melanocortin-3 receptors (MC3Rs) are expressed in the ventral tegmental area (VTA) and our laboratory previously showed that intra-VTA injection of the MC3R agonist, MTII, decreases home-cage food intake and operant responding for sucrose pellets. However, the cellular mechanisms underlying the effects of intra-VTA alpha-melanocyte stimulating hormone (α-MSH) on feeding and food reward are unknown. To determine how α-MSH acts in the VTA to affect feeding, we performed electrophysiological recordings in acute brain slices from mice expressing enhanced yellow fluorescent protein in MC3R neurons to test how α-MSH affects the activity of VTA MC3R neurons. α-MSH significantly increased the firing rate of VTA MC3R neurons without altering the activity of non-MC3R expressing VTA neurons. In addition, the α-MSH-induced increase in MC3R neuron activity was independent of fast synaptic transmission and intracellular Ca2+ levels. Finally, we show that the effect of α-MSH on MC3R neuron firing rate is probably activity-dependent. Overall, these studies provide an important advancement in the understanding of how α-MSH acts in the VTA to affect feeding and food reward.
Collapse
Affiliation(s)
| | - Chunxia Lu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - David P Olson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Aaron G Roseberry
- Department of Biology.,Neuroscience Institute, , Georgia State University, Atlanta, GA, USA
| |
Collapse
|
25
|
Briones-Lizardi LJ, Cortés H, Avalos-Fuentes JA, Paz-Bermúdez FJ, Aceves J, Erlij D, Florán B. Presynaptic control of [3H]-glutamate release by dopamine receptor subtypes in the rat substantia nigra. Central role of D1 and D3 receptors. Neuroscience 2019; 406:563-579. [DOI: 10.1016/j.neuroscience.2019.03.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
|
26
|
Yee AG, Forbes B, Cheung PY, Martini A, Burrell MH, Freestone PS, Lipski J. Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta. J Neurochem 2018; 148:462-479. [PMID: 30203851 DOI: 10.1111/jnc.14587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/09/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
Abstract
Despite the importance of somatodendritic dopamine (DA) release in the Substantia Nigra pars compacta (SNc), its mechanism remains poorly understood. Using a novel approach combining fast-scan controlled-adsorption voltammetry (FSCAV) and single-unit electrophysiology, we have investigated the mechanism of somatodendritic release by directly correlating basal (non-stimulated) extracellular DA concentration ([DA]out ), with pharmacologically-induced changes of firing of nigral dopaminergic neurons in rat brain slices. FSCAV measurements indicated that basal [DA]out in the SNc was 40.7 ± 2.0 nM (at 34 ± 0.5°C), which was enhanced by amphetamine, cocaine, and L-DOPA, and reduced by VMAT2 inhibitor, Ro4-1284. Complete inhibition of firing by TTX decreased basal [DA]out , but this reduction was smaller than the effect of D2 receptor agonist, quinpirole. Despite similar effects on neuronal firing, the larger decrease in [DA]out evoked by quinpirole was attributed to cell membrane hyperpolarization and greater reduction in cytosolic free Ca2+ ([Ca2+ ]in ). Decreasing extracellular Ca2+ also reduced basal [DA]out , despite increasing firing frequency. Furthermore, inhibiting L-type Ca2+ channels decreased basal [DA]out , although specific Cav 1.3 channel inhibition did not affect firing rate. Inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) also decreased [DA]out , demonstrating the importance of intracellular Ca2+ stores for somatodendritic release. Finally, in vivo FSCAV measurements showed that basal [DA]out in the SNc was 79.8 ± 10.9 nM in urethane-anesthetized rats, which was enhanced by amphetamine. Overall, our findings indicate that although tonic somatodendritic DA release is largely independent of action potentials, basal [DA]out is strongly regulated by voltage-dependent Ca2+ influx and release of intracellular Ca2+ . OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Andrew G Yee
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Blaze Forbes
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Pang-Ying Cheung
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Mark H Burrell
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Peter S Freestone
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Janusz Lipski
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Guo XZ, Shan C, Hou YF, Zhu G, Tao B, Sun LH, Zhao HY, Ning G, Li ST, Liu JM. Osteocalcin Ameliorates Motor Dysfunction in a 6-Hydroxydopamine-Induced Parkinson's Disease Rat Model Through AKT/GSK3β Signaling. Front Mol Neurosci 2018; 11:343. [PMID: 30319352 PMCID: PMC6170617 DOI: 10.3389/fnmol.2018.00343] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Osteoblasts derived osteocalcin (OCN) is recently reported to be involved in dopaminergic neuronal development. As dopaminergic neuronal injury in the substantia nigra (SN) is a pathological hallmark of Parkinson’s disease (PD), we investigated whether OCN could exert protective effects on 6-hydroxydopamine (6-OHDA)-induced PD rat model. Our data showed that the OCN level in the cerebrospinal fluid (CSF) in PD rat models was significantly lower than that in controls. Intervention with OCN could improve the behavioral dysfunction in PD rat models and reduce the tyrosine hydroxylase (TH) loss in the nigrostriatal system. In addition, OCN could inhibit the astrocyte and microglia proliferation in the SN of PD rats. In vitro studies showed that OCN significantly ameliorated the neurotoxicity of 6-OHDA through the AKT/GSK3β signaling pathway. In summary, OCN plays a protective role against parkinsonian neurodegeneration in the PD rat model, suggesting a potential therapeutic use of OCN in PD.
Collapse
Affiliation(s)
- Xing-Zhi Guo
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Chang Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Yan-Fang Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Geng Zhu
- Bio-X Institutes, Key laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Li-Hao Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Hong-Yan Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Sheng-Tian Li
- Bio-X Institutes, Key laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Min Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rujin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| |
Collapse
|
28
|
Salvatore MF, McInnis TR, Cantu MA, Apple DM, Pruett BS. Tyrosine Hydroxylase Inhibition in Substantia Nigra Decreases Movement Frequency. Mol Neurobiol 2018; 56:2728-2740. [PMID: 30056575 DOI: 10.1007/s12035-018-1256-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Reduced movement frequency or physical activity (bradykinesia) occurs with high prevalence in the elderly. However, loss of striatal tyrosine hydroxylase (TH) in aging humans, non-human primates, or rodents does not reach the ~ 80% loss threshold associated with bradykinesia onset in Parkinson's disease. Moderate striatal dopamine (DA) loss, either following TH inhibition or decreased TH expression, may not affect movement frequency. In contrast, moderate DA or TH loss in the substantia nigra (SN), as occurs in aging, is of similar magnitude (~ 40%) to nigral TH loss at bradykinesia onset in Parkinson's disease. In aged rats, increased TH expression and DA in SN alone increases movement frequency, suggesting aging-related TH and DA loss in the SN contributes to aging-related bradykinesia or decreased physical activity. To test this hypothesis, the SN was targeted with bilateral guide cannula in young (6 months old) rats, in a within-subjects design, to evaluate the impact of nigral TH inhibition on movement frequency and speed. The TH inhibitor, α-methyl-p-tyrosine (AMPT) reduced nigral DA (~ 40%) 45-150 min following infusion, without affecting DA in striatum, nucleus accumbens, or adjacent ventral tegmental area. Locomotor activity in the open-field was recorded up to 3 h following nigral saline or AMPT infusion in each test subject. During the period of nigra-specific DA reduction, movement frequency, but not movement speed, was significantly decreased. These results indicate that DA or TH loss in the SN, as observed in aging, contributes as a central mechanism of reduced movement frequency.
Collapse
Affiliation(s)
- Michael F Salvatore
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Tamara R McInnis
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Mark A Cantu
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Deana M Apple
- Department of Cell Systems and Anatomy, Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Brandon S Pruett
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA.,Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| |
Collapse
|
29
|
Del-Bel E, De-Miguel FF. Extrasynaptic Neurotransmission Mediated by Exocytosis and Diffusive Release of Transmitter Substances. Front Synaptic Neurosci 2018; 10:13. [PMID: 29937726 PMCID: PMC6003215 DOI: 10.3389/fnsyn.2018.00013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
This review article deals with the mechanisms of extrasynaptic release of transmitter substances, namely the release from the soma, axon and dendrites in the absence of postsynaptic counterparts. Extrasynaptic release occurs by exocytosis or diffusion. Spillover from the synaptic cleft also contributes to extrasynaptic neurotransmission. Here, we first describe two well-known examples of exocytosis from the neuronal soma, which may release copious amounts of transmitter for up to hundreds of seconds after electrical stimulation. The mechanisms for somatic exocytosis of the low molecular weight transmitter serotonin, and the peptides oxytocin and vasopressin have been studied in detail. Serotonin release from leech neurons and oxytocin and vasopressin from rodent neurons have a common multi-step mechanism, which is completely different from that for exocytosis from presynaptic endings. Most transmitters and peptides released extrasynaptically seem to follow this same mechanism. Extrasynaptic exocytosis may occur onto glial cells, which act as intermediaries for long-term and long-distance transmission. The second part of this review article focuses on the release upon synthesis of the representative diffusible molecules nitric oxide (NO) and endocannabinoids. Diffusible molecules are synthesized “on demand” from postsynaptic terminals in response to electrical activity and intracellular calcium elevations. Their effects include the retrograde modulation of presynaptic electrical activity and transmitter release. Extrasynaptic neurotransmission is well exemplified in the retina. Light-evoked extrasynaptic communication sets the gain for visual responses and integrates the activity of neurons, glia and blood vessels. Understanding how extrasynaptic communication changes the function of hard-wired circuits has become fundamental to understand the function of the nervous system.
Collapse
Affiliation(s)
- Elaine Del-Bel
- Department of Morphology Physiology and Basic Pathology, Dental School of Ribeirão Preto, USP-Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo (USP), São Paulo, Brazil
| | - Francisco F De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
30
|
Guidolin D, Marcoli M, Maura G, Agnati LF. New dimensions of connectomics and network plasticity in the central nervous system. Rev Neurosci 2018; 28:113-132. [PMID: 28030363 DOI: 10.1515/revneuro-2016-0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Abstract
Cellular network architecture plays a crucial role as the structural substrate for the brain functions. Therefore, it represents the main rationale for the emerging field of connectomics, defined as the comprehensive study of all aspects of central nervous system connectivity. Accordingly, in the present paper the main emphasis will be on the communication processes in the brain, namely wiring transmission (WT), i.e. the mapping of the communication channels made by cell components such as axons and synapses, and volume transmission (VT), i.e. the chemical signal diffusion along the interstitial brain fluid pathways. Considering both processes can further expand the connectomics concept, since both WT-connectomics and VT-connectomics contribute to the structure of the brain connectome. A consensus exists that such a structure follows a hierarchical or nested architecture, and macro-, meso- and microscales have been defined. In this respect, however, several lines of evidence indicate that a nanoscale (nano-connectomics) should also be considered to capture direct protein-protein allosteric interactions such as those occurring, for example, in receptor-receptor interactions at the plasma membrane level. In addition, emerging evidence points to novel mechanisms likely playing a significant role in the modulation of intercellular connectivity, increasing the plasticity of the system and adding complexity to its structure. In particular, the roamer type of VT (i.e. the intercellular transfer of RNA, proteins and receptors by extracellular vesicles) will be discussed since it allowed us to introduce a new concept of 'transient changes of cell phenotype', that is the transient acquisition of new signal release capabilities and/or new recognition/decoding apparatuses.
Collapse
|
31
|
Ding S, Zhuge W, Hu J, Yang J, Wang X, Wen F, Wang C, Zhuge Q. Baicalin reverses the impairment of synaptogenesis induced by dopamine burden via the stimulation of GABA AR-TrkB interaction in minimal hepatic encephalopathy. Psychopharmacology (Berl) 2018; 235:1163-1178. [PMID: 29404643 PMCID: PMC5869945 DOI: 10.1007/s00213-018-4833-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 01/08/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND It has been reported that D1 receptor (D1R) activation reduces GABAA receptor (GABAAR) current, and baicalin (BAI) displays therapeutic efficacy in diseases involving cognitive impairment. METHODS We investigated the mechanisms by which BAI could improve DA-induced minimal hepatic encephalopathy (MHE) using immunoblotting, immunofluorescence, and co-immunoprecipitation. RESULTS BAI did not induce toxicity on the primary cultured neurons. And no obvious toxicity of BAI to the brain was found in rats. DA activated D1R/dopamine and adenosine 3'5'-monophosphate-regulated phospho-protein (DARPP32) to reduce the GABAAR current; BAI treatment did not change the D1R/DARPP32 levels but blocked DA-induced reduction of GABAAR levels in primary cultured neurons. DA decreased the interaction of GABAAR with TrkB and the expression of downstream AKT, which was blocked by BAI treatment. Moreover, BAI reversed the decrease in the expression of GABAAR/TrkB/AKT and prevented the impairment of synaptogenesis and memory deficits in MHE rats. CONCLUSIONS These results suggest that BAI has neuroprotective and synaptoprotective effects on MHE which are not related to upstream D1R/DARPP32 signaling, but to the targeting of downstream GABAAR signaling to TrkB.
Collapse
Affiliation(s)
- Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Weishan Zhuge
- Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Jiangnan Hu
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107 USA
| | - Jianjing Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Fangfang Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Chengde Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000 People’s Republic of China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
32
|
Salvatore MF, Terrebonne J, Cantu MA, McInnis TR, Venable K, Kelley P, Kasanga EA, Latimer B, Owens CL, Pruett BS, Yu Y, Luedtke R, Forster MJ, Sumien N, Ingram DK. Dissociation of Striatal Dopamine and Tyrosine Hydroxylase Expression from Aging-Related Motor Decline: Evidence from Calorie Restriction Intervention. J Gerontol A Biol Sci Med Sci 2017. [PMID: 28637176 DOI: 10.1093/gerona/glx119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The escalating increase in retirees living beyond their eighth decade brings increased prevalence of aging-related impairments, including locomotor impairment (Parkinsonism) that may affect ~50% of those reaching age 80, but has no confirmed neurobiological mechanism. Lifestyle strategies that attenuate motor decline, and its allied mechanisms, must be identified. Aging studies report little to moderate loss of striatal dopamine (DA) or tyrosine hydroxylase (TH) in nigrostriatal terminals, in contrast to ~70%-80% loss associated with bradykinesia onset in Parkinson's disease. These studies evaluated the effect of ~6 months 30% calorie restriction (CR) on nigrostriatal DA regulation and aging-related locomotor decline initiated at 12 months of age in Brown-Norway Fischer F1 hybrid rats. The aging-related decline in locomotor activity was prevented by CR. However, striatal DA or TH expression was decreased in the CR group, but increased in substantia nigra versus the ad libitum group or 12-month-old cohort. In a 4- to 6-month-old cohort, pharmacological TH inhibition reduced striatal DA ~30%, comparable with decreases reported in aged rats and the CR group, without affecting locomotor activity. The dissociation of moderate striatal DA reduction from locomotor activity seen in both studies suggests that aging-related decreases in striatal DA are dissociated from locomotor decline.
Collapse
Affiliation(s)
- Michael F Salvatore
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | | | - Mark A Cantu
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Tamara R McInnis
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Katy Venable
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Parker Kelley
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Ella A Kasanga
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Brian Latimer
- Louisiana State University Health Sciences Center-Shreveport
| | | | | | - Yongmei Yu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Robert Luedtke
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Michael J Forster
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Nathalie Sumien
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Donald K Ingram
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
33
|
Synaptic plasticity may underlie l-DOPA induced dyskinesia. Curr Opin Neurobiol 2017; 48:71-78. [PMID: 29125979 DOI: 10.1016/j.conb.2017.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/18/2017] [Indexed: 11/20/2022]
Abstract
l-DOPA provides highly effective treatment for Parkinson's disease, but l-DOPA induced dyskinesia (LID) is a very debilitating response that eventually is presented by a majority of patients. A central issue in understanding the basis of LID is whether it is due to a response to chronic l-DOPA over years of therapy, and/or due to synaptic changes that follow the loss of dopaminergic neurotransmission and then triggered by acute l-DOPA administration. We review recent work that suggests that specific synaptic changes in the D1 dopamine receptor-expressing direct pathway striatal projection neurons due to loss of dopamine in Parkinson's disease are responsible for LID. Chronic l-DOPA may nevertheless modulate LID through priming mechanisms.
Collapse
|
34
|
Abstract
Dendritic release of dopamine activates dopamine D2 autoreceptors, which are inhibitory G protein-coupled receptors (GPCRs), to decrease the excitability of dopamine neurons. This study used tagged D2 receptors to identify the localization and distribution of these receptors in living midbrain dopamine neurons. GFP-tagged D2 receptors were found to be unevenly clustered on the soma and dendrites of dopamine neurons within the substantia nigra pars compacta (SNc). Physiological signaling and desensitization of the tagged receptors were not different from wild type receptors. Unexpectedly, upon desensitization the tagged D2 receptors were not internalized. When tagged D2 receptors were expressed in locus coeruleus neurons, a desensitizing protocol induced significant internalization. Likewise, when tagged µ-opioid receptors were expressed in dopamine neurons they too were internalized. The distribution and lack of agonist-induced internalization of D2 receptors on dopamine neurons indicate a purposefully regulated localization of these receptors.
Collapse
|
35
|
Dopaminergic Modulation of Synaptic Integration and Firing Patterns in the Rat Entopeduncular Nucleus. J Neurosci 2017; 37:7177-7187. [PMID: 28652413 DOI: 10.1523/jneurosci.0639-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022] Open
Abstract
Dopamine is known to differentially modulate the impact of cortical input to the striatum between the direct and indirect pathways of the basal ganglia (BG). However, the role of extrastriatal dopamine receptors (DRs) in BG information processing is less clear. To investigate the role of extrastriatal DRs, we studied their distribution and function in one of the output nuclei of the BG of the rodent, the entopeduncular nucleus (EP). qRT-PCR indicated that all DR subtypes were expressed by EP neurons, suggesting that both D1-like receptors (D1LRs) and D2-like receptors (D2LRs) were likely to affect information processing in the EP. Whole-cell recordings revealed that striatal inputs to the EP were potentiated by D1LRs whereas pallidal inputs to the EP were depressed by D2LRs. Changes to the paired-pulse ratio of inputs to the EP suggested that dopaminergic modulation of striatal inputs is mediated by postsynaptic receptors, and that of globus pallidus-evoked inputs is mediated by presynaptic receptors. We show that these changes in synaptic efficacy changed the information content of EP neuron firing. Overall, the findings suggest that the dopaminergic system affects the passage of feedforward information through the BG by modulating input divergence in the striatum and output convergence in the EP.SIGNIFICANCE STATEMENT The entopeduncular nucleus (EP), one of the basal ganglia (BG) output nuclei, is an important station in information processing in BG. However, it remains unclear how EP neurons encode information and how dopamine affects this process. This contrasts with the well established role of dopamine in the striatum, which is known to redistribute cortical input between the direct and indirect pathways. Here we show that, in symmetry with the striatum, dopamine controls the rebalancing of information flow between the two pathways in the EP. Specifically, we demonstrate that dopamine regulates EP activity by differentially modulating striatal and pallidal GABAergic inputs. These results call for a reassessment of current perspectives on BG information processing by highlighting the functional role of extrastriatal dopamine receptors.
Collapse
|
36
|
Nagatomo K, Suga S, Saitoh M, Kogawa M, Kobayashi K, Yamamoto Y, Yamada K. Dopamine D1 Receptor Immunoreactivity on Fine Processes of GFAP-Positive Astrocytes in the Substantia Nigra Pars Reticulata of Adult Mouse. Front Neuroanat 2017; 11:3. [PMID: 28203148 PMCID: PMC5285371 DOI: 10.3389/fnana.2017.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Substantia nigra pars reticulata (SNr), the major output nucleus of the basal ganglia, receives dopamine from dendrites extending from dopaminergic neurons of the adjacent nucleus pars compacta (SNc), which is known for its selective degeneration in Parkinson's disease. As a recipient for dendritically released dopamine, the dopamine D1 receptor (D1R) is a primary candidate due to its very dense immunoreactivity in the SNr. However, the precise location of D1R remains unclear at the cellular level in the SNr except for that reported on axons/axon terminals of presumably striatal GABAergic neurons. To address this, we used D1R promotor-controlled, mVenus-expressing transgenic mice. When cells were acutely dissociated from SNr of mouse brain, prominent mVenus fluorescence was detected in fine processes of glia-like cells, but no such fluorescence was detected from neurons in the same preparation, except for the synaptic bouton-like structure on the neurons. Double immunolabeling of SNr cells dissociated from adult wild-type mice brain further revealed marked D1R immunoreactivity in the processes of glial fibrillary acidic protein (GFAP)-positive astrocytes. Such D1R imunoreactivity was significantly stronger in the SNr astrocytes than that in those of the visual cortex in the same preparation. Interestingly, GFAP-positive astrocytes dissociated from the striatum demonstrated D1R immunoreactivity, either remarkable or minimal, similarly to that shown in neurons in this nucleus. In contrast, in the SNr and visual cortex, only weak D1R immunoreactivity was detected in the neurons tested. These results suggest that the SNr astrocyte may be a candidate recipient for dendritically released dopamine. Further study is required to fully elucidate the physiological roles of divergent dopamine receptor immunoreactivity profiles in GFAP-positive astrocytes.
Collapse
Affiliation(s)
- Katsuhiro Nagatomo
- Department of Physiology, Hirosaki University Graduate School of Medicine Aomori, Japan
| | - Sechiko Suga
- Department of Physiology, Hirosaki University Graduate School of MedicineAomori, Japan; Department of Emergency Medical Technology, Hirosaki University of Health and WelfareAomori, Japan
| | - Masato Saitoh
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University Iwate, Japan
| | - Masahito Kogawa
- Department of Physiology, Hirosaki University Graduate School of Medicine Aomori, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University Iwate, Japan
| | - Katsuya Yamada
- Department of Physiology, Hirosaki University Graduate School of Medicine Aomori, Japan
| |
Collapse
|
37
|
Ludwig M, Apps D, Menzies J, Patel JC, Rice ME. Dendritic Release of Neurotransmitters. Compr Physiol 2016; 7:235-252. [PMID: 28135005 DOI: 10.1002/cphy.c160007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Apps
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - John Menzies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, New York, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, New York, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| |
Collapse
|
38
|
Agersnap M, Zhang MD, Harkany T, Hökfelt T, Rehfeld JF. Nonsulfated cholecystokinins in cerebral neurons. Neuropeptides 2016; 60:37-44. [PMID: 27535680 DOI: 10.1016/j.npep.2016.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/25/2022]
Abstract
Cholecystokinin (CCK) is a widely expressed neuropeptide system originally discovered in the gut. Both cerebral and peripheral neurons as well as endocrine I-cells in the small intestine process proCCK to tyrosyl-O-sulfated and α-carboxyamidated peptides. Recently, we reported that gut endocrine I-cells also synthetize nonsulfated CCK in significant amounts. Accordingly, we have now examined whether porcine and rat cerebral tissues (four cortical regions, hypothalamus and cerebellum) also synthesize nonsulfated CCK. A new, specific radioimmunoassay showed that all brain samples from pigs (n=15) and rats (n=6) contained nonsulfated CCK. The highest concentrations were measured in the neocortex; 4.7±0.25pmol/g (7.4%) in the rat and 4.3±1.88pmol/g (2.3%) in the pig. Chromatography of porcine cortical extracts revealed that 96.4% of the CCK was O-sulfated CCK-8. A higher fraction of the larger peptides (CCK-58 and CCK-33) was nonsulfated in comparison with the shorter forms (CCK-22 and CCK-8), i.e., 8.1% and 4.3% versus 0.9% and 1.5%. Immunohistochemical analysis of the rat brain showed an overall similar distribution pattern in selected regions when comparing the antibody specific for nonsulfated CCK-8 with an antibody recognizing both sulfated and nonsulfated CCK. However, nonsulfated CCK immunoreactivity was stronger than that of sulfated CCK in cell bodies and weaker in nerve terminals. We conclude that only a small fraction of neuronal CCK is nonsulfated. The intracellular distribution of nonsulfated CCK in neurons suggests that they contribute only modestly to the CCK transmitter activity.
Collapse
Affiliation(s)
- Mikkel Agersnap
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ming-Dong Zhang
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tibor Harkany
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
39
|
Dorsal root ganglion neurons and tyrosine hydroxylase--an intriguing association with implications for sensation and pain. Pain 2016; 157:314-320. [PMID: 26447702 DOI: 10.1097/j.pain.0000000000000381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Salvatore MF, Calipari ES, Jones SR. Regulation of Tyrosine Hydroxylase Expression and Phosphorylation in Dopamine Transporter-Deficient Mice. ACS Chem Neurosci 2016; 7:941-51. [PMID: 27124386 DOI: 10.1021/acschemneuro.6b00064] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tyrosine hydroxylase (TH) and dopamine transporters (DATs) regulate dopamine (DA) neurotransmission at the biosynthesis and reuptake steps, respectively. Dysfunction or loss of these proteins occurs in impaired locomotor or addictive behavior, but little is known about the influence of DAT expression on TH function. Differences in TH phosphorylation, DA tissue content, l-DOPA biosynthesis, and DA turnover exist between the somatodendritic and terminal field compartments of nigrostriatal and mesoaccumbens pathways. We examined whether differential DAT expression affects these compartmental differences in DA regulation by comparing TH expression and phosphorylation at ser31 and ser40. In heterozygous DAT knockout (KO) (+/-) mice, DA tissue content and DA turnover were unchanged relative to wild-type mice, despite a 40% reduction in DAT protein expression. In DAT KO (-/-) mice, DA turnover increased in all DA compartments, but DA tissue content decreased (90-96%) only in terminal fields. TH protein expression and phosphorylation were differentially affected within DA pathway compartments by relative expression of DAT. TH protein decreased (∼74%), though to a significantly lesser extent than DA, in striatum and nucleus accumbens (NAc) in DAT -/- mice, with no decrease in substantia nigra or ventral tegmental area. Striatal ser31 TH phosphorylation and recovery of DA relative to TH protein expression in DAT +/- and DAT -/- mice decreased, whereas ser40 TH phosphorylation increased ∼2- to 3-fold in striatum and NAc of DAT -/- mice. These results suggest that DAT expression affects TH expression and phosphorylation largely in DA terminal field compartments, further corroborating evidence for dichotomous regulation of TH between somatodendritic and terminal field compartments of the nigrostriatal and mesoaccumbens pathways.
Collapse
Affiliation(s)
- Michael F. Salvatore
- Department
of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, United States
| | - Erin S. Calipari
- Department
of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sara R. Jones
- Department
of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
41
|
Caravaggio F, Kegeles LS, Wilson AA, Remington G, Borlido C, Mamo DC, Graff-Guerrero A. Estimating the effect of endogenous dopamine on baseline [(11) C]-(+)-PHNO binding in the human brain. Synapse 2016; 70:453-60. [PMID: 27341789 DOI: 10.1002/syn.21920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 11/10/2022]
Abstract
Endogenous dopamine (DA) levels at dopamine D2/3 receptors (D2/3 R) have been quantified in the living human brain using the agonist radiotracer [(11) C]-(+)-PHNO. As an agonist radiotracer, [(11) C]-(+)-PHNO is more sensitive to endogenous DA levels than antagonist radiotracers. We sought to determine the proportion of the variance in baseline [(11) C]-(+)-PHNO binding to D2/3 Rs which can be accounted for by variation in endogenous DA levels. This was done by computing the Pearson's coefficient for the correlation between baseline binding potential (BPND ) and the change in BPND after acute DA depletion, using previously published data. All correlations were inverse, and the proportion of the variance in baseline [(11) C]-(+)-PHNO BPND that can be accounted for by variation in endogenous DA levels across the striatal subregions ranged from 42-59%. These results indicate that lower baseline values of [(11) C]-(+)-PHNO BPND reflect greater stimulation by endogenous DA. To further validate this interpretation, we sought to examine whether these data could be used to estimate the dissociation constant (Kd) of DA at D2/3 R. In line with previous in vitro work, we estimated the in vivo Kd of DA to be around 20 nM. In summary, the agonist radiotracer [(11) C]-(+)-PHNO can detect the impact of endogenous DA levels at D2/3 R in the living human brain from a single baseline scan, and may be more sensitive to this impact than other commonly employed radiotracers.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Centre for Addiction and Mental Health, Research Imaging Centre, Toronto, Ontario, M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Lawrence S Kegeles
- Department of Psychiatry and Radiology, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York
| | - Alan A Wilson
- Centre for Addiction and Mental Health, Research Imaging Centre, Toronto, Ontario, M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Psychiatry, University of Toronto, Ontario, M5T 1R8, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Research Imaging Centre, Toronto, Ontario, M5T 1R8, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Psychiatry, University of Toronto, Ontario, M5T 1R8, Canada
| | - Carol Borlido
- Centre for Addiction and Mental Health, Research Imaging Centre, Toronto, Ontario, M5T 1R8, Canada
| | - David C Mamo
- Department of Psychiatry, Faculties of Medicine and Health Science, University of Malta, Msida, Malta
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Research Imaging Centre, Toronto, Ontario, M5T 1R8, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada. .,Department of Psychiatry, University of Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
42
|
Stagkourakis S, Kim H, Lyons DJ, Broberger C. Dopamine Autoreceptor Regulation of a Hypothalamic Dopaminergic Network. Cell Rep 2016; 15:735-747. [PMID: 27149844 PMCID: PMC4850423 DOI: 10.1016/j.celrep.2016.03.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 02/01/2023] Open
Abstract
How autoreceptors contribute to maintaining a stable output of rhythmically active neuronal circuits is poorly understood. Here, we examine this issue in a dopamine population, spontaneously oscillating hypothalamic rat (TIDA) neurons, that underlie neuroendocrine control of reproduction and neuroleptic side effects. Activation of dopamine receptors of the type 2 family (D2Rs) at the cell-body level slowed TIDA oscillations through two mechanisms. First, they prolonged the depolarizing phase through a combination of presynaptic increases in inhibition and postsynaptic hyperpolarization. Second, they extended the discharge phase through presynaptic attenuation of calcium currents and decreased synaptic inhibition. Dopamine reuptake blockade similarly reconfigured the oscillation, indicating that ambient somatodendritic transmitter concentration determines electrical behavior. In the absence of D2R feedback, however, discharge was abolished by depolarization block. These results indicate the existence of an ultra-short feedback loop whereby neuroendocrine dopamine neurons tune network behavior to echoes of their own activity, reflected in ambient somatodendritic dopamine, and also suggest a mechanism for antipsychotic side effects.
Collapse
Affiliation(s)
| | - Hoseok Kim
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - David J Lyons
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christian Broberger
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
43
|
Rice ME, Patel JC. Somatodendritic dopamine release: recent mechanistic insights. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0185. [PMID: 26009764 DOI: 10.1098/rstb.2014.0185] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K(+) channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca(2+) dependence of release and the potential role of exocytotic proteins.
Collapse
Affiliation(s)
- Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
44
|
Paladini C, Tepper J. Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA and Glutamate. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00017-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
45
|
Burrell MH, Atcherley CW, Heien ML, Lipski J. A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices. ACS Chem Neurosci 2015; 6:1802-12. [PMID: 26322962 DOI: 10.1021/acschemneuro.5b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tonic dopamine (DA) levels influence the activity of dopaminergic neurons and the dynamics of fast dopaminergic transmission. Although carbon fiber microelectrodes and fast-scan cyclic voltammetry (FSCV) have been extensively used to quantify stimulus-induced release and uptake of DA in vivo and in vitro, this technique relies on background subtraction and thus cannot provide information about absolute extracellular concentrations. It is also generally not suitable for prolonged (>90 s) recordings due to drift of the background current. A recently reported, modified FSCV approach called fast-scan controlled-adsorption voltammetry (FSCAV) has been used to assess tonic DA levels in solution and in the anesthetized mouse brain. Here we describe a novel extension of FSCAV to investigate pharmacologically induced, slowly occurring changes in tonic (background) extracellular DA concentration, and phasic (stimulated) DA release in brain slices. FSCAV was used to measure adsorption dynamics and changes in DA concentration (for up to 1.5 h, sampling interval 30 s, detection threshold < 10 nM) evoked by drugs affecting DA release and uptake (amphetamine, l-DOPA, pargyline, cocaine, Ro4-1284) in submerged striatal slices obtained from rats. We also show that combined FSCAV-FSCV recordings can be used for concurrent study of stimulated release and changes in tonic DA concentration. Our results demonstrate that FSCAV can be effectively used in brain slices to measure prolonged changes in extracellular level of endogenous DA expressed as absolute values, complementing studies conducted in vivo with microdialysis.
Collapse
Affiliation(s)
- Mark H. Burrell
- Department
of Physiology and Centre for Brain Research, Faculty of Medical and
Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Christopher W. Atcherley
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Michael L. Heien
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Janusz Lipski
- Department
of Physiology and Centre for Brain Research, Faculty of Medical and
Health Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
46
|
Neurotensin Induces Presynaptic Depression of D2 Dopamine Autoreceptor-Mediated Neurotransmission in Midbrain Dopaminergic Neurons. J Neurosci 2015; 35:11144-52. [PMID: 26245975 DOI: 10.1523/jneurosci.3816-14.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Increased dopaminergic signaling is a hallmark of severe mesencephalic pathologies such as schizophrenia and psychostimulant abuse. Activity of midbrain dopaminergic neurons is under strict control of inhibitory D2 autoreceptors. Application of the modulatory peptide neurotensin (NT) to midbrain dopaminergic neurons transiently increases activity by decreasing D2 dopamine autoreceptor function, yet little is known about the mechanisms that underlie long-lasting effects. Here, we performed patch-clamp electrophysiology and fast-scan cyclic voltammetry in mouse brain slices to determine the effects of NT on dopamine autoreceptor-mediated neurotransmission. Application of the active peptide fragment NT8-13 produced synaptic depression that exhibited short- and long-term components. Sustained depression of D2 autoreceptor signaling required activation of the type 2 NT receptor and the protein phosphatase calcineurin. NT application increased paired-pulse ratios and decreased extracellular levels of somatodendritic dopamine, consistent with a decrease in presynaptic dopamine release. Surprisingly, we observed that electrically induced long-term depression of dopaminergic neurotransmission that we reported previously was also dependent on type 2 NT receptors and calcineurin. Because electrically induced depression, but not NT-induced depression, was blocked by postsynaptic calcium chelation, our findings suggest that endogenous NT may act through a local circuit to decrease presynaptic dopamine release. The current research provides a mechanism through which augmented NT release can produce a long-lasting increase in membrane excitability of midbrain dopamine neurons. SIGNIFICANCE STATEMENT Whereas plasticity of glutamate synapses in the brain has been studied extensively, demonstrations of plasticity at dopaminergic synapses have been more elusive. By quantifying inhibitory neurotransmission between midbrain dopaminergic neurons in brain slices from mice we have discovered that the modulatory peptide neurotensin can induce a persistent synaptic depression by decreasing dopamine release. This depression of inhibitory synaptic input would be expected to increase excitability of dopaminergic neurons. Induction of the plasticity can be pharmacologically blocked by antagonists of either the protein phosphatase calcineurin or neurotensin receptors, and persists surprisingly long after a brief exposure to the peptide. Since neurotensin-dopamine interactions have been implicated in hyperdopaminergic pathologies, these findings describe a synaptic mechanism that could contribute to addiction and/or schizophrenia.
Collapse
|
47
|
Stuhrman K, Roseberry AG. Neurotensin inhibits both dopamine- and GABA-mediated inhibition of ventral tegmental area dopamine neurons. J Neurophysiol 2015; 114:1734-45. [PMID: 26180119 DOI: 10.1152/jn.00279.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/14/2015] [Indexed: 12/24/2022] Open
Abstract
Dopamine is an essential neurotransmitter that plays an important role in a number of different physiological processes and disorders. There is substantial evidence that the neuropeptide neurotensin interacts with the mesolimbic dopamine system and can regulate dopamine neuron activity. In these studies we have used whole cell patch-clamp electrophysiology in brain slices from mice to examine how neurotensin regulates dopamine neuron activity by examining the effect of neurotensin on the inhibitory postsynaptic current generated by somatodendritic dopamine release (D2R IPSC) in ventral tegmental area (VTA) dopamine neurons. Neurotensin inhibited the D2R IPSC and activated an inward current in VTA dopamine neurons that appeared to be at least partially mediated by activation of a transient receptor potential C-type channel. Neither the inward current nor the inhibition of the D2R IPSC was affected by blocking PKC or calcium release from intracellular stores, and the inhibition of the D2R IPSC was greater with neurotensin compared with activation of other Gq-coupled receptors. Interestingly, the effects of neurotensin were not specific to D2R signaling as neurotensin also inhibited GABAB inhibitory postsynaptic currents in VTA dopamine neurons. Finally, the effects of neurotensin were significantly larger when intracellular Ca(2+) was strongly buffered, suggesting that reduced intracellular calcium facilitates these effects. Overall these results suggest that neurotensin may inhibit the D2R and GABAB IPSCs downstream of receptor activation, potentially through regulation of G protein-coupled inwardly rectifying potassium channels. These studies provide an important advance in our understanding of dopamine neuron activity and how it is controlled by neurotensin.
Collapse
Affiliation(s)
- Katherine Stuhrman
- Department of Biology, Georgia State University, Atlanta, Georgia; The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Aaron G Roseberry
- Department of Biology, Georgia State University, Atlanta, Georgia; The Neuroscience Institute, Georgia State University, Atlanta, Georgia; and The Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| |
Collapse
|
48
|
Integration of neural networks activated by amphetamine in females with different estrogen levels: a functional imaging study in awake rats. Psychoneuroendocrinology 2015; 56:200-12. [PMID: 25827963 DOI: 10.1016/j.psyneuen.2015.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/10/2015] [Accepted: 02/24/2015] [Indexed: 01/15/2023]
Abstract
Previous studies demonstrate that schizophrenia symptomatology in women is dependent upon estrogen levels. Estrogen has beneficial properties when administered in conjunction with antipsychotics, and estrogen also alters, in rats, dopamine neurotransmission, which is a common target of all antipsychotic medications, suggesting a possible interaction between the two. The aim of the current study was to investigate this possible interaction using functional magnetic resonance imaging in awake, female rats. Amphetamine-sensitized, ovariectomized rats receiving no, chronic low, or phasic high levels of estradiol replacement were used, and changes in blood-oxygen-level-dependent (BOLD) signal were recorded over time in response to an acute amphetamine injection. Increasing levels of estradiol enhanced BOLD activation in pathways previously known to be implicated in schizophrenia symptomatology, such as the mesocorticolimbic, habenular and olfactory pathways, as well as more widespread areas. We propose here the first comprehensive "amphetamine activation map" integrating brain regions where amphetamine-related BOLD activity is influenced by estrogen levels in sensitized female rats.
Collapse
|
49
|
Sconce MD, Churchill MJ, Greene RE, Meshul CK. Intervention with exercise restores motor deficits but not nigrostriatal loss in a progressive MPTP mouse model of Parkinson's disease. Neuroscience 2015; 299:156-74. [PMID: 25943481 DOI: 10.1016/j.neuroscience.2015.04.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/25/2022]
Abstract
Many studies have investigated exercise therapy in Parkinson's disease (PD) and have shown benefits in improving motor deficits. However, exercise does not slow down the progression of the disease or induce the revival of lost nigrostriatal neurons. To examine the dichotomy of behavioral improvement without the slowing or recovery of dopaminergic cell or terminal loss, we tested exercise therapy in an intervention paradigm where voluntary running wheels were installed half-way through our progressive PD mouse model. In our model, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is administered over 4 weeks with increased doses each week (8, 16, 24, 32-kg/mg). We found that after 4 weeks of MPTP treatment, mice that volunteered to exercise had behavioral recovery in several measures despite the loss of 73% and 53% tyrosine hydroxylase (TH) within the dorsolateral (DL) striatum and the substantia nigra (SN), respectively which was equivalent to the loss seen in the mice that did not exercise but were also administered MPTP for 4 weeks. Mice treated with 4 weeks of MPTP showed a 41% loss of vesicular monoamine transporter II (VMAT2), a 71% increase in the ratio of glycosylated/non-glycosylated dopamine transporter (DAT), and significant increases in glutamate transporters including VGLUT1, GLT-1, and excitatory amino acid carrier 1. MPTP mice that exercised showed recovery of all these biomarkers back to the levels seen in the vehicle group and showed less inflammation compared to the mice treated with MPTP for 4 weeks. Even though we did not measure tissue dopamine (DA) concentration, our data suggest that exercise does not alleviate motor deficits by sparing nigrostriatal neurons, but perhaps by stabilizing the extraneuronal neurotransmitters, as evident by a recovery of DA and glutamate transporters. However, suppressing inflammation could be another mechanism of this locomotor recovery. Although exercise will not be a successful treatment alone, it could supplement other pharmaceutical approaches to PD therapy.
Collapse
Affiliation(s)
- M D Sconce
- Research Services, VA Medical Center/Portland, Mail Code: RD-29, Research Services, 3710 SW Veterans Hospital Road, Portland, OR 97239, United States
| | - M J Churchill
- Research Services, VA Medical Center/Portland, Mail Code: RD-29, Research Services, 3710 SW Veterans Hospital Road, Portland, OR 97239, United States
| | - R E Greene
- Research Services, VA Medical Center/Portland, Mail Code: RD-29, Research Services, 3710 SW Veterans Hospital Road, Portland, OR 97239, United States
| | - C K Meshul
- Research Services, VA Medical Center/Portland, Mail Code: RD-29, Research Services, 3710 SW Veterans Hospital Road, Portland, OR 97239, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, United States; Department of Pathology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, United States.
| |
Collapse
|
50
|
Ding S, Li L, Zhou FM. Nigral dopamine loss induces a global upregulation of presynaptic dopamine D1 receptor facilitation of the striatonigral GABAergic output. J Neurophysiol 2014; 113:1697-711. [PMID: 25552639 DOI: 10.1152/jn.00752.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In Parkinson's disease (PD), the dopamine (DA) neuron loss in the substantia nigra and the DA axon loss in the dorsal striatum are severe, but DA neurons in the ventral tegmental area and DA axons in middle and ventral striatal subregions are less affected. Severe DA loss leads to DA receptor supersensitivity, but it was not known whether the supersensitivity of the DA D1 receptors (D1Rs) on the striatonigral axon terminal is determined by the severe striatal or nigral DA loss. This question is important because these two possibilities affect the extent of the striatonigral terminals with supersensitive D1Rs and hence the strength of the direct pathway output. Here we have investigated this question in the transcription factor Pitx3 mutant mice that have a PD-like DA loss pattern. We found that the presynaptic D1R function was upregulated globally: the D1R-mediated facilitation was equally enhanced for the striatonigral GABA output originated in the dorsal striatum where the DA loss is severe and the somatic D1Rs are supersensitive, and for the striatonigral GABA output originated in the middle and ventral striatum where the DA loss is moderate and the somatic D1Rs are not supersensitive. These results suggest that severe nigral DA loss is sufficient to induce functional upregulation of the D1Rs on striatonigral axon terminals. Consequently, in PD, the globally enhanced D1Rs on striatonigral axon terminals originated in broad striatal subregions may strongly enhance the striatonigral GABA output upon D1R stimulation, potentially contributing to D1R agonism's profound motor-stimulating effects.
Collapse
Affiliation(s)
- Shengyuan Ding
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| | - Li Li
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| |
Collapse
|