1
|
Sharma KK, Sharma K, Rao K, Sharma A, Rathod GK, Aaghaz S, Sehra N, Parmar R, VanVeller B, Jain R. Unnatural Amino Acids: Strategies, Designs, and Applications in Medicinal Chemistry and Drug Discovery. J Med Chem 2024; 67:19932-19965. [PMID: 39527066 PMCID: PMC11901032 DOI: 10.1021/acs.jmedchem.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides can operate as therapeutic agents that sit within a privileged space between small molecules and larger biologics. Despite examples of their potential to regulate receptors and modulate disease pathways, the development of peptides with drug-like properties remains a challenge. In the quest to optimize physicochemical parameters and improve target selectivity, unnatural amino acids (UAAs) have emerged as critical tools in peptide- and peptidomimetic-based drugs. The utility of UAAs is illustrated by clinically approved drugs such as methyldopa, baclofen, and gabapentin in addition to small drug molecules, for example, bortezomib and sitagliptin. In this Perspective, we outline the strategy and deployment of UAAs in FDA-approved drugs and their targets. We further describe the modulation of the physicochemical properties in peptides using UAAs. Finally, we elucidate how these improved pharmacological parameters and the role played by UAAs impact the progress of analogs in preclinical stages with an emphasis on the role played by UAAs.
Collapse
Affiliation(s)
- Krishna K. Sharma
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
- Present address– Department of Structural Biology, Stanford University, Stanford, California 94305, United States
| | - Kamya Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Gajanan K. Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| |
Collapse
|
2
|
Pham TL, Thomas F. Design of Functional Globular β-Sheet Miniproteins. Chembiochem 2024; 25:e202300745. [PMID: 38275210 DOI: 10.1002/cbic.202300745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
The design of discrete β-sheet peptides is far less advanced than e. g. the design of α-helical peptides. The reputation of β-sheet peptides as being poorly soluble and aggregation-prone often hinders active design efforts. Here, we show that this reputation is unfounded. We demonstrate this by looking at the β-hairpin and WW domain. Their structure and folding have been extensively studied and they have long served as model systems to investigate protein folding and folding kinetics. The resulting fundamental understanding has led to the development of hyperstable β-sheet scaffolds that fold at temperatures of 100 °C or high concentrations of denaturants. These have been used to design functional miniproteins with protein or nucleic acid binding properties, in some cases with such success that medical applications are conceivable. The β-sheet scaffolds are not always completely rigid, but can be specifically designed to respond to changes in pH, redox potential or presence of metal ions. Some engineered β-sheet peptides also exhibit catalytic properties, although not comparable to those of natural proteins. Previous reviews have focused on the design of stably folded and non-aggregating β-sheet sequences. In our review, we now also address design strategies to obtain functional miniproteins from β-sheet folding motifs.
Collapse
Affiliation(s)
- Truc Lam Pham
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Truc Lam Pham, Prof. Dr. Franziska Thomas, Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Chambers C, Chitwood B, Smith CJ, Miao Y. Elevating theranostics: The emergence and promise of radiopharmaceutical cell-targeting heterodimers in human cancers. IRADIOLOGY 2024; 2:128-155. [PMID: 38708130 PMCID: PMC11067702 DOI: 10.1002/ird3.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 05/07/2024]
Abstract
Optimal therapeutic and diagnostic efficacy is essential for healthcare's global mission of advancing oncologic drug development. Accurate diagnosis and detection are crucial prerequisites for effective risk stratification and personalized patient care in clinical oncology. A paradigm shift is emerging with the promise of multi-receptor-targeting compounds. While existing detection and staging methods have demonstrated some success, the traditional approach of monotherapy is being reevaluated to enhance therapeutic effectiveness. Heterodimeric site-specific agents are a versatile solution by targeting two distinct biomarkers with a single theranostic agent. This review describes the innovation of dual-targeting compounds, examining their design strategies, therapeutic implications, and the promising path they present for addressing complex diseases.
Collapse
Affiliation(s)
- Claudia Chambers
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
- Research Division, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA
- Department of Chemistry, University of Missouri, Columbia, Missouri, USA
| | - Broc Chitwood
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
| | - Charles J. Smith
- Molecular Imaging and Theranostics Center, Columbia, Missouri, USA
- Research Division, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, USA
- Department of Radiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- University of Missouri Research Reactor Center, University of Missouri, Columbia, Missouri, USA
| | - Yubin Miao
- Department of Radiology, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
4
|
Ghosh P, Raj N, Verma H, Patel M, Chakraborti S, Khatri B, Doreswamy CM, Anandakumar SR, Seekallu S, Dinesh MB, Jadhav G, Yadav PN, Chatterjee J. An amide to thioamide substitution improves the permeability and bioavailability of macrocyclic peptides. Nat Commun 2023; 14:6050. [PMID: 37770425 PMCID: PMC10539501 DOI: 10.1038/s41467-023-41748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.
Collapse
Affiliation(s)
- Pritha Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nishant Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Hitesh Verma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Monika Patel
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sohini Chakraborti
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Chandrashekar M Doreswamy
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - S R Anandakumar
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - Srinivas Seekallu
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - M B Dinesh
- Central Animal Facility, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gajanan Jadhav
- Eurofins Advinus Biopharma Services India Pvt. Ltd., Bangalore, 560058, Karnataka, India
| | - Prem Narayan Yadav
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
5
|
Rubira L, Deshayes E, Santoro L, Kotzki PO, Fersing C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023; 15:1051. [PMID: 37111537 PMCID: PMC10146019 DOI: 10.3390/pharmaceutics15041051] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The widespread use of peptide receptor radionuclide therapy (PRRT) represents a major therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroendocrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alternative. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless, preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite the growing momentum for their future use on a larger scale. In this context, this report provides a comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs; particular emphasis is placed on the challenges associated with the production of 225Ac, its physical and radiochemical properties, as well as the place of 225Ac-DOTATOC and 225Ac-DOTATATE in the management of patients with advanced metastatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Lore Santoro
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
6
|
Nguyen DT, Le TT, Rice AJ, Hudson GA, van der Donk WA, Mitchell DA. Accessing Diverse Pyridine-Based Macrocyclic Peptides by a Two-Site Recognition Pathway. J Am Chem Soc 2022; 144:11263-11269. [PMID: 35713415 PMCID: PMC9247985 DOI: 10.1021/jacs.2c02824] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Macrocyclic peptides are sought-after molecular scaffolds for drug discovery, and new methods to access diverse libraries are of increasing interest. Here, we report the enzymatic synthesis of pyridine-based macrocyclic peptides (pyritides) from linear precursor peptides. Pyritides are a recently described class of ribosomally synthesized and post-translationally modified peptides (RiPPs) and are related to the long-known thiopeptide natural products. RiPP precursors typically contain an N-terminal leader region that is physically engaged by the biosynthetic proteins that catalyze modification of the C-terminal core region of the precursor peptide. We demonstrate that pyritide-forming enzymes recognize both the leader region and a C-terminal tripeptide motif, with each contributing to site-selective substrate modification. Substitutions in the core region were well-tolerated and facilitated the generation of a wide range of pyritide analogues, with variations in macrocycle sequence and size. A combination of the pyritide biosynthetic pathway with azole-forming enzymes was utilized to generate a thiazole-containing pyritide (historically known as a thiopeptide) with no similarity in sequence and macrocycle size to the naturally encoded pyritides. The broad substrate scope of the pyritide biosynthetic enzymes serves as a future platform for macrocyclic peptide lead discovery and optimization.
Collapse
Affiliation(s)
- Dinh T. Nguyen
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tung T. Le
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Andrew J. Rice
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Graham A. Hudson
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Douglas A. Mitchell
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Börzsei R, Zsidó BZ, Bálint M, Helyes Z, Pintér E, Hetényi C. Exploration of Somatostatin Binding Mechanism to Somatostatin Receptor Subtype 4. Int J Mol Sci 2022; 23:ijms23136878. [PMID: 35805885 PMCID: PMC9266823 DOI: 10.3390/ijms23136878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Somatostatin (also named as growth hormone-inhibiting hormone or somatotropin release-inhibiting factor) is a regulatory peptide important for the proper functioning of the endocrine system, local inflammatory reactions, mood and motor coordination, and behavioral responses to stress. Somatostatin exerts its effects via binding to G-protein-coupled somatostatin receptors of which the fourth subtype (SSTR4) is a particularly important receptor mediating analgesic, anti-inflammatory, and anti-depressant effects without endocrine actions. Thus, SSTR4 agonists are promising drug candidates. Although the knowledge of the atomic resolution-binding modes of SST would be essential for drug development, experimental elucidation of the structures of SSTR4 and its complexes is still awaiting. In the present study, structures of the somatostatin–SSTR4 complex were produced using an unbiased, blind docking approach. Beyond the static structures, the binding mechanism of SST was also elucidated in the explicit water molecular dynamics (MD) calculations, and key binding modes (external, intermediate, and internal) were distinguished. The most important residues on both receptor and SST sides were identified. An energetic comparison of SST binding to SSTR4 and 2 offered a residue-level explanation of receptor subtype selectivity. The calculated structures show good agreement with available experimental results and indicate that somatostatin binding is realized via prerequisite binding modes and an induced fit mechanism. The identified binding modes and the corresponding key residues provide useful information for future drug design targeting SSTR4.
Collapse
Affiliation(s)
- Rita Börzsei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Mónika Bálint
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Algonist Gmbh, 1030 Vienna, Austria
- PharmInVivo Ltd., 7624 Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Algonist Gmbh, 1030 Vienna, Austria
- PharmInVivo Ltd., 7624 Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (R.B.); (B.Z.Z.); (M.B.); (Z.H.); (E.P.)
- János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
8
|
Kremsmayr T, Aljnabi A, Blanco-Canosa JB, Tran HNT, Emidio NB, Muttenthaler M. On the Utility of Chemical Strategies to Improve Peptide Gut Stability. J Med Chem 2022; 65:6191-6206. [PMID: 35420805 PMCID: PMC9059125 DOI: 10.1021/acs.jmedchem.2c00094] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Inherent susceptibility
of peptides to enzymatic degradation in
the gastrointestinal tract is a key bottleneck in oral peptide drug
development. Here, we present a systematic analysis of (i) the gut
stability of disulfide-rich peptide scaffolds, orally administered
peptide therapeutics, and well-known neuropeptides and (ii) medicinal
chemistry strategies to improve peptide gut stability. Among a broad
range of studied peptides, cyclotides were the only scaffold class
to resist gastrointestinal degradation, even when grafted with non-native
sequences. Backbone cyclization, a frequently applied strategy, failed
to improve stability in intestinal fluid, but several site-specific
alterations proved efficient. This work furthermore highlights the
importance of standardized gut stability test conditions and suggests
defined protocols to facilitate cross-study comparison. Together,
our results provide a comparative overview and framework for the chemical
engineering of gut-stable peptides, which should be valuable for the
development of orally administered peptide therapeutics and molecular
probes targeting receptors within the gastrointestinal tract.
Collapse
Affiliation(s)
- Thomas Kremsmayr
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria
| | - Aws Aljnabi
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria
| | - Juan B Blanco-Canosa
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nayara Braga Emidio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, Vienna 1090, Austria.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
9
|
Fani M, Mansi R, Nicolas GP, Wild D. Radiolabeled Somatostatin Analogs-A Continuously Evolving Class of Radiopharmaceuticals. Cancers (Basel) 2022; 14:cancers14051172. [PMID: 35267479 PMCID: PMC8909681 DOI: 10.3390/cancers14051172] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Somatostatin receptors (SSTs) are recognized as favorable molecular targets in neuroendocrine tumors (NETs) and neuroendocrine neoplasms (NENs), with subtype 2 (SST2) being the predominantly and most frequently expressed. PET/CT imaging with 68Ga-labeled SST agonists, e.g., 68Ga-DOTA-TOC (SomaKit TOC®) or 68Ga-DOTA-TATE (NETSPOT®), plays an important role in staging and restaging these tumors and can identify patients who qualify and would potentially benefit from peptide receptor radionuclide therapy (PRRT) with the therapeutic counterparts 177Lu-DOTA-TOC or 177Lu-DOTA-TATE (Lutathera®). This is an important feature of SST targeting, as it allows a personalized treatment approach (theranostic approach). Today, new developments hold promise for enhancing diagnostic accuracy and therapeutic efficacy. Among them, the use of SST2 antagonists, such as JR11 and LM3, has shown certain advantages in improving image sensitivity and tumor radiation dose, and there is evidence that they may find application in other oncological indications beyond NETs and NENs. In addition, PRRT performed with more cytotoxic α-emitters, such as 225Ac, or β- and Auger electrons, such as 161Tb, presents higher efficacy. It remains to be seen if any of these new developments will overpower the established radiolabeled SST analogs and PRRT with β--emitters.
Collapse
Affiliation(s)
- Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, 4031 Basel, Switzerland;
- Correspondence:
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, 4031 Basel, Switzerland;
| | - Guillaume P. Nicolas
- Division of Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland; (G.P.N.); (D.W.)
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, 4031 Basel, Switzerland
| | - Damian Wild
- Division of Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland; (G.P.N.); (D.W.)
- ENETS Center of Excellence for Neuroendocrine and Endocrine Tumors, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
10
|
Chen K, Tang Y, Wu M, Wan XC, Zhang YN, Chen XX, Yu FQ, Cui ZH, Ma JM, Zhou Z, Fang GM. Head-to-Tail Cross-Linking to Generate Bicyclic Helical Peptides with Enhanced Helicity and Proteolytic Stability. Org Lett 2022; 24:53-57. [PMID: 34894695 DOI: 10.1021/acs.orglett.1c03629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new pattern of a bicyclic helical peptide constructed through head-to-tail cross-linking. The described bicyclic helical peptide has a head-to-tail cross-linking arm and a C-terminal i, i + 4 cross-linking arm. This scaffold will provide a promising scaffold for designing a proteolytically resistant helix-constrained peptide.
Collapse
Affiliation(s)
- Kai Chen
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yang Tang
- Center of Minimally Invasive Treatment for Tumor, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, and Ultrasound Research and Education Institute, Clinical Research Center for Interventional Medicine, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Meng Wu
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Xiao-Cui Wan
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yan-Ni Zhang
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Xiao-Xu Chen
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Fei-Qiang Yu
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zhi-Hui Cui
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong 518055, P. R. China
| | - Jin-Ming Ma
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China
| | - Ge-Min Fang
- School of Life Science, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
11
|
Fedotova AO, Egorova BV, Posypanova GA, Titchenko NA, Khachatryan DS, Kolotaev AV, Osipov VN, Kalmykov SN. Labeling and receptor affinity of an ultra-short somatostatin analogue Thz-Phe-D-Trp-Lys-Thr-DOTA. J Pept Sci 2021; 27:e3361. [PMID: 34291534 DOI: 10.1002/psc.3361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/06/2022]
Abstract
Somatostatin analogues play an important role in the therapy of neuroendocrine tumors by binding to somatostatin receptors on the surface of cancer cells. In this work, we analyze the receptor-binding affinity and in vitro stability of a novel ultra-short somatostatin analogue Thz-Phe-D-Trp-Lys-Thr-DOTA (DOTA-P4). This conjugate is successfully radiolabeled with 44 Sc, 90 Y, 152 Eu, and 207 Bi, characterized and validated by thin layer and high-performance liquid chromatography. The optimum conditions for M-DOTA-P4 labeling are found. In vitro stability studies are performed in saline, in the presence of serum proteins, and with biologically relevant metal cations. All complexes demonstrate no cation release in vitro within 4-24 h. The conformations of DOTA-conjugates are studied by circular dichroism spectroscopy. The circular dichroism spectra of DOTA-P4 conjugates show a negative peak at 225 nm, which may correspond to the required β-sheet conformation. The binding to somatostatin receptors of types 2 and 5 is performed with the IMR-32 cells at 4°C, with non-specific binding representing 26% of the total binding. A two-line approximation of the Scatchard plot results in the apparent dissociation constants of 0.10 and 2.25 nM. It is shown that the chelator position with respect to the amino acid sequence significantly affects the labeling conditions with cations of different ionic radii. For the first time, the binding of a linear type ultra-short peptide conjugate with DOTA to somatostatin receptors is demonstrated. The obtained results are promising for experiments with DOTA-P4 in vivo in mice with inoculated tumors.
Collapse
Affiliation(s)
| | - Bayirta V Egorova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Derenik S Khachatryan
- «Kurchatov Institute» National Research Centre, Moscow, Russia.,Institute of Chemical Reagents and High Purity Chemical Substances, «Kurchatov Institute» National Research Centre, Moscow, Russia
| | - Anton V Kolotaev
- «Kurchatov Institute» National Research Centre, Moscow, Russia.,Institute of Chemical Reagents and High Purity Chemical Substances, «Kurchatov Institute» National Research Centre, Moscow, Russia
| | - Vasiliy N Osipov
- «N.N. Blokhin National Medical Research Centre of oncology», Health Ministry of Russia, Moscow, Russia
| | - Stepan N Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,«Kurchatov Institute» National Research Centre, Moscow, Russia
| |
Collapse
|
12
|
Marciniak A, Witak W, Sabatino G, Papini AM, Brasuń J. Detailed Insight into the Interaction of Bicyclic Somatostatin Analogue with Cu(II) Ions. Int J Mol Sci 2020; 21:ijms21228794. [PMID: 33233719 PMCID: PMC7699899 DOI: 10.3390/ijms21228794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Somatostatin analogues are useful pharmaceuticals in peptide receptor radionuclide therapy. In previous studies, we analyzed a new bicyclic somatostatin analogue (BCS) in connection with Cu(II) ions. Two characteristic sites were present in the peptide chain: the receptor- and the metal-binding site. We have already shown that this ligand can form very stable imidazole complexes with the metal ion. In this work, our aim was to characterize the intramolecular interaction that occurs in the peptide molecule. Therefore, we analyzed the coordination abilities of two cyclic ligands, i.e., P1 only with the metal binding site and P2 with both sites, but without the disulfide bond. Furthermore, we used magnetic circular dichroism (MCD) spectroscopy to better understand the coordination process. We applied this method to analyze spectra of P1, P2, and BCS, which we have described previously. Additionally, we analyzed the MCD spectra of P3 ligand, which has only the receptor binding site in its structure. We have unequivocally shown that the presence of the Phe-Trp-Lys-Thr motif and the disulfide bond significantly increases the metal binding efficiency.
Collapse
Affiliation(s)
- Aleksandra Marciniak
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.M.); (W.W.)
| | - Weronika Witak
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.M.); (W.W.)
| | - Giuseppina Sabatino
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (G.S.); (A.M.P.)
- CNR-IC Istituto di Cristallografia, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (G.S.); (A.M.P.)
- CNR-IC Istituto di Cristallografia, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Justyna Brasuń
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.M.); (W.W.)
- Correspondence: ; Tel.: +48-71-784-0330; Fax: +48-71-784-0336
| |
Collapse
|
13
|
Buckton LK, Rahimi MN, McAlpine SR. Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development. Chemistry 2020; 27:1487-1513. [PMID: 32875673 DOI: 10.1002/chem.201905385] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Developing macrocyclic peptides that can reach intracellular targets is a significant challenge. This review discusses the most recent strategies used to develop cell permeable cyclic peptides that maintain binding to their biological target inside the cell. Macrocyclic peptides are unique from small molecules because traditional calculated physical properties are unsuccessful for predicting cell membrane permeability. Peptide synthesis and experimental membrane permeability is the only strategy that effectively differentiates between cell permeable and cell impermeable molecules. Discussed are chemical strategies, including backbone N-methylation and stereochemical changes, which have produced molecular scaffolds with improved cell permeability. However, these improvements often come at the expense of biological activity as chemical modifications alter the peptide conformation, frequently impacting the compound's ability to bind to the target. Highlighted is the most promising approach, which involves side-chain alterations that improve cell permeability without impact binding events.
Collapse
Affiliation(s)
- Laura K Buckton
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Marwa N Rahimi
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Shelli R McAlpine
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| |
Collapse
|
14
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
15
|
Marciniak A, Witak W, Pieniężna A, Brasuń J. The Binding Ability of a Bicyclic Somatostatin Analogue Towards Cu(II) Ions. Chem Biodivers 2020; 17:e2000307. [PMID: 32470208 DOI: 10.1002/cbdv.202000307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022]
Abstract
Somatostatin (SST) analogues have aroused the interest of scientists for years. This group of compounds is used in the diagnosis and treatment of neuroendocrine tumors. However, new molecules useful as radiopharmaceuticals in targeted therapy are still searched for. Bicyclic peptides seem to be very interesting in this context. These molecules are associated with beneficial properties. In this work, we present studies on the binding ability of the bicyclic analogue of somatostatin toward Cu(II) ions which could potentially be a chelator for copper radionuclides. The research is focused on the analysis of Cu(II) interactions with the metal binding cycle of the ligand and the influence of the receptor binding site on the coordination process. This is a novelty in comparison to the SST analogues used in medicine, where a metal ion is coordinated by a chelator and connected with a bioactive molecule by the linker. In this work, we present the first coordination study for a bicyclic ligand. The obtained results showed that the complexes with only imidazole donors are characterized by significantly higher stability in comparison to the other peptides.
Collapse
Affiliation(s)
- Aleksandra Marciniak
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211 A, 50-556, Wroclaw, Poland
| | - Weronika Witak
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211 A, 50-556, Wroclaw, Poland
| | - Aleksandra Pieniężna
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211 A, 50-556, Wroclaw, Poland
| | - Justyna Brasuń
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211 A, 50-556, Wroclaw, Poland
| |
Collapse
|
16
|
Yakusheva A, Titchenko N, Egorova B, Matazova E, Podkhalyuzina N, Osipov V, Khachatryan D, Avdeev D, Posypanova G, Kalmykov S. From octreotide to shorter analogues: Synthesis, radiolabeling, stability. J Labelled Comp Radiopharm 2019; 62:718-728. [DOI: 10.1002/jlcr.3799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
| | - Nikolay Titchenko
- D. Mendeleev University Of Chemical Technology of Russia; Organic Chemistry division, Moscow Russia
| | - Bayirta Egorova
- Lomonosov Moscow State University; Department of Chemistry, Moscow Russia
| | - Ekaterina Matazova
- Lomonosov Moscow State University; Department of Chemistry, Moscow Russia
| | - Natalya Podkhalyuzina
- D. Mendeleev University Of Chemical Technology of Russia; Organic Chemistry division, Moscow Russia
| | - Vasily Osipov
- N.N. Blokhin National Medical Research Centre of Oncology of the Health Ministry of Russia; Institute of experimental diagnosis and therapy of tumors, Chemical synthesis laboratory, Moscow Russia
| | - Derenik Khachatryan
- NRC “Kurchatov Institute”-IREA; The natural compound laboratory, Moscow Russia
| | - Dmitry Avdeev
- National Medical Research Center for Cardiology; Moscow Russia
| | - Galina Posypanova
- NRC “Kurchatov Institute”; Kurchatov Complex of NBICS Nature-Like Technologies, Cell Biology and Molecular Medicine Lab, Moscow Russia
| | - Stepan Kalmykov
- Lomonosov Moscow State University; Department of Chemistry, Moscow Russia
| |
Collapse
|
17
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
Synthesis, in vitro biological activity and docking of new analogs of BIM-23052 containing unnatural amino acids. Amino Acids 2019; 51:1247-1257. [PMID: 31350614 DOI: 10.1007/s00726-019-02758-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/28/2019] [Indexed: 01/29/2023]
Abstract
Somatostatin (SST) is an endogenous cyclic tetradecapeptide hormone that exerts multiple biological activities via a family of five receptors. BIM-23052 (DC-23-99) D-Phe-Phe-Phe-D-Trp-Lys-Thr-Phe-Thr-NH2 is a linear SST analog with established in vitro GH-inhibitory activity and high affinity to sstr5, sstr3 and sstr2. The different SSTR subtypes are expressed in different tissues and in some tumor cells. Based on this finding, a series of new analogs of BIM-23052 with expected antitumor activity have been synthesized. The Thr at position 6 in BIM-23052 was replaced by the conformationally hindered Tle, Aib, Ac5c and Ac6c of the new analogs. The peptides were synthesized by standard solid-phase peptide chemistry methods, Fmoc strategy. The cytotoxic effects of the compounds were tested in vitro against a panel of tumor cell lines: HT-29, MDA-MB-23, Hep-G2, HeLa and the normal human diploid cell line Lep-3. All five somatostatin receptor subtypes were modeled and docking was performed to determine the binding affinity of the analogs. The new peptides exhibited different concentration-dependent antiproliferative effect on the tumor cell lines after 24 h of treatment. The compound 3B (Aib6) demonstrated the most pronounced antiproliferative effects on HepG-2 cells with the IC50 = 0.01349 nM. Docking confirmed that all compounds bind well to SST receptors with preference to sstr3 and sstr5, which is most probably the reason for the observed biological effects.
Collapse
|
19
|
Todorovic M, Schwab KD, Zeisler J, Zhang C, Bénard F, Perrin DM. Fluorescent Isoindole Crosslink (FlICk) Chemistry: A Rapid, User-friendly Stapling Reaction. Angew Chem Int Ed Engl 2019; 58:14120-14124. [PMID: 31211905 DOI: 10.1002/anie.201906514] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 12/14/2022]
Abstract
The stabilization of peptide secondary structure via stapling is a ubiquitous goal for creating new probes, imaging agents, and drugs. Inspired by indole-derived crosslinks found in natural peptide toxins, we employed ortho-phthalaldehydes to create isoindole staples, thus transforming inactive linear and monocyclic precursors into bioactive monocyclic and bicyclic products. Mild, metal-free conditions give an array of macrocyclic α-melanocyte-stimulating hormone (α-MSH) derivatives, of which several isoindole-stapled α-MSH analogues (Ki ≈1 nm) are found to be as potent as α-MSH. Analogously, late-stage intra-annular isoindole stapling furnished a bicyclic peptide mimic of α-amanitin that is cytotoxic to CHO cells (IC50 =70 μm). Given its user-friendliness, we have termed this approach FlICk (fluorescent isoindole crosslink) chemistry.
Collapse
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| | - Katerina D Schwab
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| | - Jutta Zeisler
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Chengcheng Zhang
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Francois Bénard
- B.C. Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - David M Perrin
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, B.C., V6T1Z1, Canada
| |
Collapse
|
20
|
Todorovic M, Schwab KD, Zeisler J, Zhang C, Bénard F, Perrin DM. Fluorescent Isoindole Crosslink (FlICk) Chemistry: A Rapid, User‐friendly Stapling Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department UBC 2036 Main Mall Vancouver B.C. V6T1Z1 Canada
| | | | - Jutta Zeisler
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - Chengcheng Zhang
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - Francois Bénard
- B.C. Cancer Agency Research Centre 675 West 10th Avenue Vancouver BC V5Z 1L3 Canada
| | - David M. Perrin
- Chemistry Department UBC 2036 Main Mall Vancouver B.C. V6T1Z1 Canada
| |
Collapse
|
21
|
Mansi R, Fani M. Design and development of the theranostic pair 177 Lu-OPS201/ 68 Ga-OPS202 for targeting somatostatin receptor expressing tumors. J Labelled Comp Radiopharm 2019; 62:635-645. [PMID: 31112618 DOI: 10.1002/jlcr.3755] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/26/2022]
Abstract
Radiolabeled somatostatin receptor (sstr) antagonists have shown superiority in different preclinical and clinical settings compared with the well-established and clinically used agonists for targeting sstr-expressing tumors, with regard to pharmacokinetics, tumor uptake, and retention. The theranostic pair 177 Lu-OPS201/68 Ga-OPS202, based on the sstr2 antagonist JR11 (Cpa-c[d-Cys-Aph(Hor)-d-Aph(Cbm)-Lys-Thr-Cys]-d-Tyr-NH2 ), is the most advanced pair of the antagonist family in terms of preclinical development and is currently under clinical evaluation. OPS201 and OPS202 share the same amino acid sequence (JR11) but feature different conjugated chelators needed for radiolabeling, DOTA for OPS201 and NODAGA for OPS202. In this review, the design and development of the peptidic analog, JR11, and the selection of chelators and radiometals that led to 177 Lu-OPS201/68 Ga-OPS202 are discussed. Furthermore, the preclinical evaluation of both radiolabeled analogs from bench to bedside and the clinical trials involving the theranostic pair are presented.
Collapse
Affiliation(s)
- Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Oliveira MC, Correia JDG. Biomedical applications of radioiodinated peptides. Eur J Med Chem 2019; 179:56-77. [PMID: 31238251 DOI: 10.1016/j.ejmech.2019.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023]
Abstract
The overexpression of peptide receptors in certain tumors as compared to endogeneous expression levels represents the molecular basis for the design of peptide-based tools for targeted nuclear imaging and therapy. Receptor targeting with radiolabelled peptides became a very important imaging and/or therapeutic approach in nuclear medicine and oncology. A great variety of peptides has been radiolabelled with clinical relevant radionuclides, such as radiometals and radiohalogens. However, to the best of our knowledge concise and updated reviews providing information about the biomedical application of radioiodinated peptides are still missing. This review outlines the synthetic efforts in the preparation of radioiodinated peptides highlighting the importance of radioiodine in nuclear medicine, giving an overview of the most relevant radioiodination strategies that have been employed and describes relevant examples of their use in the biomedical field.
Collapse
Affiliation(s)
- Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal.
| |
Collapse
|
23
|
Abstract
Natural products (NPs) are important sources of clinical drugs due to their structural diversity and biological prevalidation. However, the structural complexity of NPs leads to synthetic difficulties, unfavorable pharmacokinetic profiles, and poor drug-likeness. Structural simplification by truncating unnecessary substructures is a powerful strategy for overcoming these limitations and improving the efficiency and success rate of NP-based drug development. Herein, we will provide a comprehensive review of the structural simplification of NPs with a focus on design strategies, case studies, and new technologies. In particular, a number of successful examples leading to marketed drugs or drug candidates will be discussed in detail to illustrate how structural simplification is applied in lead optimization of NPs.
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China.,Department of Medicinal Chemistry, School of Pharmacy , Fourth Military Medical University , 169 Changle West Road , Xi'an , 710032 , P.R. China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy , Second Military Medical University , 325 Guohe Road , Shanghai , 200433 , P.R. China
| |
Collapse
|
24
|
Rubin SJS, Tal-Gan Y, Gilon C, Qvit N. Conversion of Protein Active Regions into Peptidomimetic Therapeutic Leads Using Backbone Cyclization and Cycloscan - How to Do it Yourself! Curr Top Med Chem 2018; 18:556-565. [PMID: 29773063 DOI: 10.2174/1568026618666180518094322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
Protein-protein Interactions (PPIs) are particularly important for controlling both physiologic and pathologic biological processes but are difficult to target due to their large and/or shallow interaction surfaces unsuitable for small molecules. Linear peptides found in nature interact with some PPIs, and protein active regions can be used to design synthetic peptide compounds for inhibition of PPIs. However, linear peptides are limited therapeutically by poor metabolic and conformational stability, which can compromise their bioactivity and half-life. Cyclic peptidomimetics (modified peptides) can be used to overcome these challenges because they are more resistant to metabolic degradation and can be engineered to adopt desired conformations. Backbone cyclization is a strategy that we developed to improve drug-like properties of linear peptide leads without jeopardizing the integrity of functionally relevant side-chains. Here, we provide the first description of an entire approach for developing backbone cyclized peptide compounds, based upon two straightforward 'ABC' and 'DEF' processes. We present practical examples throughout our discussion of revealing active regions important for PPIs and identifying critical pharmacophores, as well as developing backbone cyclized peptide libraries and screening them using cycloscan. Finally, we review the impact of these advances and provide a summary of current ongoing work in the field.
Collapse
Affiliation(s)
- Samuel J S Rubin
- Stanford Immunology Program, School of Medicine, Stanford University, 269 Campus drive, Stanford CA 94305-5174, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, NV 89557, United States
| | - Chaim Gilon
- The Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, POB 1589, Safed, Israel
| |
Collapse
|
25
|
Mull RW, Harrington A, Sanchez LA, Tal-Gan Y. Cyclic Peptides that Govern Signal Transduction Pathways: From Prokaryotes to Multi-Cellular Organisms. Curr Top Med Chem 2018; 18:625-644. [PMID: 29773060 DOI: 10.2174/1568026618666180518090705] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/30/2016] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
Abstract
Cyclic peptide scaffolds are key components of signal transduction pathways in both prokaryotic and eukaryotic organisms since they act as chemical messengers that activate or inhibit specific cognate receptors. In prokaryotic organisms these peptides are utilized in non-essential pathways, such as quorum sensing, that are responsible for virulence and pathogenicity. In the more evolved eukaryotic systems, cyclic peptide hormones play a key role in the regulation of the overall function of multicellular organisms, mainly through the endocrine system. This review will highlight several prokaryote and eukaryote systems that use cyclic peptides as their primary signals and the potential associated with utilizing these scaffolds for the discovery of novel therapeutics for a wide range of diseases and illnesses.
Collapse
Affiliation(s)
- Ryan W Mull
- Department of Chemistry, University of Nevada, Reno, NV 89557, United States
| | - Anthony Harrington
- Department of Chemistry, University of Nevada, Reno, NV 89557, United States
| | - Lucia A Sanchez
- Department of Chemistry, University of Nevada, Reno, NV 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, NV 89557, United States
| |
Collapse
|
26
|
Gandini E, Dapiaggi F, Oliva F, Pieraccini S, Sironi M. Well-Tempered MetaDynamics based method to evaluate universal peptidomimetics. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 2018; 26:2766-2773. [DOI: 10.1016/j.bmc.2017.08.031] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
28
|
Halder A, Mazumdar S, Das A, Karmakar P, Ghoshal D. A Schiff Base Macrocycle Ligand and Its Mg(II) and Cd(II) Complexes: Spectral Properties with Theoretical Understanding and Biological Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201702187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arijit Halder
- Department of Chemistry; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Swagata Mazumdar
- Department of Life Science and Biotechnology; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Anamika Das
- Department of Chemistry; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Debajyoti Ghoshal
- Department of Chemistry; Jadavpur University; Jadavpur, Kolkata 700 032 India
| |
Collapse
|
29
|
Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017; 78:245-267. [DOI: 10.1002/ddr.21406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| |
Collapse
|
30
|
Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Orally Absorbed Cyclic Peptides. Chem Rev 2017; 117:8094-8128. [PMID: 28541045 DOI: 10.1021/acs.chemrev.6b00838] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peptides and proteins are not orally bioavailable in mammals, although a few peptides are intestinally absorbed in small amounts. Polypeptides are generally too large and polar to passively diffuse through lipid membranes, while most known active transport mechanisms facilitate cell uptake of only very small peptides. Systematic evaluations of peptides with molecular weights above 500 Da are needed to identify parameters that influence oral bioavailability. Here we describe 125 cyclic peptides containing four to thirty-seven amino acids that are orally absorbed by mammals. Cyclization minimizes degradation in the gut, blood, and tissues by removing cleavable N- and C-termini and by shielding components from metabolic enzymes. Cyclization also folds peptides into bioactive conformations that determine exposure of polar atoms to solvation by water and lipids and therefore can influence oral bioavailability. Key chemical properties thought to influence oral absorption and bioavailability are analyzed, including molecular weight, octanol-water partitioning, hydrogen bond donors/acceptors, rotatable bonds, and polar surface area. The cyclic peptides violated to different degrees all of the limits traditionally considered to be important for oral bioavailability of drug-like small molecules, although fewer hydrogen bond donors and reduced flexibility generally favored oral absorption.
Collapse
Affiliation(s)
- Daniel S Nielsen
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Nicholas E Shepherd
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Weijun Xu
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Martin J Stoermer
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| |
Collapse
|
31
|
Charron CL, Hickey JL, Nsiama TK, Cruickshank DR, Turnbull WL, Luyt LG. Molecular imaging probes derived from natural peptides. Nat Prod Rep 2017; 33:761-800. [PMID: 26911790 DOI: 10.1039/c5np00083a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to the end of 2015.Peptides are naturally occurring compounds that play an important role in all living systems and are responsible for a range of essential functions. Peptide receptors have been implicated in disease states such as oncology, metabolic disorders and cardiovascular disease. Therefore, natural peptides have been exploited as diagnostic and therapeutic agents due to the unique target specificity for their endogenous receptors. This review discusses a variety of natural peptides highlighting their discovery, endogenous receptors, as well as their derivatization to create molecular imaging agents, with an emphasis on the design of radiolabelled peptides. This review also highlights methods for discovering new and novel peptides when knowledge of specific targets and endogenous ligands are not available.
Collapse
Affiliation(s)
- C L Charron
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - J L Hickey
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - T K Nsiama
- London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| | - D R Cruickshank
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - W L Turnbull
- Department of Chemistry, The University of Western Ontario, London, Canada.
| | - L G Luyt
- Department of Chemistry, The University of Western Ontario, London, Canada. and Departments of Oncology and Medical Imaging, The University of Western Ontario, London, Canada and London Regional Cancer Program, Lawson Health Research Institute, London, Canada
| |
Collapse
|
32
|
Lin H, Jiang Y, Hu K, Zhang Q, He C, Wang T, Li Z. An in-tether sulfilimine chiral center induces β-turn conformation in short peptides. Org Biomol Chem 2016; 14:9993-9999. [PMID: 27722542 DOI: 10.1039/c6ob01805j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sulfilimine chiral center in the tether at i, i + 3 positions of short peptides was systematically studied to elucidate the chirality-driven conformational changes. A rare and unexpected type III β-turn structure was induced in short peptides by an in-tether chiral center, supported by circular dichroism spectroscopy, NMR and X-ray crystallography.
Collapse
Affiliation(s)
- Huacan Lin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Yixiang Jiang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Kuan Hu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Qingzhou Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Tao Wang
- Department of Biology, South University of Science and Technology, Shenzhen, 518055, China.
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
33
|
Abstract
The aggregation of peptides/proteins is intimately related to a number of human diseases. More than 20 have been identified which aggregate into fibrils containing extensive β-sheet structures, and species generated in the aggregation processes (i.e., oligomers and fibrils) contribute to disease development. Amyloid-β peptide (designated Aβ), related to Alzheimer's disease (AD), is the representative example. The intensive aggregation property of Aβ also leads to difficulty in its synthesis. To improve the synthetic problem, we developed an O-acyl isopeptide of Aβ1-42, in which the N-acyl linkage (amide bond) of Ser(26) was replaced with an O-acyl linkage (ester bond) at the side chain. The O-acyl isopeptide demonstrated markedly higher water-solubility than that of Aβ1-42, while it quickly converted to intact monomer Aβ1-42 via an O-to-N acyl rearrangement under physiological conditions. Inhibition of the pathogenic aggregation of Aβ1-42 might be a therapeutic strategy for curing AD. We succeeded in the rational design and identification of a small molecule aggregation inhibitor based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-]. Moreover, the inhibition of Aβ aggregation was achieved via oxygenation (i.e., incorporation of oxygen atoms to Aβ) using an artificial catalyst. We identified a selective, cell-compatible photo-oxygenation catalyst of Aβ, a flavin catalyst attached to an Aβ-binding peptide, which markedly decreased the aggregation potency and neurotoxicity of Aβ.
Collapse
Affiliation(s)
- Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
34
|
Zhao B, Zhang Q, Li Z. Constructing thioether-tethered cyclic peptides via on-resin intra-molecular thiol-ene reaction. J Pept Sci 2016; 22:540-4. [DOI: 10.1002/psc.2902] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Bingchuan Zhao
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Qingzhou Zhang
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Zigang Li
- School of Chemical Biology and Biotechnology; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| |
Collapse
|
35
|
Hickey JL, Zaretsky S, St. Denis MA, Kumar Chakka S, Morshed MM, Scully CCG, Roughton AL, Yudin AK. Passive Membrane Permeability of Macrocycles Can Be Controlled by Exocyclic Amide Bonds. J Med Chem 2016; 59:5368-76. [DOI: 10.1021/acs.jmedchem.6b00222] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jennifer L. Hickey
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Encycle Therapeutics Inc., 101
College Street, Suite 314, Toronto, Ontario M5G 1L7, Canada
| | - Serge Zaretsky
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Megan A. St. Denis
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Encycle Therapeutics Inc., 101
College Street, Suite 314, Toronto, Ontario M5G 1L7, Canada
| | - Sai Kumar Chakka
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Encycle Therapeutics Inc., 101
College Street, Suite 314, Toronto, Ontario M5G 1L7, Canada
| | - M. Monzur Morshed
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Encycle Therapeutics Inc., 101
College Street, Suite 314, Toronto, Ontario M5G 1L7, Canada
| | - Conor C. G. Scully
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Andrew L. Roughton
- Encycle Therapeutics Inc., 101
College Street, Suite 314, Toronto, Ontario M5G 1L7, Canada
| | - Andrei K. Yudin
- Davenport
Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
36
|
Fridén-Saxin M, Seifert T, Malo M, da Silva Andersson K, Pemberton N, Dyrager C, Friberg A, Dahlén K, Wallén EA, Grøtli M, Luthman K. Chroman-4-one and chromone based somatostatin β-turn mimetics. Eur J Med Chem 2016; 114:59-64. [DOI: 10.1016/j.ejmech.2016.02.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/28/2022]
|
37
|
Sabatino G, Guryanov I, Rombecchi A, Zanon J, Ricci A, Cabri W, Papini AM, Rovero P. Production of peptides as generic drugs: a patent landscape of octreotide. Expert Opin Ther Pat 2016; 26:485-95. [DOI: 10.1517/13543776.2016.1158810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Wang CK, Swedberg JE, Northfield SE, Craik DJ. Effects of Cyclization on Peptide Backbone Dynamics. J Phys Chem B 2015; 119:15821-30. [DOI: 10.1021/acs.jpcb.5b11085] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Conan K. Wang
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joakim E. Swedberg
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan E. Northfield
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J. Craik
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
39
|
Synthetic Peptide Analogs of Somatostatin: Trends in the Synthesis of and Prospects in the Search for New Anticancer Drugs. Pharm Chem J 2015. [DOI: 10.1007/s11094-015-1284-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Angew Chem Int Ed Engl 2015; 54:8896-927. [PMID: 26119925 PMCID: PMC4557054 DOI: 10.1002/anie.201412070] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A-D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices.
Collapse
Affiliation(s)
- Marta Pelay-Gimeno
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Adrian Glas
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Oliver Koch
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| |
Collapse
|
41
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Strukturbasierte Entwicklung von Protein-Protein-Interaktionsinhibitoren: Stabilisierung und Nachahmung von Peptidliganden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412070] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Brown SP, Smith AB. Peptide/protein stapling and unstapling: introduction of s-tetrazine, photochemical release, and regeneration of the peptide/protein. J Am Chem Soc 2015; 137:4034-7. [PMID: 25793939 PMCID: PMC4394111 DOI: 10.1021/ja512880g] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Protocols have been achieved that
permit facile introduction of s-tetrazine into unprotected
peptides and the protein, thioredoxin,
between two cysteine sulfhydryl groups (i.e., staple), followed
by photochemical release (i.e., unstaple) and regeneration of
the peptide/protein upon removal of the cyano groups from
the derived bisthiocyanate. The S,S-tetrazine
macrocycles in turn provide a convenient handle for probe introduction
by exploiting the inverse electron demand Diels–Alder reactivity
of the tetrazine.
Collapse
Affiliation(s)
- Stephen P Brown
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
43
|
Staykova ST, Wesselinova DW, Vezenkov LT, Naydenova ED. Synthesis and in vitro antitumor activity of new octapeptide analogs of somatostatin containing unnatural amino acids. Amino Acids 2015; 47:1007-13. [DOI: 10.1007/s00726-015-1929-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/23/2015] [Indexed: 12/19/2022]
|
44
|
Bathula SR, Akondi SM, Mainkar PS, Chandrasekhar S. “Pruning of biomolecules and natural products (PBNP)”: an innovative paradigm in drug discovery. Org Biomol Chem 2015; 13:6432-48. [DOI: 10.1039/c5ob00403a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Smart Schneider: ‘Nature’ is the most intelligent tailor with an ability to utilize the resources. Researchers are still at an infant stage learning this art. The present review highlights some of the man made pruning of bio-molecules and NPs (PBNP) in finding chemicals with a better therapeutic index.
Collapse
Affiliation(s)
- Surendar Reddy Bathula
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Srirama Murthy Akondi
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Prathama S. Mainkar
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| | - Srivari Chandrasekhar
- Division of Natural Products Chemistry CSIR-Indian Institute of Chemical Technology
- Hyderabad
- 500007 India
| |
Collapse
|
45
|
Abstract
This review highlights known disulfide-bridged peptide bicycles and the studies on their unique structural and biological features.
Collapse
Affiliation(s)
| | - Andrei K. Yudin
- Lash Miller Chemical Laboratories
- University of Toronto
- Toronto
- Canada M5S 3H6
| |
Collapse
|
46
|
Auberger N, Pisa MD, Larregola M, Chassaing G, Peroni E, Lavielle S, Papini AM, Lequin O, Mallet JM. Glaser oxidative coupling on peptides: Stabilization of β-turn structure via a 1,3-butadiyne constraint. Bioorg Med Chem 2014; 22:6924-32. [DOI: 10.1016/j.bmc.2014.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 11/30/2022]
|
47
|
Ermert P, Moehle K, Obrecht D. Macrocyclic Inhibitors of GPCR's, Integrins and Protein–Protein Interactions. MACROCYCLES IN DRUG DISCOVERY 2014. [DOI: 10.1039/9781782623113-00283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This chapter summarizes some highlights of macrocyclic drug discovery in the area of GPCRs, integrins, and protein–protein interactions spanning roughly the last 30 years. Several examples demonstrate that incorporation of pharmacophores derived from natural peptide ligands into the context of a constrained macrocycle (“lock of the bioactive conformation”) has proven a powerful approach for the discovery of potent and selective macrocyclic drugs. In addition, it will be shown that macrocycles, due to their semi-rigid nature, can exhibit unique properties that can be beneficially exploited by medicinal chemists. Macrocycles can adapt their conformation during binding to a flexible protein target surface (“induced fit”), and due to their size, can interact with larger protein interfaces (“hot spots”). Also, macrocycles can display favorable ADME properties well beyond the rule of 5 in particular exhibiting favorable cell penetrating properties and oral bioavailability.
Collapse
Affiliation(s)
- Philipp Ermert
- Polyphor Ltd Hegenheimermattweg 125 CH-4123 Allschwil Switzerland
| | - Kerstin Moehle
- University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Daniel Obrecht
- Polyphor Ltd Hegenheimermattweg 125 CH-4123 Allschwil Switzerland
| |
Collapse
|
48
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed Engl 2014; 53:13020-41. [PMID: 25287434 DOI: 10.1002/anie.201401058] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2013] [Indexed: 12/18/2022]
Abstract
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein-like structures in water. However, short peptides can be induced to fold into protein-like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine-tune three-dimensional structure. Such constrained cyclic peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic peptidomimetics that refine peptide structure and confer biological properties.
Collapse
Affiliation(s)
- Timothy A Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072 (Australia)
| | | | | | | |
Collapse
|
49
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Fixierung cyclischer Peptide: Mimetika von Proteinstrukturmotiven. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401058] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Arai T, Araya T, Sasaki D, Taniguchi A, Sato T, Sohma Y, Kanai M. Rational Design and Identification of a Non-Peptidic Aggregation Inhibitor of Amyloid-β Based on a Pharmacophore Motif Obtained fromcyclo[-Lys-Leu-Val-Phe-Phe-]. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|