1
|
Torielli L, Guarra F, Shao H, Gestwicki JE, Serapian SA, Colombo G. Pathogenic mutation impairs functional dynamics of Hsp60 in mono- and oligomeric states. Nat Commun 2025; 16:3158. [PMID: 40180932 PMCID: PMC11968893 DOI: 10.1038/s41467-025-57958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Mitochondrial chaperonin Heat Shock Protein 60 kDa (Hsp60) oversees the correct folding of client proteins in cooperation with Hsp10. Hsp60 monomers M first form 7-meric Single rings (S), which then pair into 14-meric Double rings (D) that accommodate clients in their lumen. Recruitment of 7 Hsp10 molecules per pole yields a sealed 28-meric Football-shaped complex (F). ATP hydrolysis in each Hsp60 unit drives client folding and F disassembly. The V72I mutation in hereditary spastic paraplegia form SPG13 impairs Hsp60 function despite being distant from the active site. We here investigate this impairment with atomistic molecular dynamics (MD) simulations of M, S, D, and F for both WT and mutant Hsp60, considering catalytic aspartates in D and F in different protonation states (even simulating one such state of D post-hydrolysis). Our findings show that-as observed experimentally-V72I rigidifies Hsp60 assemblies, significantly impacting internal dynamics. In monomers, V72I introduces a new allosteric route that bypasses the ATP binding site and affects mechanisms driving reactivity. These insights highlight a multiscale complexity of Hsp60 that could inspire the design of experiments to better understand both its WT and V72I variants.
Collapse
Affiliation(s)
- Luca Torielli
- Department of Chemistry, University of Pavia, Pavia, Italy
| | | | - Hao Shao
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
2
|
Liu L, Chen W, Luo H, Zhang W, Zhang Z, Huang X, Fu X. HSPD1-facilitated formation of CTPS cytoophidia promotes proliferation in C2C12 cells. Exp Cell Res 2025; 446:114462. [PMID: 39971178 DOI: 10.1016/j.yexcr.2025.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
CTP synthase (CTPS) is a rate-limiting enzyme that controls CTP synthesis and can polymerize to form a filamentous structure called cytoophidia. The presence of cytoophidia affects the enzymatic activity of CTPS. However, whether CTPS can form cytoophidia in C2C12 cells and whether it affects the proliferation of skeletal muscle satellite cells needs to be further studied. In this study, we found that CTPS could form cytoophidia during C2C12 cell proliferation, and that overexpression of CTPS significantly promoted the formation of CTPS cytoophidia and increased the viability and proliferation rate of C2C12 cells. However, the CTPS H355A mutation hindered the formation of CTPS cytoophidia and inhibited the viability and proliferation of C2C12 cells. In addition, we found that the HSPD1 protein could interact with the CTPS protein and interference with Hspd1 gene expression inhibited the formation of CTPS cytoophidia, even with the overexpression of the CTPS gene. Subsequently, it inhibited C2C12 cells proliferation. Thus, these findings reveal the role of CTPS cytoophidia formation in C2C12 cells proliferation.
Collapse
Affiliation(s)
- Lili Liu
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China
| | - Wen Chen
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China
| | - Haijing Luo
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China
| | - Weiwei Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China.
| | - Zhenzhu Zhang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China; Heilongjiang Agricultural Engineering Vocational College, Haerbing, No.2, Qunying Street, Limin Avenue, Harbin City, China
| | - Xin Huang
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China
| | - Xuepeng Fu
- Department of Life Science and Agroforestry, Qiqihar University, No. 42 Wenhua Street, JianHua District, Qiqihar, Heilongjiang Province, China
| |
Collapse
|
3
|
Abe N, Odahara M, Morey SR, Numata K. Development of a Versatile Plant-Derived Mitochondrial Targeting Sequence Based on a Reporter Protein Sorting Analysis and Biological Information. ACS Chem Biol 2024; 19:2515-2524. [PMID: 39622491 PMCID: PMC11667665 DOI: 10.1021/acschembio.4c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024]
Abstract
Methods for the delivery of exogenous substances to specific organelles are important because each organelle functions according to its own role. Specifically, mitochondria play an important role in energy production. Recently, plant mitochondrial transformation via delivery methods to mitochondria has been actively researched. Mitochondrial targeting sequences (MTSs) are essential for transporting bioactive molecules, such as nucleic acids, to mitochondria. However, the selectivity and efficacy of MTSs as carrier molecules in plants are not yet sufficient. In this study, we developed an effective MTS in plants via a quantitative comparison of the targeting functions of several MTSs. The presequence of HSP60 from Nicotiana tabacum, which is highly similar to that of several other model plants, showed high mitochondrial-targeting ability among the MTSs tested. This result suggests the applicability of the HSP60 presequence for MTSs in various plants. We further investigated this HSP60 presequence through stepwise shortening on the basis of secondary structure prediction, aiming to simplify synthesis and increase the solubility of the peptides. As shown by assessment of the mitochondrial targeting ability, the 15 residues from the N-terminus of the HSP60 presequence for the MTS, which is particularly conserved among various model plants, retained a targeting efficacy comparable to that of the full-length HSP60 presequence. This developed sequence from the HSP60 sequence is a promising MTS for transfection into plant mitochondria.
Collapse
Affiliation(s)
- Naoya Abe
- Department
of Material Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto, Nishikyo-ku 615-8510, Japan
| | - Masaki Odahara
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Saitama, Wako 351-0198, Japan
| | - Shamitha Rao Morey
- Department
of Material Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto, Nishikyo-ku 615-8510, Japan
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Kyoto, Nishikyo-ku 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Saitama, Wako 351-0198, Japan
| |
Collapse
|
4
|
Braxton JR, Shao H, Tse E, Gestwicki JE, Southworth DR. Asymmetric apical domain states of mitochondrial Hsp60 coordinate substrate engagement and chaperonin assembly. Nat Struct Mol Biol 2024; 31:1848-1858. [PMID: 38951622 PMCID: PMC11638070 DOI: 10.1038/s41594-024-01352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/07/2024] [Indexed: 07/03/2024]
Abstract
The mitochondrial chaperonin, mitochondrial heat shock protein 60 (mtHsp60), promotes the folding of newly imported and transiently misfolded proteins in the mitochondrial matrix, assisted by its co-chaperone mtHsp10. Despite its essential role in mitochondrial proteostasis, structural insights into how this chaperonin progresses through its ATP-dependent client folding cycle are not clear. Here, we determined cryo-EM structures of a hyperstable disease-associated human mtHsp60 mutant, V72I. Client density is identified in three distinct states, revealing interactions with the mtHsp60 apical domains and C termini that coordinate client positioning in the folding chamber. We further identify an asymmetric arrangement of the apical domains in the ATP state, in which an alternating up/down configuration positions interaction surfaces for simultaneous recruitment of mtHsp10 and client retention. Client is then fully encapsulated in mtHsp60-10, revealing prominent contacts at two discrete sites that potentially support maturation. These results identify distinct roles for the apical domains in coordinating client capture and progression through the chaperone cycle, supporting a conserved mechanism of group I chaperonin function.
Collapse
Affiliation(s)
- Julian R Braxton
- Graduate Program in Chemistry and Chemical Biology, University of California San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Eric Tse
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA.
| | - Daniel R Southworth
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
De Los Rios P, Rebeaud ME, Goloubinoff P. An outmoded in vitro-inferred mechanism for chaperonin-accelerated protein refolding is confirmed in cells by cryo-electron tomography. Cell Stress Chaperones 2024; 29:764-768. [PMID: 39549734 PMCID: PMC11638601 DOI: 10.1016/j.cstres.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Affiliation(s)
- Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland; Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland.
| | - Mathieu E Rebeaud
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Li W, Luo Y, Ali T, Huang Y, Yu ZJ, Hao L, Li S. Hsp60 deletion in cholinergic neurons: Impact on neuroinflammation and memory. Int Immunopharmacol 2024; 141:113022. [PMID: 39213869 DOI: 10.1016/j.intimp.2024.113022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Cholinergic circuit defects have been linked to various neurological abnormalities, yet the precise mechanisms underlying the impact of cholinergic signaling on cognitive functions, particularly in the context of neuroinflammation-associated, remain poorly understood. Similarly, while the dopamine receptor (D2R) has been implicated in the pausing of cholinergic interneurons (CIN), its relationship with behavior remains inadequately elucidated. In this study, we aimed to investigate whether D2R plays a role in the regulation of fear and memory in the Hsp60 knockout condition, given the non-canonical involvement of Hsp60 in inflammation. Using a CRE-floxed system, we selectively generated cholinergic neurons specific to Hsp60 knockout mice and subjected them to memory tests. Our results revealed a significant increase in freezing levels during recall and contextual tests in Hsp60-deprived mice. We also observed dysregulation of neurotransmitters and D2R in the hippocampus of Hsp60 knockout mice, along with enhanced impairments in cytokine levels and synaptic protein dysregulations. These changes were accompanied by alterations in PI3K/eIF4E/Jak/ERK/CREB signaling pathways. Notably, D2R agonism via Quinpirole led to a decrease in freezing levels during recall and contextual tests, alongside an increase in IBA-1 expression and improvements in inflammatory response-linked signaling pathways, including JAK/STAT/P38/JNK impairments. Given that these pathways are well-known downstream signaling cascades of D2R, our findings suggest that D2R signaling may contribute to the neuroinflammation induced by Hsp60 deprivation, potentially exacerbating memory impairments.
Collapse
Affiliation(s)
- Weifen Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center. No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China; State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yanhua Luo
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yangmei Huang
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center. No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| | - Liangliang Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shier-Qiao Road, Chengdu, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
8
|
Weiss C, Berruezo AG, Seraidy S, Parnas A, Tascón I, Ubarretxena-Belandia I, Azem A. Purification of functional recombinant human mitochondrial Hsp60. Methods Enzymol 2024; 707:423-440. [PMID: 39488385 DOI: 10.1016/bs.mie.2024.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The mitochondrial 60 kDa heat shock protein (mHsp60) is an oligomeric, barrel-like structure that mediates protein folding in cooperation with its cochaperonin Hsp10, in an ATP-dependent manner. In contrast to the extremely stable oligomeric structure of the bacterial chaperonin, GroEL, the human mHsp60 exists in equilibrium between single and double heptameric units, which dissociate easily to inactive monomers under laboratory conditions. Consequently, purification and manipulation of active mHsp60 oligomers is not straightforward. In this manuscript, we present an improved protocol for the purification of functional mHsp60, following its expression in bacteria. This method is based upon a previously published strategy that exploits the notorious instability of mHsp60 to purify the monomeric form, which is subsequently reconstituted to functional oligomers under controlled conditions. In our protocol, we use affinity chromatography on a Ni NTA-agarose resin as the initial step, facilitating purification of substantial amounts of highly pure active protein. The resulting Hsp60 is suitable for both functional and structural analyses, including crystallography and electron cryo-microscopy (cryo-EM) studies, to obtain high resolution structures of the mHsp60 oligomers alone and in various complexes.
Collapse
Affiliation(s)
- Celeste Weiss
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Alberto G Berruezo
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Shaikhah Seraidy
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Igor Tascón
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Abdussalam Azem
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Dea A, Pincus D. The Heat Shock Response as a Condensate Cascade. J Mol Biol 2024; 436:168642. [PMID: 38848866 PMCID: PMC11214683 DOI: 10.1016/j.jmb.2024.168642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.
Collapse
Affiliation(s)
- Annisa Dea
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, United States; Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
10
|
Felipe Perez R, Mochi G, Khan A, Woodford M. Mitochondrial Chaperone Code: Just warming up. Cell Stress Chaperones 2024; 29:483-496. [PMID: 38763405 PMCID: PMC11153887 DOI: 10.1016/j.cstres.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024] Open
Abstract
More than 99% of the mitochondrial proteome is encoded by the nucleus and requires refolding following import. Therefore, mitochondrial proteins require the coordinated action of molecular chaperones for their folding and activation. Several heat shock protein (Hsp) molecular chaperones, including members of the Hsp27, Hsp40/70, and Hsp90 families, as well as the chaperonin complex Hsp60/10 have an established role in mitochondrial protein import and folding. The "Chaperone Code" describes the regulation of chaperone activity by dynamic post-translational modifications; however, little is known about the post-translational regulation of mitochondrial chaperones. Dissecting the regulation of chaperone function is essential for understanding their differential regulation in pathogenic conditions and the potential development of efficacious therapeutic strategies. Here, we summarize the recent literature on post-translational regulation of mitochondrial chaperones, the consequences for mitochondrial function, and potential implications for disease.
Collapse
Affiliation(s)
- R Felipe Perez
- Department of Urology, Upstate Medical University, Syracuse, NY, USA
| | - Gianna Mochi
- Department of Urology, Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry & Molecular Biology, Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Ariba Khan
- Department of Urology, Upstate Medical University, Syracuse, NY, USA
| | - Mark Woodford
- Department of Urology, Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry & Molecular Biology, Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, State University of New York, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
11
|
Syed A, Zhai J, Guo B, Zhao Y, Wang JCY, Chen L. Cryo-EM structure and molecular dynamic simulations explain the enhanced stability and ATP activity of the pathological chaperonin mutant. Structure 2024; 32:575-584.e3. [PMID: 38412855 PMCID: PMC11069440 DOI: 10.1016/j.str.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Chaperonins Hsp60s are required for cellular vitality by assisting protein folding in an ATP-dependent mechanism. Although conserved, the human mitochondrial mHsp60 exhibits molecular characteristics distinct from the E. coli GroEL, with different conformational assembly and higher subunit association dynamics, suggesting a different mechanism. We previously found that the pathological mutant mHsp60V72I exhibits enhanced subunit association stability and ATPase activity. To provide structural explanations for the V72I mutational effects, here we determined a cryo-EM structure of mHsp60V72I. Our structural analysis combined with molecular dynamic simulations showed mHsp60V72I with increased inter-subunit interface, binding free energy, and dissociation force, all contributing to its enhanced subunit association stability. The gate to the nucleotide-binding (NB) site in mHsp60V72I mimicked the open conformation in the nucleotide-bound state with an additional open channel leading to the NB site, both promoting the mutant's ATPase activity. Our studies highlight the importance of mHsp60's characteristics in its biological function.
Collapse
Affiliation(s)
- Aiza Syed
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, 212 S. Hawthorne Dr., Bloomington, IN 47405, USA
| | - Jihang Zhai
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475000, China
| | - Baolin Guo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475000, China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475000, China.
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Lingling Chen
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, 212 S. Hawthorne Dr., Bloomington, IN 47405, USA.
| |
Collapse
|
12
|
Roterman I, Stapor K, Dułak D, Konieczny L. External Force Field for Protein Folding in Chaperonins-Potential Application in In Silico Protein Folding. ACS OMEGA 2024; 9:18412-18428. [PMID: 38680295 PMCID: PMC11044213 DOI: 10.1021/acsomega.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
The present study discusses the influence of the TRiC chaperonin involved in the folding of the component of reovirus mu1/σ3. The TRiC chaperone is treated as a provider of a specific external force field in the fuzzy oil drop model during the structural formation of a target folded protein. The model also determines the status of the final product, which represents the structure directed by an external force field in the form of a chaperonin. This can be used for in silico folding as the process is environment-dependent. The application of the model enables the quantitative assessment of the folding dependence of an external force field, which appears to have universal application.
Collapse
Affiliation(s)
- Irena Roterman
- Department
of Bioinformatics and Telemedicine, Jagiellonian
University—Medical College, Medyczna 7, Kraków 30-688, Poland
| | - Katarzyna Stapor
- Faculty
of Automatic, Electronics and Computer Science, Department of Applied
Informatics, Silesian University of Technology, Akademicka 16, Gliwice 44-100, Poland
| | - Dawid Dułak
- ABB
Business Services Sp. z o.o, ul Żegańska 1, Warszawa 04-713, Poland
| | - Leszek Konieczny
- Chair
of Medical Biochemistry—Jagiellonian University—Medical
College, Kopernika 7, Kraków 31-034, Poland
| |
Collapse
|
13
|
Zhang Y, Ma X, Liu C, Bie Z, Liu G, Liu P, Yang Z. Identification of HSPD1 as a novel invasive biomarker associated with mitophagy in pituitary adenomas. Transl Oncol 2024; 41:101886. [PMID: 38290248 PMCID: PMC10840335 DOI: 10.1016/j.tranon.2024.101886] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The crucial role of mitophagy in tumor progression has been recognized. Therefore, our study aimed to investigate the potential correlation between pituitary adenoma invasiveness and the mitophagy processes. METHODS In this study, we used transcriptomics of postoperative tissue from 32 patients and quantitative proteomics of 19 patients to screen for mitophagy-related invasion genes in pituitary adenomas. The invasive predictive value of target genes was analyzed by Lasso regression model, CytoHubba plugin and expression validation. Co-expression correlation analysis was used to identify paired proteins for target genes, and a predictive model for pituitary adenoma invasiveness was constructed by target genes and paired proteins and assessed using ROC analysis, calibration curves and DCA. GO function, pathway (GSEA or GSVA) and immune cell analysis (ssGSEA or CIBERSORT) were further utilized to explore the action mechanism of target gene. Finally, immunohistochemistry and cell function experiments were used to detect the differential expression and key roles of the target genes in pituitary adenomas. RESULTS Finally, Heat shock protein family D member 1 (HSPD1) was identified as a target gene. The quality of a predictive model for pituitary adenoma invasiveness consisting of HSPD1 and its paired protein expression profiles was satisfactory. Moreover, the expression of HSPD1 was significantly lower in invasive pituitary adenomas than in non-invasive pituitary adenomas. Downregulation of HSPD1 may be significantly related to invasion process, mitochondria-related pathway and immune cell regulation in pituitary adenomas. CONCLUSION The downregulation of HSPD1 may serve as a predictive indicator for identifying invasive pituitary adenomas.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xin Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Congyu Liu
- School of Life Science, Tsinghua University, Beijing, PR China
| | - Zhixu Bie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Gemingtian Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.
| | - Zhijun Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
14
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
15
|
Nashed S, El Barbry H, Benchouaia M, Dijoux-Maréchal A, Delaveau T, Ruiz-Gutierrez N, Gaulier L, Tribouillard-Tanvier D, Chevreux G, Le Crom S, Palancade B, Devaux F, Laine E, Garcia M. Functional mapping of N-terminal residues in the yeast proteome uncovers novel determinants for mitochondrial protein import. PLoS Genet 2023; 19:e1010848. [PMID: 37585488 PMCID: PMC10482271 DOI: 10.1371/journal.pgen.1010848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 09/06/2023] [Accepted: 06/29/2023] [Indexed: 08/18/2023] Open
Abstract
N-terminal ends of polypeptides are critical for the selective co-translational recruitment of N-terminal modification enzymes. However, it is unknown whether specific N-terminal signatures differentially regulate protein fate according to their cellular functions. In this work, we developed an in-silico approach to detect functional preferences in cellular N-terminomes, and identified in S. cerevisiae more than 200 Gene Ontology terms with specific N-terminal signatures. In particular, we discovered that Mitochondrial Targeting Sequences (MTS) show a strong and specific over-representation at position 2 of hydrophobic residues known to define potential substrates of the N-terminal acetyltransferase NatC. We validated mitochondrial precursors as co-translational targets of NatC by selective purification of translating ribosomes, and found that their N-terminal signature is conserved in Saccharomycotina yeasts. Finally, systematic mutagenesis of the position 2 in a prototypal yeast mitochondrial protein confirmed its critical role in mitochondrial protein import. Our work highlights the hydrophobicity of MTS N-terminal residues and their targeting by NatC as important features for the definition of the mitochondrial proteome, providing a molecular explanation for mitochondrial defects observed in yeast or human NatC-depleted cells. Functional mapping of N-terminal residues thus has the potential to support the discovery of novel mechanisms of protein regulation or targeting.
Collapse
Affiliation(s)
- Salomé Nashed
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Houssam El Barbry
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Médine Benchouaia
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Angélie Dijoux-Maréchal
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Thierry Delaveau
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Nadia Ruiz-Gutierrez
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Lucie Gaulier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | | | | | - Stéphane Le Crom
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | | | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Elodie Laine
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Mathilde Garcia
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| |
Collapse
|
16
|
Song G, Chen J, Deng Y, Sun L, Yan Y. TMT Labeling Reveals the Effects of Exercises on the Proteomic Characteristics of the Subcutaneous Adipose Tissue of Growing High-Fat-Diet-Fed Rats. ACS OMEGA 2023; 8:23484-23500. [PMID: 37426235 PMCID: PMC10324099 DOI: 10.1021/acsomega.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
Aim: Growing period is an important period for fat remodeling. High-fat diet and exercise are reasons for adipose tissue (AT) remodeling, but existing evidence is not enough. Therefore, the effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on the proteomic characteristics of the subcutaneous AT of growing rats on normal diet or high-fat diet (HFD) were determined. Methods: Four-week-old male Sprague-Dawley rats (n = 48) were subdivided into six groups: normal diet control group, normal diet-MICT group, normal diet-HIIT group, HFD control group, HFD-MICT group, and HFD-HIIT group. Rats in the training group ran on a treadmill 5 days a week for 8 weeks (MICT: 50 min at 60-70% VO2max intensity; HIIT: 7 min of warm-up and recovery at 70% VO2max intensity, 6 sets of 3 min of 30% VO2max followed by 3 min 90% VO2max). Following physical assessment, inguinal subcutaneous adipose tissue (sWAT) was collected for proteome analysis using tandem mass tag labeling. Results: MICT and HIIT attenuated body fat mass and lean body mass but did not affect weight gain. Proteomics revealed the impact of exercise on ribosome, spliceosome, and the pentose phosphate pathway. However, the effect was reversed on HFD and normal diet. The differentially expressed proteins (DEPs) affected by MICT were related to oxygen transport, ribosome, and spliceosome. In comparison, the DEPs affected by HIIT were related to oxygen transport, mitochondrial electron transport, and mitochondrion protein. In HFD, HIIT was more likely to cause changes in immune proteins than MICT. However, exercise did not seem to reverse the protein effects of HFD. Conclusion: The exercise stress response in the growing period was stronger but increased the energy metabolism and metabolism. MICT and HIIT can reduce fat, increase muscle percentage, and improve maximum oxygen uptake in rats fed with HFD. However, in rats with normal diet, MICT and HIIT triggered more immune responses of sWAT, especially HIIT. In addition, spliceosomes may be the key factors in AT remodeling triggered by exercise and diet.
Collapse
Affiliation(s)
- Ge Song
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Junying Chen
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Guangdong
Ersha Sports Training Center, Guangzhou 510105, China
| | - Yimin Deng
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Fuzhou
Medical College of Nanchang University, Fuzhou 344000, China
| | - Lingyu Sun
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Yi Yan
- Department
of Sport Biochemistry, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Laboratory
of Sports Stress and Adaptation of General Administration of Sport, Beijing100084, China
- Laboratory
of Physical Fitness and Exercise, Ministry
of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
17
|
Lai MC, Cheng HY, Lew SH, Chen YA, Yu CH, Lin HY, Lin SM. Crystal structures of dimeric and heptameric mtHsp60 reveal the mechanism of chaperonin inactivation. Life Sci Alliance 2023; 6:e202201753. [PMID: 36973006 PMCID: PMC10053435 DOI: 10.26508/lsa.202201753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Mitochondrial Hsp60 (mtHsp60) plays a crucial role in maintaining the proper folding of proteins in the mitochondria. mtHsp60 self-assembles into a ring-shaped heptamer, which can further form a double-ring tetradecamer in the presence of ATP and mtHsp10. However, mtHsp60 tends to dissociate in vitro, unlike its prokaryotic homologue, GroEL. The molecular structure of dissociated mtHsp60 and the mechanism behind its dissociation remain unclear. In this study, we demonstrated that Epinephelus coioides mtHsp60 (EcHsp60) can form a dimeric structure with inactive ATPase activity. The crystal structure of this dimer reveals symmetrical subunit interactions and a rearranged equatorial domain. The α4 helix of each subunit extends and interacts with its adjacent subunit, leading to the disruption of the ATP-binding pocket. Furthermore, an RLK motif in the apical domain contributes to stabilizing the dimeric complex. These structural and biochemical findings provide new insights into the conformational transitions and functional regulation of this ancient chaperonin.
Collapse
Affiliation(s)
- Meng-Cheng Lai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Yu Cheng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Hong Lew
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-An Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Han-You Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
18
|
Groh C, Haberkant P, Stein F, Filbeck S, Pfeffer S, Savitski MM, Boos F, Herrmann JM. Mitochondrial dysfunction rapidly modulates the abundance and thermal stability of cellular proteins. Life Sci Alliance 2023; 6:e202201805. [PMID: 36941057 PMCID: PMC10027898 DOI: 10.26508/lsa.202201805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/23/2023] Open
Abstract
Cellular functionality relies on a well-balanced, but highly dynamic proteome. Dysfunction of mitochondrial protein import leads to the cytosolic accumulation of mitochondrial precursor proteins which compromise cellular proteostasis and trigger a mitoprotein-induced stress response. To dissect the effects of mitochondrial dysfunction on the cellular proteome as a whole, we developed pre-post thermal proteome profiling. This multiplexed time-resolved proteome-wide thermal stability profiling approach with isobaric peptide tags in combination with a pulsed SILAC labelling elucidated dynamic proteostasis changes in several dimensions: In addition to adaptations in protein abundance, we observed rapid modulations of the thermal stability of individual cellular proteins. Different functional groups of proteins showed characteristic response patterns and reacted with group-specific kinetics, allowing the identification of functional modules that are relevant for mitoprotein-induced stress. Thus, our new pre-post thermal proteome profiling approach uncovered a complex response network that orchestrates proteome homeostasis in eukaryotic cells by time-controlled adaptations of the abundance and the conformation of proteins.
Collapse
Affiliation(s)
- Carina Groh
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | | | | | | | - Felix Boos
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany;
| | | |
Collapse
|
19
|
Braxton JR, Shao H, Tse E, Gestwicki JE, Southworth DR. Asymmetric apical domain states of mitochondrial Hsp60 coordinate substrate engagement and chaperonin assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540872. [PMID: 37293102 PMCID: PMC10245740 DOI: 10.1101/2023.05.15.540872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mitochondrial chaperonin, mtHsp60, promotes the folding of newly imported and transiently misfolded proteins in the mitochondrial matrix, assisted by its co-chaperone mtHsp10. Despite its essential role in mitochondrial proteostasis, structural insights into how this chaperonin binds to clients and progresses through its ATP-dependent reaction cycle are not clear. Here, we determined cryo-electron microscopy (cryo-EM) structures of a hyperstable disease-associated mtHsp60 mutant, V72I, at three stages in this cycle. Unexpectedly, client density is identified in all states, revealing interactions with mtHsp60's apical domains and C-termini that coordinate client positioning in the folding chamber. We further identify a striking asymmetric arrangement of the apical domains in the ATP state, in which an alternating up/down configuration positions interaction surfaces for simultaneous recruitment of mtHsp10 and client retention. Client is then fully encapsulated in mtHsp60/mtHsp10, revealing prominent contacts at two discrete sites that potentially support maturation. These results identify a new role for the apical domains in coordinating client capture and progression through the cycle, and suggest a conserved mechanism of group I chaperonin function.
Collapse
Affiliation(s)
- Julian R. Braxton
- Graduate Program in Chemistry and Chemical Biology; University of California, San Francisco; San Francisco, CA 94158, USA
- Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Hao Shao
- Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Eric Tse
- Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Jason E. Gestwicki
- Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, CA 94158, USA
| | - Daniel R. Southworth
- Institute for Neurodegenerative Diseases; University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics; University of California, San Francisco; San Francisco, CA 94158, USA
| |
Collapse
|
20
|
Li YJ, Ma CS, Yan Y, Renault D, Colinet H. The interspecific variations in molecular responses to various doses of heat and cold stress: the case of cereal aphids. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104520. [PMID: 37148996 DOI: 10.1016/j.jinsphys.2023.104520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Insects are currently subjected to unprecedented thermal stress due to recent increases in the frequency and amplitude of temperature extremes. Understanding molecular responses to thermal stress is critically important to appreciate how species react to thermal stress. Three co-occurring cosmopolitan species are found within the guild of cereal aphids: Sitobion avenae, Ropalosiphum padi and Metopolophium dirhodum. Earlier reports have shown that increasing frequency of temperature extremes causes a shift in dominant species within guilds of cereal aphids by differently altering the population's growth. We hypothesize that a differential molecular response to stress among species may partially explain these changes. Heat shock proteins (HSPs) are molecular chaperones well known to play an important role in protecting against the adverse effects of thermal stress. However, few studies on molecular chaperones have been conducted in cereal aphids. In this study, we compared the heat and cold tolerance between three aphid species by measuring the median lethal time (Lt50) and examined the expression profiles of seven hsp genes after exposures to comparable thermal injury levels and also after same exposure durations. Results showed that R. padi survived comparatively better at high temperatures than the two other species but was more cold-sensitive. Hsp genes were induced more strongly by heat than cold stress. Hsp70A was the most strongly up-regulated gene in response to both heat and cold stress. R. padi had more heat inducible genes and significantly higher mRNA levels of hsp70A, hsp10, hsp60 and hsp90 than the other two species. Hsps ceased to be expressed at 37°C in M. dirhodum and S. avenae while expression was maintained in R. padi. In contrast, M. dirhodum was more cold tolerant and had more cold inducible genes than the others. These results confirm species-specific differences in molecular stress responses and suggest that differences in induced expression of hsps may be related to species' thermal tolerance, thus causing the changes in the relative abundance.
Collapse
Affiliation(s)
- Yuan-Jie Li
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France; School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Chun-Sen Ma
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yi Yan
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France
| | - Hervé Colinet
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 35000 Rennes, France.
| |
Collapse
|
21
|
Duan Y, Yu J, Chen M, Lu Q, Ning F, Gan X, Liu H, Ye Y, Lu S, Lash GE. Knockdown of heat shock protein family D member 1 (HSPD1) promotes proliferation and migration of ovarian cancer cells via disrupting the stability of mitochondrial 3-oxoacyl-ACP synthase (OXSM). J Ovarian Res 2023; 16:81. [PMID: 37087461 PMCID: PMC10122320 DOI: 10.1186/s13048-023-01156-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/06/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Heat shock protein 60 (HSP60) is essential for the folding and assembly of newly imported proteins to the mitochondria. HSP60 is overexpressed in most types of cancer, but its association with ovarian cancer is still in dispute. SKOV3 and OVCAR3 were used as experimental models after comparing the expression level of mitochondrial HSP60 in a normal human ovarian epithelial cell line and four ovarian cancer cell lines. RESULTS Low HSPD1 (Heat Shock Protein Family D (HSP60) Member 1) expression was associated with unfavorable prognosis in ovarian cancer patients. Knockdown of HSPD1 significantly promoted the proliferation and migration of ovarian cancer cells. The differentially expressed proteins after HSPD1 knockdown were enriched in the lipoic acid (LA) biosynthesis and metabolism pathway, in which mitochondrial 3-oxoacyl-ACP synthase (OXSM) was the most downregulated protein and responsible for lipoic acid synthesis. HSP60 interacted with OXSM and overexpression of OXSM or LA treatment could reverse proliferation promotion mediated by HSPD1 knockdown. CONCLUSIONS HSP60 interacted with OXSM and maintained its stability. Knockdown of HSPD1 could promote the proliferation and migration of SKOV3 and OVCAR3 via lowering the protein level of OXSM and LA synthesis.
Collapse
Affiliation(s)
- Yaoyun Duan
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Juan Yu
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaojuan Chen
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Qinsheng Lu
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Fen Ning
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaowen Gan
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hanbo Liu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yixin Ye
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shenjiao Lu
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Gendie E Lash
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| |
Collapse
|
22
|
Esfahanian N, Knoblich CD, Bowman GA, Rezvani K. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front Cell Dev Biol 2023; 11:1028519. [PMID: 36819105 PMCID: PMC9932541 DOI: 10.3389/fcell.2023.1028519] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Mortalin (GRP75, HSPA9A), a heat shock protein (HSP), regulates a wide range of cellular processes, including cell survival, growth, and metabolism. The regulatory functions of mortalin are mediated through a diverse set of protein partners associated with different cellular compartments, which allows mortalin to perform critical functions under physiological conditions, including mitochondrial protein quality control. However, alteration of mortalin's activities, its abnormal subcellular compartmentalization, and its protein partners turn mortalin into a disease-driving protein in different pathological conditions, including cancers. Here, mortalin's contributions to tumorigenic pathways are explained. Pathology information based on mortalin's RNA expression extracted from The Cancer Genome Atlas (TCGA) transcriptomic database indicates that mortalin has an independent prognostic value in common tumors, including lung, breast, and colorectal cancer (CRC). Subsequently, the binding partners of mortalin reported in different cellular models, from yeast to mammalian cells, and its regulation by post-translational modifications are discussed. Finally, we focus on colorectal cancer and discuss how mortalin and its tumorigenic downstream protein targets are regulated by a ubiquitin-like protein through the 26S proteasomal degradation machinery. A broader understanding of the function of mortalin and its positive and negative regulation in the formation and progression of human diseases, particularly cancer, is essential for developing new strategies to treat a diverse set of human diseases critically associated with dysregulated mortalin.
Collapse
|
23
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Reche-López D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Romero-González A, Suárez-Rivero JM, Romero-Domínguez JM, Sánchez-Alcázar JA. mtUPR Modulation as a Therapeutic Target for Primary and Secondary Mitochondrial Diseases. Int J Mol Sci 2023; 24:ijms24021482. [PMID: 36674998 PMCID: PMC9865803 DOI: 10.3390/ijms24021482] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is a key pathological event in many diseases. Its role in energy production, calcium homeostasis, apoptosis regulation, and reactive oxygen species (ROS) balance render mitochondria essential for cell survival and fitness. However, there are no effective treatments for most primary and secondary mitochondrial diseases to this day. Therefore, new therapeutic approaches, such as the modulation of the mitochondrial unfolded protein response (mtUPR), are being explored. mtUPRs englobe several compensatory processes related to proteostasis and antioxidant system mechanisms. mtUPR activation, through an overcompensation for mild intracellular stress, promotes cell homeostasis and improves lifespan and disease alterations in biological models of mitochondrial dysfunction in age-related diseases, cardiopathies, metabolic disorders, and primary mitochondrial diseases. Although mtUPR activation is a promising therapeutic option for many pathological conditions, its activation could promote tumor progression in cancer patients, and its overactivation could lead to non-desired side effects, such as the increased heteroplasmy of mitochondrial DNA mutations. In this review, we present the most recent data about mtUPR modulation as a therapeutic approach, its role in diseases, and its potential negative consequences in specific pathological situations.
Collapse
|
24
|
Boshoff A. Chaperonin: Co-chaperonin Interactions. Subcell Biochem 2023; 101:213-246. [PMID: 36520309 DOI: 10.1007/978-3-031-14740-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Co-chaperonins function together with chaperonins to mediate ATP-dependent protein folding in a variety of cellular compartments. Chaperonins are evolutionarily conserved and form two distinct classes, namely, group I and group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo conformational rearrangements that enable protein folding to occur. GroES forms a lid over the chamber and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. Group II chaperonins are functionally similar to group I chaperonins but differ in structure and do not require a co-chaperonin. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances, co-chaperonins display contrasting functions to those of chaperonins. Human HSP60 (HSPD) continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10 on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.
Collapse
Affiliation(s)
- Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
25
|
Lakhotia SC. Delayed discovery of Hsp60 and subsequent characterization of moonlighting functions of multiple Hsp60 genes in Drosophila: a personal historical perspective. J Genet 2022. [DOI: 10.1007/s12041-022-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Scheffer H, Coate JE, Ho EKH, Schaack S. Thermal stress and mutation accumulation increase heat shock protein expression in Daphnia. Evol Ecol 2022; 36:829-844. [PMID: 36193163 PMCID: PMC9522699 DOI: 10.1007/s10682-022-10209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
Understanding the short- and long-term consequences of climate change is a major challenge in biology. For aquatic organisms, temperature changes and drought can lead to thermal stress and habitat loss, both of which can ultimately lead to higher mutation rates. Here, we examine the effect of high temperature and mutation accumulation on gene expression at two loci from the heat shock protein (HSP) gene family, HSP60 and HSP90. HSPs have been posited to serve as 'mutational capacitors' given their role as molecular chaperones involved in protein folding and degradation, thus buffering against a wide range of cellular stress and destabilization. We assayed changes in HSP expression across 5 genotypes of Daphnia magna, a sentinel species in ecology and environmental biology, with and without acute exposure to thermal stress and accumulated mutations. Across genotypes, HSP expression increased ~ 6× in response to heat and ~ 4× with mutation accumulation, individually. Both factors simultaneously (lineages with high mutation loads exposed to high heat) increased gene expression ~ 23×-much more than that predicted by an additive model. Our results corroborate suggestions that HSPs can buffer against not only the effects of heat, but also mutations-a combination of factors both likely to increase in a warming world. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10209-1.
Collapse
Affiliation(s)
- Henry Scheffer
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Jeremy E. Coate
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Eddie K. H. Ho
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| | - Sarah Schaack
- Department of Biology, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202 USA
| |
Collapse
|
27
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
28
|
Djhsp60 Is Required for Planarian Regeneration and Homeostasis. Biomolecules 2022; 12:biom12060808. [PMID: 35740934 PMCID: PMC9221281 DOI: 10.3390/biom12060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
HSP60, a well-known mitochondrial chaperone, is essential for mitochondrial homeostasis. HSP60 deficiency causes dysfunction of the mitochondria and is lethal to animal survival. Here, we used freshwater planarian as a model system to investigate and uncover the roles of HSP60 in tissue regeneration and homeostasis. HSP60 protein is present in all types of cells in planarians, but it is relatively rich in stem cells and head neural cells. Knockdown of HSP60 by RNAi causes head regression and the loss of regenerating abilities, which is related to decrease in mitotic cells and inhibition of stem cell-related genes. RNAi-HSP60 disrupts the structure of the mitochondria and inhibits the mitochondrial-related genes, which mainly occur in intestinal tissues. RNAi-HSP60 also damages the integrity of intestinal tissues and downregulates intestine-expressed genes. More interestingly, RNAi-HSP60 upregulates the expression of the cathepsin L-like gene, which may be the reason for head regression and necrotic-like cell death. Taking these points together, we propose a model illustrating the relationship between neoblasts and intestinal cells, and also highlight the essential role of the intestinal system in planarian regeneration and tissue homeostasis.
Collapse
|
29
|
Jishi A, Qi X. Altered Mitochondrial Protein Homeostasis and Proteinopathies. Front Mol Neurosci 2022; 15:867935. [PMID: 35571369 PMCID: PMC9095842 DOI: 10.3389/fnmol.2022.867935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence implicates mitochondrial dysfunction as key in the development and progression of various forms of neurodegeneration. The multitude of functions carried out by mitochondria necessitates a tight regulation of protein import, dynamics, and turnover; this regulation is achieved via several, often overlapping pathways that function at different levels. The development of several major neurodegenerative diseases is associated with dysregulation of these pathways, and growing evidence suggests direct interactions between some pathogenic proteins and mitochondria. When these pathways are compromised, so is mitochondrial function, and the resulting deficits in bioenergetics, trafficking, and mitophagy can exacerbate pathogenic processes. In this review, we provide an overview of the regulatory mechanisms employed by mitochondria to maintain protein homeostasis and discuss the failure of these mechanisms in the context of several major proteinopathies.
Collapse
Affiliation(s)
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
30
|
Pizzo F, Mangione MR, Librizzi F, Manno M, Martorana V, Noto R, Vilasi S. The Possible Role of the Type I Chaperonins in Human Insulin Self-Association. Life (Basel) 2022; 12:life12030448. [PMID: 35330199 PMCID: PMC8949404 DOI: 10.3390/life12030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin is a hormone that attends to energy metabolism by regulating glucose levels in the bloodstream. It is synthesised within pancreas beta-cells where, before being released into the serum, it is stored in granules as hexamers coordinated by Zn2+ and further packaged in microcrystalline structures. The group I chaperonin cpn60, known for its assembly-assisting function, is present, together with its cochaperonin cpn10, at each step of the insulin secretory pathway. However, the exact function of the heat shock protein in insulin biosynthesis and processing is still far from being understood. Here we explore the possibility that the molecular machine cpn60/cpn10 could have a role in insulin hexameric assembly and its further crystallization. Moreover, we also evaluate their potential protective effect in pathological insulin aggregation. The experiments performed with the cpn60 bacterial homologue, GroEL, in complex with its cochaperonin GroES, by using spectroscopic methods, microscopy and hydrodynamic techniques, reveal that the chaperonins in vitro favour insulin hexameric organisation and inhibit its aberrant aggregation. These results provide new details in the field of insulin assembly and its related disorders.
Collapse
|
31
|
Shkedi A, Taylor IR, Echtenkamp F, Ramkumar P, Alshalalfa M, Rivera-Márquez GM, Moses MA, Shao H, Karnes RJ, Neckers L, Feng F, Kampmann M, Gestwicki JE. Selective vulnerabilities in the proteostasis network of castration-resistant prostate cancer. Cell Chem Biol 2022; 29:490-501.e4. [PMID: 35108506 PMCID: PMC8934263 DOI: 10.1016/j.chembiol.2022.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/17/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is associated with an increased reliance on heat shock protein 70 (HSP70), but it is not clear what other protein homeostasis (proteostasis) factors might be involved. To address this question, we performed functional and synthetic lethal screens in four prostate cancer cell lines. These screens confirmed key roles for HSP70, HSP90, and their co-chaperones, but also suggested that the mitochondrial chaperone, HSP60/HSPD1, is selectively required in CRPC cell lines. Knockdown of HSP60 does not impact the stability of androgen receptor (AR) or its variants; rather, it is associated with loss of mitochondrial spare respiratory capacity, partly owing to increased proton leakage. Finally, transcriptional data revealed a correlation between HSP60 levels and poor survival of prostate cancer patients. These findings suggest that re-wiring of the proteostasis network is associated with CRPC, creating selective vulnerabilities that might be targeted to treat the disease.
Collapse
Affiliation(s)
- Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Isabelle R Taylor
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Frank Echtenkamp
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Poornima Ramkumar
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mohamed Alshalalfa
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Génesis M Rivera-Márquez
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael A Moses
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hao Shao
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Felix Feng
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
32
|
Lubawy J, Chowański S, Adamski Z, Słocińska M. Mitochondria as a target and central hub of energy division during cold stress in insects. Front Zool 2022; 19:1. [PMID: 34991650 PMCID: PMC8740437 DOI: 10.1186/s12983-021-00448-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Temperature stress is one of the crucial factors determining geographical distribution of insect species. Most of them are active in moderate temperatures, however some are capable of surviving in extremely high as well as low temperatures, including freezing. The tolerance of cold stress is a result of various adaptation strategies, among others the mitochondria are an important player. They supply cells with the most prominent energy carrier—ATP, needed for their life processes, but also take part in many other processes like growth, aging, protection against stress injuries or cell death. Under cold stress, the mitochondria activity changes in various manner, partially to minimize the damages caused by the cold stress, partially because of the decline in mitochondrial homeostasis by chill injuries. In the response to low temperature, modifications in mitochondrial gene expression, mtDNA amount or phosphorylation efficiency can be observed. So far study also showed an increase or decrease in mitochondria number, their shape and mitochondrial membrane permeability. Some of the changes are a trigger for apoptosis induced via mitochondrial pathway, that protects the whole organism against chill injuries occurring on the cellular level. In many cases, the observed modifications are not unequivocal and depend strongly on many factors including cold acclimation, duration and severity of cold stress or environmental conditions. In the presented article, we summarize the current knowledge about insect response to cold stress focusing on the role of mitochondria in that process considering differences in results obtained in different experimental conditions, as well as depending on insect species. These differentiated observations clearly indicate that it is still much to explore. ![]()
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
33
|
Kurochkina LP, Semenyuk PI, Sokolova OS. Structural and Functional Features of Viral Chaperonins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1-9. [PMID: 35491019 DOI: 10.1134/s0006297922010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chaperonins provide proper folding of proteins in vivo and in vitro and, as was thought until recently, are characteristic of prokaryotes, eukaryotes, and archaea. However, it turned out that some bacteria viruses (bacteriophages) encode their own chaperonins. This review presents results of the investigations of the first representatives of this new chaperonin group: the double-ring EL chaperonin and the single-ring OBP and AR9 chaperonins. Biochemical properties and structure of the phage chaperonins were compared within the group and with other known group I and group II chaperonins.
Collapse
Affiliation(s)
- Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
34
|
Haeussler S, Conradt B. Methods to Study the Mitochondrial Unfolded Protein Response (UPR mt) in Caenorhabditis elegans. Methods Mol Biol 2022; 2378:249-259. [PMID: 34985705 DOI: 10.1007/978-1-0716-1732-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nematode Caenorhabditis elegans is a powerful model to study cellular stress responses. Due to its transparency and ease of genetic manipulation, C. elegans is especially suitable for fluorescence microscopy. As a result, studies of C. elegans using different fluorescent reporters have led to the discovery of key players of cellular stress response pathways, including the mitochondrial unfolded protein response (UPRmt). UPRmt is a protective retrograde signaling pathway that ensures mitochondrial homeostasis. The nuclear genes hsp-6 and hsp-60 encode mitochondrial chaperones and are highly expressed upon UPRmt induction. The transcriptional reporters of these genes, hsp-6::gfp and hsp-60::gfp, have been instrumental for monitoring this pathway in live animals. Additional tools for studying UPRmt include fusion proteins of ATFS-1 and DVE-1, ATFS-1::GFP and DVE-1::GFP, key players of the UPRmt pathway. In this protocol, we discuss advantages and limitations of currently available methods and reporters, and we provide detailed instructions on how to image and quantify reporter expression.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Barbara Conradt
- Research Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
35
|
Dimogkioka AR, Lees J, Lacko E, Tokatlidis K. Protein import in mitochondria biogenesis: guided by targeting signals and sustained by dedicated chaperones. RSC Adv 2021; 11:32476-32493. [PMID: 35495482 PMCID: PMC9041937 DOI: 10.1039/d1ra04497d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/25/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondria have a central role in cellular metabolism; they are responsible for the biosynthesis of amino acids, lipids, iron-sulphur clusters and regulate apoptosis. About 99% of mitochondrial proteins are encoded by nuclear genes, so the biogenesis of mitochondria heavily depends on protein import pathways into the organelle. An intricate system of well-studied import machinery facilitates the import of mitochondrial proteins. In addition, folding of the newly synthesized proteins takes place in a busy environment. A system of folding helper proteins, molecular chaperones and co-chaperones, are present to maintain proper conformation and thus avoid protein aggregation and premature damage. The components of the import machinery are well characterised, but the targeting signals and how they are recognised and decoded remains in some cases unclear. Here we provide some detail on the types of targeting signals involved in the protein import process. Furthermore, we discuss the very elaborate chaperone systems of the intermembrane space that are needed to overcome the particular challenges for the folding process in this compartment. The mechanisms that sustain productive folding in the face of aggregation and damage in mitochondria are critical components of the stress response and play an important role in cell homeostasis.
Collapse
Affiliation(s)
- Anna-Roza Dimogkioka
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Jamie Lees
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Erik Lacko
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow University Avenue Glasgow G12 8QQ Scotland UK
| |
Collapse
|
36
|
Xie W, Xu R, Fan C, Yang C, Chen H, Cao Y. 900 MHz Radiofrequency Field Induces Mitochondrial Unfolded Protein Response in Mouse Bone Marrow Stem Cells. Front Public Health 2021; 9:724239. [PMID: 34513791 PMCID: PMC8428517 DOI: 10.3389/fpubh.2021.724239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/04/2021] [Indexed: 01/29/2023] Open
Abstract
Objective: To examine whether exposure of mouse bone marrow stromal cells (BMSC) to 900 MHz radiofrequency fields used in mobile communication devices can induce mitochondrial unfolded protein response (UPRmt). Methods: BMSCs were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm2 power intensity for 4 h/d for 5 consecutive days. Cells in sham group (SH) were cultured in RF exposure system, but without RF radiation. The positive control cells were irradiated with 6 Gy X-ray at a dose rate of 1.103 Gy/min (XR). To inhibit the upstream molecular JNK2 of UPRmt, cells in siRNA + RF, and siRNA + XR group were also pretreated with 100 nM siRNA-JNK2 for 48 h before RF/XR exposure. Thirty minutes, 4 h, and 24 h post-RF/XR exposure, cells were collected, the level of ROS was measured with flow cytometry, the expression levels of UPRmt-related proteins were detected using western blot analysis. Results: Compared with Sham group, the level of ROS in RF and XR group was significantly increased 30 min and 4 h post-RF/XR exposure (P < 0.05), however, the RF/XR-induced increase of ROS level reversed 24 h post-RF/XR exposure. Compared with Sham group, the expression levels of HSP10/HSP60/ClpP proteins in cells of RF and XR group increased significantly 30 min and 4 h post-RF/XR exposure (P < 0.05), however, the RF/XR-induced increase of HSP10/HSP60/ClpP protein levels reversed 24 h post-RF exposure. After interfering with siRNA-JNK2, the RF/XR exposures could not induce the increase of HSP10/HSP60/ClpP protein levels any more. Conclusions: The exposure of 900 MHz RF at 120 μW/cm2 power flux density could increase ROS level and activate a transient UPRmt in BMSC cells. Mitochondrial homeostasis in term of protein folding ability is restored 24 h post-RF exposure. Exposure to RF in our experimental condition did not cause permanent and severe mitochondrial dysfunctions. However, the detailed underlying molecular mechanism of RF-induced UPRmt remains to be further studied.
Collapse
Affiliation(s)
- Wen Xie
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Rui Xu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Caiyun Fan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Chunyu Yang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Haiyan Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Yi Cao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| |
Collapse
|
37
|
Iyer K, Chand K, Mitra A, Trivedi J, Mitra D. Diversity in heat shock protein families: functional implications in virus infection with a comprehensive insight of their role in the HIV-1 life cycle. Cell Stress Chaperones 2021; 26:743-768. [PMID: 34318439 PMCID: PMC8315497 DOI: 10.1007/s12192-021-01223-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of cellular proteins that are induced during stress conditions such as heat stress, cold shock, UV irradiation and even pathogenic insult. They are classified into families based on molecular size like HSP27, 40, 70 and 90 etc, and many of them act as cellular chaperones that regulate protein folding and determine the fate of mis-folded or unfolded proteins. Studies have also shown multiple other functions of these proteins such as in cell signalling, transcription and immune response. Deregulation of these proteins leads to devastating consequences, such as cancer, Alzheimer's disease and other life threatening diseases suggesting their potential importance in life processes. HSPs exist in multiple isoforms, and their biochemical and functional characterization still remains a subject of active investigation. In case of viral infections, several HSP isoforms have been documented to play important roles with few showing pro-viral activity whereas others seem to have an anti-viral role. Earlier studies have demonstrated that HSP40 plays a pro-viral role whereas HSP70 inhibits HIV-1 replication; however, clear isoform-specific functional roles remain to be established. A detailed functional characterization of all the HSP isoforms will uncover their role in cellular homeostasis and also may highlight some of them as potential targets for therapeutic strategies against various viral infections. In this review, we have tried to comprehend the details about cellular HSPs and their isoforms, their role in cellular physiology and their isoform-specific functions in case of virus infection with a specific focus on HIV-1 biology.
Collapse
Affiliation(s)
- Kruthika Iyer
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Kailash Chand
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Alapani Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Jay Trivedi
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Debashis Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
38
|
Xu Z, Jin Y, Gao Z, Zeng Y, Du J, Yan H, Chen X, Ping L, Lin N, Yang B, He Q, Luo P. Autophagic degradation of CCN2 (cellular communication network factor 2) causes cardiotoxicity of sunitinib. Autophagy 2021; 18:1152-1173. [PMID: 34432562 DOI: 10.1080/15548627.2021.1965712] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Excessive macroautophagy/autophagy is one of the causes of cardiomyocyte death induced by cardiovascular diseases or cancer therapy, yet the underlying mechanism remains unknown. We and other groups previously reported that autophagy might contribute to cardiomyocyte death caused by sunitinib, a tumor angiogenesis inhibitor that is widely used in clinic, which may help to understand the mechanism of autophagy-induced cardiomyocyte death. Here, we found that sunitinib-induced autophagy leads to apoptosis of cardiomyocyte and cardiac dysfunction as the cardiomyocyte-specific Atg7-/+ heterozygous mice are resistant to sunitinib. Sunitinib-induced maladaptive autophagy selectively degrades the cardiomyocyte survival mediator CCN2 (cellular communication network factor 2) through the TOLLIP (toll interacting protein)-mediated endosome-related pathway and cardiomyocyte-specific knockdown of Ccn2 through adeno-associated virus serotype 9 (AAV9) mimics sunitinib-induced cardiac dysfunction in vivo, suggesting that the autophagic degradation of CCN2 is one of the causes of sunitinib-induced cardiotoxicity and death of cardiomyocytes. Remarkably, deletion of Hmgb1 (high mobility group box 1) inhibited sunitinib-induced cardiomyocyte autophagy and apoptosis, and the HMGB1-specific inhibitor glycyrrhizic acid (GA) significantly mitigated sunitinib-induced autophagy, cardiomyocyte death and cardiotoxicity. Our study reveals a novel target protein of autophagic degradation in the regulation of cardiomyocyte death and highlights the pharmacological inhibitor of HMGB1 as an attractive approach for improving the safety of sunitinib-based cancer therapy.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Ying Jin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Yan Zeng
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Jiangxia Du
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xueqin Chen
- Department of Oncology, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Li Ping
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
39
|
Friedlander JE, Shen N, Zeng A, Korm S, Feng H. Failure to Guard: Mitochondrial Protein Quality Control in Cancer. Int J Mol Sci 2021; 22:ijms22158306. [PMID: 34361072 PMCID: PMC8348654 DOI: 10.3390/ijms22158306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these alterations for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Joseph E. Friedlander
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Ning Shen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aozhuo Zeng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Sovannarith Korm
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Hui Feng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-4688; Fax: +1-617-358-1599
| |
Collapse
|
40
|
Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci 2021; 22:ijms22158077. [PMID: 34360841 PMCID: PMC8347752 DOI: 10.3390/ijms22158077] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.
Collapse
|
41
|
Structural basis for the structural dynamics of human mitochondrial chaperonin mHsp60. Sci Rep 2021; 11:14809. [PMID: 34285302 PMCID: PMC8292379 DOI: 10.1038/s41598-021-94236-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Human mitochondrial chaperonin mHsp60 is essential for mitochondrial function by assisting folding of mitochondrial proteins. Unlike the double-ring bacterial GroEL, mHsp60 exists as a heptameric ring that is unstable and dissociates to subunits. The structural dynamics has been implicated for a unique mechanism of mHsp60. We purified active heptameric mHsp60, and determined a cryo-EM structure of mHsp60 heptamer at 3.4 Å. Of the three domains, the equatorial domains contribute most to the inter-subunit interactions, which include a four-stranded β sheet. Our structural comparison with GroEL shows that mHsp60 contains several unique sequences that directly decrease the sidechain interactions around the β sheet and indirectly shorten β strands by disengaging the backbones of the flanking residues from hydrogen bonding in the β strand conformation. The decreased inter-subunit interactions result in a small inter-subunit interface in mHsp60 compared to GroEL, providing a structural basis for the dynamics of mHsp60 subunit association. Importantly, the unique sequences are conserved among higher eukaryotic mitochondrial chaperonins, suggesting the importance of structural dynamics for eukaryotic chaperonins. Our structural comparison with the single-ring mHsp60-mHsp10 shows that upon mHsp10 binding the shortened inter-subunit β sheet is restored and the overall inter-subunit interface of mHsp60 increases drastically. Our structural basis for the mHsp10 induced stabilization of mHsp60 subunit interaction is consistent with the literature that mHsp10 stabilizes mHsp60 quaternary structure. Together, our studies provide structural bases for structural dynamics of the mHsp60 heptamer and for the stabilizing effect of mHsp10 on mHsp60 subunit association.
Collapse
|
42
|
Franco LVR, Su CH, Tzagoloff A. Modular assembly of yeast mitochondrial ATP synthase and cytochrome oxidase. Biol Chem 2021; 401:835-853. [PMID: 32142477 DOI: 10.1515/hsz-2020-0112] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022]
Abstract
The respiratory pathway of mitochondria is composed of four electron transfer complexes and the ATP synthase. In this article, we review evidence from studies of Saccharomyces cerevisiae that both ATP synthase and cytochrome oxidase (COX) are assembled from independent modules that correspond to structurally and functionally identifiable components of each complex. Biogenesis of the respiratory chain requires a coordinate and balanced expression of gene products that become partner subunits of the same complex, but are encoded in the two physically separated genomes. Current evidence indicates that synthesis of two key mitochondrial encoded subunits of ATP synthase is regulated by the F1 module. Expression of COX1 that codes for a subunit of the COX catalytic core is also regulated by a mechanism that restricts synthesis of this subunit to the availability of a nuclear-encoded translational activator. The respiratory chain must maintain a fixed stoichiometry of the component enzyme complexes during cell growth. We propose that high-molecular-weight complexes composed of Cox6, a subunit of COX, and of the Atp9 subunit of ATP synthase play a key role in establishing the ratio of the two complexes during their assembly.
Collapse
Affiliation(s)
- Leticia Veloso Ribeiro Franco
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.,Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 05508-000, Brasil
| | - Chen Hsien Su
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Alexander Tzagoloff
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| |
Collapse
|
43
|
PARK DJ, KANG JB, KOH PO. Identification of regulated proteins by epigallocatechin gallate treatment in an ischemic cerebral cortex animal model: a proteomics approach. J Vet Med Sci 2021; 83:916-926. [PMID: 33883340 PMCID: PMC8267205 DOI: 10.1292/jvms.21-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022] Open
Abstract
Ischemic stroke is a fatal disease that has long-term disability. It induces excessive oxidative stress generation and cellular metabolic disorders, result in tissue damage. Epigallocatechin gallate (EGCG) is a naturally derived flavonoid with strong antioxidant property. We previously reported the neuroprotective effect of EGCG in ischemic stroke. The defensive mechanisms of stroke are very diverse and complex. This study investigated specific proteins that are regulated by EGCG treatment in the ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. EGCG (50 mg/kg) or vehicle was intraperitoneally administered just prior to MCAO. MCAO induced severe neurological deficits and disorders. EGCG treatment alleviated these neurological disorder and damage. Cerebral cortex was used for this study. Two-dimensional gel electrophoresis and mass spectrometry were performed to detect the proteins altered by EGCG. We identified various proteins that were changed between vehicle- and EGCG-treated animals. Among these proteins, isocitrate dehydrogenase, dynamin-like protein 1, and γ-enolase were decreased in vehicle-treated animals, while EGCG treatment prevented these decreases. However, pyridoxal-5'-phosphate phosphatase and 60 kDa heat shock protein were increased in vehicle-treated animals with MCAO injury. EGCG treatment attenuated these increases. The changes in these proteins were confirmed by Western blot and reverse transcription-PCR analyses. These proteins were associated with cellular metabolism and neuronal regeneration. Thus, these findings can suggest that EGCG performs a defensive mechanism in ischemic damage by regulating specific proteins related to energy metabolism and neuronal protection.
Collapse
Affiliation(s)
- Dong-Ju PARK
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| | - Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine,
Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju
52828, South Korea
| |
Collapse
|
44
|
Porras-Agüera JA, Moreno-García J, García-Martínez T, Moreno J, Mauricio JC. Impact of CO 2 overpressure on yeast mitochondrial associated proteome during the "prise de mousse" of sparkling wine production. Int J Food Microbiol 2021; 348:109226. [PMID: 33964807 DOI: 10.1016/j.ijfoodmicro.2021.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/07/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022]
Abstract
The "prise de mousse" stage during sparkling wine elaboration by the traditional method (Champenoise) involves a second fermentation in a sealed bottle followed by a prolonged aging period, known to contribute significantly to the unique organoleptic properties of these wines. During this stage, CO2 overpressure, nutrient starvation and high ethanol concentrations are stress factors that affect yeast cells viability and metabolism. Since mitochondria are responsible for energy generation and are required for cell aging and response to numerous stresses, we hypothesized that these organelles may play an essential role during the prise de mousse. The objective of this study is to characterize the mitochondrial response of a Saccharomyces cerevisiae strain traditionally used in sparkling wine production along the "prise de mousse" and study the effect of CO2 overpressure through a proteomic analysis. We observed that pressure negatively affects the content of mitochondrion-related proteome, especially to those proteins involved in tricarboxylic acid cycle. However, proteins required for the branched-amino acid synthesis, implied in wine aromas, and respiratory chain, also previously reported by transcriptomic analyses, were found over-represented in the sealed bottles. Multivariate analysis of proteins required for tricarboxylic cycle, respiratory chain and amino acid metabolism revealed differences in concentrations, allowing the wine samples to group depending on the time and CO2 overpressure parameters. Ethanol content along the second fermentation could be the main reason for this changing behavior observed at proteomic level. Further research including genetic studies, determination of ROS, characterization of mitochondrial activity and targeted metabolomics analyses is required. The list of mitochondrial proteins provided in this work will lead to a better understanding of the yeast behavior under these conditions of special interest in the wine industry.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Jaime Moreno-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| | - Juan Carlos Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Severo Ochoa (C6) building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A mm 396, 14014 Cordoba, Spain.
| |
Collapse
|
45
|
Nguyen B, Ma R, Tang WK, Shi D, Tolia NH. Crystal structure of P. falciparum Cpn60 bound to ATP reveals an open dynamic conformation before substrate binding. Sci Rep 2021; 11:5930. [PMID: 33723304 PMCID: PMC7960994 DOI: 10.1038/s41598-021-85197-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum harbors group 1 and group 2 chaperonin systems to mediate the folding of cellular proteins in different cellular locations. Two distinct group 1 chaperonins operate in the organelles of mitochondria and apicoplasts, while group 2 chaperonins function in the cytosol. No structural information has been reported for any chaperonin from plasmodium. In this study, we describe the crystal structure of a double heptameric ring Plasmodium falciparum mitochondrial chaperonin 60 (Cpn60) bound with ATP, which differs significantly from any known crystal structure of chaperonin 60. The structure likely represents a unique intermediate state during conformational conversion from the closed state to the opened state. Three of the seven apical domains are highly dynamic while the equatorial domains form a stable ring. The structure implies large movements of the apical domain in the solution play a role in nucleotide-dependent regulation of substrate binding and folding. A unique 26–27 residue insertion in the equatorial domain of Plasmodium falciparum mitochondrial chaperonin greatly increases both inter-ring and intra-ring subunit–subunit interactions. The present structure provides new insights into the mechanism of Cpn60 in chaperonin assembly and function.
Collapse
Affiliation(s)
- Brian Nguyen
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rm 4NN08, Building 29B, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Rui Ma
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rm 4NN08, Building 29B, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rm 4NN08, Building 29B, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Dashuang Shi
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rm 4NN08, Building 29B, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rm 4NN08, Building 29B, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
46
|
D’Amico D, Fiore R, Caporossi D, Di Felice V, Cappello F, Dimauro I, Barone R. Function and Fiber-Type Specific Distribution of Hsp60 and αB-Crystallin in Skeletal Muscles: Role of Physical Exercise. BIOLOGY 2021; 10:biology10020077. [PMID: 33494467 PMCID: PMC7911561 DOI: 10.3390/biology10020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Skeletal muscle represents about 40% of the body mass in humans and it is a copious and plastic tissue, rich in proteins that are subject to continuous rearrangements. Physical exercise is considered a physiological stressor for different organs, in particular for skeletal muscle, and it is a factor able to stimulate the cellular remodeling processes related to the phenomenon of adaptation. All cells respond to various stress conditions by up-regulating the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Although their expression is induced by several stimuli, they are commonly recognized as HSPs due to the first experiments showing their increased transcription after application of heat shock. These proteins are molecular chaperones mainly involved in assisting protein transport and folding, assembling multimolecular complexes, and triggering protein degradation by proteasome. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin, proteins constitutively expressed in the skeletal muscle, where they are known to be important in muscle physiopathology. Therefore, here we provide a critical update on their role in skeletal muscle fibers after physical exercise, highlighting the control of their expression, their biological function, and their specific distribution within skeletal muscle fiber-types. Abstract Skeletal muscle is a plastic and complex tissue, rich in proteins that are subject to continuous rearrangements. Skeletal muscle homeostasis can be affected by different types of stresses, including physical activity, a physiological stressor able to stimulate a robust increase in different heat shock proteins (HSPs). The modulation of these proteins appears to be fundamental in facilitating the cellular remodeling processes related to the phenomenon of training adaptations such as hypertrophy, increased oxidative capacity, and mitochondrial activity. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin (CRYAB), proteins constitutively expressed in the skeletal muscle, where their specific features could be highly relevant in understanding the impact of different volumes of training regimes on myofiber types and in explaining the complex picture of exercise-induced mechanical strain and damaging conditions on fiber population. This knowledge could lead to a better personalization of training protocols with an optimal non-harmful workload in populations of individuals with different needs and healthy status. Here, we introduce for the first time to the reader these peculiar HSPs from the perspective of exercise response, highlighting the control of their expression, biological function, and specific distribution within skeletal muscle fiber-types.
Collapse
Affiliation(s)
- Daniela D’Amico
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX 77554, USA
| | - Roberto Fiore
- Postgraduate School of Sports Medicine, University Hospital of Palermo, 90127 Palermo, Italy;
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
| | - Valentina Di Felice
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
| | - Francesco Cappello
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Euro-Mediterranean Institutes of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| | - Rosario Barone
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| |
Collapse
|
47
|
The Neurochaperonopathies: Anomalies of the Chaperone System with Pathogenic Effects in Neurodegenerative and Neuromuscular Disorders. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chaperone (or chaperoning) system (CS) constitutes molecular chaperones, co-chaperones, and chaperone co-factors, interactors and receptors, and its canonical role is protein quality control. A malfunction of the CS may cause diseases, known as the chaperonopathies. These are caused by qualitatively and/or quantitatively abnormal molecular chaperones. Since the CS is ubiquitous, chaperonopathies are systemic, affecting various tissues and organs, playing an etiologic-pathogenic role in diverse conditions. In this review, we focus on chaperonopathies involved in the pathogenic mechanisms of diseases of the central and peripheral nervous systems: the neurochaperonopathies (NCPs). Genetic NCPs are linked to pathogenic variants of chaperone genes encoding, for example, the small Hsp, Hsp10, Hsp40, Hsp60, and CCT-BBS (chaperonin-containing TCP-1- Bardet–Biedl syndrome) chaperones. Instead, the acquired NCPs are associated with malfunctional chaperones, such as Hsp70, Hsp90, and VCP/p97 with aberrant post-translational modifications. Awareness of the chaperonopathies as the underlying primary or secondary causes of disease will improve diagnosis and patient management and open the possibility of investigating and developing chaperonotherapy, namely treatment with the abnormal chaperone as the main target. Positive chaperonotherapy would apply in chaperonopathies by defect, i.e., chaperone insufficiency, and consist of chaperone replacement or boosting, whereas negative chaperonotherapy would be pertinent when a chaperone actively participates in the initiation and progression of the disease and must be blocked and eliminated.
Collapse
|
48
|
Functions and Therapeutic Potential of Extracellular Hsp60, Hsp70, and Hsp90 in Neuroinflammatory Disorders. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is implicated in central nervous system (CNS) diseases, but the molecular mechanisms involved are poorly understood. Progress may be accelerated by developing a comprehensive view of the pathogenesis of CNS disorders, including the immune and the chaperone systems (IS and CS). The latter consists of the molecular chaperones; cochaperones; and chaperone cofactors, interactors, and receptors of an organism and its main collaborators in maintaining protein homeostasis (canonical function) are the ubiquitin–proteasome system and chaperone-mediated autophagy. The CS has also noncanonical functions, for instance, modulation of the IS with induction of proinflammatory cytokines. This deserves investigation because it may be at the core of neuroinflammation, and elucidation of its mechanism will open roads toward developing efficacious treatments centered on molecular chaperones (i.e., chaperonotherapy). Here, we discuss information available on the role of three members of the CS—heat shock protein (Hsp)60, Hsp70, and Hsp90—in IS modulation and neuroinflammation. These three chaperones occur intra- and extracellularly, with the latter being the most likely involved in neuroinflammation because they can interact with the IS. We discuss some of the interactions, their consequences, and the molecules involved but many aspects are still incompletely elucidated, and we hope that this review will encourage research based on the data presented to pave the way for the development of chaperonotherapy. This may consist of blocking a chaperone that promotes destructive neuroinflammation or replacing or boosting a defective chaperone with cytoprotective activity against neurodegeneration.
Collapse
|
49
|
LONP1 and mtHSP70 cooperate to promote mitochondrial protein folding. Nat Commun 2021; 12:265. [PMID: 33431889 PMCID: PMC7801493 DOI: 10.1038/s41467-020-20597-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/10/2020] [Indexed: 01/23/2023] Open
Abstract
Most mitochondrial precursor polypeptides are imported from the cytosol into the mitochondrion, where they must efficiently undergo folding. Mitochondrial precursors are imported as unfolded polypeptides. For proteins of the mitochondrial matrix and inner membrane, two separate chaperone systems, HSP60 and mitochondrial HSP70 (mtHSP70), facilitate protein folding. We show that LONP1, an AAA+ protease of the mitochondrial matrix, works with the mtHSP70 chaperone system to promote mitochondrial protein folding. Inhibition of LONP1 results in aggregation of a protein subset similar to that caused by knockdown of DNAJA3, a co-chaperone of mtHSP70. LONP1 is required for DNAJA3 and mtHSP70 solubility, and its ATPase, but not its protease activity, is required for this function. In vitro, LONP1 shows an intrinsic chaperone-like activity and collaborates with mtHSP70 to stabilize a folding intermediate of OXA1L. Our results identify LONP1 as a critical factor in the mtHSP70 folding pathway and demonstrate its proposed chaperone activity. Most mitochondrial proteins are imported from the cytosol and must fold in the mitochondria. Here, the authors show that the mitochondrial protease LONP1 plays a critical role in the mtHSP70 chaperone system independently of its protease activity.
Collapse
|
50
|
Alsayyah C, Ozturk O, Cavellini L, Belgareh-Touzé N, Cohen MM. The regulation of mitochondrial homeostasis by the ubiquitin proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148302. [PMID: 32861697 DOI: 10.1016/j.bbabio.2020.148302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
From mitochondrial quality control pathways to the regulation of specific functions, the Ubiquitin Proteasome System (UPS) could be compared to a Swiss knife without which mitochondria could not maintain its integrity in the cell. Here, we review the mechanisms that the UPS employs to regulate mitochondrial function and efficiency. For this purpose, we depict how Ubiquitin and the Proteasome participate in diverse quality control pathways that safeguard entry into the mitochondrial compartment. A focus is then achieved on the UPS-mediated control of the yeast mitofusin Fzo1 which provides insights into the complex regulation of this particular protein in mitochondrial fusion. We ultimately dissect the mechanisms by which the UPS controls the degradation of mitochondria by autophagy in both mammalian and yeast systems. This organization should offer a useful overview of this abundant but fascinating literature on the crosstalks between mitochondria and the UPS.
Collapse
Affiliation(s)
- Cynthia Alsayyah
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Oznur Ozturk
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Laetitia Cavellini
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Naïma Belgareh-Touzé
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Mickael M Cohen
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France.
| |
Collapse
|