1
|
Lawrence TJ, Amrine KCH, Swingley WD, Ardell DH. tRNA functional signatures classify plastids as late-branching cyanobacteria. BMC Evol Biol 2019; 19:224. [PMID: 31818253 PMCID: PMC6902448 DOI: 10.1186/s12862-019-1552-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Eukaryotes acquired the trait of oxygenic photosynthesis through endosymbiosis of the cyanobacterial progenitor of plastid organelles. Despite recent advances in the phylogenomics of Cyanobacteria, the phylogenetic root of plastids remains controversial. Although a single origin of plastids by endosymbiosis is broadly supported, recent phylogenomic studies are contradictory on whether plastids branch early or late within Cyanobacteria. One underlying cause may be poor fit of evolutionary models to complex phylogenomic data. RESULTS Using Posterior Predictive Analysis, we show that recently applied evolutionary models poorly fit three phylogenomic datasets curated from cyanobacteria and plastid genomes because of heterogeneities in both substitution processes across sites and of compositions across lineages. To circumvent these sources of bias, we developed CYANO-MLP, a machine learning algorithm that consistently and accurately phylogenetically classifies ("phyloclassifies") cyanobacterial genomes to their clade of origin based on bioinformatically predicted function-informative features in tRNA gene complements. Classification of cyanobacterial genomes with CYANO-MLP is accurate and robust to deletion of clades, unbalanced sampling, and compositional heterogeneity in input tRNA data. CYANO-MLP consistently classifies plastid genomes into a late-branching cyanobacterial sub-clade containing single-cell, starch-producing, nitrogen-fixing ecotypes, consistent with metabolic and gene transfer data. CONCLUSIONS Phylogenomic data of cyanobacteria and plastids exhibit both site-process heterogeneities and compositional heterogeneities across lineages. These aspects of the data require careful modeling to avoid bias in phylogenomic estimation. Furthermore, we show that amino acid recoding strategies may be insufficient to mitigate bias from compositional heterogeneities. However, the combination of our novel tRNA-specific strategy with machine learning in CYANO-MLP appears robust to these sources of bias with high accuracy in phyloclassification of cyanobacterial genomes. CYANO-MLP consistently classifies plastids as late-branching Cyanobacteria, consistent with independent evidence from signature-based approaches and some previous phylogenetic studies.
Collapse
Affiliation(s)
- Travis J Lawrence
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831 USA
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
| | - Katherine CH Amrine
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
- Insight Data Science, 500 3rd St., San Francisco, CA, 94107 USA
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, 1425 Lincoln Hwy., DeKalb, IL, 60115 USA
| | - David H Ardell
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
| |
Collapse
|
2
|
Unraveling the nuclear and chloroplast genomes of an agar producing red macroalga, Gracilaria changii (Rhodophyta, Gracilariales). Genomics 2018; 110:124-133. [DOI: 10.1016/j.ygeno.2017.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/23/2022]
|
3
|
Donnelly K, Cottrell J, Ennos RA, Vendramin GG, A'Hara S, King S, Perry A, Wachowiak W, Cavers S. Reconstructing the plant mitochondrial genome for marker discovery: a case study using Pinus. Mol Ecol Resour 2017; 17:943-954. [DOI: 10.1111/1755-0998.12646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/14/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin Donnelly
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
- Institute of Evolutionary Biology; School of Biological Sciences; Ashworth Laboratories; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Joan Cottrell
- Forest Research, Northern Research Station; Roslin Midlothian EH25 9SY UK
| | - Richard A. Ennos
- Institute of Evolutionary Biology; School of Biological Sciences; Ashworth Laboratories; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Giovanni Giuseppe Vendramin
- Institute of Biosciences and BioResources; Division of Florence; National Research Council; Via Madonna del Piano, 10 50019 Sesto Fiorentino (Firenze) Italy
| | - Stuart A'Hara
- Forest Research, Northern Research Station; Roslin Midlothian EH25 9SY UK
| | - Sarah King
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
| | - Annika Perry
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
| | - Witold Wachowiak
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
- Institute of Dendrology; Polish Academy of Sciences; Parkowa 5 62-035 Kórnik Poland
| | - Stephen Cavers
- NERC Centre for Ecology and Hydrology, Edinburgh; Bush Estate Penicuik Midlothian EH26 0QB UK
| |
Collapse
|
4
|
|
5
|
Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, Ruhfel BR, Wafula E, Der JP, Graham SW, Mathews S, Melkonian M, Soltis DE, Soltis PS, Miles NW, Rothfels CJ, Pokorny L, Shaw AJ, DeGironimo L, Stevenson DW, Surek B, Villarreal JC, Roure B, Philippe H, dePamphilis CW, Chen T, Deyholos MK, Baucom RS, Kutchan TM, Augustin MM, Wang J, Zhang Y, Tian Z, Yan Z, Wu X, Sun X, Wong GKS, Leebens-Mack J. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci U S A 2014; 111:E4859-68. [PMID: 25355905 PMCID: PMC4234587 DOI: 10.1073/pnas.1323926111] [Citation(s) in RCA: 803] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.
Collapse
Affiliation(s)
- Norman J Wickett
- Chicago Botanic Garden, Glencoe, IL 60022; Program in Biological Sciences, Northwestern University, Evanston, IL 60208;
| | - Siavash Mirarab
- Department of Computer Science, University of Texas, Austin, TX 78712
| | - Nam Nguyen
- Department of Computer Science, University of Texas, Austin, TX 78712
| | - Tandy Warnow
- Department of Computer Science, University of Texas, Austin, TX 78712
| | - Eric Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Naim Matasci
- iPlant Collaborative, Tucson, AZ 85721; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| | | | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| | | | - Matthew A Gitzendanner
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611
| | - Brad R Ruhfel
- Department of Biology and Department of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475; Florida Museum of Natural History, Gainesville, FL 32611
| | - Eric Wafula
- Department of Biology, Pennsylvania State University, University Park, PA 16803
| | - Joshua P Der
- Department of Biology, Pennsylvania State University, University Park, PA 16803
| | | | - Sarah Mathews
- Arnold Arboretum of Harvard University, Cambridge, MA 02138
| | | | - Douglas E Soltis
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611; Florida Museum of Natural History, Gainesville, FL 32611
| | - Pamela S Soltis
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611; Florida Museum of Natural History, Gainesville, FL 32611
| | | | - Carl J Rothfels
- Department of Biology, Duke University, Durham, NC 27708; Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Lisa Pokorny
- Department of Biology, Duke University, Durham, NC 27708; Department of Biodiversity and Conservation, Real Jardín Botánico-Consejo Superior de Investigaciones Cientificas, 28014 Madrid, Spain
| | | | | | | | - Barbara Surek
- Botanical Institute, Universität zu Köln, Cologne D-50674, Germany
| | - Juan Carlos Villarreal
- Department fur Biologie, Systematische Botanik und Mykologie, Ludwig-Maximilians-Universitat, 80638 Munich, Germany
| | - Béatrice Roure
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7
| | - Hervé Philippe
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7; CNRS, Station d' Ecologie Expérimentale du CNRS, Moulis, 09200, France
| | | | - Tao Chen
- Shenzhen Fairy Lake Botanical Garden, The Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - Toni M Kutchan
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | | | - Jun Wang
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Yong Zhang
- CNRS, Station d' Ecologie Expérimentale du CNRS, Moulis, 09200, France
| | - Zhijian Tian
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Zhixiang Yan
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Xiaolei Wu
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Xiao Sun
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | | |
Collapse
|
6
|
O’Donoghue MT, Chater C, Wallace S, Gray JE, Beerling DJ, Fleming AJ. Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3567-81. [PMID: 23888066 PMCID: PMC3745722 DOI: 10.1093/jxb/ert190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bryophytes, the most basal of the extant land plants, diverged at least 450 million years ago. A major feature of these plants is the biphasic alternation of generations between a dominant haploid gametophyte and a minor diploid sporophyte phase. These dramatic differences in form and function occur in a constant genetic background, raising the question of whether the switch from gametophyte-to-sporophyte development reflects major changes in the spectrum of genes being expressed or alternatively whether only limited changes in gene expression occur and the differences in plant form are due to differences in how the gene products are put together. This study performed replicated microarray analyses of RNA from several thousand dissected and developmentally staged sporophytes of the moss Physcomitrella patens, allowing analysis of the transcriptomes of the sporophyte and early gametophyte, as well as the early stages of moss sporophyte development. The data indicate that more significant changes in transcript profile occur during the switch from gametophyte to sporophyte than recently reported, with over 12% of the entire transcriptome of P. patens being altered during this major developmental transition. Analysis of the types of genes contributing to these differences supports the view of the early sporophyte being energetically and nutritionally dependent on the gametophyte, provides a profile of homologues to genes involved in angiosperm stomatal development and physiology which suggests a deeply conserved mechanism of stomatal control, and identifies a novel series of transcription factors associated with moss sporophyte development.
Collapse
Affiliation(s)
| | - Caspar Chater
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Simon Wallace
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Julie E. Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - David J. Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Andrew J. Fleming
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
7
|
Janouškovec J, Liu SL, Martone PT, Carré W, Leblanc C, Collén J, Keeling PJ. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS One 2013; 8:e59001. [PMID: 23536846 PMCID: PMC3607583 DOI: 10.1371/journal.pone.0059001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 02/08/2013] [Indexed: 11/21/2022] Open
Abstract
Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase – a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.
Collapse
Affiliation(s)
- Jan Janouškovec
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Studies on the fine structure of green algal cells in the 1970s fundamentally revised theories on the evolution of green algae (Division Chlorophyta) and their relation to higher and drier green plants (i.e. embryophytes or land plants). Recent molecular phylogenetic work has largely confirmed some rather unorthodox proposals about which of the green algae represent the closest living relatives of higher plants. Resolution of the most ancient divergences on the green algal-land plant lineage remains elusive because of the rapidity of these evolutionary radiations and because branch topology varies with the taxa and molecular sequences sampled (as well as method of analysis). Molecular analyses within green algal groups have reinforced the value of ultrastructural characters and challenged the use of vegetative form as on overriding feature in classification.
Collapse
Affiliation(s)
- R M McCourt
- Dept of Biological Sciences, DePaul Univerity, Chicago, IL 60614, USA
| |
Collapse
|
9
|
Bennici A. Origin and early evolution of land plants: Problems and considerations. Commun Integr Biol 2012; 1:212-8. [PMID: 19513262 DOI: 10.4161/cib.1.2.6987] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 09/04/2008] [Indexed: 11/19/2022] Open
Abstract
The origin of the sporophyte in land plants represents a fundamental phase in plant evolution. Today this subject is controversial, and scarcely considered in textbooks and journals of botany, in spite of its importance. There are two conflicting theories concerning the origin of the alternating generations in land-plants: the "antithetic" theory and the "homologous" theory. These have never been fully resolved, although, on the ground of the evidences on the probable ancestors of land plants, the antithetic theory is considered more plausible than the homologous theory. However, additional phylogenetic dilemmas are the evolution of bryophytes from algae and the transition from these first land plants to the pteridophytes. All these very large evolutionary jumps are discussed on the basis of the phyletic gradualist neo-Darwinian theory and other genetic evolutionary mechanisms.
Collapse
Affiliation(s)
- Andrea Bennici
- Plant Biology Department; University of Florence; Florence Italy
| |
Collapse
|
10
|
Wiegert KE, Bennett MS, Triemer RE. Evolution of the chloroplast genome in photosynthetic euglenoids: a comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta). Protist 2012; 163:832-43. [PMID: 22364772 DOI: 10.1016/j.protis.2012.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/05/2012] [Accepted: 01/06/2012] [Indexed: 11/27/2022]
Abstract
The chloroplast genome of Eutreptia viridis Perty, a basal taxon in the photosynthetic euglenoid lineage, was sequenced and compared with that of Euglena gracilis Ehrenberg, a crown species. Several common gene clusters were identified and gene order, conservation, and sequence similarity was assessed through comparisons with Euglena gracilis. Significant gene rearrangements were present between Eutreptia viridis and Euglena gracilis chloroplast genomes. In addition, major expansion has occurred in the Euglena gracilis chloroplast accounting for its larger size. However, the key chloroplast genes are present and differ only in the absence of psaM and roaA in Eutreptia viridis, and psaI in Euglena gracilis, suggesting a high level of gene conservation within the euglenoid lineage. Further comparisons with the plastid genomes of closely related green algal taxa have provided additional support for the hypothesis that a Pyramimonas-like alga was the euglenoid chloroplast donor via secondary endosymbiosis.
Collapse
Affiliation(s)
- Krystle E Wiegert
- Michigan State University, Department of Plant Biology, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
11
|
Finet C, Timme RE, Delwiche CF, Marlétaz F. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr Biol 2010; 20:2217-22. [PMID: 21145743 DOI: 10.1016/j.cub.2010.11.035] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/25/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
The Viridiplantae (green plants) include land plants as well as the two distinct lineages of green algae, chlorophytes and charophytes. Despite their critical importance for identifying the closest living relatives of land plants, phylogenetic studies of charophytes have provided equivocal results [1-5]. In addition, many relationships remain unresolved among the land plants, such as the position of mosses, liverworts, and the enigmatic Gnetales. Phylogenomics has proven to be an insightful approach for resolving challenging phylogenetic issues, particularly concerning deep nodes [6-8]. Here we extend this approach to the green lineage by assembling a multilocus data set of 77 nuclear genes (12,149 unambiguously aligned amino acid positions) from 77 taxa of plants. We therefore provide the first multigene phylogenetic evidence that Coleochaetales represent the closest living relatives of land plants. Moreover, our data reinforce the early divergence of liverworts and the close relationship between Gnetales and Pinaceae. These results provide a new phylogenetic framework and represent a key step in the evolutionary interpretation of developmental and genomic characters in green plants.
Collapse
Affiliation(s)
- Cédric Finet
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
12
|
Stangoulis J, Tate M, Graham R, Bucknall M, Palmer L, Boughton B, Reid R. The mechanism of boron mobility in wheat and canola phloem. PLANT PHYSIOLOGY 2010; 153:876-81. [PMID: 20413647 PMCID: PMC2879810 DOI: 10.1104/pp.110.155655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Low-molecular-weight borate complexes were isolated from canola (Brassica napus) and wheat (Triticum aestivum) phloem exudates, as well as the cytoplasm of the fresh-water alga Chara corallina, and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Phloem exudate was collected from field-grown canola inflorescence stalks by shallow incision, while wheat phloem exudate was collected by aphid stylectomy. Chara cytoplasm was collected by careful manual separation of the cell wall, vacuole, and cytosolic compartments. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry showed the presence of isotopic borate complexes, at mass-to-charge ratio of 690.22/691.22 in the canola and wheat phloem and at 300.11/301.11 in canola phloem and Chara cytoplasm. Using reference compounds, the borate complexes with mass-to-charge ratio 690.22/691.22 was identified as a bis-sucrose (Suc) borate complex in which the 4,6-hydroxyl pairs from the two alpha-glucopyranoside moieties formed an [L(2)B](-1) complex. Further investigation using liquid chromatography electrospray ionization triple quadrupole mass spectrometry analysis confirmed the presence of the bis-Suc borate complex in wheat phloem with a concentration up to 220 microm. The 300.11/301.11 complex was putatively identified as a bis-N-acetyl-serine borate complex but its concentration was below the detection limits of the liquid chromatography electrospray ionization triple quadrupole mass spectrometer so could not be quantified. The presence of borate complexes in the phloem provides a mechanistic explanation for the observed phloem boron mobility in canola and wheat and other species that transport Suc as their primary photoassimilate.
Collapse
Affiliation(s)
- James Stangoulis
- School of Biological Science, Flinders University, Bedford Park, South Australia 5042, Australia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- D Bhattacharya
- University of Iowa, Department of Biological Sciences, Biology Building, Iowa City, Iowa 52242-1324, USA
| |
Collapse
|
14
|
The complete mitochondrial genome sequence of the hornwort Megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land plant mitochondrial genomes. J Mol Evol 2009; 68:665-78. [PMID: 19475442 DOI: 10.1007/s00239-009-9240-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 04/03/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Land plants possess some of the most unusual mitochondrial genomes among eukaryotes. However, in early land plants these genomes resemble those of green and red algae or early eukaryotes. The question of when during land plant evolution the dramatic change in mtDNAs occurred remains unanswered. Here we report the first completely sequenced mitochondrial genome of the hornwort, Megaceros aenigmaticus, a member of the sister group of vascular plants. It is a circular molecule of 184,908 base pairs, with 32 protein genes, 3 rRNA genes, 17 tRNA genes, and 30 group II introns. The genome contains many genes arranged in the same order as in those of a liverwort, a moss, several green and red algae, and Reclinomonas americana, an early-branching eukaryote with the most ancestral form of mtDNA. In particular, the gene order between mtDNAs of the hornwort and Physcomitrella patens (moss) differs by only 8 inversions and translocations. However, the hornwort mtDNA possesses 4 derived features relative to green alga mtDNAs--increased genome size, RNA editing, intron gains, and gene losses--which were all likely acquired during the origin and early evolution of land plants. Overall, this genome and those of other 2 bryophytes show that mitochondrial genomes in early land plants, unlike their seed plant counterparts, exhibit a mixed mode of conservative yet dynamic evolution.
Collapse
|
15
|
Raven JA. The early evolution of land plants: Aquatic ancestors and atmospheric interactions. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/03746609508684827] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Faulkner CR, Blackman LM, Cordwell SJ, Overall RL. Proteomic identification of putative plasmodesmatal proteins from Chara corallina. Proteomics 2005; 5:2866-75. [PMID: 16075417 DOI: 10.1002/pmic.200401186] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Plasmodesmata are channels that bridge the cell walls of plant cells, allowing regulated transport of molecules between neighbouring cells. We have used a proteomic strategy to identify putative plasmodesmata-associated proteins in the giant-celled green alga Chara corallina. Proteins were extracted from the plasmodesmata-rich nodal complexes and the middle of the long internodal cells, which do not contain plasmodesmata. Comparison of protein spot patterns generated by two-dimensional gel electrophoresis of both the soluble and cell wall fractions from the two cell types was done. Fifty-eight spots that were common to the nodal and internodal soluble fractions were analysed by matrix assisted laser desorption/ionisation-time of flight mass spectrometry, and peptide mass fingerprint data were used to search the database. Matches were made to four of these spots, in each case to housekeeping proteins. Further, a number of nodal specific spots were identified, 11 from the soluble fraction and nine from the wall fraction. These spots were excised from the gels and analysed by liquid chromatography tandem mass spectrometry to obtain peptide sequence. Database searches suggest that these spots include homologues to previously identified plasmodesmata-associated proteins cp-wap13 and heat shock cognate 70, as well as RNA-binding proteins, eukaryotic initiation factor 4A and a beta-1,3-glucanase. Several spots remained unidentified providing exciting new candidate plasmodesmata-associated proteins.
Collapse
|
17
|
Wikström N, Pryer KM. Incongruence between primary sequence data and the distribution of a mitochondrial atp1 group II intron among ferns and horsetails. Mol Phylogenet Evol 2005; 36:484-93. [PMID: 15922630 DOI: 10.1016/j.ympev.2005.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 02/17/2005] [Accepted: 04/05/2005] [Indexed: 11/20/2022]
Abstract
Using DNA sequence data from multiple genes (often from more than one genome compartment) to reconstruct phylogenetic relationships has become routine. Augmenting this approach with genomic structural characters (e.g., intron gain and loss, changes in gene order) as these data become available from comparative studies already has provided critical insight into some long-standing questions about the evolution of land plants. Here we report on the presence of a group II intron located in the mitochondrial atp1 gene of leptosporangiate and marattioid ferns. Primary sequence data for the atp1 gene are newly reported for 27 taxa, and results are presented from maximum likelihood-based phylogenetic analyses using Bayesian inference for 34 land plants in three data sets: (1) single-gene mitochondrial atp1 (exon+intron sequences); (2) five combined genes (mitochondrial atp1 [exon only]; plastid rbcL, atpB, rps4; nuclear SSU rDNA); and (3) same five combined genes plus morphology. All our phylogenetic analyses corroborate results from previous fern studies that used plastid and nuclear sequence data: the monophyly of euphyllophytes, as well as of monilophytes; whisk ferns (Psilotidae) sister to ophioglossoid ferns (Ophioglossidae); horsetails (Equisetopsida) sister to marattioid ferns (Marattiidae), which together are sister to the monophyletic leptosporangiate ferns. In contrast to the results from the primary sequence data, the genomic structural data (atp1 intron distribution pattern) would seem to suggest that leptosporangiate and marattioid ferns are monophyletic, and together they are the sister group to horsetails--a topology that is rarely reconstructed using primary sequence data.
Collapse
Affiliation(s)
- Niklas Wikström
- Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden.
| | | |
Collapse
|
18
|
Qiu YL, Palmer JD. Many independent origins of trans splicing of a plant mitochondrial group II intron. J Mol Evol 2005; 59:80-9. [PMID: 15383910 DOI: 10.1007/s00239-004-2606-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
We examined the cis- vs. trans-splicing status of the mitochondrial group II intron nad1i728 in 439 species (427 genera) of land plants, using both Southern hybridization results (for 416 species) and intron sequence data from the literature. A total of 164 species (157 genera), all angiosperms, was found to have a trans-spliced form of the intron. Using a multigene land plant phylogeny, we infer that the intron underwent a transition from cis to trans splicing 15 times among the sampled angiosperms. In 10 cases, the intron was fractured between its 5' end and the intron-encoded matR gene, while in the other 5 cases the fracture occurred between matR and the 3' end of the intron. The 15 intron fractures took place at different time depths during the evolution of angiosperms, with those in Nymphaeales, Austrobaileyales, Chloranthaceae, and eumonocots occurring early in angiosperm evolution and those in Syringodium filiforme, Hydrocharis morsus- ranae, Najas, and Erodium relatively recently. The trans-splicing events uncovered in Austrobaileyales, eumonocots, Polygonales, Caryophyllales, Sapindales, and core Rosales reinforce the naturalness of these major clades of angiosperms, some of which have been identified solely on the basis of recent DNA sequence analyses.
Collapse
Affiliation(s)
- Yin-Long Qiu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
19
|
Dombrovska O, Qiu YL. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Mol Phylogenet Evol 2005; 32:246-63. [PMID: 15186811 DOI: 10.1016/j.ympev.2003.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 12/17/2003] [Indexed: 10/26/2022]
Abstract
Forty-six species of diverse land plants were investigated by sequencing for their intron content in the mitochondrial gene nad1. A total of seven introns, all belonging to group II, were found, and two were newly discovered in this study. All 13 liverworts examined contain no intron, the same condition as in green algae. Mosses and hornworts, however, share one intron by themselves and another one with vascular plants. These intron distribution patterns are consistent with the hypothesis that liverworts represent the basal-most land plants and that the two introns were gained in the common ancestor of mosses-hornworts-vascular plants after liverworts had diverged. Hornworts also possess a unique intron of their own. A fourth intron was found only in Equisetum L., Marattiaceae, Ophioglossum L., Osmunda L., Asplenium L., and Adiantum L., and was likely acquired in their common ancestor, which supports the monophyly of moniliformopses. Three introns that were previously characterized in angiosperms and a few pteridophytes are now all extended to lycopods, and were likely gained in the common ancestor of vascular plants. Phylogenetic analyses of the intron sequences recovered topologies mirroring those of the plants, suggesting that the introns have all been vertically inherited. All seven nad1 group II introns show broad phylogenetic distribution patterns, with the narrowest being in moniliformopses and hornworts, lineages that date back to at least the Devonian (345 million years ago) and Silurian (435 million years ago), respectively. Hence, these introns must have invaded the genes via ancient transpositional events during the early stage of land plant evolution. Potentially heavy RNA editing was observed in nad1 of Haplomitrium Dedecek, Takakia Hatt. & Inoue, hornworts, Isoetes L., Ophioglossum, and Asplenium. A new nomenclature is proposed for group II introns.
Collapse
Affiliation(s)
- Olena Dombrovska
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
20
|
Lewis LA, McCourt RM. Green algae and the origin of land plants. AMERICAN JOURNAL OF BOTANY 2004; 91:1535-56. [PMID: 21652308 DOI: 10.3732/ajb.91.10.1535] [Citation(s) in RCA: 404] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Over the past two decades, molecular phylogenetic data have allowed evaluations of hypotheses on the evolution of green algae based on vegetative morphological and ultrastructural characters. Higher taxa are now generally recognized on the basis of ultrastructural characters. Molecular analyses have mostly employed primarily nuclear small subunit rDNA (18S) and plastid rbcL data, as well as data on intron gain, complete genome sequencing, and mitochondrial sequences. Molecular-based revisions of classification at nearly all levels have occurred, from dismemberment of long-established genera and families into multiple classes, to the circumscription of two major lineages within the green algae. One lineage, the chlorophyte algae or Chlorophyta sensu stricto, comprises most of what are commonly called green algae and includes most members of the grade of putatively ancestral scaly flagellates in Prasinophyceae plus members of Ulvophyceae, Trebouxiophyceae, and Chlorophyceae. The other lineage (charophyte algae and embryophyte land plants), comprises at least five monophyletic groups of green algae, plus embryophytes. A recent multigene analysis corroborates a close relationship between Mesostigma (formerly in the Prasinophyceae) and the charophyte algae, although sequence data of the Mesostigma mitochondrial genome analysis places the genus as sister to charophyte and chlorophyte algae. These studies also support Charales as sister to land plants. The reorganization of taxa stimulated by molecular analyses is expected to continue as more data accumulate and new taxa and habitats are sampled.
Collapse
Affiliation(s)
- Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269 USA
| | | |
Collapse
|
21
|
Friedman WE, Moore RC, Purugganan MD. The evolution of plant development. AMERICAN JOURNAL OF BOTANY 2004; 91:1726-1741. [PMID: 21652320 DOI: 10.3732/ajb.91.10.1726] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The last decade has witnessed a resurgence in the study of the evolution of plant development, combining investigations in systematics, developmental morphology, molecular developmental genetics, and molecular evolution. The integration of phylogenetic studies, structural analyses of fossil and extant taxa, and molecular developmental genetic information allows the formulation of explicit and testable hypotheses for the evolution of morphological characters. These comprehensive approaches provide opportunities to dissect the evolution of major developmental transitions among land plants, including those associated with apical meristems, the origins of the root/shoot dichotomy, diversification of leaves, and origin and subsequent modification of flower structure. The evolution of these major developmental innovations is discussed within both phylogenetic and molecular genetic contexts. We conclude that it is the combination of these approaches that will lead to the greatest understanding of the evolution of plant development.
Collapse
Affiliation(s)
- William E Friedman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309 USA
| | | | | |
Collapse
|
22
|
Knoop V. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 2004; 46:123-39. [PMID: 15300404 DOI: 10.1007/s00294-004-0522-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Revised: 07/06/2004] [Accepted: 07/07/2004] [Indexed: 11/25/2022]
Abstract
Land plants exhibit a significant evolutionary plasticity in their mitochondrial DNA (mtDNA), which contrasts with the more conservative evolution of their chloroplast genomes. Frequent genomic rearrangements, the incorporation of foreign DNA from the nuclear and chloroplast genomes, an ongoing transfer of genes to the nucleus in recent evolutionary times and the disruption of gene continuity in introns or exons are the hallmarks of plant mtDNA, at least in flowering plants. Peculiarities of gene expression, most notably RNA editing and trans-splicing, are significantly more pronounced in land plant mitochondria than in chloroplasts. At the same time, mtDNA is generally the most slowly evolving of the three plant cell genomes on the sequence level, with unique exceptions in only some plant lineages. The slow sequence evolution and a variable occurrence of introns in plant mtDNA provide an attractive reservoir of phylogenetic information to trace the phylogeny of older land plant clades, which is as yet not fully resolved. This review attempts to summarize the unique aspects of land plant mitochondrial evolution from a phylogenetic perspective.
Collapse
Affiliation(s)
- Volker Knoop
- IZMB--Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, Bonn, Germany.
| |
Collapse
|
23
|
Cook ME. Cytokinesis in Coleochaete orbicularis (Charophyceae): an ancestral mechanism inherited by plants. AMERICAN JOURNAL OF BOTANY 2004; 91:313-320. [PMID: 21653388 DOI: 10.3732/ajb.91.3.313] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recently, highly vacuolate cells of Arabidopsis were shown to exhibit "polarized" cytokinesis, in which the phragmoplast and cell plate contact the mother cell wall and then progress from one side of the cell to the other, rather than forming uniformly outward from the cell center (Cutler and Ehrhardt, 2002, Proceedings of the National Academy of Sciences, USA 99: 2812-2817). It was not known if such a mechanism was unique to flowering plants or whether it occurred more broadly in the plant clade. To determine if a polar mechanism of cell division might have been characteristic of the first plants, differential interference contrast optics were used to examine living cells of the charophycean green alga Coleochaete orbicularis, a close relative of plants, with cytokinesis involving a phragmoplast. By recording images in different focal planes over time, such "polarized" cytokinesis was found in cells dividing either parallel or perpendicular to the edge of this radially symmetrical organism. Previously reported differences between these two types of division in Coleochaete were clarified. Polarized cytokinesis appears to be an ancestral mechanism of plant cell division inherited from the highly vacuolate cells of the charophycean algal ancestors of plants.
Collapse
Affiliation(s)
- Martha E Cook
- Department of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois 61790-4120 USA
| |
Collapse
|
24
|
Turmel M, Otis C, Lemieux C. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci U S A 2002; 99:11275-80. [PMID: 12161560 PMCID: PMC123247 DOI: 10.1073/pnas.162203299] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The land plants and their immediate green algal ancestors, the charophytes, form the Streptophyta. There is evidence that both the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) underwent substantial changes in their architecture (intron insertions, gene losses, scrambling in gene order, and genome expansion in the case of mtDNA) during the evolution of streptophytes; however, because no charophyte organelle DNAs have been sequenced completely thus far, the suite of events that shaped streptophyte organelle genomes remains largely unknown. Here, we have determined the complete cpDNA (131,183 bp) and mtDNA (56,574 bp) sequences of the charophyte Chaetosphaeridium globosum (Coleochaetales). At the levels of gene content (124 genes), intron composition (18 introns), and gene order, Chaetosphaeridium cpDNA is remarkably similar to land-plant cpDNAs, implying that most of the features characteristic of land-plant lineages were gained during the evolution of charophytes. Although the gene content of Chaetosphaeridium mtDNA (67 genes) closely resembles that of the bryophyte Marchantia polymorpha (69 genes), this charophyte mtDNA differs substantially from its land-plant relatives at the levels of size, intron composition (11 introns), and gene order. Our finding that it shares only one intron with its land-plant counterparts supports the idea that the vast majority of mitochondrial introns in land plants appeared after the emergence of these organisms. Our results also suggest that the events accounting for the spacious intergenic spacers found in land-plant mtDNAs took place late during the evolution of charophytes or coincided with the transition from charophytes to land plants.
Collapse
Affiliation(s)
- Monique Turmel
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, and Département de Biochimie et de Microbiologie, Université Laval, Québec, QC, Canada G1K 7P4.
| | | | | |
Collapse
|
25
|
Brinkman FSL, Blanchard JL, Cherkasov A, Av-Gay Y, Brunham RC, Fernandez RC, Finlay BB, Otto SP, Ouellette BFF, Keeling PJ, Rose AM, Hancock REW, Jones SJM, Greberg H. Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res 2002; 12:1159-67. [PMID: 12176923 PMCID: PMC186644 DOI: 10.1101/gr.341802] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An unusually high proportion of proteins encoded in Chlamydia genomes are most similar to plant proteins, leading to proposals that a Chlamydia ancestor obtained genes from a plant or plant-like host organism by horizontal gene transfer. However, during an analysis of bacterial-eukaryotic protein similarities, we found that the vast majority of plant-like sequences in Chlamydia are most similar to plant proteins that are targeted to the chloroplast, an organelle derived from a cyanobacterium. We present further evidence suggesting that plant-like genes in Chlamydia, and other Chlamydiaceae, are likely a reflection of an unappreciated evolutionary relationship between the Chlamydiaceae and the cyanobacteria-chloroplast lineage. Further analyses of bacterial and eukaryotic genomes indicates the importance of evaluating organellar ancestry of eukaryotic proteins when identifying bacteria-eukaryote homologs or horizontal gene transfer and supports the proposal that Chlamydiaceae, which are obligate intracellular bacterial pathogens of animals, are not likely exchanging DNA with their hosts.
Collapse
Affiliation(s)
- Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ohtani K, Yamamoto H, Akimitsu K. Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing. Proc Natl Acad Sci U S A 2002; 99:2439-44. [PMID: 11842194 PMCID: PMC122383 DOI: 10.1073/pnas.042448499] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specificity in the interaction between rough lemon (Citrus jambhiri Lush.) and the fungal pathogen Alternaria alternata rough lemon pathotype is determined by a host-selective toxin, ACR-toxin. Mitochondria from rough lemon are sensitive to ACR-toxin whereas mitochondria from resistant plants, including other citrus species, are resistant. We have identified a C. jambhiri mitochondrial DNA sequence, designated ACRS (ACR-toxin sensitivity gene), that confers toxin sensitivity to Escherichia coli. ACRS is located in the group II intron of the mitochondrial tRNA-Ala and is translated into a SDS-resistant oligomeric protein in C. jambhiri mitochondria but is not translated in the toxin-insensitive mitochondria. ACRS is present in the mitochondrial genome of both toxin-sensitive and -insensitive citrus. However, in mitochondria of toxin-insensitive plants, the transcripts from ACRS are shorter than those in mitochondria of sensitive plants. These results demonstrate that sensitivity to ACR-toxin and hence specificity of the interaction between A. alternata rough lemon pathotype and C. jambhiri is due to differential posttranscriptional processing of a mitochondrial gene.
Collapse
Affiliation(s)
- Kouhei Ohtani
- United Graduate School of Agricultural Sciences, Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | | | | |
Collapse
|
27
|
Qiu YL, Lee J, Whitlock BA, Bernasconi-Quadroni F, Dombrovska O. Was the ANITA rooting of the angiosperm phylogeny affected by long-branch attraction? Amborella, Nymphaeales, Illiciales, Trimeniaceae, and Austrobaileya. Mol Biol Evol 2001; 18:1745-53. [PMID: 11504854 DOI: 10.1093/oxfordjournals.molbev.a003962] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Five groups of basal angiosperms, Amborella, Nymphaeales, Illiciales, Trimeniaceae, and Austrobaileya (ANITA), were identified in several recent studies as representing a series of the earliest-diverging lineages of the angiosperm phylogeny. All of these studies except one employed a multigene analysis approach and used gymnosperms as the outgroup to determine the ingroup topology. The high level of divergence between gymnosperms and angiosperms, however, has long been implicated in the difficulty of reconstructing relationships at the base of angiosperm phylogeny using DNA sequences, for fear of long-branch attraction (LBA). In this study, we replaced the gymnosperm sequences from the five-gene matrix (mitochondrial atp1 and matR, plastid atpB and rbcL, and nuclear 18S rDNA) used in our earlier study with four categories of divergent sequences--random sequences with equal base frequencies or equally AT- and GC-rich contents, homopolymers and heteropolymers, misaligned gymnosperm sequences, and aligned lycopod and bryophyte sequences--to evaluate whether the gymnosperms were an appropriate outgroup to angiosperms in our earlier study that identified the ANITA rooting. All 24 analyses performed rooted the angiosperm phylogeny at either Acorus or Alisma (or Alisma-Triglochin-Potamogeton in one case due to use of a slightly different alignment) and placed the monocots as a basal grade, producing genuine LBA results. These analyses demonstrate that the identification of ANITA as the basalmost extant angiosperms was based on historical signals preserved in the gymnosperm sequences and that the gymnosperms were an appropriate outgroup with which to root the angiosperm phylogeny in the multigene sequence analysis. This strategy of evaluating the appropriateness of an outgroup using artificial sequences and a series of outgroups with increments of divergence levels can be applied to investigations of phylogenetic patterns at the bases of other major clades, such as land plants, animals, and eukaryotes.
Collapse
Affiliation(s)
- Y L Qiu
- Department of Biology, University of Massachusetts at Amherst, 01003-5810, USA.
| | | | | | | | | |
Collapse
|
28
|
Boyer SL, Flechtner VR, Johansen JR. Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 2001; 18:1057-69. [PMID: 11371594 DOI: 10.1093/oxfordjournals.molbev.a003877] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We amplified, TA-cloned, and sequenced the 16S-23S internal transcribed spacer (ITS) regions from single isolates of several cyanobacterial species, Calothrix parietina, Scytonema hyalinum, Coelodesmium wrangelii, Tolypothrix distorta, and a putative new genus (isolates SRS6 and SRS70), to investigate the potential of this DNA sequence for phylogenetic and population genetic studies. All isolates carried ITS regions containing the sequences coding for two tRNA molecules (tRNA and tRNA). We retrieved additional sequences without tRNA features from both C. parietina and S. hyalinum. Furthermore, in S. hyalinum, we found two of these non-tRNA-encoding regions to be identical in length but different in sequence. This is the first report of ITS regions from a single cyanobacterial isolate not only different in configuration, but also, within one configuration, different in sequence. The potential of the ITS region as a tool for studying molecular systematics and population genetics is significant, but the presence of multiple nonidentical rRNA operons poses problems. Multiple nonidentical rRNA operons may impact both studies that depend on comparisons of phylogenetically homologous sequences and those that employ restriction enzyme digests of PCR products. We review current knowledge of the numbers and kinds of 16S-23S ITS regions present across bacterial groups and plastids, and we discuss broad patterns congruent with higher-level systematics of prokaryotes.
Collapse
Affiliation(s)
- S L Boyer
- Department of Biology, John Carroll University, 20700 North Park Boulevard, University Heights, OH 44118, USA
| | | | | |
Collapse
|
29
|
Blanchard JL, Hicks JS. The non-photosynthetic plastid in malarial parasites and other apicomplexans is derived from outside the green plastid lineage. J Eukaryot Microbiol 1999; 46:367-75. [PMID: 10461383 DOI: 10.1111/j.1550-7408.1999.tb04615.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The discovery of a non-photosynthetic plastid genome in Plasmodium falciparum and other apicomplexans has provided a new drug target, but the evolutionary origin of the plastid has been muddled by the lack of characters, that typically define major plastid lineages. To clarify the ancestry of the plastid, we undertook a comprehensive analysis of all genomic characters shared by completely sequenced plastid genomes. Cladistic analysis of the pattern of plastid gene loss and gene rearrangements suggests that the apicomplexan plastid is derived from an ancestor outside of the green plastid lineage. Phylogenetic analysis of primary sequence data (DNA and amino acid characters) produces results that are generally independent of the analytical method, but similar genes (i.e., rpoB and rpoC) give similar topologies. The conflicting phylogenies in primary sequence data sets make it difficult to determine the the exact origin of the apicomplexan plastid and the apparent artifactual association of apicomplexan and euglenoid sequences suggests that DNA sequence data may be an inappropriate set of characters to address this phylogenetic question. At present we cannot reject our null hypothesis that the apicomplexan plastid is derived from a shared common ancestor between apicomplexans and dinoflagellates. During the analysis, we noticed that the Plasmodium tRNA-Met is probably tRNA-fMet and the tRNA-fMet is probably tRNA-Ile. We suggest that P. falciparum has lost the elongator type tRNA-Met and that similar to metazoan mitochondria there is only one species of methionine tRNA. In P. falciparum, this has been accomplished by recruiting the fMet-type tRNA to dually function in initiation and elongation. The tRNA-Ile has an unusual stem-loop in the variable region. The insertion in this region appears to have occurred after the primary origin of the plastid and further supports the monophyletic ancestory of plastids.
Collapse
Affiliation(s)
- J L Blanchard
- Biology Department, University of Oregon, Eugene 97403, USA.
| | | |
Collapse
|
30
|
Qiu YL, Palmer JD. Phylogeny of early land plants: insights from genes and genomes. TRENDS IN PLANT SCIENCE 1999; 4:26-30. [PMID: 10234267 DOI: 10.1016/s1360-1385(98)01361-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A large body of evidence from molecular systematic studies has confirmed the charophytic origin of land plants, and clarified monophyly of many lineages in charophytes and land plants. These studies have also identified liverworts as the earliest land plants, and the lycopods as the extant sister group to all other vascular plants. Two traditionally defined groups-bryophytes and pteridophytes-are now recognized as early grades of land plant evolution. However, several problems that complicate the use of sequence data in reconstructing plant phylogeny have become apparent; reconstruction of an accurate land plant phylogeny will require analysis of sequences of multiple genes and genomic structural characters of all three genomes.
Collapse
Affiliation(s)
- YL Qiu
- Institute of Systematic Botany, University of Zürich, Zollikerstrasse 107, Zurich, Switzerland
| | | |
Collapse
|
31
|
Lipscomb DL, Farris JS, Kallersjo M, Tehler A. Support, Ribosomal Sequences and the Phylogeny Of The Eukaryotes. Cladistics 1998; 14:303-338. [DOI: 10.1111/j.1096-0031.1998.tb00341.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE. EARLY EVOLUTION OF LAND PLANTS: Phylogeny, Physiology, and Ecology of the Primary Terrestrial Radiation. ACTA ACUST UNITED AC 1998. [DOI: 10.1146/annurev.ecolsys.29.1.263] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard M. Bateman
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, United Kingdom; e-mail:
- Department of Geology, The Field Museum, Chicago, Illinois 60605-2496
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
- Department of Palaeontology, The Natural History Museum, London SW7 5BD, United Kingdom
- Laboratoire de Paléobotanique, Institut des Sciences de l'Evolution (UMR 5554 CNRS), Université de Montpellier II, Montpellier cedex 05, 34095 France
| | - Peter R. Crane
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, United Kingdom; e-mail:
- Department of Geology, The Field Museum, Chicago, Illinois 60605-2496
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
- Department of Palaeontology, The Natural History Museum, London SW7 5BD, United Kingdom
- Laboratoire de Paléobotanique, Institut des Sciences de l'Evolution (UMR 5554 CNRS), Université de Montpellier II, Montpellier cedex 05, 34095 France
| | - William A. DiMichele
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, United Kingdom; e-mail:
- Department of Geology, The Field Museum, Chicago, Illinois 60605-2496
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
- Department of Palaeontology, The Natural History Museum, London SW7 5BD, United Kingdom
- Laboratoire de Paléobotanique, Institut des Sciences de l'Evolution (UMR 5554 CNRS), Université de Montpellier II, Montpellier cedex 05, 34095 France
| | - Paul R. Kenrick
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, United Kingdom; e-mail:
- Department of Geology, The Field Museum, Chicago, Illinois 60605-2496
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
- Department of Palaeontology, The Natural History Museum, London SW7 5BD, United Kingdom
- Laboratoire de Paléobotanique, Institut des Sciences de l'Evolution (UMR 5554 CNRS), Université de Montpellier II, Montpellier cedex 05, 34095 France
| | - Nick P. Rowe
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, United Kingdom; e-mail:
- Department of Geology, The Field Museum, Chicago, Illinois 60605-2496
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
- Department of Palaeontology, The Natural History Museum, London SW7 5BD, United Kingdom
- Laboratoire de Paléobotanique, Institut des Sciences de l'Evolution (UMR 5554 CNRS), Université de Montpellier II, Montpellier cedex 05, 34095 France
| | - Thomas Speck
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, United Kingdom; e-mail:
- Department of Geology, The Field Museum, Chicago, Illinois 60605-2496
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
- Department of Palaeontology, The Natural History Museum, London SW7 5BD, United Kingdom
- Laboratoire de Paléobotanique, Institut des Sciences de l'Evolution (UMR 5554 CNRS), Université de Montpellier II, Montpellier cedex 05, 34095 France
| | - William E. Stein
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, United Kingdom; e-mail:
- Department of Geology, The Field Museum, Chicago, Illinois 60605-2496
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560
- Department of Palaeontology, The Natural History Museum, London SW7 5BD, United Kingdom
- Laboratoire de Paléobotanique, Institut des Sciences de l'Evolution (UMR 5554 CNRS), Université de Montpellier II, Montpellier cedex 05, 34095 France
| |
Collapse
|
33
|
Donoghue MJ, Mathews S. Duplicate genes and the root of angiosperms, with an example using phytochrome sequences. Mol Phylogenet Evol 1998; 9:489-500. [PMID: 9667997 DOI: 10.1006/mpev.1998.0511] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The root of the angiosperm tree has not yet been established. Major morphological and molecular differences between angiosperms and other seed plants have introduced ambiguities and possibly spurious results. Because it is unlikely that extant species more closely related to angiosperms will be discovered, and because relevant fossils will almost certainly not yield molecular data, the use of duplicate genes for rooting purposes may provide the best hope of a solution. Simultaneous analysis of the genes resulting from a gene duplication event along the branch subtending angiosperms would yield an unrooted network, wherein two congruent gene trees should be connected by a single branch. In these circumstances the best rooted species tree is the one that corresponds to the two gene trees when the network is rooted along the connecting branch. In general, this approach can be viewed as choosing among rooted species trees by minimizing hypothesized events such as gene duplication, gene loss, lineage sorting, and lateral transfer. Of those gene families that are potentially relevant to the angiosperm problem, phytochrome genes warrant special attention. Phylogenetic analysis of a sample of complete phytochrome (PHY) sequences implies that an initial duplication event preceded (or occurred early within) the radiation of seed plants and that each of the two resulting copies duplicated again. In one of these cases, leading to the PHYA and PHYC lineages, duplication appears to have occurred before the diversification of angiosperms. Duplicate gene trees are congruent in these broad analyses, but the sample of sequences is too limited to provide much insight into the rooting question. Preliminary analyses of partial PHYA and PHYC sequences from several presumably basal angiosperm lineages are promising, but more data are needed to critically evaluate the power of these genes to resolve the angiosperm radiation.
Collapse
Affiliation(s)
- M J Donoghue
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | | |
Collapse
|
34
|
Bernards MA, Lewis NG. The macromolecular aromatic domain in suberized tissue: a changing paradigm. PHYTOCHEMISTRY 1998; 47:915-33. [PMID: 11536868 DOI: 10.1016/s0031-9422(98)80052-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As a structural feature of specialized cell walls, suberization remains an enigma, despite its obvious importance both during normal growth and development and as a stress response in plants. While it is clear that suberized tissues contain both polyaromatic and polyaliphatic domains, and that each of these has its own unique characteristics, whether there is a contiguous macromolecule that can be called suberin is an open question. From a structural perspective, the aromatic domain is unique and distinct from lignin, and is apparently comprised primarily of (poly)hydroxycinnamates, such as amides (e.g., feruloyltyramine). The aliphatic domain is also unique, being quite distinct from cutin in terms of both its chemical composition and cellular location. In the present paper, histochemical, structural and biochemical data, particularly, regarding the polyaromatic domain of suberized tissues, are critically reviewed. A revised description of the polyaromatic domain of suberized tissues, based on the consensus that is emerging from the current data, is presented and especially includes a spatially distinct (poly)hydroxycinnamoyl-containing macromolecule.
Collapse
Affiliation(s)
- M A Bernards
- University of Northern British Columbia, Prince George, Canada.
| | | |
Collapse
|
35
|
|
36
|
Ehara M, Hayashi-Ishimaru Y, Inagaki Y, Ohama T. Use of a deviant mitochondrial genetic code in yellow-green algae as a landmark for segregating members within the phylum. J Mol Evol 1997; 45:119-24. [PMID: 9236270 DOI: 10.1007/pl00006210] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several algae that were previously classified in the phylum Xanthophyta (yellow-green algae) were assigned in 1971 to a new phylum, Eustigmatophyta. It was anticipated that the number of algae reclassified to Eustigmatophyta would increase. However, due to the fact that the morphological characteristics that segregate eustigmatophytes from other closely related algae can be only obtained through laborious electron microscopic techniques, the number of members in this phylum have increased rather slowly. We attempted, therefore, to segregate two closely related groups of algae, eustigmatophytes and yellow-green algae, on the basis of a molecular phylogenetic tree as a means of providing an alternative method of distinguishing these phyla. We analyzed the mitochondrial cytochrome oxidase subunit I (COXI) gene sequences of eight algae classified as xanthophyceans and found that six manifested the expected deviant genetic code where AUA codes for methionine (AUA/Met), but not for isoleucine (AUA/Ile) as in the universal genetic code. The other two, Monodus sp. (CCMP 505) and Ophiocytium majus (CCAP 855/1), which were presumed to be yellow-green algae, and all the examined eustigmatophytes utilized AUA for Ile. In addition, the phylogenetic tree of COXI gene sequences showed that the six yellow-green algae bearing the AUA/Met deviant code composed a tight clade with a bootstrap value of 100%. The phylogenetic tree of the corresponding sequences from Monodus sp. and Ophiocytium majus and the eustigmatophytes also composed a tight cluster, but with a bootstrap value of 92%. These results strongly suggest that two previously classified members of yellow-green algae belong to the phylum Eustigmatophyta. Therefore, examination of the mitochondrial genetic code in algae appears to be a potentially very useful genetic marker for classifying these organisms, especially when it is considered with the results obtained through a molecular phylogenetic tree.
Collapse
Affiliation(s)
- M Ehara
- Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-11, Japan
| | | | | | | |
Collapse
|
37
|
Lewis LA, Mishler BD, Vilgalys R. Phylogenetic relationships of the liverworts (Hepaticae), a basal embryophyte lineage, inferred from nucleotide sequence data of the chloroplast gene rbcL. Mol Phylogenet Evol 1997; 7:377-93. [PMID: 9187096 DOI: 10.1006/mpev.1996.0395] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sequence data from the chloroplast-encoded gene rbcL were obtained for 24 liverworts, a basal group of embryophytes. Maximum likelihood and parsimony analyses of these data, along with data from other major green plant lineages, confirm hypotheses based on morphological data, such as the paraphyly of bryophytes, and the basal position of liverworts. Molecular data corroborate the deep separation between the complex thalloid and leafy/simple thalloid liverworts implied by morphological data, but the monophyly of liverworts could not be rejected. The effects of accounting for site-to-site rate heterogeneity in these data were examined using maximum likelihood methods. Comparison of trees obtained with and without rate heterogeneity showed that simply allowing for heterogeneity had a greater improvement on likelihood score than optimization of transition/transversion bias. Incorporation of site-to-site rate heterogeneity in the larger analysis, however, did not necessarily change which topology was favored. Properties of rbcL sequences from the two liverwort groups were compared. Significantly different substitution rates were found between leafy/simple thalloid and complex thalloid liverwort taxa, with rates of rbcL sequence evolution in leafy/simple thalloid taxa being higher and more indicative of those of vascular plants, and with those of complex thalloid taxa (such as Marchantia) being slower. Codon usage in rbcL in complex thalloid liverworts was biased toward NNU and NNA, compared to the leafy/simple thalloid liverworts. Although base composition and relative substitution rates differed between the two groups, no significant differences were detected within each of the two groups of liverworts. The signal present in first and second codon sites versus third codon sites was compared. While the third codon positions in rbcL across this taxon sampling are highly variable (with only 15 constant sites of 439), the trees obtained were in general agreement with trees from the entire data set and with trees obtained from independent sources of data. The presence of signal in third codon positions across greater than 400 MY of plant evolution means that definitions of saturation based on pair-wise comparisons of sequences inadequately assess phylogenetic signal.
Collapse
Affiliation(s)
- L A Lewis
- Department of Botany, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
38
|
Yoshinaga K, Iinuma H, Masuzawa T, Uedal K. Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Res 1996; 24:1008-14. [PMID: 8604330 PMCID: PMC145765 DOI: 10.1093/nar/24.6.1008] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We cloned and sequenced a portion of chloroplast DNA from the hornwort Anthoceros formosae. A nucleotide sequence of 7556 bp contained structures similar to those of ndhK, ndhC, trnV, trnM, atpE, atpB, rbcL, trnR and accD. The arrangement of these was the same as that of other chloroplast DNA. However, two nonsense codons were located within the putative coding region of rbcL, although they were used as putative termination codons of the genes. RNA was extensively edited in the transcripts of rbcL when cDNA sequences were analyzed. The unusual nonsense codons of TGA and TAA became CGA and CAA respectively. These are examples of U to C type RNA editing, which was never been found before in chloroplast mRNA. In general, 13 Cs of genomic DNA were found as Ts in the cDNA sequence and seven Ts were found as Cs. This is the first finding of RNA editing on the transcripts of rbcL and also in bryophytes. This event had been thought to arise in land plants after the split of bryophytes. The origin of RNA editing is discussed in relation to the landing of green plants.
Collapse
Affiliation(s)
- K Yoshinaga
- Faculty of Science, Shizuoka University, Japan
| | | | | | | |
Collapse
|
39
|
Cerutti H, Jagendorf A. Movement of DNA across the chloroplast envelope: Implications for the transfer of promiscuous DNA. PHOTOSYNTHESIS RESEARCH 1995; 46:329-337. [PMID: 24301600 DOI: 10.1007/bf00020448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/1995] [Accepted: 05/02/1995] [Indexed: 06/02/2023]
Abstract
Little is known about the mechanistic basis for the movement of promiscuous nucleic acids across cell membranes. To address this problem we sought conditions that would permit the entry of plasmid DNA into isolated, intact pea chloroplasts. DNA uptake did not occur normally, but was induced by hypotonic treatments, by incubation with millimolar levels of Mg(2+), or by heat shock at 42 °C. These results are consistent with DNA movement being permitted by conditions that transiently alter the permeability of the chloroplast envelope. Plant cells are subject to osmotic tensions and/or conditions inducing polymorphic changes in the membranes, such as those used in the present study, under several environmental stresses. In an evolutionary time frame, these phenomena may provide a mechanism for the transfer of promiscuous nucleic acids between organelles.
Collapse
Affiliation(s)
- H Cerutti
- Plant Biology Section, Plant Science Building, Cornell University, 14853, Ithaca, NY, USA
| | | |
Collapse
|
40
|
Kranz HD, Miks D, Siegler ML, Capesius I, Sensen CW, Huss VA. The origin of land plants: phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA gene sequences. J Mol Evol 1995; 41:74-84. [PMID: 7608991 DOI: 10.1007/bf00174043] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Complete nuclear-encoded small-subunit 18S rRNA (= SSU rRNA) gene sequences were determined for the prasinophyte green alga Mantoniella squamata; the charophycean green algae Chara foetida, Coleochaete scutata, Klebsormidium flaccidum, and Mougeotia scalaris; the bryophytes Marchantia polymorpha, Fossombronia pusilla, and Funaria hygrometrica; and the lycopod Selaginella galleottii to get a better insight into the sequential evolution from green algae to land plants. The sequences were aligned with several previously published SSU rRNA sequences from chlorophytic and charophytic algae as well as from land plants to infer the evolutionary relationships for major evolutionary lineages within the Chlorobionta by distance matrix, maximum parsimony, and maximum likelihood analyses. Phylogenetic trees created by the different methods consistently placed the Charophyceae on the branch leading to the land plants. The Charophyceae were shown to be polyphyletic with the Charales ("charalean" algae) diverging earlier than the Coleochaetales, Klebsormidiales, Chlorokybales, and Zygnematales ("charophycean" algae) which branch from a point closer to the land plants in most analyses. Maximum parsimony and maximum likelihood analyses imply a successive evolution from "charophycean" algae, particularly Coleochaetales, to bryophytes, lycopods, and seed plants. In contrast, distance matrix methods group the bryophytes together with the "charophycean" algae, suggesting a separate evolution of these organisms compared with the club moss and the seed plants.
Collapse
Affiliation(s)
- H D Kranz
- Institut für Botanik und Pharmazeutische Biologie der Universität, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Barnabas S, Krishnan S, Barnabas J. The branching pattern of major groups of land plants inferred from parsimony analysis of ribosomal RNA sequences. J Biosci 1995. [DOI: 10.1007/bf02703273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
KENRICK B. ALTERNATION OF GENERATIONS IN LAND PLANTS: NEW PHYLOGENETIC AND PALAEOBOTANICAL EVIDENCE. Biol Rev Camb Philos Soc 1994. [DOI: 10.1111/j.1469-185x.1994.tb01273.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Wayne R. The excitability of plant cells: with a special emphasis on characean internodal cells. THE BOTANICAL REVIEW; INTERPRETING BOTANICAL PROGRESS 1994; 60:265-367. [PMID: 11539934 DOI: 10.1007/bf02960261] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review describes the basic principles of electrophysiology using the generation of an action potential in characean internodal cells as a pedagogical tool. Electrophysiology has proven to be a powerful tool in understanding animal physiology and development, yet it has been virtually neglected in the study of plant physiology and development. This review is, in essence, a written account of my personal journey over the past five years to understand the basic principles of electrophysiology so that I can apply them to the study of plant physiology and development. My formal background is in classical botany and cell biology. I have learned electrophysiology by reading many books on physics written for the lay person and by talking informally with many patient biophysicists. I have written this review for the botanist who is unfamiliar with the basics of membrane biology but would like to know that she or he can become familiar with the latest information without much effort. I also wrote it for the neurophysiologist who is proficient in membrane biology but knows little about plant biology (but may want to teach one lecture on "plant action potentials"). And lastly, I wrote this for people interested in the history of science and how the studies of electrical and chemical communication in physiology and development progressed in the botanical and zoological disciplines.
Collapse
Affiliation(s)
- R Wayne
- Section of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
44
|
Mishler BD. Cladistic analysis of molecular and morphological data. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1994; 94:143-56. [PMID: 8042702 DOI: 10.1002/ajpa.1330940111] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Considerable progress has been made recently in phylogenetic reconstruction in a number of groups of organisms. This progress coincides with two major advances in systematics: new sources have been found for potentially informative characters (i.e., molecular data) and (more importantly) new approaches have been developed for extracting historical information from old or new characters (i.e., Hennigian phylogenetic systematics or cladistics). The basic assumptions of cladistics (the existence and splitting of lineages marked by discrete, heritable, and independent characters, transformation of which occurs at a rate slower than divergence of lineages) are discussed and defended. Molecular characters are potentially greater in quantity than (and usually independent of) more traditional morphological characters, yet their great simplicity (i.e., fewer potential character states; problems with determining homology), and difficulty of sufficient sampling (particularly from fossils) can lead to special difficulties. Expectations of the phylogenetic behavior of different types of data are investigated from a theoretical standpoint, based primarily on variation in the central parameter lambda (branch length in terms of expected number of character changes per segment of a tree), which also leads to possibilities for character and character state weighting. Also considered are prospects for representing diverse yet clearly monophyletic clades in larger-scale cladistic analyses, e.g., the exemplar method vs. "compartmentalization" (a new approach involving substituting an inferred "archetype" for a large clade accepted as monophyletic based on previous analyses). It is concluded that parsimony is to be preferred for synthetic, "total evidence" analyses because it appears to be a robust method, is applicable to all types of data, and has an explicit and interpretable evolutionary basis.
Collapse
Affiliation(s)
- B D Mishler
- Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley 94720
| |
Collapse
|
45
|
Löffelhardt W, Bohnert HJ. Structure and function of the cyanelle genome. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 151:29-65. [PMID: 7516928 DOI: 10.1016/s0074-7696(08)62630-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- W Löffelhardt
- Institut für Biochemie und Molekulare Zellbiologie, Universität Wien, Austria
| | | |
Collapse
|
46
|
Luehrsen KR, Taha S, Walbot V. Nuclear pre-mRNA processing in higher plants. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 47:149-93. [PMID: 8016320 DOI: 10.1016/s0079-6603(08)60252-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- K R Luehrsen
- Department of Biological Sciences, Stanford University, California 94305
| | | | | |
Collapse
|
47
|
RAVEN JOHNA. THE EVOLUTION OF VASCULAR PLANTS IN RELATION TO QUANTITATIVE FUNCTIONING OF DEAD WATER-CONDUCTING CELLS AND STOMATA. Biol Rev Camb Philos Soc 1993. [DOI: 10.1111/j.1469-185x.1993.tb00735.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Abstract
Data and arguments are given in favour of the hypothesis that the primitive tRNA molecule may have originated from a direct duplication event involving one of the two halves of the tRNA molecule. It seems that a molecule capable of assuming a hairpin structure was involved as a precursor in this duplication. The two halves of the present tRNAs could, therefore, be considered as paralogous.
Collapse
Affiliation(s)
- M Di Giulio
- International Institute of Genetics and Biophysics, CNR, Naples, Italy
| |
Collapse
|
49
|
|
50
|
Wimpee CF, Morgan R, Wrobel RL. Loss of transfer RNA genes from the plastid 16S-23S ribosomal RNA gene spacer in a parasitic plant. Curr Genet 1992; 21:417-22. [PMID: 1525868 DOI: 10.1007/bf00351704] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The plastid 16S-23S intergenic spacer region in Conopholis americana, a totally heterotrophic angiosperm in the family Orobanchaceae, has undergone large deletions, including the entire tRNA(Ile) gene and all but small remnants of the tRNA(Ala) gene. The length of the region is less than 20% of that of other land plants which have been investigated, making it the smallest 16S-23S intergenic spacer reported thus far for any land plant. The remaining sequences in the spacer are 90.1% identical to tobacco, indicating that, while the region is well conserved at the sequence level, it is evolving rapidly by deletion. Experiments using the polymerase chain reaction and hybridization to DNA gel blots have failed to reveal either of the two missing tRNA genes elsewhere in the Conopholis cell.
Collapse
Affiliation(s)
- C F Wimpee
- Department of Biological Sciences, University of Wisconsin, Milwaukee 53201
| | | | | |
Collapse
|