1
|
Khan E, Hylton H, Rajan N, Bouley SJ, Siddiqui JK, Rajasekaran S, Koshre GR, Storts H, Valenciaga A, Khan M, Liyanarachchi S, Fernandez F, Zheng X, Phay J, Dedhia PH, Wang J, Walker JA, Ringel MD, Miles WO. Proteomic Profiling of Medullary Thyroid Cancer Identifies CAPN1 as a Key Regulator of NF1 and RET Fueled Growth. Thyroid 2025; 35:177-187. [PMID: 39868924 DOI: 10.1089/thy.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background: Medullary thyroid cancer (MTC) is a frequently metastatic tumor of the thyroid that develops from the malignant transformation of C-cells. These tumors most commonly have activating mutations within the RET or RAS proto-oncogenes. Germline mutations within RET result in C-cell hyperplasia, and cause the MTC pre-disposition disorder, multiple endocrine neoplasia, type 2A (MEN2A). Single-agent therapies for MTC, including vandetanib (VAN) and cabozantinib for all MTCs and selpercatinib (SEL) for RET-mutated MTC, lead to partial responses but are not curative. Methods: To identify new therapeutic targets for MTC, we conducted proteomic profiling of normal C-cells, MTC cells, pre-malignant MEN2A patient samples, and MTC tumors. Results: From this analysis, we identified CAPN1, a member of the CALPAIN (CAPN) family endopeptidases, as widely upregulated in MTC samples. We found that short hairpin RNA-mediated depletion of CAPN1 or inhibitors of CAPN1 significantly reduced MTC cell growth, colony formation, and xenograft tumor growth in vivo. In addition, we show that CAPN1 inhibitors synergize with VAN and SEL in vitro, maximizing apoptosis. Mechanistic experiments implicate CAPN1 in inhibiting neurofibromin, encoded by NF1, and CAPN1 inhibitors stabilize NF1 protein levels and diminish downstream RAS/RET activation of AKT and ERK. Conclusions: Our data suggest that increased CAPN1 levels support RET and RAS-fueled growth by reducing NF1 levels. We find that combinatorial therapies between CAPN1 inhibitors and VAN or SEL show maximal efficacy in MTC cells.
Collapse
Affiliation(s)
- Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Hannah Hylton
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Neel Rajan
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
| | - Stephanie J Bouley
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jalal K Siddiqui
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Swetha Rajasekaran
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Ganesh R Koshre
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Hayden Storts
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Anisley Valenciaga
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
| | - Misbah Khan
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Sandya Liyanarachchi
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
| | - Francisco Fernandez
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xuguang Zheng
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - John Phay
- Division of Surgical Oncology, Ohio State University Comprehensive Cancer Center and Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Priya H Dedhia
- Division of Surgical Oncology, Ohio State University Comprehensive Cancer Center and Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jing Wang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew D Ringel
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Miller AH, Halloran MC. Mechanistic insights from animal models of neurofibromatosis type 1 cognitive impairment. Dis Model Mech 2022; 15:276464. [PMID: 36037004 PMCID: PMC9459395 DOI: 10.1242/dmm.049422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal-dominant neurogenetic disorder caused by mutations in the gene neurofibromin 1 (NF1). NF1 predisposes individuals to a variety of symptoms, including peripheral nerve tumors, brain tumors and cognitive dysfunction. Cognitive deficits can negatively impact patient quality of life, especially the social and academic development of children. The neurofibromin protein influences neural circuits via diverse cellular signaling pathways, including through RAS, cAMP and dopamine signaling. Although animal models have been useful in identifying cellular and molecular mechanisms that regulate NF1-dependent behaviors, translating these discoveries into effective treatments has proven difficult. Clinical trials measuring cognitive outcomes in patients with NF1 have mainly targeted RAS signaling but, unfortunately, resulted in limited success. In this Review, we provide an overview of the structure and function of neurofibromin, and evaluate several cellular and molecular mechanisms underlying neurofibromin-dependent cognitive function, which have recently been delineated in animal models. A better understanding of neurofibromin roles in the development and function of the nervous system will be crucial for identifying new therapeutic targets for the various cognitive domains affected by NF1. Summary: Neurofibromin influences neural circuits through RAS, cAMP and dopamine signaling. Exploring the mechanisms underlying neurofibromin-dependent behaviors in animal models might enable future treatment of the various cognitive deficits that are associated with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Andrew H Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
3
|
Anastasaki C, Orozco P, Gutmann DH. RAS and beyond: the many faces of the neurofibromatosis type 1 protein. Dis Model Mech 2022; 15:274437. [PMID: 35188187 PMCID: PMC8891636 DOI: 10.1242/dmm.049362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurofibromatosis type 1 is a rare neurogenetic syndrome, characterized by pigmentary abnormalities, learning and social deficits, and a predisposition for benign and malignant tumor formation caused by germline mutations in the NF1 gene. With the cloning of the NF1 gene and the recognition that the encoded protein, neurofibromin, largely functions as a negative regulator of RAS activity, attention has mainly focused on RAS and canonical RAS effector pathway signaling relevant to disease pathogenesis and treatment. However, as neurofibromin is a large cytoplasmic protein the RAS regulatory domain of which occupies only 10% of its entire coding sequence, both canonical and non-canonical RAS pathway modulation, as well as the existence of potential non-RAS functions, are becoming apparent. In this Special article, we discuss our current understanding of neurofibromin function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Paola Orozco
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
4
|
Kang E, Kim YM, Choi Y, Lee Y, Kim J, Choi IH, Yoo HW, Yoon HM, Lee BH. Whole-body MRI evaluation in neurofibromatosis type 1 patients younger than 3 years old and the genetic contribution to disease progression. Orphanet J Rare Dis 2022; 17:24. [PMID: 35093157 PMCID: PMC8800361 DOI: 10.1186/s13023-022-02174-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/16/2022] [Indexed: 11/14/2022] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a common human genetic disease with age-dependent phenotype progression. The overview of clinical and radiological findings evaluated by whole-body magnetic resonance imaging (WBMRI) in NF1 patients < 3 years old assessed with a genetic contribution to disease progression is presented herein.
Methods This study included 70 clinically or genetically diagnosed NF1 patients who received WBMRI before 3 years old. Clinical, genetic, and radiologic features were collected by retrospective chart review. In NF1+, widely spread diffuse cutaneous neurofibromas, developmental delay, autism, seizure, cardiac abnormalities, hearing defect, optic pathway glioma, severe plexiform neurofibromas (> 3 cm in diameter, disfigurement, accompanying pain, bony destruction, or located para-aortic area), brain tumors, nerve root tumors, malignant peripheral nerve sheath tumors, moyamoya disease, and bony dysplasia were included. Results The age at WBMRI was 1.6 ± 0.7 years old, and NF1 mutations were found in 66 patients (94.3%). Focal areas of signal intensity (FASI) were the most common WBMRI finding (66.1%), followed by optic pathway glioma (15.7%), spine dural ectasia (12.9%), and plexiform neurofibromas (10.0%). Plexiform neurofibromas and NF1+ were more prevalent in familial case (28.7% vs 5.7%, p = 0.030; 71.4% vs 30.2%, p = 0.011). Follow-up WBMRI was conducted in 42 patients (23 girls and 19 boys) after 1.21 ± 0.50 years. FASI and radiologic progression were more frequent in patients with mutations involving GTPase activating protein-related domain (77.8% vs 52.4%, p = 0.047; 46.2% vs 7.7%, p = 0.029). Conclusions WBMRI provides important information for the clinical care for young pediatric NF1 patients. As NF1 progresses in even these young patients, and is related to family history and the affected NF1 domains, serial evaluation with WBMRI should be assessed based on the clinical and genetic features for the patients’ best care. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02174-3.
Collapse
|
5
|
Schreuder WH, van der Wal JE, de Lange J, van den Berg H. Multiple versus solitary giant cell lesions of the jaw: Similar or distinct entities? Bone 2021; 149:115935. [PMID: 33771761 DOI: 10.1016/j.bone.2021.115935] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The majority of giant cell lesions of the jaw present as a solitary focus of disease in bones of the maxillofacial skeleton. Less frequently they occur as multifocal lesions. This raises the clinical dilemma if these should be considered distinct entities and therefore each need a specific therapeutic approach. Solitary giant cell lesions of the jaw present with a great diversity of symptoms. Recent molecular analysis revealed that these are associated with somatic gain-of-function mutations in KRAS, FGFR1 or TRPV4 in a large component of the mononuclear stromal cells which all act on the RAS/MAPK pathway. For multifocal lesions, a small group of neoplastic multifocal giant cell lesions of the jaw remain after ruling out hyperparathyroidism. Strikingly, most of these patients are diagnosed with jaw lesions before the age of 20 years, thus before the completion of dental and jaw development. These multifocal lesions are often accompanied by a diagnosis or strong clinical suspicion of a syndrome. Many of the frequently reported syndromes belong to the so-called RASopathies, with germline or mosaic mutations leading to downstream upregulation of the RAS/MAPK pathway. The other frequently reported syndrome is cherubism, with gain-of-function mutations in the SH3BP2 gene leading through assumed and unknown signaling to an autoinflammatory bone disorder with hyperactive osteoclasts and defective osteoblastogenesis. Based on this extensive literature review, a RAS/MAPK pathway activation is hypothesized in all giant cell lesions of the jaw. The different interaction between and contribution of deregulated signaling in individual cell lineages and crosstalk with other pathways among the different germline- and non-germline-based alterations causing giant cell lesions of the jaw can be explanatory for the characteristic clinical features. As such, this might also aid in the understanding of the age-dependent symptomatology of syndrome associated giant cell lesions of the jaw; hopefully guiding ideal timing when installing treatment strategies in the future.
Collapse
Affiliation(s)
- Willem H Schreuder
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands; Department of Head and Neck Surgery and Oncology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Jacqueline E van der Wal
- Department of Pathology, Antoni van Leeuwenhoek / Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jan de Lange
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC and Academic Center for Dentistry Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Henk van den Berg
- Department of Pediatrics / Oncology, Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Perez-Becerril C, Evans DG, Smith MJ. Pathogenic noncoding variants in the neurofibromatosis and schwannomatosis predisposition genes. Hum Mutat 2021; 42:1187-1207. [PMID: 34273915 DOI: 10.1002/humu.24261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 11/11/2022]
Abstract
Neurofibromatosis type 1 (NF1), type 2 (NF2), and schwannomatosis are a group of autosomal dominant disorders that predispose to the development of nerve sheath tumors. Pathogenic variants (PVs) that cause NF1 and NF2 are located in the NF1 and NF2 loci, respectively. To date, most variants associated with schwannomatosis have been identified in the SMARCB1 and LZTR1 genes, and a missense variant in the DGCR8 gene was recently reported to predispose to schwannomas. In spite of the high detection rate for PVs in NF1 and NF2 (over 90% of non-mosaic germline variants can be identified by routine genetic screening) underlying PVs for a proportion of clinical cases remain undetected. A higher proportion of non-NF2 schwannomatosis cases have no detected PV, with PVs currently only identified in around 70%-86% of familial cases and 30%-40% of non-NF2 sporadic schwannomatosis cases. A number of variants of uncertain significance have been observed for each disorder, many of them located in noncoding, regulatory, or intergenic regions. Here we summarize noncoding variants in this group of genes and discuss their established or potential role in the pathogenesis of NF1, NF2, and schwannomatosis.
Collapse
Affiliation(s)
- Cristina Perez-Becerril
- Division of Evolution and Genomic Science, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, UK
| | - D Gareth Evans
- Division of Evolution and Genomic Science, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Miriam J Smith
- Division of Evolution and Genomic Science, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Scala M, Schiavetti I, Madia F, Chelleri C, Piccolo G, Accogli A, Riva A, Salpietro V, Bocciardi R, Morcaldi G, Di Duca M, Caroli F, Verrico A, Milanaccio C, Viglizzo G, Traverso M, Baldassari S, Scudieri P, Iacomino M, Piatelli G, Minetti C, Striano P, Garrè ML, De Marco P, Diana MC, Capra V, Pavanello M, Zara F. Genotype-Phenotype Correlations in Neurofibromatosis Type 1: A Single-Center Cohort Study. Cancers (Basel) 2021; 13:cancers13081879. [PMID: 33919865 PMCID: PMC8070780 DOI: 10.3390/cancers13081879] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Neurofibromatosis type 1 (NF1) is a complex disorder characterized by a multisystem involvement and cancer predisposition. It is caused by genetic variants in NF1, a large tumor suppressor gene encoding a cytoplasmatic protein (neurofibromin) with a regulatory role in essential cellular processes. Genotype–phenotype correlations in NF1 patients are so far elusive. We retrospectively reviewed clinical, radiological, and genetic data of 583 individuals with at least 1 National Institutes of Health (NIH) criterion for NF1 diagnosis, including 365 subjects fulfilling criteria for the diagnosis. Novel genotype–phenotype correlations were identified through uni- and multivariate statistical analysis. Missense variants negatively correlated with neurofibromas. Skeletal abnormalities were associated with frameshift variants and whole gene deletions. The c.3721C>T; p.(R1241*) variant positively correlated with structural brain alterations, whereas the c.6855C>A; p.(Y2285*) variant was associated with a higher prevalence of Lisch nodules and endocrinological disorders. These novel NF1 genotype–phenotype correlations may have a relevant role in the implementation of patients’ care. Abstract Neurofibromatosis type 1 (NF1) is a proteiform genetic condition caused by pathogenic variants in NF1 and characterized by a heterogeneous phenotypic presentation. Relevant genotype–phenotype correlations have recently emerged, but only few pertinent studies are available. We retrospectively reviewed clinical, instrumental, and genetic data from a cohort of 583 individuals meeting at least 1 diagnostic National Institutes of Health (NIH) criterion for NF1. Of these, 365 subjects fulfilled ≥2 NIH criteria, including 235 pediatric patients. Genetic testing was performed through cDNA-based sequencing, Next Generation Sequencing (NGS), and Multiplex Ligation-dependent Probe Amplification (MLPA). Uni- and multivariate statistical analysis was used to investigate genotype–phenotype correlations. Among patients fulfilling ≥ 2 NIH criteria, causative single nucleotide variants (SNVs) and copy number variations (CNVs) were detected in 267/365 (73.2%) and 20/365 (5.5%) cases. Missense variants negatively correlated with neurofibromas (p = 0.005). Skeletal abnormalities were associated with whole gene deletions (p = 0.05) and frameshift variants (p = 0.006). The c.3721C>T; p.(R1241*) variant positively correlated with structural brain alterations (p = 0.031), whereas Lisch nodules (p = 0.05) and endocrinological disorders (p = 0.043) were associated with the c.6855C>A; p.(Y2285*) variant. We identified novel NF1 genotype–phenotype correlations and provided an overview of known associations, supporting their potential relevance in the implementation of patient management.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Irene Schiavetti
- Department of Health Sciences, Section of Biostatistics, University of Genova, 16132 Genoa, Italy;
| | - Francesca Madia
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Cristina Chelleri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Gianluca Piccolo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Renata Bocciardi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Guido Morcaldi
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Marco Di Duca
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Francesco Caroli
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Antonio Verrico
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (A.V.); (C.M.); (M.L.G.)
| | - Claudia Milanaccio
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (A.V.); (C.M.); (M.L.G.)
| | | | - Monica Traverso
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Simona Baldassari
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Paolo Scudieri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Michele Iacomino
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Gianluca Piatelli
- Neurosurgery Department, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy;
| | - Carlo Minetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Maria Luisa Garrè
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (A.V.); (C.M.); (M.L.G.)
| | - Patrizia De Marco
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Maria Cristina Diana
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (G.P.); (G.M.); (M.T.); (M.C.D.)
| | - Valeria Capra
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| | - Marco Pavanello
- Neurosurgery Department, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy;
- Correspondence:
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy; (M.S.); (C.C.); (A.A.); (A.R.); (V.S.); (R.B.); (P.S.); (C.M.); (P.S.); (F.Z.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, University of Genoa, 16147 Genoa, Italy; (F.M.); (M.D.D.); (F.C.); (S.B.); (M.I.); (P.D.M.); (V.C.)
| |
Collapse
|
8
|
Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin Structure, Functions and Regulation. Cells 2020; 9:cells9112365. [PMID: 33121128 PMCID: PMC7692384 DOI: 10.3390/cells9112365] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.
Collapse
|
9
|
Melloni G, Eoli M, Cesaretti C, Bianchessi D, Ibba MC, Esposito S, Scuvera G, Morcaldi G, Micheli R, Piozzi E, Avignone S, Chiapparini L, Pantaleoni C, Natacci F, Finocchiaro G, Saletti V. Risk of Optic Pathway Glioma in Neurofibromatosis Type 1: No Evidence of Genotype-Phenotype Correlations in A Large Independent Cohort. Cancers (Basel) 2019; 11:cancers11121838. [PMID: 31766501 PMCID: PMC6966666 DOI: 10.3390/cancers11121838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 11/16/2022] Open
Abstract
The occurrence of optic pathway gliomas (OPGs) in children with neurofibromatosis type 1 (NF1) still raises many questions regarding screening and surveillance because of the lack of robust prognostic factors. Recent studies of an overall cohort of 381 patients have suggested that the genotype may be the main determinant of the development of OPG, with the risk being higher in patients harbouring NF1 mutations in the 5’ tertile and the cysteine/serine-rich domain. In an attempt to confirm this hypothesis, we used strict criteria to select a large independent cohort of 309 NF1 patients with defined constitutional NF1 mutations and appropriate brain images (255 directly enrolled and 54 as a result of a literature search). One hundred and thirty-two patients had OPG and 177 did not. The association of the position (tertiles and functional domains) and type of NF1 mutation with the development of OPG was analysed using the χ2 test and Fisher’s exact probability test; odds ratios (ORs) with 95% confidence intervals were calculated, and Bonferroni’s correction for multiple comparisons was applied; multiple logistic regression was also used to study genotype–phenotype associations further. Our findings show no significant correlation between the site/type of NF1 mutation and the risk of OPG, and thus do not support the hypothesis that certain constitutional mutations provide prognostic information in this regard. In addition, we combined our cohort with a previously described cohort of 381 patients for a total of 690 patients and statistically re-analysed the results. The re-analysis confirmed that there were no correlations between the site (tertile and domain) and the risk of OPG, thus further strengthening our conclusions.
Collapse
Affiliation(s)
- Giulia Melloni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Claudia Cesaretti
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (C.C.); (F.N.)
| | - Donatella Bianchessi
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Maria Cristina Ibba
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Silvia Esposito
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
| | - Giulietta Scuvera
- Department of Pathophysiology and Transplantation, Pediatric Highly Intensive Care Unit, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy;
| | - Guido Morcaldi
- Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy;
| | - Roberto Micheli
- Pediatric Neuropsychiatry, Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25125 Brescia, Italy;
| | - Elena Piozzi
- Pediatric Department, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milan, Italy;
| | - Sabrina Avignone
- Neuroradiology Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 28, 20122 Milan, Italy;
| | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy;
| | - Chiara Pantaleoni
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
| | - Federica Natacci
- Medical Genetics Unit, Woman-Child-Newborn Department, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, via Francesco Sforza 28, 20122 Milan, Italy; (C.C.); (F.N.)
| | - Gaetano Finocchiaro
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (M.E.); (D.B.); (M.C.I.); (G.F.)
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20121 Milan, Italy; (G.M.); (S.E.); (C.P.)
- Correspondence:
| |
Collapse
|
10
|
NF1 mutations are recurrent in adult acute myeloid leukemia and confer poor outcome. Leukemia 2018; 32:2536-2545. [PMID: 29872168 PMCID: PMC6281863 DOI: 10.1038/s41375-018-0147-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 04/13/2018] [Indexed: 12/31/2022]
Abstract
Targeted mutation assessment of 81 genes in 1,021 adults with de novo acute myeloid leukemia (AML) identified recurrent mutations in the neurofibromin 1 (NF1) gene in 52 (5.1%) patients, including 36 (5.2%) younger and 16 (4.8%) older patients, which suggests NF1 belongs to the 20 most frequently mutated genes in adult AML. NF1 mutations were found throughout the gene, and comprised missense, frame-shift and nonsense mutations. One mutation hotspot, at amino acid threonine 676 (Thr676), was found in 27% of AML patients with NF1 mutations. NF1-mutated patients belonged more often to the adverse European LeukemiaNet (ELN) risk category than NF1 wild-type patients. Among patients aged <60 years, the presence of NF1 Thr676 mutations was associated with lower complete remission (CR) rates (P=0.04) and shorter overall survival (OS; P=0.01), as was the presence of any NF1 mutation in patients in the adverse ELN risk category (CR, P=0.05; OS, P<0.001). CR rates were also lower in NF1-mutated patients aged ≥60 years compared with NF1 wild-type patients (P=0.001). In summary, our findings provide novel insights into the frequency of NF1 mutations in AML, and are suggestive of an adverse prognostic impact in patients treated with standard chemotherapy.
Collapse
|
11
|
Gallino G, Belli F, Tragni G, Ferro F, Massone PP, Ditto A, Leo E, Cascinelli N. Association between Cutaneous Melanoma and Neurofibromatosis Type 1: Analysis of Three Clinical Cases and Review of the Literature. TUMORI JOURNAL 2018; 86:70-4. [PMID: 10778770 DOI: 10.1177/030089160008600113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors report a rare association between cutaneous melanoma and Von Recklinghausen's disease (NF-1) and analyze the possible meaning of this occurrence. Various types of tumors have been associated with NF-1, in particular those of neuroectodermal origin, such as malignant peripheral nerve sheath tumors (MPNST) and phaeochromocytoma. The development of malignant melanoma in NF-1 patients is rare. Data from the literature is enable to demonstrate an increased incidence of cutaneous melanoma in patients with neurofibromatosis but the association of these two disorders seems reasonable in theory, as both are abnormalities of a neural crest origin. The cases described may represent not only a clinical report of two rarely associated disorders, but may also confirm the biological mechanisms responsible for these infrequent diseases.
Collapse
Affiliation(s)
- G Gallino
- Division of General Surgery B, National Cancer Institute, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pascual J, Jacobs J, Sansores-Garcia L, Natarajan M, Zeitlinger J, Aerts S, Halder G, Hamaratoglu F. Hippo Reprograms the Transcriptional Response to Ras Signaling. Dev Cell 2017; 42:667-680.e4. [DOI: 10.1016/j.devcel.2017.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/04/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
|
13
|
Kanojia D, Nagata Y, Garg M, Lee DH, Sato A, Yoshida K, Sato Y, Sanada M, Mayakonda A, Bartenhagen C, Klein HU, Doan NB, Said JW, Mohith S, Gunasekar S, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Myklebost O, Yang H, Dugas M, Meza-Zepeda LA, Silberman AW, Forscher C, Tyner JW, Ogawa S, Koeffler HP. Genomic landscape of liposarcoma. Oncotarget 2016; 6:42429-44. [PMID: 26643872 PMCID: PMC4767443 DOI: 10.18632/oncotarget.6464] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/26/2015] [Indexed: 01/09/2023] Open
Abstract
Liposarcoma (LPS) is the most common type of soft tissue sarcoma accounting for 20% of all adult sarcomas. Due to absence of clinically effective treatment options in inoperable situations and resistance to chemotherapeutics, a critical need exists to identify novel therapeutic targets. We analyzed LPS genomic landscape using SNP arrays, whole exome sequencing and targeted exome sequencing to uncover the genomic information for development of specific anti-cancer targets. SNP array analysis indicated known amplified genes (MDM2, CDK4, HMGA2) and important novel genes (UAP1, MIR557, LAMA4, CPM, IGF2, ERBB3, IGF1R). Carboxypeptidase M (CPM), recurrently amplified gene in well-differentiated/de-differentiated LPS was noted as a putative oncogene involved in the EGFR pathway. Notable deletions were found at chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome 13q14.2 (MIR15A, MIR16-1). Significantly and recurrently mutated genes (false discovery rate < 0.05) included PLEC (27%), MXRA5 (21%), FAT3 (24%), NF1 (20%), MDC1 (10%), TP53 (7%) and CHEK2 (6%). Further, in vitro and in vivo functional studies provided evidence for the tumor suppressor role for Neurofibromin 1 (NF1) gene in different subtypes of LPS. Pathway analysis of recurrent mutations demonstrated signaling through MAPK, JAK-STAT, Wnt, ErbB, axon guidance, apoptosis, DNA damage repair and cell cycle pathways were involved in liposarcomagenesis. Interestingly, we also found mutational and copy number heterogeneity within a primary LPS tumor signifying the importance of multi-region sequencing for cancer-genome guided therapy. In summary, these findings provide insight into the genomic complexity of LPS and highlight potential druggable pathways for targeted therapeutic approach.
Collapse
Affiliation(s)
- Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yasunobu Nagata
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manoj Garg
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Dhong Hyun Lee
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, School of Medicine, Los Angeles, California, USA
| | - Aiko Sato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Sato
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Sanada
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Diagnosis, Clinical Research Center, Nagoya Medical Center, Nagoya, Japan
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Hans-Ulrich Klein
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Ngan B Doan
- Department of Pathology and Laboratory Medicine, Santa Monica-University of California-Los Angeles Medical Center, Los Angeles, California, USA
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, Santa Monica-University of California-Los Angeles Medical Center, Los Angeles, California, USA
| | - S Mohith
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Swetha Gunasekar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ola Myklebost
- Norwegian Cancer Genomics Consortium and Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway.,Department of Molecular Bioscience, University of Oslo, Oslo, Norway
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Leonardo A Meza-Zepeda
- Norwegian Cancer Genomics Consortium and Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Allan W Silberman
- Department of Surgery, Cedars Sinai Medical Center, Division of Surgical Oncology, Los Angeles, California, USA
| | - Charles Forscher
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, School of Medicine, Los Angeles, California, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, School of Medicine, Los Angeles, California, USA.,National University Cancer Institute, National University Hospital, Singapore
| |
Collapse
|
14
|
Sensitization of Ion Channels Contributes to Central and Peripheral Dysfunction in Neurofibromatosis Type 1. Mol Neurobiol 2016; 54:3342-3349. [PMID: 27167129 DOI: 10.1007/s12035-016-9907-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
Neurofibromatosis type 1 (Nf1) is a progressive, autosomal disorder with a large degree of variability and severity of manifestations including neurological, cutaneous, ocular/orbital, orthopedic, and vascular abnormalities. Nearly half of Nf1 patients presents with cognitive impairment, specifically spatial learning deficits. These clinical manifestations suggest a global impairment of both central and peripheral nervous system functions in neurofibromatosis. Nf1 encodes for neurofibromin, a Ras GTPase-activating protein (Ras GAP) that has been implicated in the regulation of long-term potentiation (LTP), Ras/ERK (extracellular signal-regulated kinase) signaling, and learning in mice. Over the last decades, mice with a targeted mutation in the Nf1 gene, Nf1 -/- chimeric mice, Nf1 exon-specific knockout mice, and mice with tissue-specific inactivation of Nf1 have been generated to model the human Nf1 disease. These studies have implicated neurofibromin in regulation of the release of the inhibitory neurotransmitter γ-amino butyric acid (GABA) in the hippocampus and frontal lobe, which can regulate memory. Mutations in neurofibromin thus lead to perturbed ERK signaling, which alters GABA release, LTP, and subsequently leads to learning deficits. In addition to these cognitive deficits, Nf1 patients also have defects in fine and gross motor coordination as well as decreased muscle strength. Although the mechanisms underlying these motor deficits are unknown, deficits in GABAergic neurotransmission in both the motor cortex and cerebellum have been suggested. In this review, we present evidence to support the hypothesis that alterations of ion channel activity in Nf1 underscore the dysregulated neuronal communication in non-neuronal and neuronal cells that likely contributes to the clinical cornucopia of Nf1.
Collapse
|
15
|
Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer 2015; 15:290-301. [PMID: 25877329 PMCID: PMC4822336 DOI: 10.1038/nrc3911] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder that predisposes affected individuals to tumours. The NF1 gene encodes a RAS GTPase-activating protein called neurofibromin and is one of several genes that (when mutant) affect RAS-MAPK signalling, causing related diseases collectively known as RASopathies. Several RASopathies, beyond NF1, are cancer predisposition syndromes. Somatic NF1 mutations also occur in 5-10% of human sporadic cancers and may contribute to resistance to therapy. To highlight areas for investigation in RASopathies and sporadic tumours with NF1 mutations, we summarize current knowledge of NF1 disease, the NF1 gene and neurofibromin, neurofibromin signalling pathways and recent developments in NF1 therapeutics.
Collapse
Affiliation(s)
- Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | - Shyra J Miller
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| |
Collapse
|
16
|
|
17
|
Abstract
For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.
Collapse
Affiliation(s)
- Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
18
|
Lin AL, Gutmann DH. Advances in the treatment of neurofibromatosis-associated tumours. Nat Rev Clin Oncol 2013; 10:616-24. [DOI: 10.1038/nrclinonc.2013.144] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Mashiach-Farkash E, Rak R, Elad-Sfadia G, Haklai R, Carmeli S, Kloog Y, Wolfson HJ. Computer-based identification of a novel LIMK1/2 inhibitor that synergizes with salirasib to destabilize the actin cytoskeleton. Oncotarget 2013; 3:629-39. [PMID: 22776759 PMCID: PMC3442289 DOI: 10.18632/oncotarget.525] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neurofibromin regulates cell motility via three distinct GTPase pathways acting through two different domains, the Ras GTPase-activating protein-related domain (GRD) and the pre-GRD domain. First, the GRD domain inhibits Ras-dependent changes in cell motility through the mitogen activated protein cascade. Second, it also regulates Rho-dependent (Ras-independent) changes by activating LIM kinase 2 (LIMK2), an enzyme that phosphorylates and inactivates cofilin (an actin-depolymerizing factor). Third, the pre-GRD domain acts through the Rac1 GTPase, that activate the P21 activated kinase 1 (PAK1)-LIMK1-cofilin pathway. We employed molecular modeling to identify a novel inhibitor of LIMK1/2. The active sites of an ephrin-A receptor (EphA3) and LIMK2 showed marked similarity (60%). On testing a known inhibitor of EphA3, we found that it fits to the LIMK1/2-ATP binding site and to the latter's substrate-binding pockets. We identified a similar compound, T56-LIMKi, and found that it inhibits LIMK1/2 kinase activities. It blocked the phosphorylation of cofilin which led to actin severance and inhibition of tumor cell migration, tumor cell growth, and anchorage-independent colony formation in soft agar. Because modulation of LIMK by neurofibromin is not affected by the Ras inhibitor Salirasib, we examined the combined effect of Salirasib and T56-LIMKi each of which can affect cell motility by a distinct pathway. We found that their combined action on cell proliferation and stress-fiber formation in neurofibromin-deficient cells was synergistic. We suggest that this drug combination may be developed for treatment of neurofibromatosis and cancer.
Collapse
Affiliation(s)
- Efrat Mashiach-Farkash
- The Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
20
|
Alanne MH, Siljamäki E, Peltonen S, Väänänen K, Windle JJ, Parada LF, Määttä JA, Peltonen J. Phenotypic characterization of transgenic mice harboring Nf1+/− or Nf1−/− osteoclasts in otherwise Nf1+/+ background. J Cell Biochem 2012; 113:2136-46. [DOI: 10.1002/jcb.24088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Theos A, Boyd KP, Korf BR. The Neurofibromatoses. HARPER'S TEXTBOOK OF PEDIATRIC DERMATOLOGY 2011. [DOI: 10.1002/9781444345384.ch128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Wood MD, Sanchez Y. Deregulated Ras signaling compromises DNA damage checkpoint recovery in S. cerevisiae. Cell Cycle 2010; 9:3353-63. [PMID: 20716966 DOI: 10.4161/cc.9.16.12713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DNA damage checkpoint maintains genome stability by arresting the cell cycle and promoting DNA repair under genotoxic stress. Cells must downregulate the checkpoint signaling pathways in order to resume cell division after completing DNA repair. While the mechanisms of checkpoint activation have been well-characterized, the process of checkpoint recovery, and the signals regulating it, has only recently been investigated. We have identified a new role for the Ras signaling pathway as a regulator of DNA damage checkpoint recovery. Here we report that in budding yeast, deletion of the IRA1 and IRA2 genes encoding negative regulators of Ras prevents cellular recovery from a DNA damage induced arrest. The checkpoint kinase Rad53 is dephosphorylated in an IRA-deficient strain, indicating that recovery failure is not caused by constitutive checkpoint pathway activation. The ira1Δ ira2Δ recovery defect requires the checkpoint kinase Chk1 and the cAMP-dependent protein kinase (PKA) catalytic subunit Tpk2. Furthermore, PKA phosphorylation sites on the anaphase promoting complex specificity factor Cdc20 are required for the recovery defect, indicating a link between the recovery defect and PKA regulation of mitosis. This work identifies a new signaling pathway that can regulate DNA damage checkpoint recovery and implicates the Ras signaling pathway as an important regulator of mitotic events.
Collapse
Affiliation(s)
- Matthew D Wood
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | | |
Collapse
|
23
|
Abstract
This case report is unique in reporting the occurrence of a glomus tumour in a child with neurofibromatosis-1 (NF-1) and serves to support the link between neurofibromatosis-1 and glomus tumours.
Collapse
|
24
|
Gottfried ON, Viskochil DH, Couldwell WT. Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosurg Focus 2010; 28:E8. [DOI: 10.3171/2009.11.focus09221] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neurofibromatosis Type 1 (NF1) is a common autosomal dominant disease characterized by complex and multicellular neurofibroma tumors, and less frequently by malignant peripheral nerve sheath tumors (MPNSTs) and optic nerve gliomas. Significant advances have been made in elucidating the cellular, genetic, and molecular biology involved in tumor formation in NF1. Neurofibromatosis Type 1 is caused by germline mutations of the NF1 tumor suppressor gene, which generally result in decreased intracellular neurofibromin protein levels, leading to increased cascade Ras signaling to its downstream effectors. Multiple key pathways are involved with the development of tumors in NF1, including Ras/mitogen-activated protein kinase (MAPK) and Akt/mammalian target of rapamycin (mTOR). Interestingly, recent studies demonstrate that multiple other developmental syndromes (in addition to NF1) share phenotypic features resulting from germline mutations in genes responsible for components of the Ras/MAPK pathway. In general, a somatic loss of the second NF1 allele, also referred to as loss of heterozygosity, in the progenitor cell, either the Schwann cell or its precursor, combined with haploinsufficiency in multiple supporting cells is required for tumor formation. Importantly, a complex series of interactions with these other cell types in neurofibroma tumorigenesis is mediated by abnormal expression of growth factors and their receptors and modification of gene expression, a key example of which is the process of recruitment and involvement of the NF1+/– heterozygous mast cell. In general, for malignant transformation to occur, there must be accumulation of additional mutations of multiple genes including INK4A/ARF and P53, with resulting abnormalities of their respective signal cascades. Further, abnormalities of the NF1 gene and molecular cascade described above have been implicated in the tumorigenesis of NF1 and some sporadically occurring gliomas, and thus, these treatment options may have wider applicability. Finally, increased knowledge of molecular and cellular mechanisms involved with NF1 tumorigenesis has led to multiple preclinical and clinical studies of targeted therapy, including the mTOR inhibitor rapamycin, which is demonstrating promising preclinical results for treatment of MPNSTs and gliomas.
Collapse
Affiliation(s)
| | - David H. Viskochil
- 2Department of Pediatrics, Division of Genetics, University of Utah, Salt Lake City, Utah
| | | |
Collapse
|
25
|
Neurofibromin homologs Ira1 and Ira2 affect glycerophosphoinositol production and transport in Saccharomyces cerevisiae. EUKARYOTIC CELL 2009; 8:1808-11. [PMID: 19717739 DOI: 10.1128/ec.00217-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae produces extracellular glycerophosphoinositol through phospholipase-mediated turnover of phosphatidylinositol and transports glycerophosphoinositol into the cell upon nutrient limitation. A screening identified the RAS GTPase-activating proteins Ira1 and Ira2 as required for utilization of glycerophosphoinositol as the sole phosphate source, but the RAS/cyclic AMP pathway does not appear to be involved in the growth phenotype. Ira1 and Ira2 affect both the production and transport of glycerophosphoinositol.
Collapse
|
26
|
Cloning and characterization of a novel intracellular protein p48.2 that negatively regulates cell cycle progression. Int J Biochem Cell Biol 2009; 41:2240-50. [PMID: 19427400 DOI: 10.1016/j.biocel.2009.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 04/22/2009] [Accepted: 04/29/2009] [Indexed: 11/21/2022]
Abstract
Neurofibromatosis type 1 (NF1) microdeletion is a large genomic deletion that embraces at least 11 continuous genes at human chromosome 17q11.2. To date, most of these genes' functions still remain undefined. In this study, we report an unknown cytokine receptor like molecule (p48.2) that is frequently deleted in patients with type-1 and type-2 NF1 microdeletions in the neurofibromin locus. The cloned gene has 1317 base pair long that encodes a 438aa intracellular protein. The gene was subsequently named p48.2 based on its predicted molecular weight. A typical fibronectin type III (FNIII) domain was identified in p48.2 between Arg(176) and Pro(261) in which a palindromic Arg-Gly-Asp (RGD) repeat plus a putative Trp-Ser-X-Trp-Ser (WSXWS) motif were found at the domain's C-terminus. p48.2 mRNAs were abundant in many tumor cell lines and normal human tissues and up-regulated in some freshly isolated lung cancer and leukemia cells. Interestingly, over-expression of p48.2 in human embryo kidney 293T cells could significantly cause G0/G1 arrest and prevented S phase entry. In contrast, repressing endogenous p48.2 gene expression by specific siRNA markedly reduced G0/G1 population. Importantly, over-expression of p48.2 could significantly up-regulate rather than down-regulate cyclin D1 and cyclin D3 expressions. We further showed that the induction of cyclin D1 expression was directly due to the activation of signal transducers and activators of transcription 3 (STAT3), but was independent of RAS/mitogen-activated protein kinase (RAS/MAPK) signaling pathway. Thus, p48.2 may represent a novel type of intracellular protein functioning as a negative regulator at the G0/G1 phase.
Collapse
|
27
|
Smith EN, Kruglyak L. Gene-environment interaction in yeast gene expression. PLoS Biol 2008; 6:e83. [PMID: 18416601 PMCID: PMC2292755 DOI: 10.1371/journal.pbio.0060083] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/20/2008] [Indexed: 01/16/2023] Open
Abstract
The effects of genetic variants on phenotypic traits often depend on environmental and physiological conditions, but such gene–environment interactions are poorly understood. Recently developed approaches that treat transcript abundances of thousands of genes as quantitative traits offer the opportunity to broadly characterize the architecture of gene–environment interactions. We examined the genetic and molecular basis of variation in gene expression between two yeast strains (BY and RM) grown in two different conditions (glucose and ethanol as carbon sources). We observed that most transcripts vary by strain and condition, with 2,996, 3,448, and 2,037 transcripts showing significant strain, condition, and strain–condition interaction effects, respectively. We expression profiled over 100 segregants derived from a cross between BY and RM in both growth conditions, and identified 1,555 linkages for 1,382 transcripts that show significant gene–environment interaction. At the locus level, local linkages, which usually correspond to polymorphisms in cis-regulatory elements, tend to be more stable across conditions, such that they are more likely to show the same effect or the same direction of effect across conditions. Distant linkages, which usually correspond to polymorphisms influencing trans-acting factors, are more condition-dependent, and often show effects in different directions in the two conditions. We characterized a locus that influences expression of many growth-related transcripts, and showed that the majority of the variation is explained by polymorphism in the gene IRA2. The RM allele of IRA2 appears to inhibit Ras/PKA signaling more strongly than the BY allele, and has undergone a change in selective pressure. Our results provide a broad overview of the genetic architecture of gene–environment interactions, as well as a detailed molecular example, and lead to key insights into how the effects of different classes of regulatory variants are modulated by the environment. These observations will guide the design of studies aimed at understanding the genetic basis of complex traits. Individuals frequently encounter different environmental conditions, and the physiological and behavioral responses to these conditions can depend on an individual's genetic makeup. This phenomenon is known as gene–environment interaction. For example, individuals who are infected with the Plasmodium falciparum parasite are susceptible to malaria, but not if they carry the sickle-cell allele of hemoglobin. The general properties of gene–environment interaction are poorly understood, and a better understanding is essential if individuals are to make informed health choices guided by their genomic information. We have investigated gene–environment interaction on a genomic level, characterizing its role in over 4,000 traits at once by investigating natural variation in yeast gene expression. We compared lab and vineyard strains of yeast growing in two conditions (glucose and ethanol as carbon sources) in which they adopt two different metabolic states: fermentation and aerobic respiration, respectively. We show that gene–environment interaction is a common phenomenon, describe how different classes of genetic variants affect the nature of the interactions, and provide detailed molecular examples of interactions. We show that gene-environment interaction is a common phenomenon in the regulation of gene expression, we describe how different classes of genetic variants affect the nature of the interactions, and we provide detailed molecular examples of interactions.
Collapse
Affiliation(s)
- Erin N Smith
- Lewis-Sigler Institute for Integrative Genomics and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | | |
Collapse
|
28
|
Saito H, Yoshida T, Yamazaki H, Suzuki N. Conditional N-rasG12V expression promotes manifestations of neurofibromatosis in a mouse model. Oncogene 2007; 26:4714-9. [PMID: 17237809 DOI: 10.1038/sj.onc.1210250] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human clinical neurofibromatosis type 1 (NF1) and type 2 (NF2) result from mutations and inactivation of neurofibromin and merlin genes, respectively, which negatively regulate Ras pathways. To evaluate the contribution of N-Ras activity to the development of NF, we generated a novel transgenic mouse expressing oncogenic N-ras specifically in central nerve cells, neural crest-derived cells and lens epithelial cells. Soon after birth, the mouse skin showed hyperpigmentation of the epidermis and melanin-laden macrophages in the dermis, as observed in the café-au-lait spots of human cases. At 3 months of age, all the mice had neurofibromas in the skin and neurofibroma-like tumors with structure similar to Wagner-Meissner bodies in the adrenal medulla. At 4 months of age, all the mice developed subcapsular cataract. In the 5th month, some developed protruding dermal neurofibromas involving subcutaneous fat. However, plexiform neurofibroma, schwannoma, astrocytoma and pheochromocytoma were not observed in the mice, suggesting a requirement for signal(s) other than the activated N-Ras pathway to induce these tumors. Thus, the activated N-Ras signal may be a main pathway for the development of the disease phenotypes characteristic of NF.
Collapse
Affiliation(s)
- H Saito
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, Edobashi, Tsu, Mie, Japan
| | | | | | | |
Collapse
|
29
|
Barringer CB, Gorse SJ, Rigby HS, Reid CD. Multiple malignant melanomas in association with neurofibromatosis type 1. J Plast Reconstr Aesthet Surg 2006; 59:1359-62. [PMID: 17113519 DOI: 10.1016/j.bjps.2006.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 01/16/2006] [Accepted: 01/18/2006] [Indexed: 10/24/2022]
Abstract
We present a case of multiple primary malignant melanomata occurring over a six year period in a 63-year-old Caucasian man with neurofibromatosis type 1. There is doubt regarding a definite association between these two diseases despite a number of case reports and clear, potential pathological mechanisms. This case not only strengthens support for an association but also highlights the great difficulties that arise in the management of cutaneous melanomata in patients with neurofibromatosis.
Collapse
Affiliation(s)
- C B Barringer
- Sixways Surgery, London Road, Charlton Kings, Cheltenham, GL52 6HS, UK.
| | | | | | | |
Collapse
|
30
|
Harashima T, Anderson S, Yates JR, Heitman J. The kelch proteins Gpb1 and Gpb2 inhibit Ras activity via association with the yeast RasGAP neurofibromin homologs Ira1 and Ira2. Mol Cell 2006; 22:819-830. [PMID: 16793550 DOI: 10.1016/j.molcel.2006.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Revised: 03/14/2006] [Accepted: 05/08/2006] [Indexed: 11/26/2022]
Abstract
The G protein-coupled receptor Gpr1 and associated Galpha subunit Gpa2 govern dimorphic transitions in response to extracellular nutrients by signaling coordinately with Ras to activate adenylyl cyclase in the yeast Saccharomyces cerevisiae. Gpa2 forms a protein complex with the kelch Gbeta mimic subunits Gpb1/2, and previous studies demonstrate that Gpb1/2 negatively control cAMP-PKA signaling via Gpa2 and an unknown second target. Here, we define these targets of Gpb1/2 as the yeast neurofibromin homologs Ira1 and Ira2, which function as GTPase activating proteins of Ras. Gpb1/2 bind to a conserved C-terminal domain of Ira1/2, and loss of Gpb1/2 results in a destabilization of Ira1 and Ira2, leading to elevated levels of Ras2-GTP and unbridled cAMP-PKA signaling. Because the Gpb1/2 binding domain on Ira1/2 is conserved in the human neurofibromin protein, an analogous signaling network may contribute to the neoplastic development of neurofibromatosis type 1.
Collapse
Affiliation(s)
- Toshiaki Harashima
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Scott Anderson
- The Scripps Research Institute, La Jolla, California 92037
| | - John R Yates
- The Scripps Research Institute, La Jolla, California 92037
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
31
|
Gottfried ON, Viskochil DH, Fults DW, Couldwell WT. Molecular, genetic, and cellular pathogenesis of neurofibromas and surgical implications. Neurosurgery 2006; 58:1-16; discussion 1-16. [PMID: 16385324 DOI: 10.1227/01.neu.0000190651.45384.8b] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neurofibromatosis 1 (NF1) is a common autosomal dominant disease characterized by complex and multicellular neurofibroma tumors. Significant advances have been made in the research of the cellular, genetic, and molecular biology of NF1. The NF1 gene was identified by positional cloning. The functions of its protein product, neurofibromin, in RAS signaling and in other signal transduction pathways are being elucidated, and the important roles of loss of heterozygosity and haploinsufficiency in tumorigenesis are better understood. The Schwann cell was discovered to be the cell of origin for neurofibromas, but understanding of a more complicated interplay of multiple cell types in tumorigenesis, specifically recruited heterogeneous cell types such as mast cells and fibroblasts, has important implications for surgical therapy of these tumors. This review summarizes the most recent NF1 and neurofibroma literature describing the pathogenesis and treatment of nerve sheath tumors. Understanding the biological underpinnings of tumorigenesis in NF1 has implications for future surgical and medical management of neurofibromas.
Collapse
Affiliation(s)
- Oren N Gottfried
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
32
|
Monje PV, Bartlett Bunge M, Wood PM. Cyclic AMP synergistically enhances neuregulin-dependent ERK and Akt activation and cell cycle progression in Schwann cells. Glia 2006; 53:649-59. [PMID: 16470843 DOI: 10.1002/glia.20330] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The elevation of intracellular cAMP synergistically enhances the neuregulin-dependent proliferation of cultured Schwann cells (SCs); however, the mechanism by which this occurs has not been completely defined. To better understand this mechanism, we investigated the effect of cAMP on the activation of the extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3-K)-Akt (PKB) pathways by heregulin, a member of the neuregulin family. Using primary cultures of adult SCs, we demonstrated that the adenylyl cyclase activator, forskolin, enhanced heregulin-dependent SC proliferation by reducing the time required for S-phase entry. When cAMP levels were increased, using either forskolin or a cell permeable analogue of cAMP, the heregulin-induced phosphorylation of ERK was converted from transient to sustained and the heregulin-induced phosphorylation of Akt was synergistically increased. Consistent with these observations, studies in which inhibitors of MEK, the upstream stimulating ERK kinase, and PI3-K were administered at different times following the onset of stimulation indicated that sustained high levels of both MEK/ERK and PI3-K/Akt activity before S-phase initiation were essential for S-phase entry. Overall, these novel results indicate that in neuregulin-stimulated SCs the activation of cAMP-mediated pathways accelerates G1-S progression by prolonging ERK activation and concurrently enhancing Akt activation.
Collapse
Affiliation(s)
- Paula V Monje
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Florida, USA
| | | | | |
Collapse
|
33
|
De Schepper S, Boucneau J, Vander Haeghen Y, Messiaen L, Naeyaert JM, Lambert J. Café-au-lait spots in neurofibromatosis type 1 and in healthy control individuals: hyperpigmentation of a different kind? Arch Dermatol Res 2006; 297:439-49. [PMID: 16479403 DOI: 10.1007/s00403-006-0644-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 01/09/2006] [Accepted: 01/15/2006] [Indexed: 12/21/2022]
Abstract
Solitary café-au-lait spots are quite common in the general population but multiple café-au-lait macules (CALM) are often indicative of an underlying genetic disorder. The frequency of having more than five CALM is rare in normal individuals and is therefore considered as a cut-off for the diagnosis of neurofibromatosis type 1 (NF1). The etiopathogenesis of these macules is still very obscure. In this study we compared epidermal melanocyte and dermal mast cell numbers between four groups: control normal and control CALM skin, and NF1 normal and NF1 CALM skin and elaborated a possible role for stem cell factor (SCF) in CALM formation. The groups were analyzed by immunohistochemistry for numerical analysis of the melanocyte and mast cell population and by ELISA, western blot analysis and real-time quantitative PCR for further determination of the role of SCF. We found a significant increase in melanocyte density in NF1 CALM skin compared with the isolated CALM in control individuals. However, both groups displayed a similar increase in mast cell density. In addition, we found increased levels of soluble SCF in NF1 CALM and in NF1 normal fibroblast supernatant. We conclude that SCF is an important cytokine in NF1 skin, but that additional (growth) factors and/or genetic mechanisms are needed to induce NF1-specific CALM hyperpigmentation.
Collapse
Affiliation(s)
- Sofie De Schepper
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- R Schäfer
- Department of Pathology, University of Zurich, Switzerland
| |
Collapse
|
35
|
Kolfschoten IGM, van Leeuwen B, Berns K, Mullenders J, Beijersbergen RL, Bernards R, Voorhoeve PM, Agami R. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 2005; 121:849-58. [PMID: 15960973 DOI: 10.1016/j.cell.2005.04.017] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/04/2005] [Accepted: 04/18/2005] [Indexed: 11/21/2022]
Abstract
Activating mutations of RAS frequently occur in subsets of human cancers, indicating that RAS activation is important for tumorigenesis. However, a large proportion of these cancers still retain wild-type RAS alleles, suggesting that either the RAS pathway is activated in a distinct manner or another pathway is deregulated. To uncover novel tumor-suppressor genes, we screened an RNA-interference library for knockdown constructs that transform human primary cells in the absence of ectopically introduced oncogenic RAS. Here we report the identification of PITX1, whose inhibition induces the RAS pathway and tumorigenicity. Interestingly, we observed low expression of PITX1 in prostate and bladder tumors and in colon cancer cell lines containing wild-type RAS. Restoration of PITX1 in the colon cancer cells inhibited tumorigenicity in a wild-type RAS-dependent manner. Finally, we identified RASAL1, a RAS-GTPase-activating protein, as a transcription target through which PITX1 affects RAS function. Thus, PITX1 suppresses tumorigenicity by downregulating the RAS pathway through RASAL1.
Collapse
Affiliation(s)
- Ingrid G M Kolfschoten
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Boucneau J, De Schepper S, Vuylsteke M, Van Hummelen P, Naeyaert JM, Lambert J. Gene expression profiling of cultured human NF1 heterozygous (NF1+/-) melanocytes reveals downregulation of a transcriptional cis-regulatory network mediating activation of the melanocyte-specific dopachrome tautomerase (DCT) gene. ACTA ACUST UNITED AC 2005; 18:285-99. [PMID: 16033338 DOI: 10.1111/j.1600-0749.2005.00237.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the major primary features of the neurocutaneous genetic disorder Neurofibromatosis type 1 are the hyperpigmentary café-au-lait macules where disregulation of melanocyte biology is supposed to play a key etiopathogenic role. To gain better insight into the possible role of the tumor suppressor gene NF1, a transcriptomic microarray analysis was performed on human NF1 heterozygous (NF1+/-) melanocytes of a Neurofibromatosis type 1 patient and NF1 wild type (NF1+/+) melanocytes of a healthy control patient, both cultured from normally pigmented skin and hyperpigmented lesional café-au-lait skin. From the magnitude of gene effects, we found that gene expression was affected most strongly by genotype and less so by lesional type. A total of 137 genes had a significant twofold or more up- (72) or downregulated (65) expression in NF1+/- melanocytes compared with NF1+/+ melanocytes. Melanocytes cultured from hyperpigmented café-au-lait skin showed 37 upregulated genes whereas only 14 were downregulated compared with normal skin melanocytes. In addition, significant genotype xlesional type interactions were observed for 465 genes. Differentially expressed genes were mainly involved in regulating cell proliferation and cell adhesion. A high number of transcription factor genes, among which a specific subset important in melanocyte lineage development, were downregulated in the cis-regulatory network governing the activation of the melanocyte-specific dopachrome tautomerase (DCT) gene. Although the results presented have been obtained with a restricted number of patients (one NF1 patient and one control) and using cDNA microarrays that may limit their interpretation, the data nevertheless addresses for the first time the effect of a heterozygous NF1 gene on the expression of the human melanocyte transcriptome and has generated several interesting candidate genes helpful in elucidating the etiopathology of café-au-lait macules in NF1 patients.
Collapse
Affiliation(s)
- Joachim Boucneau
- Department of Dermatology, Ghent University, De Pintelaan 185, B-9000 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
De Schepper S, Boucneau J, Lambert J, Messiaen L, Naeyaert JM. Pigment cell-related manifestations in neurofibromatosis type 1: an overview. ACTA ACUST UNITED AC 2005; 18:13-24. [PMID: 15649148 DOI: 10.1111/j.1600-0749.2004.00206.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant neurocutaneous disorder, affecting approximately 1 in 3500 individuals. The most commonly seen tumors in NF1 patients are the (sub)cutaneous neurofibromas. However, individuals with NF1 typically present in childhood with well-defined pigmentary defects, including cafe-au-lait macules (CALMs), intertriginous freckling and iris Lisch nodules. NF1 is considered a neurocristopathy, primarily affecting tissues derived from the neural crest. Since the pigment producing melanocyte originates in the neural crest, the presence of (hyper)pigmentary lesions in the NF1 phenotype because of changes in melanocyte cell growth and differentiation is to be expected. We want to discuss the pigmentary cutaneous manifestations of NF1 represented by CALMs and intertriginous freckles and the pigmentary non-cutaneous manifestations represented by iris Lisch nodules. Several hypotheses have been suggested in explaining the poorly understood etiopathogenesis of CALMs. Whether other pigmentary manifestations might share similar etiopathogenic mechanisms remains obscure. Additional attention will be drawn to a readily seen phenomenon in NF1: hyperpigmentation overlying (plexiform) neurofibromas, which could suggest common etiopathogenetic-environmental cues or mechanisms underlying CALMs and neurofibromas. Finally, we want to address the relationship between malignant melanoma and NF1.
Collapse
Affiliation(s)
- Sofie De Schepper
- Department of Dermatology, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
38
|
Abstract
The rarity of MPNSTs and the lack of any singular diagnostic radiologic or pathologic signature lead to several management challenges. These tumors are best managed as part ofa multidisciplinary team so as to optimize patient care and facilitate research. Suspicion of an MPNST based on clinical or radiologic alteration of a soft tissue mass in proximity to a peripheral nerve, especially in the context of NF I, should lead to referral to such a tertiary center. Early diagnosis followed by oncologic surgery to obtain tumor-free margins provides the best chance for long-term cure. Psychologic support and occupational rehabilitation are vital components of the overall care of these relatively young patients faced with often disabling surgery. Current adjuvant therapy with radiation and chemotherapy is suboptimal. There have been major inroads toward the molecular biologic understanding of MPNSTs,with several biologic targets that are of potential therapeutic interest. Proper evaluation of these novel and promising management strategies requires a concerted effort to refer these patients to the tertiary centers through which multi-institutional clinical trials can be undertaken.
Collapse
Affiliation(s)
- Richard G Perrin
- Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto M5T 2S8, Canada
| | | |
Collapse
|
39
|
Santarosa M, Ashworth A. Haploinsufficiency for tumour suppressor genes: when you don't need to go all the way. Biochim Biophys Acta Rev Cancer 2004; 1654:105-22. [PMID: 15172699 DOI: 10.1016/j.bbcan.2004.01.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Accepted: 01/13/2004] [Indexed: 01/01/2023]
Abstract
Classical tumour suppressor genes are thought to require mutation or loss of both alleles to facilitate tumour progression. However, it has become clear over the last few years that for some genes, haploinsufficiency, which is loss of only one allele, may contribute to carcinogenesis. These effects can either be directly attributable to the reduction in gene dosage or may act in concert with other oncogenic or haploinsufficient events. Here we describe the genes that undergo this phenomenon and discuss possible mechanisms that allow haploinsufficiency to display a phenotype and facilitate the pathogenesis of cancer.
Collapse
Affiliation(s)
- Manuela Santarosa
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
40
|
Créchet JB, Cool RH, Jacquet E, Lallemand JY. Characterization of Saccharomyces cerevisiae Ras1p and chimaeric constructs of Ras proteins reveals the hypervariable region and farnesylation as critical elements in the adenylyl cyclase signaling pathway. Biochemistry 2004; 42:14903-12. [PMID: 14674766 DOI: 10.1021/bi0349928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ras1p and Ras2p, from Saccharomyces cerevisiae, are GTP-binding proteins that are essential elements in the signaling cascade leading to the activation of adenylyl cyclase. To overcome proteolytic activities that have hampered biochemical studies of Ras1p so far, its gene was genetically modified after which full-length Ras1p could be obtained. The interaction of farnesylated and unprenylated Ras1p with guanine nucleotides, guanine nucleotide exchange factors, GTPase activating proteins, and adenylyl cyclase was compared to Ras2p and human Ha-Ras interactions. Farnesylation of Ras proteins was demonstrated to be a prerequisite for membrane-bound guanine nucleotide exchange factor dependent formation of Ras-GTP complexes, and for efficient Ras-mediated adenylyl cyclase activation. To relate observed functional deviations with sequence differences between Ras1p and Ras2p, which reside almost exclusively within the hypervariable region, truncated versions and chimaeras of the Ras proteins were made. The characteristics of these constructs point to the presence of the hypervariable region of yeast Ras proteins for an efficient activation of adenylyl cyclase. The importance of the latter was confirmed as inhibition of the activation of adenylyl cyclase by an isolated farnesylated hypervariable region of Ras2p could be shown. This strongly suggests that the hypervariable region of Ras proteins can interact directly with adenylyl cyclase.
Collapse
|
41
|
Abstract
Neurofibromatosis 1, an inherited disorder that affects 1/3500 individuals worldwide, predisposes to the development of benign and malignant peripheral nerve sheath tumors. The disorder results from inactivation of one of the NFI genes. The second NFI gene is typically inactivated in Schwann cells during tumor formation. This article reviews the different types of genetic alterations in NFI in both constitutional and tumor tissues and genetic alterations of other genes that may affect tumorigenesis. These studies have provided insight into the genetic basis of both the variable expression of the disorder and of benign and malignant peripheral nerve sheath tumorigenesis.
Collapse
Affiliation(s)
- Karen Stephens
- Departments of Medicine and Laboratory Medicine, University of Washington, 1959 NE Pacific St., Rm I-204, Box 357720, Seattle, WA 98195-7720, USA.
| |
Collapse
|
42
|
Hakimi MA, Speicher DW, Shiekhattar R. The motor protein kinesin-1 links neurofibromin and merlin in a common cellular pathway of neurofibromatosis. J Biol Chem 2002; 277:36909-12. [PMID: 12191989 DOI: 10.1074/jbc.c200434200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in either of the two tumor suppressor genes NF1 (neurofibromin) and NF2 (merlin) result in Neurofibromatosis, a condition predisposing individuals to developing a variety of benign and malignant tumors of the central and peripheral nervous systems. Here we report the identification of two distinct NF1-containing complexes, one in the soluble and the other in the particulate fraction of HeLa extract. We show that the soluble NF1 complex delineates a large holo-NF1 complex (2 MDa) encompassing the components of a smaller particulate core-NF1 complex (400 kDa). Purification of the core-NF1 complex followed by mass spectrometric analysis revealed the motor protein, kinesin-1 heavy chain (HsuKHC/KIF5B), as a catalytic subunit of both NF-1-containing complexes. Importantly, although NF1 and NF2 are not in a stable association, NF2 is also a component of a distinct kinesin-1-containing complex. These results point to kinesin-1 as a common denominator between NF1 and NF2.
Collapse
|
43
|
Abstract
Deletion of both copies of the Nf1 gene in Schwann cells combined with Nf1 heterozygosity in the tumor environment promotes neurofibroma formation in mice.
Collapse
Affiliation(s)
- Margaret E McLaughlin
- Howard Hughes Medical Institute, Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
44
|
Abstract
Cancer caused more than 0.5 million deaths in the United States in 2000. This estimate includes patients who have a genetic predisposition to neoplastic disease, including brain neoplasms. Familial tumor syndromes are important to identify clinically because family members require high degrees of monitoring and genetic counseling. Study of these individuals and families has led to the discovery of genes that are an intrinsic aspect of cell regulation and will continue to be relevant in defining mechanisms of neoplastic development in brain and other tissues.
Collapse
Affiliation(s)
- A Kimmelman
- Mount Sinai-NYU Medical Center and Health Systems, Derald H. Ruttenberg Cancer Center, New York, New York, USA
| | | |
Collapse
|
45
|
|
46
|
Zhu Y, Romero MI, Ghosh P, Ye Z, Charnay P, Rushing EJ, Marth JD, Parada LF. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev 2001; 15:859-76. [PMID: 11297510 PMCID: PMC312666 DOI: 10.1101/gad.862101] [Citation(s) in RCA: 455] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a prevalent genetic disorder that affects growth properties of neural-crest-derived cell populations. In addition, approximately one-half of NF1 patients exhibit learning disabilities. To characterize NF1 function both in vitro and in vivo, we circumvent the embryonic lethality of NF1 null mouse embryos by generating a conditional mutation in the NF1 gene using Cre/loxP technology. Introduction of a Synapsin I promoter driven Cre transgenic mouse strain into the conditional NF1 background has ablated NF1 function in most differentiated neuronal populations. These mice have abnormal development of the cerebral cortex, which suggests that NF1 has an indispensable role in this aspect of CNS development. Furthermore, although they are tumor free, these mice display extensive astrogliosis in the absence of conspicuous neurodegeneration or microgliosis. These results indicate that NF1-deficient neurons are capable of inducing reactive astrogliosis via a non-cell autonomous mechanism.
Collapse
MESH Headings
- Alleles
- Animals
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- Cerebral Cortex/abnormalities
- Cerebral Cortex/embryology
- Disease Models, Animal
- Ganglia, Spinal/pathology
- Gene Expression Regulation, Developmental
- Genes, Neurofibromatosis 1
- Genes, Reporter
- Genes, Synthetic
- Genetic Vectors/genetics
- Gliosis/metabolism
- Integrases/genetics
- Integrases/physiology
- Lac Operon
- Learning Disabilities/genetics
- MAP Kinase Signaling System/genetics
- Mice
- Mice, Knockout
- Mice, Neurologic Mutants
- Mice, Transgenic
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neurofibromin 1
- Neurons/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins p21(ras)/physiology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Signal Transduction
- Synapsins/genetics
- Viral Proteins
- p120 GTPase Activating Protein/genetics
- p120 GTPase Activating Protein/physiology
Collapse
Affiliation(s)
- Y Zhu
- Center for Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9133, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Y Zhu
- Center for Developmental Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9133, USA
| | | |
Collapse
|
48
|
Affiliation(s)
- M M Lakkis
- Division of Neurology, Children's Hospital of Philadelphia, Pennsylvania 19104-4399, USA.
| | | |
Collapse
|
49
|
Abstract
Neurofibromatosis 1 (NF1), an autosomal dominant disease, exhibits extreme clinical variability. This variability greatly increases the burden for affected families and impairs our ability to understand the pathogenesis of NF1. Recognition of heterogeneity within a disease may provide important pathogenic insights, therefore we tested clinical data from three large sets of NF1 patients for evidence that certain common features are more likely to occur in some NF1 patients than in others. Clinical information on 4,402 patients with NF1 was obtained from three independent databases. We examined associations between pairs of clinical features in individual affected probands. We also examined associations between the occurrence of individual features in affected relatives. Associations were summarized as odds ratios with 95% confidence intervals. We found associations between several pairs of features in affected probands: intertriginous freckling and Lisch nodules, discrete neurofibromas and plexiform neurofibromas, discrete neurofibromas and Lisch nodules, plexiform neurofibromas and scoliosis, learning disability or mental retardation and seizures. We also found associations between the occurrence of Lisch nodules, macrocephaly, short stature, and learning disability or mental retardation as individual features in parents and children with NF1. Our observations suggest that, contrary to established belief, some NF1 patients are more likely than others to develop particular manifestations of the disease. Genetic factors appear to determine the development of particular phenotypic features.
Collapse
Affiliation(s)
- J Szudek
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
50
|
Kadono T, Kikuchi K, Nakagawa H, Tamaki K. Expressions of various growth factors and their receptors in tissues from neurofibroma. Dermatology 2000; 201:10-4. [PMID: 10971052 DOI: 10.1159/000018421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Platelet-derived growth factor BB (PDGF-BB) and transforming growth factor beta are known to enhance the growth of neurofibroma-derived cells from neurofibromatosis type 1 (NF-1) patients. OBJECTIVE This study aims to elucidate whether these growth factors and their receptors are up-regulated in NF-1 patients. METHODS Tissues and culture cells from neurofibroma in NF-1 patients, nontumor lesions in NF-1 patients, and the skin of normal controls were collected. To evaluate the expressions of growth factors and their receptors, reverse-transcriptase polymerase chain reaction and immunohistochemistry were performed. RESULTS PDGF-beta receptor subunit was expressed in the neurofibroma tissues from NF-1 patients, but not in the nontumorous tissues from NF-1 patients or skin from normal controls. As for the other factors, there were no significant differences among these tissues. Neurofibroma sections also stained positive for the PDGF-beta receptor subunit. CONCLUSIONS The interaction of PDGF and PDGF-beta receptor subunit may be important in the tumorigenesis of NF-1.
Collapse
MESH Headings
- Becaplermin
- Cells, Cultured
- Gene Expression Regulation, Neoplastic
- Growth Substances/genetics
- Humans
- Immunohistochemistry
- Neurofibromatosis 1/genetics
- Neurofibromatosis 1/metabolism
- Neurofibromatosis 1/pathology
- Platelet-Derived Growth Factor/genetics
- Proto-Oncogene Proteins c-sis
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor beta/analysis
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptors, Growth Factor/analysis
- Receptors, Growth Factor/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Skin/chemistry
- Skin/metabolism
- Skin/pathology
- Transforming Growth Factor beta/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- T Kadono
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|