1
|
Chang J, Zhang L, Zhao J, Zhang Z, Wang Z, Wang H, Wan B. 6PPD, Not 6PPD-Quinone, Induced Serious Zebrafish Eye Damage by Disrupting the Thyroid Signaling Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22076-22088. [PMID: 39632073 DOI: 10.1021/acs.est.4c11264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
N-(1,3-Dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6PPD) and its oxidation product 6PPD-quinone (6PPDQ) showed different acute toxicities and bioaccumulation potencies in fish. In this study, we compared the thyroid disrupting effects of 6PPD and 6PPDQ through in vitro, in silico, and in vivo assays. Interestingly, although 6PPD and 6PPDQ showed similar docking affinities with thyroid hormone receptor (TR) isoforms and GH3 cell inhibition effects, the thyroid signaling pathway, eye development, phototactic behaviors, and cell density in the retinal layer in the larval zebrafish were significantly affected only following 6PPD exposure. Further investigation demonstrates that 6PPD can act as a TR antagonist to reduce the opsin protein abundance and inhibit the cone photoreceptor cell proliferation, which finally alters the retinal layer structure and causes microphthalmus in zebrafish. Especially, under environmental relevant concentration exposure, 6PPD induced alterations of trβ, opn1lw1, opn1mw1, rpe65a, nr2e3 gene expressions although no significant eye histopathological change was observed. This study illustrates for the first time the more serious visual system impairment of 6PPD compared to 6PPDQ, with thyroid signaling disruption being a contributing factor, while other important toxic targets still require further research.
Collapse
Affiliation(s)
- Jing Chang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Leisen Zhang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
- University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Juan Zhao
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
- University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Zhaoguang Zhang
- North China Electric Power University, Beinong RD 2, Beijing 102206, China
| | - Zijian Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Huili Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Bin Wan
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
- University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| |
Collapse
|
2
|
Bopape M, Tiloke C, Ntsapi C. Moringa oleifera and Autophagy: Evidence from In Vitro Studies on Chaperone-Mediated Autophagy in HepG 2 Cancer Cells. Nutr Cancer 2023; 75:1822-1847. [PMID: 37850743 DOI: 10.1080/01635581.2023.2270215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer in Sub-Saharan African countries, including South Africa (SA). Given the limitations in current HCC therapeutics, there is an increasing need for alternative adjuvant therapeutic options. As such, several cell survival mechanisms, such as autophagy, have been identified as potential adjuvant therapeutic targets in HCC treatment. Of the three most established autophagic pathways, the upregulation of chaperone-mediated autophagy (CMA) has been extensively described in various cancer cells, including HCC cells. CMA promotes tumor growth and chemotherapeutic drug resistance, thus contributing to HCC tumorigenesis. Therefore, the modulation of CMA serves as a promising adjuvant target for current HCC therapeutic strategies. Phytochemical extracts found in the medicinal plant, Moringa oleifera (MO), have been shown to induce apoptosis in numerous cancer cells, including HCC. MO leaves have the greatest abundance of phytochemicals displaying anticancer potential. However, the potential interaction between the pro-apoptotic effects of MO aqueous leaf extract and the survival-promoting role of CMA in an in vitro model of HCC remains unclear. This review aims to summarize the latest findings on the role of CMA, and MO in the progression of HCC.
Collapse
Affiliation(s)
- Matlola Bopape
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Charlette Tiloke
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Claudia Ntsapi
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
3
|
Nur77 Serves as a Potential Prognostic Biomarker That Correlates with Immune Infiltration and May Act as a Good Target for Prostate adenocarcinoma. Molecules 2023; 28:molecules28031238. [PMID: 36770929 PMCID: PMC9921667 DOI: 10.3390/molecules28031238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Prostate adenocarcinoma (PRAD) is the most frequent malignancy, and is the second leading cause of death due to cancer in men. Thus, new prognostic biomarkers and drug targets for PRAD are urgently needed. As we know, nuclear receptor Nur77 is important in cancer development and changes in the tumor microenvironment; whereas, the function of Nur77 in PRAD remains to be elucidated. The TCGA database was used to explore the Nur77 expression and its role in the prognosis of PRAD. It was shown that Nur77 was down regulated in PRAD, and low Nur77 expression was correlated with advanced clinical pathologic characteristics (high grade, histological type, age) and poor prognosis. Furthermore, key genes screening was examined by univariate Cox analysis and Kaplan-Meier survival. Additionally, Nur77 was closely related to immune infiltration and some anti-tumor immune functions. The differentially expressed genes (DEGs) were presented by protein-protein interaction (PPI) network analysis. Therefore, the expression level of Nur77 might help predict the survival of PRAD cases, which presents a new insight and a new target for the treatment of PRAD. In vitro experiments verified that natural product malayoside targeting Nur77 exhibited significant therapeutic effects on PRAD and largely induced cell apoptosis by up-regulating the expression of Nur77 and its mitochondrial localization. Taken together, Nur77 is a prognostic biomarker for patients with PRAD, which may refresh the profound understanding of PRAD individualized treatment.
Collapse
|
4
|
Giguère V, Evans RM. Chronicle of a discovery: the retinoic acid receptor. J Mol Endocrinol 2022; 69:T1-T11. [PMID: 35900848 DOI: 10.1530/jme-22-0117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/18/2022] [Indexed: 11/08/2022]
Abstract
The landmark 1987 discovery of the retinoic acid receptor (RAR) came as a surprise, uncovering a genomic kinship between the fields of vitamin A biology and steroid receptors. This stunning breakthrough triggered a cascade of studies to deconstruct the roles played by the RAR and its natural and synthetic ligands in embryonic development, skin, growth, physiology, vision, and disease as well as providing a template to elucidate the molecular mechanisms by which nuclear receptors regulate gene expression. In this review, written from historic and personal perspectives, we highlight the milestones that led to the discovery of the RAR and the subsequent studies that enriched our knowledge of the molecular mechanisms by which a low-abundant dietary compound could be so essential to the generation and maintenance of life itself.
Collapse
Affiliation(s)
- Vincent Giguère
- Goodman Cancer Institute, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Ronald M Evans
- The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
5
|
Yang R, Xia Y, Xian J, Yu H, Yan B, Cheng B. Identification of Potential Dual Farnesol X Receptor/Retinoid X Receptor α Agonists Based on Machine Learning Models, ADMET Prediction and Molecular Docking. ChemistrySelect 2022. [DOI: 10.1002/slct.202200715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruo‐qi Yang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan 250355 China
- Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Yu Xia
- Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Jin Xian
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Hui‐juan Yu
- Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Bin Yan
- Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Bin Cheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Jinan 250355 China
| |
Collapse
|
6
|
Xie CL, Zhang D, Guo KQ, Yan QX, Zou ZB, He ZH, Wu Z, Zhang XK, Chen HF, Yang XW. Meroterpenthiazole A, a unique meroterpenoid from the deep-sea-derived Penicillium allii-sativi, significantly inhibited retinoid X receptor (RXR)-α transcriptional effect. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Main Factors Involved in Thyroid Hormone Action. Molecules 2021; 26:molecules26237337. [PMID: 34885918 PMCID: PMC8658769 DOI: 10.3390/molecules26237337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
The thyroid hormone receptors are the mediators of a multitude of actions by the thyroid hormones in cells. Most thyroid hormone activities require interaction with nuclear receptors to bind DNA and regulate the expression of target genes. In addition to genomic regulation, thyroid hormones function via activation of specific cytosolic pathways, bypassing interaction with nuclear DNA. In the present work, we reviewed the most recent literature on the characteristics and roles of different factors involved in thyroid hormone function in particular, we discuss the genomic activity of thyroid hormone receptors in the nucleus and the functions of different thyroid hormone receptor isoforms in the cytosol. Furthermore, we describe the integrin αvβ3-mediated thyroid hormone signaling pathway and its rapid nongenomic action in the cell. We furthermore reviewed the thyroid hormone transporters enabling the uptake of thyroid hormones in the cell, and we also include a paragraph on the proteins that mediate thyroid receptors’ shuttling from the nucleus to the cytosol.
Collapse
|
8
|
Wang CF, Huang XF, Xiao HX, Hao YJ, Xu L, Yan QX, Zou ZB, Xie CL, Xu YQ, Yang XW. Chemical Constituents of the Marine Fungus Penicillium sp. MCCC 3A00228. Chem Biodivers 2021; 18:e2100697. [PMID: 34585839 DOI: 10.1002/cbdv.202100697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 01/24/2023]
Abstract
One new (d-arabinitol-anofinicate, 1) and fourteen known (2-15) compounds were isolated from the marine Penicillium sp. MCCC 3A00228. The structure of the new compound was established mainly by extensive spectroscopic analyses. Compound 1 exhibited weak transcriptional effect on Nur77. While compound 13 showed moderate in vitro anti-proliferative effect against QGY7701, H1299, and HCT116 tumor cells with IC50 values of 21.2 μM, 18.2 μM, and 17.6 μM, respectively.
Collapse
Affiliation(s)
- Chao-Feng Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Meiling Avenue, Nanchang, 330004, China.,Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Xiao-Fang Huang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Meiling Avenue, Nanchang, 330004, China
| | - Hong-Xiu Xiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - You-Jia Hao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Lin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Qing-Xiang Yan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Yan-Qin Xu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Meiling Avenue, Nanchang, 330004, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| |
Collapse
|
9
|
Reinwald H, König A, Ayobahan SU, Alvincz J, Sipos L, Göckener B, Böhle G, Shomroni O, Hollert H, Salinas G, Schäfers C, Eilebrecht E, Eilebrecht S. Toxicogenomic fin(ger)prints for thyroid disruption AOP refinement and biomarker identification in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143914. [PMID: 33333401 DOI: 10.1016/j.scitotenv.2020.143914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Endocrine disruption (ED) can trigger far-reaching effects on environmental populations, justifying a refusal of market approval for chemicals with ED properties. For the hazard assessment of ED effects on the thyroid system, regulatory decisions mostly rely on amphibian studies. Here, we used transcriptomics and proteomics for identifying molecular signatures of interference with thyroid hormone signaling preceding physiological effects in zebrafish embryos. For this, we analyzed the thyroid hormone 3,3',5-triiodothyronine (T3) and the thyroid peroxidase inhibitor 6-propyl-2-thiouracil (6-PTU) as model substances for increased and repressed thyroid hormone signaling in a modified zebrafish embryo toxicity test. We identified consistent gene expression fingerprints for both modes-of-action (MoA) at sublethal test concentrations. T3 and 6-PTU both significantly target the expression of genes involved in muscle contraction and functioning in an opposing fashion, allowing for a mechanistic refinement of key event relationships in thyroid-related adverse outcome pathways in fish. Furthermore, our fingerprints identify biomarker candidates for thyroid disruption hazard screening approaches. Perspectively, our findings will promote the AOP-based development of in vitro assays for thyroidal ED assessment, which in the long term will contribute to a reduction of regulatory animal tests.
Collapse
Affiliation(s)
- Hannes Reinwald
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Azora König
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Steve U Ayobahan
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Julia Alvincz
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Levente Sipos
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Bernd Göckener
- Department Environmental and Food Analysis, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Gisela Böhle
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Orr Shomroni
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Fraunhofer Attract Eco'n'OMICs, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany.
| |
Collapse
|
10
|
Xie G, Zhou Y, Tu X, Ye X, Xu L, Xiao Z, Wang Q, Wang X, Du M, Chen Z, Chi X, Zhang X, Xia J, Zhang X, Zhou Y, Li Z, Xie C, Sheng L, Zeng Z, Zhou H, Yin Z, Su Y, Xu Y, Zhang XK. Centrosomal Localization of RXRα Promotes PLK1 Activation and Mitotic Progression and Constitutes a Tumor Vulnerability. Dev Cell 2020; 55:707-722.e9. [PMID: 33321102 DOI: 10.1016/j.devcel.2020.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Retinoid X receptor alpha (RXRα), a nuclear receptor of transcription factor, controls various physiological and pathological pathways including cellular growth, proliferation, differentiation, and apoptosis. Here, we report that RXRα is phosphorylated at its N-terminal A/B domain by cyclin-dependent kinase 1 (Cdk1) at the onset of mitosis, triggering its translocation to the centrosome, where phosphorylated-RXRα (p-RXRα) interacts with polo-like kinase 1 (PLK1) through its N-terminal A/B domain by a unique mechanism. The interaction promotes PLK1 activation, centrosome maturation, and mitotic progression. Levels of p-RXRα are abnormally elevated in cancer cell lines, during carcinogenesis in animals, and in clinical tumor tissues. An RXRα ligand XS060, which specifically inhibits p-RXRα/PLK1 interaction but not RXRα heterodimerization, promotes mitotic arrest and catastrophe in a tumor-specific manner. These findings unravel a transcription-independent action of RXRα at the centrosome during mitosis and identify p-RXRα as a tumor-specific vulnerability for developing mitotic drugs with improved therapeutic index.
Collapse
Affiliation(s)
- Guobin Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhijian Xiao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Qiqiang Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Mingxuan Du
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Xiaoli Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ji Xia
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaowei Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yunxia Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zongxi Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Chengrong Xie
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Luoyan Sheng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
11
|
Collet B, Simon E, van der Linden S, el Abdellaoui N, Naderman M, Man HY, Middelhof I, van der Burg B, Besselink H, Brouwer A. Evaluation of a panel of in vitro methods for assessing thyroid receptor β and transthyretin transporter disrupting activities. Reprod Toxicol 2020; 96:432-444. [DOI: 10.1016/j.reprotox.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022]
|
12
|
Thyroid disruption and developmental toxicity caused by triphenyltin (TPT) in zebrafish embryos/larvae. Toxicol Appl Pharmacol 2020; 394:114957. [DOI: 10.1016/j.taap.2020.114957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022]
|
13
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
14
|
Jiao F, Qiao K, Jiang Y, Li S, Zhao J, Gui W. Integrated thyroid endocrine disrupting effect on zebrafish (Danio rario) larvae via simultaneously repressing type II iodothyronine deiodinase and activating thyroid receptor-mediated signaling following waterborne exposure to trace azocyclotin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113328. [PMID: 31671316 DOI: 10.1016/j.envpol.2019.113328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/26/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
As a widely used organotin acaricide nowadays, azocyclotin (ACT) could induce thyroidal endocrine disruption in fishes and amphibians, but its dominant disrupting mode remains unknown. In this study, zebrafish were firstly exposed to ACT (0.18-0.36 ng/mL) from 2 hpf (hours post fertilization) to 30 dpf (days post fertilization), and a series of developmental toxicological endpoints and thyroid hormones were measured. Result showed that no developmental toxicity to zebrafish was found in 0.18 and 0.24 ng/mL groups except decreased body weight (30 dpf, 0.24 ng/mL). However, exposed to 0.36 ng/mL ACT led to reductions in heartbeat (48 hpf), hatching rate (72 hpf) and bodyweight (30 dpf). General tendencies of decreases in free T3 but increases in free T4 and reductions in ratio of free T3/T4 were also found, inferring that type II deiodinase (Dio2) was repressed. This inference was confirmed by Western analysis that Dio2 expression reduced by 42.7% after 0.36 ng/mL ACT treatment. Moreover, RNA-Seq analysis implied that exposed to 0.36 ng/mL ACT altered the genome-wide gene expression profiles of zebrafish. Totally 5660 genes (involving 3154 down-regulated and 2596 up-regulated genes) were differentially expressed, and 13 deferentially expressed genes including down-regulated dio2 were significantly enriched in thyroid hormone signaling pathway. Subsequently, an in vitro thyroid receptor-reporter gene assay using GH3 cells was performed to further explore the potential disrupting mechanism. Result showed that luciferase activity slightly increased after exposure to ACT alone or ACT combined with low level T3, but was suppressed when combined with high level T3. It indicted there probably existed a competitive relationship in some extent between ACT and T3 in vivo. Overall, the present study provided preliminary evidences that long-term exposure to trace ACT repressed Dio2 expression, declined T3 and then activated thyroid receptor-mediated signaling, thereby leading to integrated thyroid endocrine disruption in zebrafish larvae.
Collapse
Affiliation(s)
- Fang Jiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Yao Jiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Jinghao Zhao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
15
|
Steroids from the Deep-Sea-Derived Fungus Penicillium granulatum MCCC 3A00475 Induced Apoptosis via Retinoid X Receptor ( RXR)-α Pathway. Mar Drugs 2019; 17:md17030178. [PMID: 30893778 PMCID: PMC6472029 DOI: 10.3390/md17030178] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022] Open
Abstract
Five new ergostanes, penicisteroids D−H (1−5), were isolated from the liquid culture of the deep-sea-derived fungus Penicillium granulatum MCCC 3A00475, along with 27 known compounds. The structures of the new steroids were established mainly on the basis of extensive analysis of 1D and 2D NMR as well as HRESIMS data. Moreover, the absolute configurations of 1 were confirmed unambiguously by the single-crystal X-ray crystallography. Compounds 2 and 4–7 showed moderate antiproliferative effects selectively against 12 different cancer cell lines with IC50 values of around 5 μM. Compounds 2 and 6, potent RXRα binders with Kd values of 13.8 and 12.9 μM, respectively, could induce apoptosis by a Retinoid X Receptor (RXR)-α-dependent mechanism by regulating RXRα transcriptional expression and promoting the poly-ADP-ribose polymerase (PARP) cleavage. Moreover, they could inhibit proliferation by cell cycle arrest at the G0/G1 phase.
Collapse
|
16
|
Yoon K, Chen CC, Orr AA, Barreto PN, Tamamis P, Safe S. Activation of COUP-TFI by a Novel Diindolylmethane Derivative. Cells 2019; 8:220. [PMID: 30866413 PMCID: PMC6468570 DOI: 10.3390/cells8030220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is an orphan receptor and member of the nuclear receptor superfamily. Among a series of methylene substituted diindolylmethanes (C-DIMs) containing substituted phenyl and heteroaromatic groups, we identified 1,1-bis(3'-indolyl)-1-(4-pyridyl)-methane (DIM-C-Pyr-4) as an activator of COUP-TFI. Structure activity studies with structurally diverse heteroaromatic C-DIMs showed that the pyridyl substituted compound was active and the 4-pyridyl substituent was more potent than the 2- or 3-pyridyl analogs in transactivation assays in breast cancer cells. The DIM-C-Pyr-4 activated chimeric GAL4-COUP-TFI constructs containing full length, C- or N-terminal deletions, and transactivation was inhibited by phosphatidylinositol-3-kinase and protein kinase A inhibitors. However, DIM-C-Pyr-4 also induced transactivation and interactions of COUP-TFI and steroid receptor coactivators-1 and -2 in mammalian two-hybrid assays, and ligand-induced interactions of the C-terminal region of COUP-TFI were not affected by kinase inhibitors. We also showed that DIM-C-Pyr-4 activated COUP-TFI-dependent early growth response 1 (Egr-1) expression and this response primarily involved COUP-TFI interactions with Sp3 and to a lesser extent Sp1 bound to the proximal region of the Egr-1 promoter. Modeling studies showed interactions of DIM-C-Pyr-4 within the ligand binding domain of COUP-TFI. This report is the first to identify a COUP-TFI agonist and demonstrate activation of COUP-TFI-dependent Egr-1 expression.
Collapse
Affiliation(s)
- Kyungsil Yoon
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- Division of Translational Science, National Cancer Center, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Chien-Cheng Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| | - Asuka A Orr
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Patricia N Barreto
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Phanourios Tamamis
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Stephen Safe
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
17
|
Nakajima K, Tazawa I, Yaoita Y. Thyroid Hormone Receptor α- and β-Knockout Xenopus tropicalis Tadpoles Reveal Subtype-Specific Roles During Development. Endocrinology 2018; 159:733-743. [PMID: 29126198 DOI: 10.1210/en.2017-00601] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (TH) binds TH receptor α (TRα) and β (TRβ) to induce amphibian metamorphosis. Whereas TH signaling has been well studied, functional differences between TRα and TRβ during this process have not been characterized. To understand how each TR contributes to metamorphosis, we generated TRα- and TRβ-knockout tadpoles of Xenopus tropicalis and examined developmental abnormalities, histology of the tail and intestine, and messenger RNA expression of genes encoding extracellular matrix-degrading enzymes. In TRβ-knockout tadpoles, tail regression was delayed significantly and a healthy notochord was observed even 5 days after the initiation of tail shortening (stage 62), whereas in the tails of wild-type and TRα-knockout tadpoles, the notochord disappeared after ∼1 day. The messenger RNA expression levels of genes encoding extracellular matrix-degrading enzymes (MMP2, MMP9TH, MMP13, MMP14, and FAPα) were obviously reduced in the tail tip of TRβ-knockout tadpoles, with the shortening tail. The reduction in olfactory nerve length and head narrowing by gill absorption were also affected. Hind limb growth and intestinal shortening were not compromised in TRβ-knockout tadpoles, whereas tail regression and olfactory nerve shortening appeared to proceed normally in TRα-knockout tadpoles, except for the precocious development of hind limbs. Our results demonstrated the distinct roles of TRα and TRβ in hind limb growth and tail regression, respectively.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Ichiro Tazawa
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
18
|
Hamada T, Sugaya M, Tokura Y, Ohtsuka M, Tsuboi R, Nagatani T, Tani M, Setoyama M, Matsushita S, Kawai K, Yonekura K, Yoshida T, Saida T, Iwatsuki K. Phase I/II study of the oral retinoid X receptor agonist bexarotene in Japanese patients with cutaneous T-cell lymphomas. J Dermatol 2016; 44:135-142. [DOI: 10.1111/1346-8138.13542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Toshihisa Hamada
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Makoto Sugaya
- Department of Dermatology; Faculty of Medicine; University of Tokyo; Tokyo Japan
| | - Yoshiki Tokura
- Department of Dermatology; Hamamatsu University School of Medicine; Shizuoka Japan
| | - Mikio Ohtsuka
- Department of Dermatology; Fukushima Medical University; Fukushima Japan
| | - Ryoji Tsuboi
- Department of Dermatology; Tokyo Medical University; Tokyo Japan
| | - Tetsuo Nagatani
- Department of Dermatology; Tokyo Medical University Hachioji Medical Center; Tokyo Japan
| | - Mamori Tani
- Department of Dermatology; Osaka University Graduate School of Medicine; Osaka Japan
| | - Mitsuru Setoyama
- Department of Dermatology; Faculty of Medicine; University of Miyazaki; Miyazaki Japan
| | - Shigeto Matsushita
- Department of Dermatology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Kazuhiro Kawai
- Department of Dermatology; Kagoshima University Graduate School of Medical and Dental Sciences; Kagoshima Japan
| | - Kentaro Yonekura
- Department of Dermatology; Imamura Bun-in Hospital; Kagoshima Japan
| | | | - Toshiaki Saida
- Department of Dermatology; Shinshu University; Nagano Japan
| | - Keiji Iwatsuki
- Department of Dermatology; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama Japan
| |
Collapse
|
19
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Gustafsson JA. Historical overview of nuclear receptors. J Steroid Biochem Mol Biol 2016; 157:3-6. [PMID: 25797032 DOI: 10.1016/j.jsbmb.2015.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 11/26/2022]
Abstract
This review summarizes the birth of the field of nuclear receptors, from Jensen's discovery of estrogen receptor alpha, Gustafsson's discovery of the three-domain structure of the glucocorticoid receptor, the discovery of the glucocorticoid response element and the first partial cloning of the glucocorticoid receptor. Furthermore the discovery of the novel receptors called orphan receptors is described.
Collapse
Affiliation(s)
- Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
van Gucht ALM, Meima ME, Zwaveling-Soonawala N, Visser WE, Fliers E, Wennink JMB, Henny C, Visser TJ, Peeters RP, van Trotsenburg ASP. Resistance to Thyroid Hormone Alpha in an 18-Month-Old Girl: Clinical, Therapeutic, and Molecular Characteristics. Thyroid 2016; 26:338-46. [PMID: 26782358 DOI: 10.1089/thy.2015.0463] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Recently, the first patients with resistance to thyroid hormone alpha (RTHα) due to inactivating mutations in the thyroid hormone receptor alpha (TRα) were identified. These patients are characterized by growth retardation, variable motor and cognitive defects, macrocephaly, and abnormal thyroid function tests. The objective was to characterize a young girl (18 months old) with a mutation in both TRα1 and TRα2, and to study the effects of early levothyroxine (LT4) treatment. METHODS The patient was assessed clinically and biochemically before and during 12 months of LT4 treatment. In addition, the consequences of the mutation for TRα1/2 receptor function were studied in vitro. RESULTS At 18 months of age, the patient presented with axial hypotonia, delayed motor development, severe growth retardation, and abnormally elevated triiodothyronine (T3)/thyroxine (T4) ratios. RTHα was suspected, and concomitantly a c.632A>G/p.D211G missense mutation was identified, affecting both the TRα1 and TRα2 proteins. This mutation was also found in the girl's father. LT4 treatment was started, resulting in a marked improvement of her hypotonia, motor skills, and growth. Functionally, the missense mutation led to decreased transcriptional activity of TRα1, which could be overcome by higher T3 levels in vitro. The mutant TRα1 showed a moderate dominant negative activity on wild type (WT) TRα1. In contrast, WT TRα2 and mutant TRα2 had negligible transcriptional activity and showed no dominant-negative effect over TRα1. CONCLUSIONS This report describes the phenotype of a young RTHα patient with a mild TRα mutation before and during early LT4 treatment. Treatment had beneficial effects on her muscle tone, motor development, and growth.
Collapse
Affiliation(s)
- Anja L M van Gucht
- 1 Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
- 2 Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - Marcel E Meima
- 1 Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
- 2 Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - Nitash Zwaveling-Soonawala
- 3 Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Center , Amsterdam, The Netherlands
| | - W Edward Visser
- 1 Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
- 2 Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - Eric Fliers
- 4 Department of Endocrinology and Metabolism, Amsterdam University Medical Center , Amsterdam, The Netherlands
| | - Johanna M B Wennink
- 5 Department of Pediatrics, St. Lucas Andreas Hospital , Amsterdam, The Netherlands
| | - Civile Henny
- 6 Practice of Pediatric Physiotherapy, Sport Medical Center , Amsterdam, The Netherlands
| | - Theo J Visser
- 1 Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
- 2 Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - Robin P Peeters
- 1 Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
- 2 Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - A S Paul van Trotsenburg
- 3 Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Center , Amsterdam, The Netherlands
| |
Collapse
|
22
|
Green AC, Martin TJ, Purton LE. The role of vitamin A and retinoic acid receptor signaling in post-natal maintenance of bone. J Steroid Biochem Mol Biol 2016; 155:135-46. [PMID: 26435449 DOI: 10.1016/j.jsbmb.2015.09.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 12/11/2022]
Abstract
Vitamin A and retinoid derivatives are recognized as morphogens that govern body patterning and skeletogenesis, producing profound defects when in excess. In post-natal bone, both high and low levels of vitamin A are associated with poor bone heath and elevated risk of fractures. Despite this, the precise mechanism of how retinoids induce post-natal bone changes remains elusive. Numerous studies have been performed to discover how retinoids induce these changes, revealing a complex morphogenic regulation of bone through interplay of different cell types. This review will discuss the direct and indirect effects of retinoids on mediators of bone turnover focusing on differentiation and activity of osteoblasts and osteoclasts and explains why some discrepancies in this field have arisen. Importantly, the overall effect of retinoids on the skeleton is highly site-specific, likely due to differential regulation of osteoblasts and osteoclasts at trabecular vs. cortical periosteal and endosteal bone surfaces. Further investigation is required to discover the direct gene targets of retinoic acid receptors (RARs) and molecular mechanisms through which these changes occur. A clear role for RARs in regulating bone is now accepted and the therapeutic potential of retinoids in treating bone diseases has been established.
Collapse
Affiliation(s)
- Alanna C Green
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia.
| | - T John Martin
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| | - Louise E Purton
- St Vincent's Institute, Fitzroy, Victoria 3065, Australia; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065, Australia
| |
Collapse
|
23
|
Malinska M, Kutner A, Woźniak K. Predicted structures of new Vitamin D Receptor agonists based on available X-ray structures. Steroids 2015; 104:220-9. [PMID: 26476188 DOI: 10.1016/j.steroids.2015.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 12/28/2022]
Abstract
Current efforts in the field of vitamin D are to develop 1,25(OH)2D3 analogs that exhibit equal or even increased anti-proliferative activity while possessing a reduced tendency to cause hypercalcemia. The study proposes a new, rational design of vitamin D analogs based on data available in the Protein Data Bank. Undertaken approach was to minimize the electrostatic interaction energies available after the reconstruction of charge density with the aid of the pseudoatom databank, namely the University at Buffalo Pseudoatom Databank (UBDB). Analysis of 24 vitamin D analogs, bearing similar molecular structures complexed with Vitamin D Receptor enabled the design of new agonists forming all advantageous interaction to the receptor, coded TB1, TB2, TB3 and TB4.
Collapse
Affiliation(s)
- Maura Malinska
- Department of Chemistry, University of Warsaw, 1 Pasteura, 02-093 Warsaw, Poland.
| | - Andrzej Kutner
- Pharmaceutical Research Institute, 8 Rydygiera, 01-793 Warsaw, Poland
| | - Krzysztof Woźniak
- Department of Chemistry, University of Warsaw, 1 Pasteura, 02-093 Warsaw, Poland.
| |
Collapse
|
24
|
Chen F, Chen J, Lin J, Cheltsov AV, Xu L, Chen Y, Zeng Z, Chen L, Huang M, Hu M, Ye X, Zhou Y, Wang G, Su Y, Zhang L, Zhou F, Zhang XK, Zhou H. NSC-640358 acts as RXRα ligand to promote TNFα-mediated apoptosis of cancer cell. Protein Cell 2015; 6:654-666. [PMID: 26156677 PMCID: PMC4537469 DOI: 10.1007/s13238-015-0178-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/03/2015] [Indexed: 12/18/2022] Open
Abstract
Retinoid X receptor α (RXRα) and its N-terminally truncated version tRXRα play important roles in tumorigenesis, while some RXRα ligands possess potent anti-cancer activities by targeting and modulating the tumorigenic effects of RXRα and tRXRα. Here we describe NSC-640358 (N-6), a thiazolyl-pyrazole derived compound, acts as a selective RXRα ligand to promote TNFα-mediated apoptosis of cancer cell. N-6 binds to RXRα and inhibits the transactivation of RXRα homodimer and RXRα/TR3 heterodimer. Using mutational analysis and computational study, we determine that Arg316 in RXRα, essential for 9-cis-retinoic acid binding and activating RXRα transactivation, is not required for antagonist effects of N-6, whereas Trp305 and Phe313 are crucial for N-6 binding to RXRα by forming extra π–π stacking interactions with N-6, indicating a distinct RXRα binding mode of N-6. N-6 inhibits TR3-stimulated transactivation of Gal4-DBD-RXRα-LBD by binding to the ligand binding pocket of RXRα-LBD, suggesting a strategy to regulate TR3 activity indirectly by using small molecules to target its interacting partner RXRα. For its physiological activities, we show that N-6 strongly inhibits tumor necrosis factor α (TNFα)-induced AKT activation and stimulates TNFα-mediated apoptosis in cancer cells in an RXRα/tRXRα dependent manner. The inhibition of TNFα-induced tRXRα/p85α complex formation by N-6 implies that N-6 targets tRXRα to inhibit TNFα-induced AKT activation and to induce cancer cell apoptosis. Together, our data illustrate a new RXRα ligand with a unique RXRα binding mode and the abilities to regulate TR3 activity indirectly and to induce TNFα-mediated cancer cell apoptosis by targeting RXRα/tRXRα.
Collapse
Affiliation(s)
- Fan Chen
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
- />School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou, 363000 China
| | - Jiebo Chen
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Jiacheng Lin
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | | | - Lin Xu
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Ya Chen
- />Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037 USA
| | - Zhiping Zeng
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Liqun Chen
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Mingfeng Huang
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Mengjie Hu
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Xiaohong Ye
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Yuqi Zhou
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Guanghui Wang
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| | - Ying Su
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
- />Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037 USA
| | - Long Zhang
- />Life Science Institute, Zhejiang University, Hangzhou, 310058 China
| | - Fangfang Zhou
- />Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123 China
| | - Xiao-kun Zhang
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
- />Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037 USA
| | - Hu Zhou
- />School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
25
|
Fattori J, Campos JLO, Doratioto TR, Assis LM, Vitorino MT, Polikarpov I, Xavier-Neto J, Figueira ACM. RXR agonist modulates TR: corepressor dissociation upon 9-cis retinoic acid treatment. Mol Endocrinol 2014; 29:258-73. [PMID: 25541638 DOI: 10.1210/me.2014-1251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transcriptional regulation controlled by thyroid hormone receptor (TR) drives events such as development, differentiation, and metabolism. TRs may act either as homodimers or as heterodimers with retinoid X receptor (RXR). Thyroid hormone T3 preferentially binds TR-RXR heterodimers, which activate transcription through coactivator recruitment. However, it is unclear whether TR-RXR heterodimers may also be responsive to the canonical RXR agonist 9-cis retinoic acid (9C) in the context of physiological gene regulation. New structural studies suggest that 9C promotes the displacement of bound coactivators from the heterodimer, modifying TR-RXR activity. To shed light on the molecular mechanisms that control TR-RXR function, we used biophysical approaches to characterize coregulator recruitment to TR-TR or to TR-RXR in the presence of T3 and/or 9C as well as cell-based assays to establish the functional significance of biophysical findings. Using cell-based and fluorescence assays with mutant and wild-type TR, we show that 9C does indeed have a function in the TR-RXR heterodimer context, in which it induces the release of corepressors. Furthermore, we show that 9C does not promote detectable conformational changes in the structure of the TR-RXR heterodimer and does not affect coactivator recruitment. Finally, our data support the view that DNA binding domain and Hinge regions are important to set up NR-coactivator binding interfaces. In summary, we showed that the RXR agonist 9C can regulate TR function through its modulation of corepressor dissociation.
Collapse
Affiliation(s)
- Juliana Fattori
- Centro Nacional de Pesquisa em Energia e Materiais (J.F., J.L.O.C., T.R.D., L.M.A., M.T.V., J.X.-N., A.C.M.F.), Laboratório Nacional de Biociências, Campinas SP, 13083-970, Brazil; and Instituto de Física de São Carlos (I.P.), Universidade de São Paulo, São Carlos SP, 13560-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sun J, Narayanasamy S, Curley RW, Harrison EH. β-Apo-13-carotenone regulates retinoid X receptor transcriptional activity through tetramerization of the receptor. J Biol Chem 2014; 289:33118-24. [PMID: 25324544 DOI: 10.1074/jbc.m114.610501] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoid X receptor (RXRα) is activated by 9-cis-retinoic acid (9cRA) and regulates transcription as a homodimer or as a heterodimer with other nuclear receptors. We have previously demonstrated that β-apo-13-carotenone, an eccentric cleavage product of β-carotene, antagonizes the activation of RXRα by 9cRA in mammalian cells overexpressing this receptor. However, the molecular mechanism of β-apo-13-carotenone's modulation on the transcriptional activity of RXRα is not understood and is the subject of this report. We performed transactivation assays using full-length RXRα and reporter gene constructs (RXRE-Luc) transfected into COS-7 cells, and luciferase activity was examined. β-Apo-13-carotenone was compared with the RXRα antagonist UVI3003. The results showed that both β-apo-13-carotenone and UVI3003 shifted the dose-dependent RXRα activation by 9cRA. In contrast, the results of assays using a hybrid Gal4-DBD:RXRαLBD receptor reporter cell assay that detects 9cRA-induced coactivator binding to the ligand binding domain demonstrated that UVI3003 significantly inhibited 9cRA-induced coactivator binding to RXRαLBD, but β-apo-13-carotenone did not. However, both β-apo-13-carotenone and UVI3003 inhibited 9-cRA induction of caspase 9 gene expression in the mammary carcinoma cell line MCF-7. To resolve this apparent contradiction, we investigated the effect of β-apo-13-carotenone on the oligomeric state of purified recombinant RXRαLBD. β-Apo-13-carotenone induces tetramerization of the RXRαLBD, although UVI3003 had no effect on the oligomeric state. These observations suggest that β-apo-13-carotenone regulates RXRα transcriptional activity by inducing the formation of the "transcriptionally silent" RXRα tetramer.
Collapse
Affiliation(s)
- Jian Sun
- From the Department of Human Sciences and
| | - Sureshbabu Narayanasamy
- From the Department of Human Sciences and College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Robert W Curley
- College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | | |
Collapse
|
27
|
Fernández-Martínez AB, Lucio Cazaña FJ. Prostaglandin E2 induces retinoic acid receptor-β up-regulation through MSK1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1997-2004. [PMID: 24953041 DOI: 10.1016/j.bbamcr.2014.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/05/2014] [Accepted: 05/23/2014] [Indexed: 01/30/2023]
Abstract
The pharmacological modulation of putative renoprotective factors hypoxia-inducible factor-1α (HIF-1α) and HIF-1α-regulated vascular endothelial growth factor-A (VEGF-A) in the kidney has therapeutic interest. In human renal proximal tubular HK2 cells, prostaglandin E2 (PGE2) up-regulates HIF-1α and VEGF-A through epidermal growth factor receptor (EGFR)-dependent up-regulation of retinoic acid receptor-β (RARβ). Here we studied the role of mitogen-activated protein kinases (MAPKs) ERK1/2 and p38 and their target kinase, mitogen- and stress activated kinase-1 (MSK1), in the signaling cascade. Treatment of HK2 cells with PGE2 resulted in increased phosphorylation of EGFR, the three studied kinases and the histone H3 (Ser10) at the RARβ gene promoter (the latter has been proposed as a molecular signature of the activated RARβ gene promoter). Prevention of the phosphorylation of EGFR, ERK1/2, p38 MAPK or MSK1 is by incubating, respectively, with AG1478, PD98059, SB203580 or H89 allowed to elucidate the precise phosphorylation order in the signaling cascade triggered by PGE2: first, EGFR; then, ERK1/2 and p38 MAPK and, finally, MSK1. Phosphorylation of MSK1 led to that of Ser10 in histone H3 and to activation of RARβ gene transcription (and the consequent increase in the expression of HIF-1α and VEGF-A), which was suppressed by H89 or by transfecting cells with a vector encoding for a dominant-negative mutant of MSK1. These results highlight the relevance of MSK1 in the up-regulation of RARβ by PGE2. They also may contribute to new therapeutic approaches based upon the pharmacological control of HIF-1α/VEGF-A in the proximal tubule through the modulation of the PGE2/EGFR/MAPK/MSK1/RARβ pathway.
Collapse
|
28
|
Kopczak A, Renner U, Karl Stalla G. Advances in understanding pituitary tumors. F1000PRIME REPORTS 2014; 6:5. [PMID: 24592317 PMCID: PMC3883424 DOI: 10.12703/p6-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pituitary tumors are common in the general population. Since neuroimaging techniques have improved, pituitary tumors are more often diagnosed incidentally. About 16.7% of the general population show changes in the pituitary gland. Predominantly, pituitary tumors are benign pituitary adenomas. Pituitary carcinomas or aggressive pituitary tumors are extremely rare. They might develop from benign adenomas. New genetic and epigenetic abnormalities help us to understand pituitary tumorigenesis and might lead to therapeutical targeting drugs in the future. Macroadenomas (>1 cm) can lead to visual field disturbances, compression of cranial nerves, hypopituitarism, and infiltration of the cavernous sinuses. The functional status of the pituitary tumor is important. About half to one third of all pituitary tumors are non-functioning pituitary adenomas. The other pituitary tumors show a specific pattern of hormone secretion. About 25% to 41% of all pituitary tumors are prolactinomas, acromegaly with production of growth hormone represents 10% to 15% of adenomas, Cushing's disease with production of adrenocorticotropic hormone accounts for 10%, and other hormonal characteristics are less common. Transsphenoidal resection and total adenomectomy are desirable. Radiosurgery has enriched the surgical treatment options. Surgical treatment is the intervention of choice except for prolactinomas, where pharmaceutical treatment is recommended. Pharmaceutical treatment consists of dopamine agonists such as cabergoline and somatostatin analogues that include octreotide and pasireotide; retinoic acid is of theoretical interest while peroxisome proliferator-activated receptor-gamma-ligands are not clinically useful. In acromegaly, pegvisomant is a further treatment option. Temozolomide should be considered in aggressive pituitary tumors. In general, pharmaceutical options developed recently have extended the repertoire of treatment possibilities of pituitary tumors.
Collapse
Affiliation(s)
- Anna Kopczak
- Max Planck Institute of Psychiatry, Clinical Neurendocrinology GroupKraepelinstraße 2-10, 80804 MunichGermany
| | - Ulrich Renner
- Max Planck Institute of Psychiatry, Clinical Neurendocrinology GroupKraepelinstraße 2-10, 80804 MunichGermany
| | - Günter Karl Stalla
- Max Planck Institute of Psychiatry, Clinical Neurendocrinology GroupKraepelinstraße 2-10, 80804 MunichGermany
| |
Collapse
|
29
|
Castelli MG, Rusten M, Goksøyr A, Routti H. MRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:239-246. [PMID: 24334006 DOI: 10.1016/j.aquatox.2013.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/13/2013] [Accepted: 11/24/2013] [Indexed: 06/03/2023]
Abstract
There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes encoding hepatic PPARγ, adipose FABP4, adipose ADIPOQ and ΣPOP concentrations was observed. These findings suggest that lipid metabolism may be affected by contaminant exposure in the Baltic population. mRNA expression of genes encoding PPARβ, PPARγ, FABP4 and ADIPOQ were similar between the mid and inner adipose layer. Hepatic mRNA expression of genes encoding PPARα and PPARγ was higher in the pre-molting individuals compared to the molting ones highlighting differential regulation of these metabolic sensors through the molting period.
Collapse
Affiliation(s)
- Martina Galatea Castelli
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; University of Bergen, Department of Biology, 5020 Bergen, Norway
| | - Marte Rusten
- University of Bergen, Department of Biology, 5020 Bergen, Norway
| | - Anders Goksøyr
- University of Bergen, Department of Biology, 5020 Bergen, Norway
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway.
| |
Collapse
|
30
|
Abstract
Retinoid X Receptors (RXR) were initially identified as nuclear receptors binding with stereo-selectivity the vitamin A derivative 9-cis retinoic acid, although the relevance of this molecule as endogenous activator of RXRs is still elusive. Importantly, within the nuclear receptor superfamily, RXRs occupy a peculiar place, as they are obligatory partners for a number of other nuclear receptors, thus integrating the corresponding signaling pathways. In this chapter, we describe the structural features allowing RXR to form homo- and heterodimers, and the functional consequences of this unique ability. Furthermore, we discuss the importance of studying RXR activity at a genome-wide level in order to comprehensively address the biological implications of their action that is fundamental to understand to what extent RXRs could be exploited as new therapeutic targets.
Collapse
Affiliation(s)
- Federica Gilardi
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland,
| | | |
Collapse
|
31
|
Ramadoss P, Abraham BJ, Tsai L, Zhou Y, Costa-e-Sousa RH, Ye F, Bilban M, Zhao K, Hollenberg AN. Novel mechanism of positive versus negative regulation by thyroid hormone receptor β1 (TRβ1) identified by genome-wide profiling of binding sites in mouse liver. J Biol Chem 2013; 289:1313-28. [PMID: 24288132 DOI: 10.1074/jbc.m113.521450] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Triiodothyronine (T3) regulates key metabolic processes in the liver through the thyroid hormone receptor, TRβ1. However, the number of known target genes directly regulated by TRβ1 is limited, and the mechanisms by which positive and especially negative transcriptional regulation occur are not well understood. To characterize the TRβ1 cistrome in vivo, we expressed a biotinylated TRβ1 in hypo- and hyperthyroid mouse livers, used ChIP-seq to identify genomic TRβ1 targets, and correlated these data with gene expression changes. As with other nuclear receptors, the majority of TRβ1 binding sites were not in proximal promoters but in the gene body of known genes. Remarkably, T3 can dictate changes in TRβ1 binding, with strong correlation to T3-induced gene expression changes, suggesting that differential TRβ1 binding regulates transcriptional outcome. Additionally, DR-4 and DR-0 motifs were significantly enriched at binding sites where T3 induced an increase or decrease in TRβ1 binding, respectively, leading to either positive or negative regulation by T3. Taken together, the results of this study provide new insights into the mechanisms of transcriptional regulation by TRβ1 in vivo.
Collapse
Affiliation(s)
- Preeti Ramadoss
- From the Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Flood DEK, Fernandino JI, Langlois VS. Thyroid hormones in male reproductive development: evidence for direct crosstalk between the androgen and thyroid hormone axes. Gen Comp Endocrinol 2013; 192:2-14. [PMID: 23524004 DOI: 10.1016/j.ygcen.2013.02.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 01/06/2023]
Abstract
Thyroid hormones (THs) exert a broad range of effects on development in vertebrate species, demonstrating connections in nearly every biological endocrine system. In particular, studies have shown that THs play a role in sexual differentiation and gonadal development in mammalian and non-mammalian species. There is considerable evidence that the effects of THs on reproductive development are mediated through the female hormonal axis; however, recent findings suggest a more direct crosstalk between THs and the androgen axis. These findings demonstrate that THs have considerable influence in the sexual ontogeny of male vertebrates, through direct interactions with select sex-determining-genes and regulation of gonadotropin production in the hypothalamus-pituitary-gonad axis. THs also regulate androgen biosynthesis and signaling through direct and indirect regulation of steroidogenic enzyme expression and activity. Novel promoter analysis presented in this work demonstrates the potential for direct and vertebrate wide crosstalk at the transcriptional level in mice (Mus musculus), Western clawed frogs (Silurana tropicalis) and medaka (Oryzias latipes). Cumulative evidence from previous studies; coupled with novel promoter analysis suggests mechanisms for a more direct crosstalk between the TH and male reproductive axes across vertebrate species.
Collapse
Affiliation(s)
- Diana E K Flood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, ON, Canada; Biology Department, Queen's University, Kingston, ON, Canada.
| | | | | |
Collapse
|
33
|
Kabiersch G, Rajasärkkä J, Tuomela M, Hatakka A, Virta M, Steffen K. Bioluminescent yeast assay for detection of organotin compounds. Anal Chem 2013; 85:5740-5. [PMID: 23662949 DOI: 10.1021/ac4003062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organotin compounds are toxic and endocrine disrupting compounds, which have been intensively used as antifouling paints for ship hulls and thus are widely spread in the environment. They are suspected to cause imposex, the formation of male characteristics in female gastropods, because of the activation of retinoid X receptor (RXR) at very low environmental concentrations. Here we report the development and optimization of a bioluminescent yeast assay for the detection of organotin compounds based on the interaction with a hybrid RXR and subsequent expression of a reporter luciferase gene. This assay is highly specific toward organotin compounds and natural ligands of the RXR. It detects tributyltin and triphenyltin in nanomolar concentrations (detection limits were found to be 30 nM and 110 nM, respectively) and allows small-scale high-throughput analyses. Furthermore it was possible to measure tributyltin directly in untreated spiked sediments. Thus, the results provided within one working day can be used for the assessment of bioavailability and mixture effect of organotin compounds in environmental samples.
Collapse
Affiliation(s)
- Grit Kabiersch
- Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 56, FIN-00014, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
34
|
Hu X, Shi W, Zhang F, Cao F, Hu G, Hao Y, Wei S, Wang X, Yu H. In vitro assessment of thyroid hormone disrupting activities in drinking water sources along the Yangtze River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 173:210-215. [PMID: 23202652 DOI: 10.1016/j.envpol.2012.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 10/10/2012] [Accepted: 10/20/2012] [Indexed: 05/20/2023]
Abstract
The thyroid hormone disrupting activities of drinking water sources from the lower reaches of Yangtze River were examined using a reporter gene assay based on African green monkey kidney fibroblast (CV-1) cells. None of the eleven tested samples showed thyroid receptor (TR) agonist activity. Nine water samples exhibited TR antagonist activities with the equivalents referring to Di-n-butyl phthalate (DNBP) (TR antagonist activity equivalents, ATR-EQ(50)s) ranging from 6.92 × 10(1) to 2.85 × 10(2) μg DNBP/L. The ATR-EQ(50)s and TR antagonist equivalent ranges (ATR-EQ(30-80) ranges) for TR antagonist activities indicated that the water sample from site WX-8 posed the greatest health risks. The ATR-EQ(80)s of the water samples ranging from 1.56 × 10(3) to 6.14 × 10(3) μg DNBP/L were higher than the NOEC of DNBP. The results from instrumental analysis showed that DNBP might be responsible for the TR antagonist activities in these water samples. Water sources along Yangtze River had thyroid hormone disrupting potential.
Collapse
Affiliation(s)
- Xinxin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Antonini D, Sibilio A, Dentice M, Missero C. An Intimate Relationship between Thyroid Hormone and Skin: Regulation of Gene Expression. Front Endocrinol (Lausanne) 2013; 4:104. [PMID: 23986743 PMCID: PMC3749490 DOI: 10.3389/fendo.2013.00104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/05/2013] [Indexed: 12/23/2022] Open
Abstract
Skin is the largest organ of the human body and plays a key role in protecting the individual from external insults. The barrier function of the skin is performed primarily by the epidermis, a self-renewing stratified squamous epithelium composed of cells that undergo a well-characterized and finely tuned process of terminal differentiation. By binding to their receptors thyroid hormones (TH) regulate epidermal cell proliferation, differentiation, and homeostasis. Thyroid dysfunction has multiple classical manifestations at skin level. Several TH-responsive genes, as well as genes critical for TH metabolism and action, are expressed at epidermal level. The role of TH in skin is still controversial, although it is generally recognized that TH signaling is central for skin physiology and homeostasis. Here we review the data on the epidermis and its function in relation to TH metabolism and regulation of gene expression. An understanding of the cellular and molecular basis of TH action in epidermal cells may lead to the identification of putative therapeutical targets for treatment of skin disorders.
Collapse
Affiliation(s)
| | - Annarita Sibilio
- Department of Clinical Medicine Surgery, University of Naples Federico II, Napoli, Italy
| | - Monica Dentice
- Department of Clinical Medicine Surgery, University of Naples Federico II, Napoli, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate, Napoli, Italy
- Fondazione IRCCS SDN, Napoli, Italy
- *Correspondence: Caterina Missero, CEINGE Biotecnologie Avanzate, via Gaetano Salvatore 486, Napoli 80145, Italy e-mail:
| |
Collapse
|
36
|
Nakajima K, Fujimoto K, Yaoita Y. Regulation of thyroid hormone sensitivity by differential expression of the thyroid hormone receptor during Xenopus metamorphosis. Genes Cells 2012; 17:645-59. [PMID: 22686326 DOI: 10.1111/j.1365-2443.2012.01614.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/15/2012] [Indexed: 11/30/2022]
Abstract
During amphibian metamorphosis, a series of dynamic changes occur in a predetermined order. Hind limb morphogenesis begins in response to low levels of thyroid hormone (TH) in early prometamorphosis, but tail muscle cell death is delayed until climax, when TH levels are high. It takes about 20 days for tadpoles to grow from early prometamorphosis to climax. To study the molecular basis of the timing of tissue-specific transformations, we introduced thyroid hormone receptor (TR) expression constructs into tail muscle cells of Xenopus tadpoles. The TR-transfected tail muscle cells died upon exposure to a low level of thyroxine (T4). This cell death was suggested to be mediated by type 2 iodothyronine deiodinase (D2) that converts T4 to T3-the more active form of TH. D2 mRNA was induced in the TR-overexpressing cells by low levels of TH. D2 promoter contains a TH-response element (TRE) with a lower affinity for TR. These results show that the TR transfection confers the ability to respond to physiological concentrations of TH at early prometamorphosis to tail muscle cells through D2 activity and promotes TH signaling. We propose the positive feedback loop model to amplify the cell's ability to respond to low levels of T4.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | | | | |
Collapse
|
37
|
Stevens CB, Cameron DA, Stenkamp DL. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure. BMC DEVELOPMENTAL BIOLOGY 2011; 11:51. [PMID: 21878117 PMCID: PMC3189157 DOI: 10.1186/1471-213x-11-51] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/30/2011] [Indexed: 12/02/2022]
Abstract
Background Retinoic acid (RA) is important for vertebrate eye morphogenesis and is a regulator of photoreceptor development in the retina. In the zebrafish, RA treatment of postmitotic photoreceptor precursors has been shown to promote the differentiation of rods and red-sensitive cones while inhibiting the differentiation of blue- and UV-sensitive cones. The roles played by RA and its receptors in modifying photoreceptor fate remain to be determined. Results Treatment of zebrafish embryos with RA, beginning at the time of retinal progenitor cell proliferation and prior to photoreceptor terminal mitosis, resulted in a significant alteration of rod and cone mosaic patterns, suggesting an increase in the production of rods at the expense of red cones. Quantitative pattern analyses documented increased density of rod photoreceptors and reduced local spacing between rod cells, suggesting rods were appearing in locations normally occupied by cone photoreceptors. Cone densities were correspondingly reduced and cone photoreceptor mosaics displayed expanded and less regular spacing. These results were consistent with replacement of approximately 25% of positions normally occupied by red-sensitive cones, with additional rods. Analysis of embryos from a RA-signaling reporter line determined that multiple retinal cell types, including mitotic cells and differentiating rods and cones, are capable of directly responding to RA. The RA receptors RXRγ and RARαb are expressed in patterns consistent with mediating the effects of RA on photoreceptors. Selective knockdown of RARαb expression resulted in a reduction in endogenous RA signaling in the retina. Knockdown of RARαb also caused a reduced production of rods that was not restored by simultaneous treatments with RA. Conclusions These data suggest that developing retinal cells have a dynamic sensitivity to RA during retinal neurogenesis. In zebrafish RA may influence the rod vs. cone cell fate decision. The RARαb receptor mediates the effects of endogenous, as well as exogenous RA, on rod development.
Collapse
Affiliation(s)
- Craig B Stevens
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | | | | |
Collapse
|
38
|
The Novel Retinoid, 9cUAB30, Inhibits Telomerase and Induces Apoptosis in HL60 Cells. Transl Oncol 2011; 1:148-52. [PMID: 18795149 DOI: 10.1593/tlo.08142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/01/2008] [Accepted: 07/04/2008] [Indexed: 11/18/2022] Open
Abstract
Telomerase, a ribonucleoprotein important to neoplastic immortality, is up-regulated in approximately 85% of cancers, including leukemias. In this study, 9cUAB30, a novel retinoic acid, resulted in differentiation of HL60 leukemia cells as indicated by morphologic changes characteristic of granulocytes. It also caused a down-regulation of hTERT gene expression and a decrease in telomerase activity. Telomerase inhibition was followed by loss of proliferative capacity, induction of apoptosis, and partial differentiation. These findings demonstrate the effectiveness of 9cUAB30 at inhibiting telomerase activity by down-regulating hTERT gene expression in human leukemic cells.
Collapse
|
39
|
Shen O, Wu W, Du G, Liu R, Yu L, Sun H, Han X, Jiang Y, Shi W, Hu W, Song L, Xia Y, Wang S, Wang X. Thyroid disruption by Di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP) in Xenopus laevis. PLoS One 2011; 6:e19159. [PMID: 21544203 PMCID: PMC3081329 DOI: 10.1371/journal.pone.0019159] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Di-n-butyl phthalate (DBP), a chemical widely used in many consumer products, is estrogenic and capable of producing seriously reproductive and developmental effects in laboratory animals. However, recent in vitro studies have shown that DBP and mono-n-butyl phthalate (MBP), the major metabolite of DBP, possessed thyroid hormone receptor (TR) antagonist activity. It is therefore important to consider DBP and MBP that may interfere with thyroid hormone system. METHODOLOGY/PRINCIPAL FINDINGS Nieuwkoop and Faber stage 51 Xenopus laevis were exposed to DBP and MBP (2, 10 or 15 mg/L) separately for 21 days. The two test chemicals decelerated spontaneous metamorphosis in X. laevis at concentrations of 10 and 15 mg/L. Moreover, MBP seemed to possess stronger activity. The effects of DBP and MBP on inducing changes of expression of selected thyroid hormone response genes: thyroid hormone receptor-beta (TRβ), retinoid X receptor gamma (RXRγ), alpha and beta subunits of thyroid-stimulating hormone (TSHα and TSHβ) were detected by qPCR at all concentrations of the compounds. Using mammalian two-hybrid assay in vitro, we found that DBP and MBP enhanced the interactions between co-repressor SMRT (silencing mediator for retinoid and thyroid hormone receptors) and TR in a dose-dependent manner, and MBP displayed more markedly. In addition, MBP at low concentrations (2 and 10 mg/L) caused aberrant methylation of TRβ in head tissue. CONCLUSIONS The current findings highlight potential disruption of thyroid signalling by DBP and MBP and provide data for human risk assessment.
Collapse
Affiliation(s)
- Ouxi Shen
- The Center for Disease Control and Prevention of Suzhou Industrial Park,
Suzhou, China
- Key Laboratory of Reproductive Medicine, Institute of Toxicology, School
of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University),
Ministry of Education, China
| | - Wei Wu
- Key Laboratory of Reproductive Medicine, Institute of Toxicology, School
of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University),
Ministry of Education, China
| | - Guizhen Du
- Key Laboratory of Reproductive Medicine, Institute of Toxicology, School
of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University),
Ministry of Education, China
| | - Renping Liu
- The Center for Disease Control and Prevention of Suzhou Industrial Park,
Suzhou, China
| | - Lugang Yu
- The Center for Disease Control and Prevention of Suzhou Industrial Park,
Suzhou, China
| | - Hong Sun
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing,
China
| | - Xiumei Han
- Key Laboratory of Reproductive Medicine, Institute of Toxicology, School
of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University),
Ministry of Education, China
| | - Yi Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of
Nanjing Medical University, Nanjing, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing, China
| | - Wei Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing, China
| | - Ling Song
- Key Laboratory of Reproductive Medicine, Institute of Toxicology, School
of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University),
Ministry of Education, China
| | - Yankai Xia
- Key Laboratory of Reproductive Medicine, Institute of Toxicology, School
of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University),
Ministry of Education, China
| | - Shoulin Wang
- Key Laboratory of Reproductive Medicine, Institute of Toxicology, School
of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University),
Ministry of Education, China
| | - Xinru Wang
- Key Laboratory of Reproductive Medicine, Institute of Toxicology, School
of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology (Nanjing Medical University),
Ministry of Education, China
| |
Collapse
|
40
|
Han JS, Crowe DL. Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands. BMC Cancer 2010; 10:629. [PMID: 21080969 PMCID: PMC2999618 DOI: 10.1186/1471-2407-10-629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 11/16/2010] [Indexed: 12/28/2022] Open
Abstract
Background The peroxisome proliferator activated receptor (PPAR) subgroup of the nuclear hormone receptor superfamily is activated by a variety of natural and synthetic ligands. PPARs can heterodimerize with retinoid X receptors, which have homology to other members of the nuclear receptor superfamily. Ligand binding to PPAR/RXRs results in recruitment of transcriptional coactivator proteins such as steroid receptor coactivator 1 (SRC-1) and CREB binding protein (CBP). Both SRC-1 and CBP are histone acetyltransferases, which by modifying nucleosomal histones, produce more open chromatin structure and increase transcriptional activity. Nuclear hormone receptors can recruit limiting amounts of coactivators from other transcription factor binding sites such as AP-1, thereby inhibiting the activity of AP-1 target genes. PPAR and RXR ligands have been used in experimental breast cancer therapy. The role of coactivator expression in mammary tumorigenesis and response to drug therapy has been the subject of recent studies. Methods We examined the effects of loss of SRC-1 on MMTV-neu mediated mammary tumorigenesis. Results SRC-1 null mutation in mammary tumor prone mice increased the tumor latency period, reduced tumor proliferation index and metastasis, inhibited response to PPAR and RXR ligands, and induced genes involved in mammary gland differentiation. We also examined human breast cancer cell lines overexpressing SRC-1 or CBP. Coactivator overexpression increased cellular proliferation with resistance to PPAR and RXR ligands and remodeled chromatin of the proximal epidermal growth factor receptor promoter. Conclusions These results indicate that histone acetyltransferases play key roles in mammary tumorigenesis and response to anti-proliferative therapies.
Collapse
Affiliation(s)
- Ji Seung Han
- University of Illinois Cancer Center, Chicago, 60612, USA
| | | |
Collapse
|
41
|
Billings NA, Emerson MM, Cepko CL. Analysis of thyroid response element activity during retinal development. PLoS One 2010; 5:e13739. [PMID: 21060789 PMCID: PMC2966421 DOI: 10.1371/journal.pone.0013739] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 10/06/2010] [Indexed: 01/10/2023] Open
Abstract
Thyroid hormone (TH) signaling components are expressed during retinal development in dynamic spatial and temporal patterns. To probe the competence of retinal cells to mount a transcriptional response to TH, reporters that included thyroid response elements (TREs) were introduced into developing retinal tissue. The TREs were placed upstream of a minimal TATA-box and two reporter genes, green fluorescent protein (GFP) and human placental alkaline phosphatase (PLAP). Six of the seven tested TREs were first tested in vitro where they were shown to drive TH-dependent expression. However, when introduced into the developing retina, the TREs reported in different cell types in both a TH-dependent and TH-independent manner, as well as revealed specific spatial patterns in their expression. The role of the known thyroid receptors (TR), TRα and TRβ, was probed using shRNAs, which were co-electroporated into the retina with the TREs. Some TREs were positively activated by TR+TH in the developing outer nuclear layer (ONL), where photoreceptors reside, as well as in the outer neuroblastic layer (ONBL) where cycling progenitor cells are located. Other TREs were actively repressed by TR+TH in cells of the ONBL. These data demonstrate that non-TRs can activate some TREs in a spatially regulated manner, whereas other TREs respond only to the known TRs, which also read out activity in a spatially regulated manner. The transcriptional response to even simple TREs provides a starting point for understanding the regulation of genes by TH, and highlights the complexity of transcriptional regulation within developing tissue.
Collapse
Affiliation(s)
- Nathan A. Billings
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark M. Emerson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Constance L. Cepko
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Helbing CC, Maher SK, Han J, Gunderson MP, Borchers C. Peering into molecular mechanisms of action with frogSCOPE. Gen Comp Endocrinol 2010; 168:190-8. [PMID: 20074577 DOI: 10.1016/j.ygcen.2010.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/08/2010] [Indexed: 12/12/2022]
Abstract
Exposure of critical life stages to harmful chemicals at low, environmentally-relevant concentrations can alter how hormones function, and change metabolic pathways or developmental processes that impact reproduction, behavior, or susceptibility to disease later in life. These alterations can be captured through evaluation of changes to transcriptomes, proteomes, and metabolomes occurring at those critical life stages thereby enabling more effective and earlier identification of mechanism of action, individual susceptibilities and adaptation, and prediction of detrimental sublethal effects. Amphibians are "wet canaries in the coalmine" as indicators for environmental health. There are more than 6000 species living in a variety of ecological niches worldwide yet limited 'omics resources and approaches exist. To provide for a means of addressing this challenge, frogSCOPE (frog Sentinel species Comparative "Omics" for the Environment) combines transcriptomics, proteomics, and metabolomics together to form the foundation for the identification of biological response indicators of harmful effects on a species of wild frog (Rana catesbeiana) at a sensitive tadpole stage. Various exposure and sampling methodologies are possible including standard in vivo exposures, tail fin biopsies, and the C-fin assay. frogSCOPE establishes methodological and analytical approaches applicable to wildlife by using a uniquely-designed frog cDNA array developed to accommodate cross-species hybridization and quantitative real-time polymerase chain reaction (QPCR) assays on poorly genetically-characterized wildlife species. Combination with proteomics (isobaric tags for relative and absolute protein quantitation; iTRAQ) and metabolomics (mass spectrometry) enable the generation of molecular fingerprints to identify mechanisms of action in a more comprehensive fashion to better define suitable indicators of deleterious biological outcomes to wildlife.
Collapse
Affiliation(s)
- Caren C Helbing
- Department of Biochemistry & Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, BC, Canada.
| | | | | | | | | |
Collapse
|
43
|
Zhou H, Liu W, Su Y, Wei Z, Liu J, Kolluri SK, Wu H, Cao Y, Chen J, Wu Y, Yan T, Cao X, Gao W, Molotkov A, Jiang F, Li WG, Lin B, Zhang HP, Yu J, Luo SP, Zeng JZ, Duester G, Huang PQ, Zhang XK. NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling. Cancer Cell 2010; 17:560-73. [PMID: 20541701 PMCID: PMC2907921 DOI: 10.1016/j.ccr.2010.04.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/21/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) exert their anticancer effects through cyclooxygenase-2 (COX-2)-dependent and independent mechanisms. Here, we report that Sulindac, an NSAID, induces apoptosis by binding to retinoid X receptor-alpha (RXRalpha). We identified an N-terminally truncated RXRalpha (tRXRalpha) in several cancer cell lines and primary tumors, which interacted with the p85alpha subunit of phosphatidylinositol-3-OH kinase (PI3K). Tumor necrosis factor-alpha (TNFalpha) promoted tRXRalpha interaction with the p85alpha, activating PI3K/AKT signaling. When combined with TNFalpha, Sulindac inhibited TNFalpha-induced tRXRalpha/p85alpha interaction, leading to activation of the death receptor-mediated apoptotic pathway. We designed and synthesized a Sulindac analog K-80003, which has increased affinity to RXRalpha but lacks COX inhibitory activity. K-80003 displayed enhanced efficacy in inhibiting tRXRalpha-dependent AKT activation and tRXRalpha tumor growth in animals.
Collapse
Affiliation(s)
- Hu Zhou
- Institute for Biomedical Research, Xiamen University, Xiamen, China
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Wen Liu
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Ying Su
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Zhen Wei
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Jie Liu
- Institute for Biomedical Research, Xiamen University, Xiamen, China
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Siva Kumar Kolluri
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Hua Wu
- Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Yu Cao
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Jiebo Chen
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Yin Wu
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Tingdong Yan
- Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Xihua Cao
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Weiwei Gao
- Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Andrei Molotkov
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Fuquan Jiang
- Institute for Biomedical Research, Xiamen University, Xiamen, China
| | | | - Bingzhen Lin
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | - Jinghua Yu
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Shi-Peng Luo
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Jin-zhang Zeng
- Institute for Biomedical Research, Xiamen University, Xiamen, China
| | - Gregg Duester
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Pei-Qiang Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiao-kun Zhang
- Institute for Biomedical Research, Xiamen University, Xiamen, China
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| |
Collapse
|
44
|
Phan TQ, Jow MM, Privalsky ML. DNA recognition by thyroid hormone and retinoic acid receptors: 3,4,5 rule modified. Mol Cell Endocrinol 2010; 319:88-98. [PMID: 19945505 PMCID: PMC3270409 DOI: 10.1016/j.mce.2009.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 02/07/2023]
Abstract
It has been proposed that retinoic acid receptors (RARs) and thyroid hormone receptors (TRs) both bind to AGGTCA "half-site" sequences, but distinguish their different target genes by recognizing different half-site spacings. We report here that artificial DNA binding sites based on these AGGTCA half-sites confer high affinity, but poor specificity, and that spacing alone does not account for the divergent DNA recognition properties of TRs and RARs. Instead, we have determined that the non-consensus half-sites that are present in naturally occurring RAR and TR target genes play a crucial role in defining receptor DNA recognition specificity, and work together with flanking sequences and half-site spacing to produce receptor-specific DNA binding in vitro. We also provide evidence that auxiliary proteins in cells generate an additional layer of receptor-specific target gene recognition, in part by destabilizing the binding of nuclear receptors to the "wrong" response elements.
Collapse
MESH Headings
- Binding Sites/genetics
- Cell Line
- Cells, Cultured
- DNA/genetics
- DNA/metabolism
- Electrophoretic Mobility Shift Assay
- Genes, Reporter/genetics
- Humans
- Promoter Regions, Genetic/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Response Elements/genetics
- Transfection
Collapse
Affiliation(s)
- Theresa Q. Phan
- Department of Microbiology College of Biological Sciences University of California at Davis
| | - Margaret M. Jow
- Department of Microbiology College of Biological Sciences University of California at Davis
- Currently at the Department of Cell and Molecular Biology San Francisco State University
| | - Martin L. Privalsky
- Department of Microbiology College of Biological Sciences University of California at Davis
- To whom correspondence should be addressed: Address: Department of Microbiology One Shields Avenue University of California at Davis Davis, CA 95616 Phone: (530) 752-3013 Fax: (530) 752-9014
| |
Collapse
|
45
|
Figueira ACM, Lima LMTR, Lima LHF, Ranzani AT, Mule GDS, Polikarpov I. Recognition by the thyroid hormone receptor of canonical DNA response elements. Biochemistry 2010; 49:893-904. [PMID: 20025240 DOI: 10.1021/bi901282s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To shed more light on the molecular requirements for recognition of thyroid response elements (TREs) by thyroid receptors (TRs), we compared the specific aspects of DNA TRE recognition by different TR constructs. Using fluorescence anisotropy, we performed a detailed and hierarchical study of TR-TRE binding. This was done by comparing the binding affinities of three different TR constructs for four different TRE DNA elements, including palindromic sequences and direct repeats (F2, PAL, DR-1, and DR-4) as well as their interactions with nonspecific DNA sequences. The effect of MgCl(2) on suppressing of nonselective DNA binding to TR was also investigated. Furthermore, we determined the dissociation constants of the hTRbeta DBD (DNA binding domain) and hTRbeta DBD-LBD (DNA binding and ligand binding domains) for specific TREs. We found that a minimum DNA recognition peptide derived from DBD (H1TR) is sufficient for recognition and interaction with TREs, whereas scrambled DNA sequences were unrecognized. Additionally, we determined that the TR DBD binds to F2, PAL, and DR-4 with high affinity and similar K(d) values. The TR DBD-LBD recognizes all the tested TREs but binds preferentially to F2, with even higher affinity. Finally, our results demonstrate the important role played by LBDs in modulating TR-DNA binding.
Collapse
Affiliation(s)
- Ana Carolina Migliorini Figueira
- Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Saocarlense, 400, Sao Carlos, SP, Brazil 13560-970
| | | | | | | | | | | |
Collapse
|
46
|
Hubert MA, Sherritt SL, Bachurski CJ, Handwerger S. Involvement of transcription factor NR2F2 in human trophoblast differentiation. PLoS One 2010; 5:e9417. [PMID: 20195529 PMCID: PMC2828470 DOI: 10.1371/journal.pone.0009417] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 02/03/2010] [Indexed: 02/07/2023] Open
Abstract
Background During the in vitro differentiation of human villous cytotrophoblast (CTB) cells to a syncytiotrophoblast (STB) phenotype, mRNA levels for the nuclear hormone receptor NR2F2 (ARP-1, COUP-TFII) increase rapidly, reaching a peak at day 1 of differentiation that is 8.8-fold greater than that in undifferentiated CTB cells. To examine whether NR2F2 is involved in the regulation of villous CTB cell differentiation, studies were performed to determine whether NR2F2 regulates the expression of TFAP2A (AP-2α), a transcription factor that is critical for the terminal differentiation of these cells to a STB phenotype. Methodology/Primary Findings Overexpression of NR2F2 in primary cultures of human CTB cells and JEG-3 human choriocarcinoma cells induced dose-dependent increases in TFAP2A promoter activity. Conversely, siRNA mediated silencing of the NR2F2 gene in villous CTB undergoing spontaneous differentiation blocked the induction of the mRNAs for TFAP2A and several STB cell specific marker genes, including human placental lactogen (hPL), pregnancy specific glycoprotein 1 (PSG1) and corticotropin releasing hormone (CRH) by 51–59%. The induction of TFAP2A promoter activity by NR2F2 was potentiated by the nuclear hormone receptors retinoic acid receptor alpha (RARA) and retinoid X receptor alpha (RXRA). Conclusions/Significance Taken together, these results strongly suggest that NR2F2 is involved in villous CTB cell differentiation and that NR2F2 acts, at least in part, by directly activating TFAP2A gene expression and by potentiating the transactivation of TFAP2A by RARA and RXRA.
Collapse
Affiliation(s)
- Michael A. Hubert
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Endocrinology, Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Susan L. Sherritt
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Endocrinology, Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Cindy J. Bachurski
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Stuart Handwerger
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Endocrinology, Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
47
|
Wang AJ, Vainikka K, Witos J, D'Ulivo L, Cilpa G, Kovanen PT, Oörni K, Jauhiainen M, Riekkola ML. Partial filling affinity capillary electrophoresis with cationic poly(vinylpyrrolidone)-based copolymer coatings for studies on human lipoprotein-steroid interactions. Anal Biochem 2009; 399:93-101. [PMID: 19932676 DOI: 10.1016/j.ab.2009.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 11/27/2022]
Abstract
Human plasma lipoproteins have strong hydrophobic interactions with steroids and their fatty acyl derivatives such as estradiol fatty acyl esters. In this work, affinity capillary electrophoresis with the partial filling technique was applied to study the hydrophobic interactions between lipoproteins, which are nanometer-sized particles, and nonconjugated steroids. The capillaries were first rinsed with one of two novel poly(vinylpyrrolidone) (PVP)-based cationic copolymers that were strongly adsorbed onto the fused-silica surface via electrostatic interactions. This surface treatment greatly suppressed the adsorption of lipoproteins. Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) particles were then employed in the coated capillaries as pseudostationary phase in the partial filling mode. The changes in corrected migration times of steroids increased linearly with the filling time of the lipoproteins. The affinity constants between the steroids and lipoproteins were calculated, and the most hydrophobic steroid studied, progesterone, had stronger affinity than testosterone or androstenedione toward both LDL and HDL. Affinity between steroids and LDL was stronger than that between steroids and HDL. Interactions between the steroids and lipoproteins were mainly nonspecific with particle lipid components, whereas some were site specific with the apolipoproteins. The developed technique has great potential for determination of the affinity of various compounds toward lipoproteins.
Collapse
Affiliation(s)
- Ai-Jun Wang
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bonofiglio D, Cione E, Qi H, Pingitore A, Perri M, Catalano S, Vizza D, Panno ML, Genchi G, Fuqua SAW, Andò S. Combined low doses of PPARgamma and RXR ligands trigger an intrinsic apoptotic pathway in human breast cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1270-80. [PMID: 19644018 DOI: 10.2353/ajpath.2009.081078] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ligand activation of peroxisome proliferator-activated receptor (PPAR)gamma and retinoid X receptor (RXR) induces antitumor effects in cancer. We evaluated the ability of combined treatment with nanomolar levels of the PPARgamma ligand rosiglitazone (BRL) and the RXR ligand 9-cis-retinoic acid (9RA) to promote antiproliferative effects in breast cancer cells. BRL and 9RA in combination strongly inhibit of cell viability in MCF-7, MCF-7TR1, SKBR-3, and T-47D breast cancer cells, whereas MCF-10 normal breast epithelial cells are unaffected. In MCF-7 cells, combined treatment with BRL and 9RA up-regulated mRNA and protein levels of both the tumor suppressor p53 and its effector p21(WAF1/Cip1). Functional experiments indicate that the nuclear factor-kappaB site in the p53 promoter is required for the transcriptional response to BRL plus 9RA. We observed that the intrinsic apoptotic pathway in MCF-7 cells displays an ordinated sequence of events, including disruption of mitochondrial membrane potential, release of cytochrome c, strong caspase 9 activation, and, finally, DNA fragmentation. An expression vector for p53 antisense abrogated the biological effect of both ligands, which implicates involvement of p53 in PPARgamma/RXR-dependent activity in all of the human breast malignant cell lines tested. Taken together, our results suggest that multidrug regimens including a combination of PPARgamma and RXR ligands may provide a therapeutic advantage in breast cancer treatment.
Collapse
Affiliation(s)
- Daniela Bonofiglio
- Faculty of Pharmacy Nutritional and Health Sciences, University of Calabria, 87036 Arcavacata di Rende (Cosenza), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
You X, Zhang YW, Chen Y, Huang X, Xu R, Cao X, Chen J, Liu Y, Zhang X, Xu H. Retinoid X receptor-alpha mediates (R )-flurbiprofen's effect on the levels of Alzheimer's beta-amyloid. J Neurochem 2009; 111:142-9. [PMID: 19659691 DOI: 10.1111/j.1471-4159.2009.06312.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by the formation of extracellular senile plaques in the brain, whose major component is a small peptide called beta-amyloid (Abeta). Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) has been found beneficial for AD and several reports suggest that NSAIDs reduce the generation of Abeta, especially the more amyloidogenic form Abeta42. However, the exact mechanism underlying NSAIDs' effect on AD risk remains largely inconclusive and all clinical trials using NSAIDs for AD treatment show negative results so far. Recent studies have shown that some NSAIDs can bind to certain nuclear receptors, suggesting that nuclear receptors may be involved in NSAID's effect on AD risk. Here we find that (R)-flurbiprofen, the R-enantiomer of the racemate NSAID flurbiprofen, can significantly reduce Abeta secretion, but at the same time, increases the level of intracellular Abeta. In addition, we find that a nuclear receptor, retinoid X receptor alpha (RXRalpha), can regulate Abeta generation and that down-regulation of RXRalpha significantly increases Abeta secretion. We also show that (R)-flurbiprofen can interfere with the interaction between RXRalpha and 9-cis-retinoid acid, and that 9-cis-retinoid acid decreases (R)-flurbiprofen's reduction of Abeta secretion. Moreover, the modulation effect of (R)-flurbiprofen on Abeta is abolished upon RXRalpha down-regulation. Together, these results suggest that RXRalpha can regulate Abeta generation and is also required for (R)-flurbiprofen-mediated Abeta generation.
Collapse
Affiliation(s)
- Xiaoqing You
- Institute for Biomedical Research and School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Han YH, Zhou H, Kim JH, Yan TD, Lee KH, Wu H, Lin F, Lu N, Liu J, Zeng JZ, Zhang XK. A unique cytoplasmic localization of retinoic acid receptor-gamma and its regulations. J Biol Chem 2009; 284:18503-14. [PMID: 19416983 PMCID: PMC2709335 DOI: 10.1074/jbc.m109.007708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/13/2009] [Indexed: 11/06/2022] Open
Abstract
Recent evidence suggests that extranuclear action of retinoid receptors is involved in mediating the pleiotropic effects of retinoids. However, whether they reside in the cytoplasm remains elusive. Here, we showed that retinoic acid receptor-gamma (RARgamma) was cytoplasmic in confluent cells, or when cells were released from serum depletion or treated with growth factors. In studying the regulation of RARgamma subcellular localization, we observed that ectopically overexpressed RARgamma was mainly cytoplasmic irrespective of serum concentration and cell density. The cytoplasmic retention of RARgamma was inhibited by ligand retinoic acid (RA). In addition, coexpression of retinoid X receptor-alpha (RXRalpha) resulted in nuclear localization of RARgamma through their heterodimerization. Mutagenesis studies revealed that a C-terminal fragment of RXRalpha potently prevents RA-induced RARgamma nuclear localization and transcriptional function. Furthermore, our results showed that the cytoplasmic retention of RARgamma was due to the presence of its unique N-terminal A/B domain, which was subject to regulation by p38 MAPK-mediated phosphorylation. Deletion or mutation of the N-terminal A/B domain largely impaired its cytoplasmic localization. Together, our data demonstrate that the subcellular localization of RARgamma is regulated by complex interactions among ligand binding, receptor phosphorylation, and receptor dimerizations.
Collapse
Affiliation(s)
- Young-Hoon Han
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
- the Divsion of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea, and
| | - Hu Zhou
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
| | - Jin-Hee Kim
- the Divsion of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea, and
| | - Ting-dong Yan
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Kee-Ho Lee
- the Divsion of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea, and
| | - Hua Wu
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Feng Lin
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
| | - Na Lu
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Jie Liu
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Jin-zhang Zeng
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| | - Xiao-kun Zhang
- From The Burnham Institute for Medical Research, Cancer Center, La Jolla, California 92037
- the Institute for Biomedical Research, Xiamen University, Xiamen 361005, China
| |
Collapse
|