1
|
Zhang W, Palfini VL, Wu Y, Ding X, Melton AJ, Gao Y, Ogawa Y, Rasband MN. A hierarchy of PDZ domain scaffolding proteins clusters the Kv1 K + channel protein complex at the axon initial segment. SCIENCE ADVANCES 2025; 11:eadv1281. [PMID: 40408471 PMCID: PMC12101511 DOI: 10.1126/sciadv.adv1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/18/2025] [Indexed: 05/25/2025]
Abstract
Action potentials are initiated and modulated at the axon initial segment (AIS) by highly clustered ion channels. Voltage-gated Kv1 potassium channels underlie most outward AIS K+ current. AIS Kv1 channels exist in a large protein complex including ADAM22, Caspr2, and LGI1. However, their clustering mechanisms remain unknown. Because Kv1 channels have a highly conserved PDZ-binding motif, we used CRISPR-based genome editing to screen 18 PDZ domain-containing proteins identified in our previous AIS proximity proteome for their AIS localization. Among these, we found that the scaffolding proteins SCRIB and PSD93 are highly enriched at the AIS. Using CRISPR-mediated knockout, cell surface clustering assays, and coimmunoprecipitation, we show that SCRIB and PSD93 bind to and are required for AIS Kv1 channel clustering, whereas SCRIB links the AIS Kv1 channel protein complex to the master AIS scaffolding protein AnkyrinG. These results define a hierarchy of scaffolding proteins that combine to cluster AIS Kv1 channels.
Collapse
Affiliation(s)
| | | | - Yu Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allison J. Melton
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yudong Gao
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Ma L, Sun D, Wen S, Yuan J, Li J, Tan X, Cao S. PSD-95 Protein: A Promising Therapeutic Target in Chronic Pain. Mol Neurobiol 2025; 62:3361-3375. [PMID: 39285025 DOI: 10.1007/s12035-024-04485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 09/04/2024] [Indexed: 02/04/2025]
Abstract
Chronic pain, as a social public health problem, has a serious impact on the quality of patients' life. Currently, the main drugs used to treat chronic pain are opioids, antipyretic, and nonsteroidal anti-inflammatory drugs (NSAIDs). But the obvious side effects limit their use, so it is urgent to find new therapeutic targets. Postsynaptic density (PSD)-95 protein plays an important role in the occurrence and development of chronic pain. The over-expression of the PSD-95 protein and its interaction with other proteins are closely related to the chronic pain. Besides, the PSD-95-related drugs that inhibit the expression of PSD-95 as well as the interaction with other protein have been proved to treat chronic pain significantly. In conclusion, although more deep studies are needed in the future, these studies indicate that PSD-95 and the related proteins, such as NMDA receptor (NMDAR) subunit 2B (GluN2B), AMPA receptor (AMPAR), calmodulin-dependent protein kinase II (CaMKII), 5-hydroxytryptamine 2A receptor (5-HT2AR), and neuronal nitric oxide synthase (nNOS), are the promising therapeutic targets for chronic pain.
Collapse
Affiliation(s)
- Lulin Ma
- Department of Pain Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dongdong Sun
- Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Song Wen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Jie Yuan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Jing Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Xinran Tan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, Guizhou, China
| | - Song Cao
- Department of Pain Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
| |
Collapse
|
3
|
Ramirez-Franco J, Debreux K, Sangiardi M, Belghazi M, Kim Y, Lee SH, Lévêque C, Seagar M, El Far O. The downregulation of Kv 1 channels in Lgi1 -/-mice is accompanied by a profound modification of its interactome and a parallel decrease in Kv 2 channels. Neurobiol Dis 2024; 196:106513. [PMID: 38663634 DOI: 10.1016/j.nbd.2024.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
In animal models of LGI1-dependent autosomal dominant lateral temporal lobe epilepsy, Kv1 channels are downregulated, suggesting their crucial involvement in epileptogenesis. The molecular basis of Kv1 channel-downregulation in LGI1 knock-out mice has not been elucidated and how the absence of this extracellular protein induces an important modification in the expression of Kv1 remains unknown. In this study we analyse by immunofluorescence the modifications in neuronal Kv1.1 and Kv1.2 distribution throughout the hippocampal formation of LGI1 knock-out mice. We show that Kv1 downregulation is not restricted to the axonal compartment, but also takes place in the somatodendritic region and is accompanied by a drastic decrease in Kv2 expression levels. Moreover, we find that the downregulation of these Kv channels is associated with a marked increase in bursting patterns. Finally, mass spectrometry uncovered key modifications in the Kv1 interactome that highlight the epileptogenic implication of Kv1 downregulation in LGI1 knock-out animals.
Collapse
Affiliation(s)
- Jorge Ramirez-Franco
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France.
| | - Kévin Debreux
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Marion Sangiardi
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Maya Belghazi
- Marseille Protéomique (MaP), Plateforme Protéomique IMM, CNRS FR3479, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Yujin Kim
- Department of Physiology, Cell Physiology Lab, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Suk-Ho Lee
- Department of Physiology, Cell Physiology Lab, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| | - Christian Lévêque
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Michael Seagar
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France
| | - Oussama El Far
- INSERM UMR_S 1072, Unité de Neurobiologie des canaux Ioniques et de la Synapse, Aix-Marseille Université, 13015 Marseille, France.
| |
Collapse
|
4
|
Talucci I, Arlt FA, Kreissner KO, Nasouti M, Wiessler AL, Miske R, Mindorf S, Dettmann I, Moniri M, Bayer M, Broegger Christensen P, Ayzenberg I, Kraft A, Endres M, Komorowski L, Villmann C, Doppler K, Prüss H, Maric HM. Molecular dissection of an immunodominant epitope in K v1.2-exclusive autoimmunity. Front Immunol 2024; 15:1329013. [PMID: 38665908 PMCID: PMC11043588 DOI: 10.3389/fimmu.2024.1329013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Subgroups of autoantibodies directed against voltage-gated potassium channel (Kv) complex components have been associated with immunotherapy-responsive clinical syndromes. The high prevalence and the role of autoantibodies directly binding Kv remain, however, controversial. Our objective was to determine Kv autoantibody binding requirements and to clarify their contribution to the observed immune response. Methods Binding epitopes were studied in sera (n = 36) and cerebrospinal fluid (CSF) (n = 12) from a patient cohort positive for Kv1.2 but negative for 32 common neurological autoantigens and controls (sera n = 18 and CSF n = 5) by phospho and deep mutational scans. Autoantibody specificity and contribution to the observed immune response were resolved on recombinant cells, cerebellum slices, and nerve fibers. Results 83% of the patients (30/36) within the studied cohort shared one out of the two major binding epitopes with Kv1.2-3 reactivity. Eleven percent (4/36) of the serum samples showed no binding. Fingerprinting resolved close to identical sequence requirements for both shared epitopes. Kv autoantibody response is directed against juxtaparanodal regions in peripheral nerves and the axon initial segment in central nervous system neurons and exclusively mediated by the shared epitopes. Discussion Systematic mapping revealed two shared autoimmune responses, with one dominant Kv1.2-3 autoantibody epitope being unexpectedly prevalent. The conservation of the molecular binding requirements among these patients indicates a uniform autoantibody repertoire with monospecific reactivity. The enhanced sensitivity of the epitope-based (10/12) compared with that of the cell-based detection (7/12) highlights its use for detection. The determined immunodominant epitope is also the primary immune response visible in tissue, suggesting a diagnostic significance and a specific value for routine screening.
Collapse
Affiliation(s)
- Ivan Talucci
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Friederike A. Arlt
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Kai O. Kreissner
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
| | - Mahoor Nasouti
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, Berlin, Germany
| | - Anna-Lena Wiessler
- Institute for Clinical Neurobiology, University of Wuerzburg, Würzburg, Germany
| | - Ramona Miske
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Swantje Mindorf
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Inga Dettmann
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Mehrnaz Moniri
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
| | - Markus Bayer
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
| | | | - Ilya Ayzenberg
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Andrea Kraft
- Department of Neurology, Hospital Martha-Maria, Halle, Germany
| | - Matthias Endres
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Klinik und Hochschulambulanz für Neurologie, Charité-Universitätsmedizin, Berlin, Germany
- Center for Stroke Research, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- German Center for Mental Health (DZPG), Berlin, Germany
| | - Lars Komorowski
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University of Wuerzburg, Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Hans M. Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging; University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Miyazaki Y, Otsuka T, Yamagata Y, Endo T, Sanbo M, Sano H, Kobayashi K, Inahashi H, Kornau HC, Schmitz D, Prüss H, Meijer D, Hirabayashi M, Fukata Y, Fukata M. Oligodendrocyte-derived LGI3 and its receptor ADAM23 organize juxtaparanodal Kv1 channel clustering for short-term synaptic plasticity. Cell Rep 2024; 43:113634. [PMID: 38194969 PMCID: PMC10828548 DOI: 10.1016/j.celrep.2023.113634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Neurodevelopmental disorders, such as intellectual disability (ID), epilepsy, and autism, involve altered synaptic transmission and plasticity. Functional characterization of their associated genes is vital for understanding physio-pathological brain functions. LGI3 is a recently recognized ID-associated gene encoding a secretory protein related to an epilepsy-gene product, LGI1. Here, we find that LGI3 is uniquely secreted from oligodendrocytes in the brain and enriched at juxtaparanodes of myelinated axons, forming nanoscale subclusters. Proteomic analysis using epitope-tagged Lgi3 knockin mice shows that LGI3 uses ADAM23 as a receptor and selectively co-assembles with Kv1 channels. A lack of Lgi3 in mice disrupts juxtaparanodal clustering of ADAM23 and Kv1 channels and suppresses Kv1-channel-mediated short-term synaptic plasticity. Collectively, this study identifies an extracellular organizer of juxtaparanodal Kv1 channel clustering for finely tuned synaptic transmission. Given the defective secretion of the LGI3 missense variant, we propose a molecular pathway, the juxtaparanodal LGI3-ADAM23-Kv1 channel, for understanding neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuri Miyazaki
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Otsuka
- Section of Cellular Electrophysiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Yoko Yamagata
- Section of Multilayer Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | | | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hiromi Sano
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kenta Kobayashi
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan; Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Hiroki Inahashi
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Neuroscience Research Center (NWFZ), Cluster NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Neuroscience Research Center (NWFZ), Cluster NeuroCure, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Helmholtz Innovation Lab BaoBab (Brain Antibody-omics and B-cell Lab), Berlin, Germany; Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dies Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| | - Masumi Hirabayashi
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan; Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Division of Molecular and Cellular Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Masaki Fukata
- Division of Neuropharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
6
|
Ito H, Morishita R, Nagata KI. Simple Method for the Preparation of Postsynaptic Density Fraction from Mouse Brain. Methods Mol Biol 2024; 2794:71-78. [PMID: 38630221 DOI: 10.1007/978-1-0716-3810-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Postsynaptic density (PSD) is a morphologically and functionally specialized postsynaptic membrane structure of excitatory synapses. It contains hundreds of proteins such as neurotransmitter receptors, adhesion molecules, cytoskeletal proteins, and signaling enzymes. The study of the molecular architecture of the PSD is one of the most intriguing issues in neuroscience research. The isolation of the PSD from the brain of an animal is necessary for subsequent biochemical and morphological analyses. Many laboratories have developed methods to isolate PSD from the animal brain. In this chapter, we present a simple method to isolate PSD from the mouse brain using sucrose density gradient-based purification of synaptosomes followed by detergent extraction.
Collapse
Affiliation(s)
- Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Aichi, Japan.
| | - Rika Morishita
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Aichi, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Aichi, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Chen Y, Karaca E, Robin NH, Goodloe D, Al-Beshri A, Dean SJ, Hurst ACE, Carroll AJ, Mikhail FM. DLG2 intragenic exonic deletions reinforce the link to neurodevelopmental disorders and suggest a potential association with congenital anomalies and dysmorphism. Genet Med 2024; 26:101010. [PMID: 37860969 DOI: 10.1016/j.gim.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
PURPOSE Multiple studies suggest an association between DLG2 and neurodevelopmental disorders and indicate the haploinsufficiency of this gene; however, few cases have been thoroughly described. We performed additional studies to confirm this clinical association and DLG2 haploinsufficiency. METHODS Chromosomal microarray analysis was performed on 11,107 patients at the Cytogenetics Laboratory at the University of Alabama at Birmingham. The Database of Genomic Variants-Gold Standard Variants and the Genome Aggregation Database were selected for the association analysis. Fifty-nine patients from the literature and DECIPHER, all having DLG2 intragenic deletions, were included for comprehensive analysis of the distribution of these deletions. RESULTS A total of 13 patients with DLG2 intragenic deletions, from 10 families in our cohort, were identified. Nine of 10 probands presented with clinical features of neurodevelopmental disorders. Congenital anomalies and dysmorphism were common in our cohort of patients. Association analysis showed that the frequency of DLG2 deletions in our cohort is significantly higher than those in the Database of Genomic Variants-Gold Standard Variants and the Genome Aggregation Database. Most of DLG2 intragenic deletions identified in 69 unrelated patients from our cohort, the literature, and DECIPHER map to the 5' region of the gene, with a hotspot centered around HPin7, exon 8, and HPin8. CONCLUSION Our findings reinforce the link between DLG2 intragenic deletions and neurodevelopmental disorders, strongly support the haploinsufficiency of this gene, and indicate that these deletions might also have an association with congenital anomalies and dysmorphism.
Collapse
Affiliation(s)
- Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Ender Karaca
- Department of Pathology, Baylor University Medical Center, Dallas, TX; Texas A&M School of Medicine, Dallas, TX
| | - Nathaniel H Robin
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Dana Goodloe
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Ali Al-Beshri
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - S Joy Dean
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
8
|
McClatchy DB, Powell SB, Yates JR. In vivo mapping of protein-protein interactions of schizophrenia risk factors generates an interconnected disease network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571320. [PMID: 38168169 PMCID: PMC10759996 DOI: 10.1101/2023.12.12.571320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Genetic analyses of Schizophrenia (SCZ) patients have identified thousands of risk factors. In silico protein-protein interaction (PPI) network analysis has provided strong evidence that disrupted PPI networks underlie SCZ pathogenesis. In this study, we performed in vivo PPI analysis of several SCZ risk factors in the rodent brain. Using endogenous antibody immunoprecipitations coupled to mass spectrometry (MS) analysis, we constructed a SCZ network comprising 1612 unique PPI with a 5% FDR. Over 90% of the PPI were novel, reflecting the lack of previous PPI MS studies in brain tissue. Our SCZ PPI network was enriched with known SCZ risk factors, which supports the hypothesis that an accumulation of disturbances in selected PPI networks underlies SCZ. We used Stable Isotope Labeling in Mammals (SILAM) to quantitate phencyclidine (PCP) perturbations in the SCZ network and found that PCP weakened most PPI but also led to some enhanced or new PPI. These findings demonstrate that quantitating PPI in perturbed biological states can reveal alterations to network biology.
Collapse
|
9
|
Griesius S, Waldron S, Kamenish KA, Cherbanich N, Wilkinson LS, Thomas KL, Hall J, Mellor JR, Dwyer DM, Robinson ESJ. A mild impairment in reversal learning in a bowl-digging substrate deterministic task but not other cognitive tests in the Dlg2+/- rat model of genetic risk for psychiatric disorder. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12865. [PMID: 37705179 PMCID: PMC10733576 DOI: 10.1111/gbb.12865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Variations in the Dlg2 gene have been linked to increased risk for psychiatric disorders, including schizophrenia, autism spectrum disorders, intellectual disability, bipolar disorder, attention deficit hyperactivity disorder, and pubertal disorders. Recent studies have reported disrupted brain circuit function and behaviour in models of Dlg2 knockout and haploinsufficiency. Specifically, deficits in hippocampal synaptic plasticity were found in heterozygous Dlg2+/- rats suggesting impacts on hippocampal dependent learning and cognitive flexibility. Here, we tested these predicted effects with a behavioural characterisation of the heterozygous Dlg2+/- rat model. Dlg2+/- rats exhibited a specific, mild impairment in reversal learning in a substrate deterministic bowl-digging reversal learning task. The performance of Dlg2+/- rats in other bowl digging task, visual discrimination and reversal, novel object preference, novel location preference, spontaneous alternation, modified progressive ratio, and novelty-suppressed feeding test were not impaired. These findings suggest that despite altered brain circuit function, behaviour across different domains is relatively intact in Dlg2+/- rats, with the deficits being specific to only one test of cognitive flexibility. The specific behavioural phenotype seen in this Dlg2+/- model may capture features of the clinical presentation associated with variation in the Dlg2 gene.
Collapse
Affiliation(s)
- Simonas Griesius
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Sophie Waldron
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of PsychologyCardiffUK
| | - Katie A. Kamenish
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Nick Cherbanich
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Lawrence S. Wilkinson
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of PsychologyCardiffUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Schools of Medicine and Genetics and Genomics, Schools of Medicine and PsychologyCardiffUK
| | - Kerrie L. Thomas
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of Medicine and PsychologyCardiffUK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Schools of Medicine and Genetics and Genomics, Schools of Medicine and PsychologyCardiffUK
- Department of Medicine and PsychologyCardiffUK
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| | - Dominic M. Dwyer
- Neuroscience and Mental Health Research Institute, PsychologyCardiffUK
- Department of PsychologyCardiffUK
| | - Emma S. J. Robinson
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University WalkBristolUK
| |
Collapse
|
10
|
Nsasra E, Dahan I, Eichler J, Yifrach O. It's Time for Entropic Clocks: The Roles of Random Chain Protein Sequences in Timing Ion Channel Processes Underlying Action Potential Properties. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1351. [PMID: 37761650 PMCID: PMC10527868 DOI: 10.3390/e25091351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
In recent years, it has become clear that intrinsically disordered protein segments play diverse functional roles in many cellular processes, thus leading to a reassessment of the classical structure-function paradigm. One class of intrinsically disordered protein segments is entropic clocks, corresponding to unstructured random protein chains involved in timing cellular processes. Such clocks were shown to modulate ion channel processes underlying action potential generation, propagation, and transmission. In this review, we survey the role of entropic clocks in timing intra- and inter-molecular binding events of voltage-activated potassium channels involved in gating and clustering processes, respectively, and where both are known to occur according to a similar 'ball and chain' mechanism. We begin by delineating the thermodynamic and timing signatures of a 'ball and chain'-based binding mechanism involving entropic clocks, followed by a detailed analysis of the use of such a mechanism in the prototypical Shaker voltage-activated K+ channel model protein, with particular emphasis on ion channel clustering. We demonstrate how 'chain'-level alternative splicing of the Kv channel gene modulates entropic clock-based 'ball and chain' inactivation and clustering channel functions. As such, the Kv channel model system exemplifies how linkage between alternative splicing and intrinsic disorder enables the functional diversity underlying changes in electrical signaling.
Collapse
Affiliation(s)
| | | | | | - Ofer Yifrach
- Department of Life Sciences, School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel; (E.N.); (J.E.)
| |
Collapse
|
11
|
Almeida SM, Ivantsiv S, Niibori R, Dunham WH, Green BA, Zhao L, Gingras AC, Cordes SP. An interaction between OTULIN and SCRIB uncovers roles for linear ubiquitination in planar cell polarity. Dis Model Mech 2023; 16:dmm049762. [PMID: 37589075 PMCID: PMC10445738 DOI: 10.1242/dmm.049762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
Planar cell polarity (PCP) plays critical roles in developmental and homeostatic processes. Membrane presentation of PCP complexes containing Van Gogh-like (VANGL) transmembrane proteins is central to PCP and can be directed by the scaffold protein scribble (SCRIB). The role atypical linear ubiquitin (Met1-Ub) chains might play in PCP is unknown. Here, HEK293 cell-based interactomic analyses of the Met1-Ub deubiquitinase OTULIN revealed that OTULIN can interact with SCRIB. Moreover, Met1-Ub chains associated with VANGL2 and PRICKLE1, but not SCRIB, can direct VANGL2 surface presentation. Mouse embryos lacking Otulin showed variable neural tube malformations, including rare open neural tubes, a deficit associated with PCP disruption in mice. In Madin-Darby canine kidney cells, in which the enrichment of VANGL2-GFP proteins at cell-cell contacts represents activated PCP complexes, endogenous OTULIN was recruited to these sites. In the human MDA-MB-231 breast cancer cell model, OTULIN loss caused deficits in Wnt5a-induced filopodia extension and trafficking of transfected HA-VANGL2. Taken together, these findings support a role for linear (de)ubiquitination in PCP signaling. The association of Met1-Ub chains with PCP complex components offers new opportunities for integrating PCP signaling with OTULIN-dependent immune and inflammatory pathways.
Collapse
Affiliation(s)
- Stephanie M. Almeida
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sofiia Ivantsiv
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
| | - Wade H. Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brooke A. Green
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liang Zhao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabine P. Cordes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Ave, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Liu Y, Gao Q, Feng X, Chen G, Jiang X, Chen D, Yang Z. Aquaporin 9 is involved in CRC metastasis through DVL2-dependent Wnt/β-catenin signaling activation. Gastroenterol Rep (Oxf) 2023; 11:goad033. [PMID: 37360194 PMCID: PMC10287913 DOI: 10.1093/gastro/goad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Background Aquaporin 9 (AQP9) is permeable to water or other small molecules, and plays an important role in various cancers. We previously found that AQP9 was related to the efficacy of chemotherapy in patients with colorectal cancer (CRC). This study aimed to identify the role and regulatory mechanism of AQP9 in CRC metastasis. Methods The clinical significance of AQP9 was analysed by using bioinformatics and tissue microarray. Transcriptome sequencing, Dual-Luciferase Reporter Assay, Biacore, and co-immunoprecipitation were employed to demonstrate the regulatory mechanism of AQP9 in CRC. The relationship between AQP9 and CRC metastasis was verified in vitro and in vivo by using real-time cell analysis assay, high content screening, and liver metastasis models of nude mice. Results We found that AQP9 was highly expressed in metastatic CRC. AQP9 overexpression reduced cell roundness and enhanced cell motility in CRC. We further showed that AQP9 interacted with Dishevelled 2 (DVL2) via the C-terminal SVIM motif, resulting in DVL2 stabilization and the Wnt/β-catenin pathway activation. Additionally, we identified the E3 ligase neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) as a modulator regulating the ubiquitination and degradation of AQP9. Conclusions Collectively, our study revealed the important role of AQP9 in regulating DVL2 stabilization and Wnt/β-catenin signaling to promote CRC metastasis. Targeting the NEDD4L-AQP9-DVL2 axis might have therapeutic usefulness in metastatic CRC treatment.
Collapse
Affiliation(s)
| | | | | | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Xuefei Jiang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong, P. R. China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Daici Chen
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong, P. R. China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zihuan Yang
- Corresponding author. Department of Clinical Laboratory, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China. Tel.: +86-20-38455491;
| |
Collapse
|
13
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
14
|
Mocci I, Casu MA, Sogos V, Liscia A, Angius R, Cadeddu F, Fanti M, Muroni P, Talani G, Diana A, Collu M, Setzu MD. Effects of memantine on mania-like phenotypes exhibited by Drosophila Shaker mutants. CNS Neurosci Ther 2023. [PMID: 36942502 DOI: 10.1111/cns.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Increased glutamate levels and electrolytic fluctuations have been observed in acutely manic patients. Despite some efficacy of the non-competitive NMDA receptor antagonist memantine (Mem), such as antidepressant-like and mood-stabilizer drugs in clinical studies, its specific mechanisms of action are still uncertain. The present study aims to better characterize the Drosophila melanogaster fly Shaker mutants (SH), as a translational model of manic episodes within bipolar disorder in humans, and to investigate the potential anti-manic properties of Mem. METHODS AND RESULTS Our findings showed typical behavioral abnormalities in SH, which mirrored with the overexpression of NMDAR-NR1 protein subunit, matched well to glutamate up-regulation. Such molecular features were associated to a significant reduction of SH brain volume in comparison to Wild Type strain flies (WT). Here we report on the ability of Mem treatment to ameliorate behavioral aberrations of SH (similar to that of Lithium), and its ability to reduce NMDAR-NR1 over-expression. CONCLUSIONS Our results show the involvement of the glutamatergic system in the SH, given the interaction between the Shaker channel and the NMDA receptor, suggesting this model as a promising tool for studying the neurobiology of bipolar disorders. Moreover, our results show Mem as a potential disease-modifying therapy, providing insight on new mechanisms of action.
Collapse
Affiliation(s)
- Ignazia Mocci
- Institute of Translational Pharmacology, National Research Council, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Maria Antonietta Casu
- Institute of Translational Pharmacology, National Research Council, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Rossella Angius
- Unit of Biomedical Research Support, NMR Laboratory and Bioanalytical Technologies, Sardegna Ricerche, Science and Technology Park of Sardinia, Cagliari, Italy
| | - Francesca Cadeddu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maura Fanti
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Muroni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council, Monserrato, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Collu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Dolores Setzu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
15
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
16
|
Nsasra E, Peretz G, Orr I, Yifrach O. Regulating Shaker Kv channel clustering by hetero-oligomerization. Front Mol Biosci 2023; 9:1050942. [PMID: 36699695 PMCID: PMC9868669 DOI: 10.3389/fmolb.2022.1050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Scaffold protein-mediated voltage-dependent ion channel clustering at unique membrane sites, such as nodes of Ranvier or the post-synaptic density plays an important role in determining action potential properties and information coding. Yet, the mechanism(s) by which scaffold protein-ion channel interactions lead to channel clustering and how cluster ion channel density is regulated are mostly unknown. This molecular-cellular gap in understanding channel clustering can be bridged in the case of the prototypical Shaker voltage-activated potassium channel (Kv), as the mechanism underlying the interaction of this channel with its PSD-95 scaffold protein partner is known. According to this mechanism, changes in the length of the intrinsically disordered channel C-terminal chain, brought about by alternative splicing to yield the short A and long B chain subunit variants, dictate affinity to PSD-95 and further controls cluster homo-tetrameric Kv channel density. These results raise the hypothesis that heteromeric subunit assembly serves as a means to regulate Kv channel clustering. Since both clustering variants are expressed in similar fly tissues, it is reasonable to assume that hetero-tetrameric channels carrying different numbers of high- (A) and low-affinity (B) subunits could assemble, thereby giving rise to distinct cluster Kv channel densities. Here, we tested this hypothesis using high-resolution microscopy, combined with quantitative clustering analysis. Our results reveal that the A and B clustering variants can indeed assemble to form heteromeric channels and that controlling the number of the high-affinity A subunits within the hetero-oligomer modulates cluster Kv channel density. The implications of these findings for electrical signaling are discussed.
Collapse
|
17
|
Rathod SB, Prajapati PB, Pal R, Mansuri MF. AMPA GluA2 subunit competitive inhibitors for PICK1 PDZ domain: Pharmacophore-based virtual screening, molecular docking, molecular dynamics simulation, and ADME studies. J Biomol Struct Dyn 2023; 41:336-351. [PMID: 34809533 DOI: 10.1080/07391102.2021.2006086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PICK1 (Protein interacting with C kinase-1) plays a key role in the regulation of intracellular trafficking of AMPA GluA2 subunit that is linked with synaptic plasticity. PICK1 is a scaffolding protein and binds numerous proteins through its PDZ domain. Research showed that synaptic plasticity is altered upon disrupting the GluA2-PDZ interactions. Inhibiting PDZ and GluA2 binding lead to beneficial effects in the cure of neurological diseases thus, targeting PDZ domain is proposed as a novel therapeutic target in such diseases. For this, various classes of synthetic peptides were tested. Though small organic molecules have been utilized to prevent these interactions, the number of such molecules is inadequate. Hence, in this study, ten molecular libraries containing large number of molecules were screened against the PDZ domain using pharmacophore-based virtual screening to find the best hits for the PDZ domain. Molecular docking and molecular dynamics simulation studies revealed that Hit_II is a potent inhibitor for the PDZ domain and confirm the allosteric nature of Hit_III. Additionally, ADME analysis suggests the drug-likeness of both Hit_II and Hit_III. This study suggests that tested hits may have potency against the PDZ domain and can be considered effective to treat neurological disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shravan B Rathod
- Department of Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat, India
| | - Pravin B Prajapati
- Department of Chemistry, Sheth M. N. Science College, Patan, Gujarat, India
| | - Ranjan Pal
- Department of Medical Genetics, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mohmedyasin F Mansuri
- Department of Microbiology, Smt. S. M. Panchal Science College, Talod, Gujarat, India
| |
Collapse
|
18
|
Bai Y, Wang H, Li C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells 2022; 11:cells11233815. [PMID: 36497075 PMCID: PMC9740047 DOI: 10.3390/cells11233815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Excitatory (glutamatergic) synaptic transmission underlies many aspects of brain activity and the genesis of normal human behavior. The postsynaptic scaffolding proteins SAP90/PSD-95-associated proteins (SAPAPs), which are abundant components of the postsynaptic density (PSD) at excitatory synapses, play critical roles in synaptic structure, formation, development, plasticity, and signaling. The convergence of human genetic data with recent in vitro and in vivo animal model data indicates that mutations in the genes encoding SAPAP1-4 are associated with neurological and psychiatric disorders, and that dysfunction of SAPAP scaffolding proteins may contribute to the pathogenesis of various neuropsychiatric disorders, such as schizophrenia, autism spectrum disorders, obsessive compulsive disorders, Alzheimer's disease, and bipolar disorder. Here, we review recent major genetic, epigenetic, molecular, behavioral, electrophysiological, and circuitry studies that have advanced our knowledge by clarifying the roles of SAPAP proteins at the synapses, providing new insights into the mechanistic links to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yunxia Bai
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Huimin Wang
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Chunxia Li
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- Correspondence:
| |
Collapse
|
19
|
Excoffon KJDA, Avila CL, Alghamri MS, Kolawole AO. The magic of MAGI-1: A scaffolding protein with multi signalosomes and functional plasticity. Biol Cell 2022; 114:185-198. [PMID: 35389514 DOI: 10.1111/boc.202200014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
MAGI-1 is a critical cellular scaffolding protein with over 110 different cellular and microbial protein interactors. Since the discovery of MAGI-1 in 1997, MAGI-1 has been implicated in diverse cellular functions such as polarity, cell-cell communication, neurological processes, kidney function, and a host of diseases including cancer and microbial infection. Additionally, MAGI-1 has undergone nomenclature changes in response to the discovery of an additional PDZ domain, leading to lack of continuity in the literature. We address the nomenclature of MAGI-1 as well as summarize many of the critical functions of the known interactions. Given the importance of many of the interactors, such as human papillomavirus E6, the Coxsackievirus and adenovirus receptor (CAR), and PTEN, the enhancement or disruption of MAGI-based interactions has the potential to affect cellular functions that can potentially be harnessed as a therapeutic strategy for a variety of diseases.
Collapse
Affiliation(s)
| | - Christina L Avila
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Mahmoud S Alghamri
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Abimbola O Kolawole
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| |
Collapse
|
20
|
McGuire H, Blunck R. Studying KcsA Channel Clustering Using Single Channel Voltage-Clamp Fluorescence Imaging*. Front Physiol 2022; 13:863375. [PMID: 35721536 PMCID: PMC9204084 DOI: 10.3389/fphys.2022.863375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Oligomerization and complex formation play a key role for many membrane proteins and has been described to influence ion channel function in both neurons and the heart. In this study, we observed clustering of single KcsA channels in planar lipid bilayer using single molecule fluorescence, while simultaneously measuring single channel currents. Clustering coincided with cooperative opening of KcsA. We demonstrate that clustering was not caused by direct protein-protein interactions or hydrophobic mismatch with the lipid environment, as suggested earlier, but was mediated via microdomains induced by the channel in the lipid matrix. We found that single channel activity of KcsA requires conically-shaped lipids in the lamellar liquid-crystalline (Lα) phase, and the need for a negative spontaneous curvature seem to lead to the deformations in the membrane that cause the clustering. The method introduced here will be applicable to follow oligomerization of a wide range of membrane proteins.
Collapse
Affiliation(s)
- Hugo McGuire
- Department of Physics, Université de Montréal, Montréal, QC, Canada
| | - Rikard Blunck
- Department of Physics, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
- Interdisciplinary Research Center on Brain and Learning (CIRCA), Université de Montréal, Montréal, QC, Canada
- *Correspondence: Rikard Blunck,
| |
Collapse
|
21
|
Chen J, Tang LY, Powell ME, Jordan JM, Baugh LR. Genetic analysis of daf-18/PTEN missense mutants for starvation resistance and developmental regulation during Caenorhabditis elegans L1 arrest. G3 (BETHESDA, MD.) 2022; 12:jkac092. [PMID: 35451480 PMCID: PMC9157142 DOI: 10.1093/g3journal/jkac092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
Mutations in the well-known tumor suppressor PTEN are observed in many cancers. PTEN is a dual-specificity phosphatase that harbors lipid and protein-phosphatase activities. The Caenorhabditis elegans PTEN ortholog is daf-18, which has pleiotropic effects on dauer formation, aging, starvation resistance, and development. Function of 3 daf-18 point-mutants, G174E, D137A, and C169S, had previously been investigated using high-copy transgenes in a daf-18 null background. These alleles were generated based on their mammalian counterparts and were treated as though they specifically disrupt lipid or protein-phosphatase activity, or both, respectively. Here, we investigated these alleles using genome editing of endogenous daf-18. We assayed 3 traits relevant to L1 starvation resistance, and we show that each point mutant is essentially as starvation-sensitive as a daf-18 null mutant. Furthermore, we show that G174E and D137A do not complement each other, suggesting overlapping effects on lipid and protein-phosphatase activity. We also show that each allele has strong effects on nucleocytoplasmic localization of DAF-16/FoxO and dauer formation, both of which are regulated by PI3K signaling, similar to a daf-18 null allele. In addition, each allele also disrupts M-cell quiescence during L1 starvation, though D137A has a weaker effect than the other alleles, including the null. Our results confirm that daf-18/PTEN is important for promoting starvation resistance and developmental arrest and that it is a potent regulator of PI3K signaling, and they highlight challenges of using genetic analysis to link specific DAF-18/PTEN enzymatic activities to particular phenotypes.
Collapse
Affiliation(s)
- Jingxian Chen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Linda Y Tang
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Maya E Powell
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - James M Jordan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
22
|
Modulating binding affinity, specificity and configurations by multivalent interactions. Biophys J 2022; 121:1868-1880. [PMID: 35450827 DOI: 10.1016/j.bpj.2022.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Biological functions of proteins rely on their specific interactions with binding partners. Many proteins contain multiple domains, which can bind to their targets that often have more than one binding site, resulting in multivalent interactions. While it has been shown that multivalent interactions play an crucial role in modulating binding affinity and specificity, other potential effects of multivalent interactions are less explored. Here, we developed a broadly applicable transfer matrix formalism and used it to investigate the binding of two-domain ligands to targets with multiple binding sites. We show that 1) ligands with two specific binding domains can drastically boost both the binding affinity and specificity and down-shift the working concentration range, compared to single-domain ligands, 2) the presence of a positive domain-domain cooperativity or containing a non-specific binding domain can down-shift the working concentration range of ligands by increasing the binding affinity without compromising the binding specificity, 3) the configuration of the bound ligands has a strong concentration dependence, providing important insights into the physical origin of phase-separation processes taking place in living cells. In line with previous studies, our results suggest that multivalent interactions are utilized by cells for highly efficient regulation of target binding involved in a diverse range of cellular processes such as signal transduction, gene transcription, antibody-antigen recognition.
Collapse
|
23
|
Neurodevelopmental Disorders Associated with PSD-95 and Its Interaction Partners. Int J Mol Sci 2022; 23:ijms23084390. [PMID: 35457207 PMCID: PMC9025546 DOI: 10.3390/ijms23084390] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/17/2023] Open
Abstract
The postsynaptic density (PSD) is a massive protein complex, critical for synaptic strength and plasticity in excitatory neurons. Here, the scaffolding protein PSD-95 plays a crucial role as it organizes key PSD components essential for synaptic signaling, development, and survival. Recently, variants in DLG4 encoding PSD-95 were found to cause a neurodevelopmental disorder with a variety of clinical features including intellectual disability, developmental delay, and epilepsy. Genetic variants in several of the interaction partners of PSD-95 are associated with similar phenotypes, suggesting that deficient PSD-95 may affect the interaction partners, explaining the overlapping symptoms. Here, we review the transmembrane interaction partners of PSD-95 and their association with neurodevelopmental disorders. We assess how the structural changes induced by DLG4 missense variants may disrupt or alter such protein-protein interactions, and we argue that the pathological effect of DLG4 variants is, at least partly, exerted indirectly through interaction partners of PSD-95. This review presents a direction for functional studies to elucidate the pathogenic mechanism of deficient PSD-95, providing clues for therapeutic strategies.
Collapse
|
24
|
Butler MG, Moreno-De-Luca D, Persico AM. Actionable Genomics in Clinical Practice: Paradigmatic Case Reports of Clinical and Therapeutic Strategies Based upon Genetic Testing. Genes (Basel) 2022; 13:genes13020323. [PMID: 35205368 PMCID: PMC8872067 DOI: 10.3390/genes13020323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
In clinical settings, the information provided by genetic testing can explain the triggers and processes underlying clinical presentations, such as neurodevelopmental disorders, in up to one third of affected individuals. However, translating this knowledge into better and more personalized clinical management to many appears a distant target. This article presents three paradigmatic cases to exemplify how this translational effort can, at least in some instances, be undertaken today with very positive results: (a) a young girl carrying a chr. 16p11.2 duplication can be screened using targeted exams and undertake therapeutic/preventive interventions related to her genetic diagnosis; (b) a 13-year-old boy with intellectual disability and autism spectrum disorder carries a chr. 11q14.1 deletion, partly spanning the DLG2 gene important for synaptic function, and gained over 20 I.Q. points ostensibly due to carbolithium, prescribed in the absence of affective symptoms, exclusively following the pathophysiology pointed out by the genetic results; (c) a 58-year-old woman carries a COL3A1 gene variant responsible for the vascular form of Ehler–Danlos syndrome with colon rupture. Detection of this variant in six members of her extended family allows for better clinical management of the proband and targeted genetic counselling for family members at risk of this connective tissue disorder. The unprecedented flow of genetic information available today through new technologies, if interpreted in the light of current knowledge in clinical diagnosis and care of those with connective tissue disorders and neurodevelopmental disturbances, in biology and in neuropsychopharmacology, can promote better clinical and pharmacological treatment, disease surveillance, and management provided and incorporated into the clinical setting.
Collapse
Affiliation(s)
- Merlin G. Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Daniel Moreno-De-Luca
- Genomic Psychiatry Consultation Service, Verrecchia Clinic for Children with Autism and Developmental Disabilities, Bradley Hospital, East Providence, RI 02915, USA;
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Antonio M. Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, I-41125 Modena, Italy
- Child and Adolescent Neuropsychiatry Program, Modena University Hospital, I-41125 Modena, Italy
- Correspondence:
| |
Collapse
|
25
|
Dixon RE, Navedo MF, Binder MD, Santana LF. Mechanisms and Physiological Implications of Cooperative Gating of Ion Channels Clusters. Physiol Rev 2021; 102:1159-1210. [PMID: 34927454 DOI: 10.1152/physrev.00022.2021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ion channels play a central role in the regulation of nearly every cellular process. Dating back to the classic 1952 Hodgkin-Huxley model of the generation of the action potential, ion channels have always been thought of as independent agents. A myriad of recent experimental findings exploiting advances in electrophysiology, structural biology, and imaging techniques, however, have posed a serious challenge to this long-held axiom as several classes of ion channels appear to open and close in a coordinated, cooperative manner. Ion channel cooperativity ranges from variable-sized oligomeric cooperative gating in voltage-gated, dihydropyridine-sensitive Cav1.2 and Cav1.3 channels to obligatory dimeric assembly and gating of voltage-gated Nav1.5 channels. Potassium channels, transient receptor potential channels, hyperpolarization cyclic nucleotide-activated channels, ryanodine receptors (RyRs), and inositol trisphosphate receptors (IP3Rs) have also been shown to gate cooperatively. The implications of cooperative gating of these ion channels range from fine tuning excitation-contraction coupling in muscle cells to regulating cardiac function and vascular tone, to modulation of action potential and conduction velocity in neurons and cardiac cells, and to control of pace-making activity in the heart. In this review, we discuss the mechanisms leading to cooperative gating of ion channels, their physiological consequences and how alterations in cooperative gating of ion channels may induce a range of clinically significant pathologies.
Collapse
Affiliation(s)
- Rose Ellen Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, United States
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, CA, United States
| |
Collapse
|
26
|
Petropavlovskiy A, Kogut J, Leekha A, Townsend C, Sanders S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal 2021; 5:NS20210005. [PMID: 34659801 PMCID: PMC8495546 DOI: 10.1042/ns20210005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In neurons, the axon and axon initial segment (AIS) are critical structures for action potential initiation and propagation. Their formation and function rely on tight compartmentalisation, a process where specific proteins are trafficked to and retained at distinct subcellular locations. One mechanism which regulates protein trafficking and association with lipid membranes is the modification of protein cysteine residues with the 16-carbon palmitic acid, known as S-acylation or palmitoylation. Palmitoylation, akin to phosphorylation, is reversible, with palmitate cycling being mediated by substrate-specific enzymes. Palmitoylation is well-known to be highly prevalent among neuronal proteins and is well studied in the context of the synapse. Comparatively, how palmitoylation regulates trafficking and clustering of axonal and AIS proteins remains less understood. This review provides an overview of the current understanding of the biochemical regulation of palmitoylation, its involvement in various neurological diseases, and the most up-to-date perspective on axonal palmitoylation. Through a palmitoylation analysis of the AIS proteome, we also report that an overwhelming proportion of AIS proteins are likely palmitoylated. Overall, our review and analysis confirm a central role for palmitoylation in the formation and function of the axon and AIS and provide a resource for further exploration of palmitoylation-dependent protein targeting to and function at the AIS.
Collapse
Affiliation(s)
- Andrey A. Petropavlovskiy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Jordan A. Kogut
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Arshia Leekha
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Charlotte A. Townsend
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Shaun S. Sanders
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
27
|
Vistrup-Parry M, Chen X, Johansen TL, Bach S, Buch-Larsen SC, Bartling CRO, Ma C, Clemmensen LS, Nielsen ML, Zhang M, Strømgaard K. Site-specific phosphorylation of PSD-95 dynamically regulates the postsynaptic density as observed by phase separation. iScience 2021; 24:103268. [PMID: 34761188 PMCID: PMC8567388 DOI: 10.1016/j.isci.2021.103268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/11/2021] [Accepted: 10/12/2021] [Indexed: 01/06/2023] Open
Abstract
Postsynaptic density protein 95 is a key scaffolding protein in the postsynaptic density of excitatory glutamatergic neurons, organizing signaling complexes primarily via its three PSD-95/Discs-large/Zona occludens domains. PSD-95 is regulated by phosphorylation, but technical challenges have limited studies of the molecular details. Here, we genetically introduced site-specific phosphorylations in single, tandem, and full-length PSD-95 and generated a total of 11 phosphorylated protein variants. We examined how these phosphorylations affected binding to known interaction partners and the impact on phase separation of PSD-95 complexes and identified two new phosphorylation sites with opposing effects. Phosphorylation of Ser78 inhibited phase separation with the glutamate receptor subunit GluN2B and the auxiliary protein stargazin, whereas phosphorylation of Ser116 induced phase separation with stargazin only. Thus, by genetically introducing phosphoserine site-specifically and exploring the impact on phase separation, we have provided new insights into the regulation of PSD-95 by phosphorylation and the dynamics of the PSD.
Collapse
Affiliation(s)
- Maria Vistrup-Parry
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Xudong Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Thea L Johansen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Sofie Bach
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Sara C Buch-Larsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Christian R O Bartling
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Chenxue Ma
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Louise S Clemmensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen, China
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark
| |
Collapse
|
28
|
LGI1-ADAM22-MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention. Proc Natl Acad Sci U S A 2021; 118:2022580118. [PMID: 33397806 PMCID: PMC7826393 DOI: 10.1073/pnas.2022580118] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study addresses a fundamental question in neuroscience, namely how does the presynaptic component of the synapse precisely align with the postsynaptic component? This is essential for the proper transmission of signals across the synapse. This paper focuses on a set of transsynaptic, epilepsy-related proteins that are essential for this alignment. We show that the LGI1–ADAM22–MAGUK complex is a key player in the nanoarchitecture of the synapse, such that the release site is directly apposed to the nanocluster of glutamate receptors. Physiological functioning and homeostasis of the brain rely on finely tuned synaptic transmission, which involves nanoscale alignment between presynaptic neurotransmitter-release machinery and postsynaptic receptors. However, the molecular identity and physiological significance of transsynaptic nanoalignment remain incompletely understood. Here, we report that epilepsy gene products, a secreted protein LGI1 and its receptor ADAM22, govern transsynaptic nanoalignment to prevent epilepsy. We found that LGI1–ADAM22 instructs PSD-95 family membrane-associated guanylate kinases (MAGUKs) to organize transsynaptic protein networks, including NMDA/AMPA receptors, Kv1 channels, and LRRTM4–Neurexin adhesion molecules. Adam22ΔC5/ΔC5 knock-in mice devoid of the ADAM22–MAGUK interaction display lethal epilepsy of hippocampal origin, representing the mouse model for ADAM22-related epileptic encephalopathy. This model shows less-condensed PSD-95 nanodomains, disordered transsynaptic nanoalignment, and decreased excitatory synaptic transmission in the hippocampus. Strikingly, without ADAM22 binding, PSD-95 cannot potentiate AMPA receptor-mediated synaptic transmission. Furthermore, forced coexpression of ADAM22 and PSD-95 reconstitutes nano-condensates in nonneuronal cells. Collectively, this study reveals LGI1–ADAM22–MAGUK as an essential component of transsynaptic nanoarchitecture for precise synaptic transmission and epilepsy prevention.
Collapse
|
29
|
Rodriguez AR, Anderson ED, O'Neill KM, McEwan PP, Vigilante NF, Kwon M, Akum BF, Stawicki TM, Meaney DF, Firestein BL. Cytosolic PSD-95 interactor alters functional organization of neural circuits and AMPA receptor signaling independent of PSD-95 binding. Netw Neurosci 2021; 5:166-197. [PMID: 33688611 PMCID: PMC7935033 DOI: 10.1162/netn_a_00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/04/2022] Open
Abstract
Cytosolic PSD-95 interactor (cypin) regulates many aspects of neuronal development and function, ranging from dendritogenesis to synaptic protein localization. While it is known that removal of postsynaptic density protein-95 (PSD-95) from the postsynaptic density decreases synaptic N-methyl-D-aspartate (NMDA) receptors and that cypin overexpression protects neurons from NMDA-induced toxicity, little is known about cypin's role in AMPA receptor clustering and function. Experimental work shows that cypin overexpression decreases PSD-95 levels in synaptosomes and the PSD, decreases PSD-95 clusters/μm2, and increases mEPSC frequency. Analysis of microelectrode array (MEA) data demonstrates that cypin or cypinΔPDZ overexpression increases sensitivity to CNQX (cyanquixaline) and AMPA receptor-mediated decreases in spike waveform properties. Network-level analysis of MEA data reveals that cypinΔPDZ overexpression causes networks to be resilient to CNQX-induced changes in local efficiency. Incorporating these findings into a computational model of a neural circuit demonstrates a role for AMPA receptors in cypin-promoted changes to networks and shows that cypin increases firing rate while changing network functional organization, suggesting cypin overexpression facilitates information relay but modifies how information is encoded among brain regions. Our data show that cypin promotes changes to AMPA receptor signaling independent of PSD-95 binding, shaping neural circuits and output to regions beyond the hippocampus.
Collapse
Affiliation(s)
- Ana R Rodriguez
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Erin D Anderson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kate M O'Neill
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Przemyslaw P McEwan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | - Munjin Kwon
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Barbara F Akum
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tamara M Stawicki
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
30
|
Jang S, Yang E, Kim D, Kim H, Kim E. Clmp Regulates AMPA and Kainate Receptor Responses in the Neonatal Hippocampal CA3 and Kainate Seizure Susceptibility in Mice. Front Synaptic Neurosci 2021; 12:567075. [PMID: 33408624 PMCID: PMC7779639 DOI: 10.3389/fnsyn.2020.567075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/02/2020] [Indexed: 12/05/2022] Open
Abstract
Synaptic adhesion molecules regulate synapse development through trans-synaptic adhesion and assembly of diverse synaptic proteins. Many synaptic adhesion molecules positively regulate synapse development; some, however, exert negative regulation, although such cases are relatively rare. In addition, synaptic adhesion molecules regulate the amplitude of post-synaptic receptor responses, but whether adhesion molecules can regulate the kinetic properties of post-synaptic receptors remains unclear. Here we report that Clmp, a homophilic adhesion molecule of the Ig domain superfamily that is abundantly expressed in the brain, reaches peak expression at a neonatal stage (week 1) and associates with subunits of AMPA receptors (AMPARs) and kainate receptors (KARs). Clmp deletion in mice increased the frequency and amplitude of AMPAR-mediated miniature excitatory post-synaptic currents (mEPSCs) and the frequency, amplitude, and decay time constant of KAR-mediated mEPSCs in hippocampal CA3 neurons. Clmp deletion had minimal impacts on evoked excitatory synaptic currents at mossy fiber-CA3 synapses but increased extrasynaptic KAR, but not AMPAR, currents, suggesting that Clmp distinctly inhibits AMPAR and KAR responses. Behaviorally, Clmp deletion enhanced novel object recognition and susceptibility to kainate-induced seizures, without affecting contextual or auditory cued fear conditioning or pattern completion-based contextual fear conditioning. These results suggest that Clmp negatively regulates hippocampal excitatory synapse development and AMPAR and KAR responses in the neonatal hippocampal CA3 as well as object recognition and kainate seizure susceptibility in mice.
Collapse
Affiliation(s)
- Seil Jang
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Doyoun Kim
- Center for Drug Discovery Platform Research, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
31
|
Sanders SS, Hernandez LM, Soh H, Karnam S, Walikonis RS, Tzingounis AV, Thomas GM. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment. eLife 2020; 9:56058. [PMID: 33185190 PMCID: PMC7685708 DOI: 10.7554/elife.56058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/12/2020] [Indexed: 01/02/2023] Open
Abstract
The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14’s neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14’s importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.
Collapse
Affiliation(s)
- Shaun S Sanders
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, United States
| | - Luiselys M Hernandez
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, United States
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | - Santi Karnam
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, United States
| | - Randall S Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
| | | | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, United States
| |
Collapse
|
32
|
Rosenbaum MI, Clemmensen LS, Bredt DS, Bettler B, Strømgaard K. Targeting receptor complexes: a new dimension in drug discovery. Nat Rev Drug Discov 2020; 19:884-901. [PMID: 33177699 DOI: 10.1038/s41573-020-0086-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Targeting receptor proteins, such as ligand-gated ion channels and G protein-coupled receptors, has directly enabled the discovery of most drugs developed to modulate receptor signalling. However, as the search for novel and improved drugs continues, an innovative approach - targeting receptor complexes - is emerging. Receptor complexes are composed of core receptor proteins and receptor-associated proteins, which have profound effects on the overall receptor structure, function and localization. Hence, targeting key protein-protein interactions within receptor complexes provides an opportunity to develop more selective drugs with fewer side effects. In this Review, we discuss our current understanding of ligand-gated ion channel and G protein-coupled receptor complexes and discuss strategies for their pharmacological modulation. Although such strategies are still in preclinical development for most receptor complexes, they exemplify how receptor complexes can be drugged, and lay the groundwork for this nascent area of research.
Collapse
Affiliation(s)
- Mette Ishøy Rosenbaum
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Louise S Clemmensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
Wilkinson B, Coba MP. Molecular architecture of postsynaptic Interactomes. Cell Signal 2020; 76:109782. [PMID: 32941943 DOI: 10.1016/j.cellsig.2020.109782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/02/2023]
Abstract
The postsynaptic density (PSD) plays an essential role in the organization of the synaptic signaling machinery. It contains a set of core scaffolding proteins that provide the backbone to PSD protein-protein interaction networks (PINs). These core scaffolding proteins can be seen as three principal layers classified by protein family, with DLG proteins being at the top, SHANKs along the bottom, and DLGAPs connecting the two layers. Early studies utilizing yeast two hybrid enabled the identification of direct protein-protein interactions (PPIs) within the multiple layers of scaffolding proteins. More recently, mass-spectrometry has allowed the characterization of whole interactomes within the PSD. This expansion of knowledge has further solidified the centrality of core scaffolding family members within synaptic PINs and provided context for their role in neuronal development and synaptic function. Here, we discuss the scaffolding machinery of the PSD, their essential functions in the organization of synaptic PINs, along with their relationship to neuronal processes found to be impaired in complex brain disorders.
Collapse
Affiliation(s)
- Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
34
|
Miake J. A Novel Treatment for Arrhythmias via the Control of the Degradation of Ion Channel Proteins. Yonago Acta Med 2020; 63:146-153. [PMID: 32884433 DOI: 10.33160/yam.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 11/05/2022]
Abstract
Although there are many reports on the regulation of ion channel expression in transcription and translation, few drugs have been studied to influence post-translational modification of ion channel proteins. The Kv1.5 channel is a potassium ion channel expressed in atrial muscle, belongs to the voltage-gated K+ channel superfamily, and forms an ultrarapid delayed rectifier potassium ion current. It is important to understand the fate of these channel proteins, as cardiac Kv1.5 mutations can cause arrhythmias. Disruption of quantitative and qualitative control mechanisms of channels leads to stagnation and degradation of intracellular channel proteins. As a result, ion channel proteins are not transported to the cell membrane and are involved in the development of atrial fibrillation. This review takes the Kv1.5 channel as an example and focuses on the degradation mechanism of ion channel proteins, and discusses its application to the treatment of arrhythmia by drugs that control the mechanism of ion channel protein degradation.
Collapse
Affiliation(s)
- Junichiro Miake
- Division of Pharmacology, Department of Pathophysiological and Therapeutic Science, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
35
|
Lewin L, Nsasra E, Golbary E, Hadad U, Orr I, Yifrach O. Molecular and cellular correlates in Kv channel clustering: entropy-based regulation of cluster ion channel density. Sci Rep 2020; 10:11304. [PMID: 32647278 PMCID: PMC7347538 DOI: 10.1038/s41598-020-68003-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/27/2020] [Indexed: 11/25/2022] Open
Abstract
Scaffold protein-mediated ion channel clustering at unique membrane sites is important for electrical signaling. Yet, the mechanism(s) by which scaffold protein-ion channel interactions lead to channel clustering or how cluster ion channel density is regulated is mostly not known. The voltage-activated potassium channel (Kv) represents an excellent model to address these questions as the mechanism underlying its interaction with the post-synaptic density 95 (PSD-95) scaffold protein is known to be controlled by the length of the extended ‘ball and chain’ sequence comprising the C-terminal channel region. Here, using sub-diffraction high-resolution imaging microscopy, we show that Kv channel ‘chain’ length regulates Kv channel density with a ‘bell’-shaped dependence, reflecting a balance between thermodynamic considerations controlling ‘chain’ recruitment by PSD-95 and steric hindrance due to the spatial proximity of multiple channel molecules. Our results thus reveal an entropy-based mode of channel cluster density regulation that mirrors the entropy-based regulation of the Kv channel-PSD-95 interaction. The implications of these findings for electrical signaling are discussed.
Collapse
Affiliation(s)
- Limor Lewin
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Esraa Nsasra
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Ella Golbary
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Irit Orr
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Ofer Yifrach
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
36
|
Li C, Onouchi T, Hirayama M, Sakai K, Matsuda S, Yamada NO, Senda T. Morphological and functional abnormalities of hippocampus in APC 1638T/1638T mice. Med Mol Morphol 2020; 54:31-40. [PMID: 32572622 DOI: 10.1007/s00795-020-00257-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/14/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we examined morphology and function of hippocampus in the APC1638T/1638T mouse. Expression levels of the APC mRNA and protein were both identical in the hippocampus of the APC+/+ and APC1638T/1638T mice. The dentate gyrus of the APC1638T/1638T hippocampus was thicker, and has more densely-populated granule cells in the APC1638T/1638T mouse hippocampus. Immunoelectron microscopy revealed co-localization of APC with alpha-amino-3- hydroxy-5-methyl- isoxazole-4-propionate receptor (AMPA-R) and with PSD-95 at post-synapse in the APC+/+ hippocampus, while APC1638T was co-localized with neither AMPA-R nor PSD-95 in the APC1638T/1638T hippocampus. By immunoprecipitation assay, full-length APC expressed in the APC +/+ mouse was co-immunoprecipitated with AMPA-R and PSD-95. In contrast, APC1638T expressed in the APC1638T/1638T mouse was not co-immunoprecipitated with AMPA-R and PSD-95. In the hippocampal CA1 region of the APC1638T/1638T mouse, c-Fos expression after electric foot shock was decreased compared with the APC+/+ mouse. The present study showed some abnormalities on morphology of the hippocampus caused by a truncated APC (APC1638T). Also, our findings suggest that failure in APC binding to AMPA-R and PSD-95 may bring about less activities of hippocampal neurons in the APC1638T/1638T mouse.
Collapse
Affiliation(s)
- Chenguang Li
- Department of Anatomy, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takanori Onouchi
- Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Masaya Hirayama
- Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.,Faculty of Medical Technology, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kazuyoshi Sakai
- Faculty of Clinical Engineering, School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Shuji Matsuda
- Department of Anatomy, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Nami O Yamada
- Department of Anatomy, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takao Senda
- Department of Anatomy, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
37
|
D’Adamo MC, Liantonio A, Rolland JF, Pessia M, Imbrici P. Kv1.1 Channelopathies: Pathophysiological Mechanisms and Therapeutic Approaches. Int J Mol Sci 2020; 21:ijms21082935. [PMID: 32331416 PMCID: PMC7215777 DOI: 10.3390/ijms21082935] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.
Collapse
Affiliation(s)
- Maria Cristina D’Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
| | - Antonella Liantonio
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | | | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain Po Box 17666, UAE
| | - Paola Imbrici
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Correspondence:
| |
Collapse
|
38
|
Lee DS, Kim JE. PDI-Mediated Reduction of Disulfide Bond on PSD95 Increases Spontaneous Seizure Activity by Regulating NR2A-PSD95 Interaction in Epileptic Rats Independent of S-Nitrosylation. Int J Mol Sci 2020; 21:ijms21062094. [PMID: 32197489 PMCID: PMC7139850 DOI: 10.3390/ijms21062094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/17/2023] Open
Abstract
Postsynaptic density-95 (PSD95), a major scaffolding protein, is critical in coupling N-methyl-D-aspartate receptor (NMDAR) to cellular signaling networks in the central nervous system. A couple of cysteine residues in the N-terminus of PSD95 are potential sites for disulfide bonding, S-nitrosylation and/or palmitoylation. Protein disulfide isomerase (PDI) reduces disulfide bonds (S-S) to free thiol (-SH) on various proteins. However, the involvement of PDI in disulfide bond formation/S-nitrosylation of PSD95 and its role in epilepsy are still unknown. In the present study, acute seizure activity significantly increased the bindings of PDI to NR2A, but not to PSD95, while it decreased the NR2A–PSD95 binding. In addition, pilocarpine-induced seizures increased the amount of nitrosylated (SNO-) thiols, not total (free and SNO-) thiols, on PSD95. Unlike acute seizure, spontaneous seizing rats showed the increases in PDI–PSD95 binding, total- and SNO-thiol levels on PSD95, and NR2A–PSD95 interaction. PDI siRNA effectively reduced spontaneous seizure activity with decreases in total thiol level on PSD95 and NR2A–PSD95 association. These findings indicate that PDI-mediated reduction of disulfide-bond formations may facilitate the NR2A–PSD95 binding and contribute to spontaneous seizure generation in epileptic animals.
Collapse
Affiliation(s)
| | - Ji-Eun Kim
- Correspondence: ; Tel.: +82-33-248-2522; Fax: +82-33-248-2525
| |
Collapse
|
39
|
König AI, Sorkin R, Alon A, Nachmias D, Dhara K, Brand G, Yifrach O, Arbely E, Roichman Y, Elia N. Live cell single molecule tracking and localization microscopy of bioorthogonally labeled plasma membrane proteins. NANOSCALE 2020; 12:3236-3248. [PMID: 31970355 DOI: 10.1039/c9nr08594g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tracking the localization and mobility of individual proteins in live cells is key for understanding how they mediate their function. Such information can be obtained from single molecule imaging techniques including as Single Particle Tracking (SPT) and Single Molecule Localization Microscopy (SMLM). Genetic code expansion (GCE) combined with bioorthogonal chemistry offers an elegant approach for direct labeling of proteins with fluorescent dyes, holding great potential for improving protein labeling in single molecule applications. Here we calibrated conditions for performing SPT and live-SMLM of bioorthogonally labeled plasma membrane proteins in live mammalian cells. Using SPT, the diffusion of bioorthogonally labeled EGF receptor and the prototypical Shaker voltage-activated potassium channel (Kv) was measured and characterized. Applying live-SMLM to bioorthogonally labeled Shaker Kv channels enabled visualizing the plasma membrane distribution of the channel over time with ∼30 nm accuracy. Finally, by competitive labeling with two Fl-dyes, SPT and live-SMLM were performed in a single cell and both the density and dynamics of the EGF receptor were measured at single molecule resolution in subregions of the cell. We conclude that GCE and bioorthogonal chemistry is a highly suitable, flexible approach for protein labeling in quantitative single molecule applications that outperforms current protein live-cell labeling approaches.
Collapse
Affiliation(s)
- Andres I König
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nirenberg VA, Yifrach O. Bridging the Molecular-Cellular Gap in Understanding Ion Channel Clustering. Front Pharmacol 2020; 10:1644. [PMID: 32082156 PMCID: PMC7000920 DOI: 10.3389/fphar.2019.01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/16/2019] [Indexed: 01/07/2023] Open
Abstract
The clustering of many voltage-dependent ion channel molecules at unique neuronal membrane sites such as axon initial segments, nodes of Ranvier, or the post-synaptic density, is an active process mediated by the interaction of ion channels with scaffold proteins and is of immense importance for electrical signaling. Growing evidence indicates that the density of ion channels at such membrane sites may affect action potential conduction properties and synaptic transmission. However, despite the emerging importance of ion channel density for electrical signaling, how ion channel-scaffold protein molecular interactions lead to cellular ion channel clustering, and how this process is regulated are largely unknown. In this review, we emphasize that voltage-dependent ion channel density at native clustering sites not only affects the density of ionic current fluxes but may also affect the conduction properties of the channel and/or the physical properties of the membrane at such locations, all changes that are expected to affect action potential conduction properties. Using the concrete example of the prototypical Shaker voltage-activated potassium channel (Kv) protein, we demonstrate how insight into the regulation of cellular ion channel clustering can be obtained when the molecular mechanism of ion channel-scaffold protein interaction is known. Our review emphasizes that such mechanistic knowledge is essential, and when combined with super-resolution imaging microscopy, can serve to bridge the molecular-cellular gap in understanding the regulation of ion channel clustering. Pressing questions, challenges and future directions in addressing ion channel clustering and its regulation are discussed.
Collapse
Affiliation(s)
| | - Ofer Yifrach
- Department of Life Sciences and the Zlotowski Center for Neurosciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
41
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
42
|
Sato D, Hernández-Hernández G, Matsumoto C, Tajada S, Moreno CM, Dixon RE, O'Dwyer S, Navedo MF, Trimmer JS, Clancy CE, Binder MD, Santana LF. A stochastic model of ion channel cluster formation in the plasma membrane. J Gen Physiol 2019; 151:1116-1134. [PMID: 31371391 PMCID: PMC6719406 DOI: 10.1085/jgp.201912327] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Ion channels are often found arranged into dense clusters in the plasma membranes of excitable cells, but the mechanisms underlying the formation and maintenance of these functional aggregates are unknown. Here, we tested the hypothesis that channel clustering is the consequence of a stochastic self-assembly process and propose a model by which channel clusters are formed and regulated in size. Our hypothesis is based on statistical analyses of the size distributions of the channel clusters we measured in neurons, ventricular myocytes, arterial smooth muscle, and heterologous cells, which in all cases were described by exponential functions, indicative of a Poisson process (i.e., clusters form in a continuous, independent, and memory-less fashion). We were able to reproduce the observed cluster distributions of five different types of channels in the membrane of excitable and tsA-201 cells in simulations using a computer model in which channels are "delivered" to the membrane at randomly assigned locations. The model's three parameters represent channel cluster nucleation, growth, and removal probabilities, the values of which were estimated based on our experimental measurements. We also determined the time course of cluster formation and membrane dwell time for CaV1.2 and TRPV4 channels expressed in tsA-201 cells to constrain our model. In addition, we elaborated a more complex version of our model that incorporated a self-regulating feedback mechanism to shape channel cluster formation. The strong inference we make from our results is that CaV1.2, CaV1.3, BK, and TRPV4 proteins are all randomly inserted into the plasma membranes of excitable cells and that they form homogeneous clusters that increase in size until they reach a steady state. Further, it appears likely that cluster size for a diverse set of membrane-bound proteins and a wide range of cell types is regulated by a common feedback mechanism.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Pharmacology, University of California School of Medicine, Davis, CA
| | | | - Collin Matsumoto
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Sendoa Tajada
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Claudia M Moreno
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Samantha O'Dwyer
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Manuel F Navedo
- Department of Pharmacology, University of California School of Medicine, Davis, CA
| | - James S Trimmer
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| | - Marc D Binder
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA
| |
Collapse
|
43
|
Chen J, Sagum C, Bedford MT. Protein domain microarrays as a platform to decipher signaling pathways and the histone code. Methods 2019; 184:4-12. [PMID: 31449908 DOI: 10.1016/j.ymeth.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023] Open
Abstract
Signal transduction is driven by protein interactions that are controlled by posttranslational modifications (PTM). Usually, protein domains are responsible for "reading" the PTM signal deposited on the interacting partners. Protein domain microarrays have been developed as a high throughput platform to facilitate the rapid identification of protein-protein interactions, and this approach has become broadly used in biomedical research. In this review, we will summarize the history, development and applications of this technique, including the use of protein domain microarrays in identifying both novel protein-protein interactions and small molecules that block these interactions. We will focus on the approaches we use in the Protein Array and Analysis Core - the PAAC - at MD Anderson Cancer Center. We will also address the technical limitations and discuss future directions.
Collapse
Affiliation(s)
- Jianji Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
44
|
Patel MV, Sewell E, Dickson S, Kim H, Meaney DF, Firestein BL. A Role for Postsynaptic Density 95 and Its Binding Partners in Models of Traumatic Brain Injury. J Neurotrauma 2019; 36:2129-2138. [DOI: 10.1089/neu.2018.6291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Mihir V. Patel
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
- Graduate Program in Neurosciences, Rutgers University, Piscataway, New Jersey
| | - Emily Sewell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samantha Dickson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hyuck Kim
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
45
|
Lewin L, Nirenberg V, Yehezkel R, Naim S, Abdu U, Orr I, Yifrach O. Direct Evidence for a Similar Molecular Mechanism Underlying Shaker Kv Channel Fast Inactivation and Clustering. J Mol Biol 2019; 431:542-556. [PMID: 30543824 DOI: 10.1016/j.jmb.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022]
Abstract
The fast inactivation and clustering functions of voltage-dependent potassium channels play fundamental roles in electrical signaling. Recent evidence suggests that both these distinct channel functions rely on intrinsically disordered N- and C-terminal cytoplasmic segments that function as entropic clocks to time channel inactivation or scaffold protein-mediated clustering, both relying on what can be described as a "ball and chain" binding mechanism. Although the mechanisms employed in each case are seemingly analogous, both were put forward based on bulky chain deletions and further exhibit differences in reaction order. These considerations raised the question of whether the molecular mechanisms underlying Kv channel fast inactivation and clustering are indeed analogous. By taking a "chain"-level chimeric channel approach involving long and short spliced inactivation or clustering "chain" variants of the Shaker Kv channel, we demonstrate the ability of native inactivation and clustering "chains" to substitute for each other in a length-dependent manner, as predicted by the "ball and chain" mechanism. Our results thus provide direct evidence arguing that the two completely unrelated Shaker Kv channel processes of fast inactivation and clustering indeed occur according to a similar molecular mechanism.
Collapse
Affiliation(s)
- Limor Lewin
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105, Israel
| | - Valerie Nirenberg
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105, Israel
| | - Rinat Yehezkel
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105, Israel
| | - Shany Naim
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105, Israel
| | - Uri Abdu
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105, Israel
| | - Irit Orr
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105, Israel
| | - Ofer Yifrach
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105, Israel.
| |
Collapse
|
46
|
Andrews NP, Boeckman JX, Manning CF, Nguyen JT, Bechtold H, Dumitras C, Gong B, Nguyen K, van der List D, Murray KD, Engebrecht J, Trimmer JS. A toolbox of IgG subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain. eLife 2019; 8:43322. [PMID: 30667360 PMCID: PMC6377228 DOI: 10.7554/elife.43322] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/21/2019] [Indexed: 11/17/2022] Open
Abstract
Generating recombinant monoclonal antibodies (R-mAbs) from mAb-producing hybridomas offers numerous advantages that increase the effectiveness, reproducibility, and transparent reporting of research. We report here the generation of a novel resource in the form of a library of recombinant R-mAbs validated for neuroscience research. We cloned immunoglobulin G (IgG) variable domains from cryopreserved hybridoma cells and input them into an integrated pipeline for expression and validation of functional R-mAbs. To improve efficiency over standard protocols, we eliminated aberrant Sp2/0-Ag14 hybridoma-derived variable light transcripts using restriction enzyme treatment. Further, we engineered a plasmid backbone that allows for switching of the IgG subclasses without altering target binding specificity to generate R-mAbs useful in simultaneous multiplex labeling experiments not previously possible. The method was also employed to rescue IgG variable sequences and generate functional R-mAbs from a non-viable cryopreserved hybridoma. All R-mAb sequences and plasmids will be archived and disseminated from open source suppliers. The immune system fights off disease-causing microbes using antibodies: Y-shaped proteins that each bind to a specific foreign molecule. Indeed, these proteins bind so tightly and so specifically that they can pick out a single target in a complex mixture of different molecules. This property also makes them useful in research. For example, neurobiologists can use antibodies to mark target proteins in thin sections of brain tissue. This reveals their position inside brain cells, helping to link the structure of the brain to the roles the different parts of this structure perform. To use antibodies in this way, scientists need to be able to produce them in large quantities without losing their target specificity. The most common way to do this is with cells called hybridomas. A hybridoma is a hybrid of an antibody-producing immune cell and a cancer cell, and it has properties of both. From the immune cell, it inherits the genes to make a specific type of antibody. From the cancer cell, it inherits the ability to go on dividing forever. In theory, hybridomas should be immortal antibody factories, but they have some limitations. They are expensive to keep alive, hard to transport between labs, and their genes can be unstable. Problems can creep into their genetic code, halting their growth or changing the targets their antibodies recognize. When this happens, scientists can lose vital research tools. Instead of keeping the immune cells alive, an alternative approach is to make recombinant antibodies. Rather than store the whole cell, this approach just stores the parts of the genes that encode antibody target-specificity. Andrews et al. set out to convert a valuable toolbox of neuroscience antibodies into recombinant form. This involved copying the antibody genes from a large library of preserved hybridoma cells. However, many hybridomas also carry genes that produce non-functional antibodies. A step in the process removed these DNA sequences, ensuring that only working antibodies made it into the final library. Using frozen cells made it possible to recover antibody genes from hybridoma cells that could no longer grow. The recombinant DNA sequences provide a permanent record of useful antibodies. Not only does this prevent the loss of research tools, it is also much more shareable than living cells. Modifications to the DNA sequences in the library allow for the use of many antibodies at once. This could help when studying the interactions between different molecules in the brain. Toolkits like these could also make it easier to collaborate, and to reproduce data gathered by different researchers around the world.
Collapse
Affiliation(s)
- Nicolas P Andrews
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Justin X Boeckman
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Colleen F Manning
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Joe T Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Hannah Bechtold
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Camelia Dumitras
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Belvin Gong
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Kimberly Nguyen
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Deborah van der List
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Karl D Murray
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States.,Department of Physiology and Membrane Biology, University of California, Davis, United States
| |
Collapse
|
47
|
Rhee SW, Rusch NJ. Molecular determinants of beta-adrenergic signaling to voltage-gated K + channels in the cerebral circulation. Microcirculation 2018; 25. [PMID: 29072364 DOI: 10.1111/micc.12425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
Voltage-gated K+ (Kv ) channels are major determinants of membrane potential in vascular smooth muscle cells (VSMCs) and regulate the diameter of small cerebral arteries and arterioles. However, the intracellular structures that govern the expression and function of vascular Kv channels are poorly understood. Scaffolding proteins including postsynaptic density 95 (PSD95) recently were identified in rat cerebral VSMCs. Primarily characterized in neurons, the PSD95 scaffold has more than 50 known binding partners, and it can mediate macromolecular signaling between cell-surface receptors and ion channels. In cerebral arteries, Shaker-type Kv 1 channels appear to associate with the PSD95 molecular scaffold, and PSD95 is required for the normal expression and vasodilator influence of members of this K+ channel gene family. Furthermore, recent findings suggest that the β1-subtype adrenergic receptor is expressed in cerebral VSMCs and forms a functional vasodilator complex with Kv 1 channels on the PSD95 scaffold. Activation of β1-subtype adrenergic receptors in VSMCs enables protein kinase A-dependent phosphorylation and opening of Kv 1 channels in the PSD95 complex; the subsequent K+ efflux mediates membrane hyperpolarization and vasodilation of small cerebral arteries. Early evidence from other studies suggests that other families of Kv channels and scaffolding proteins are expressed in VSMCs. Future investigations into these macromolecular complexes that modulate the expression and function of Kv channels may reveal unknown signaling cascades that regulate VSMC excitability and provide novel targets for ion channel-based medications to optimize vascular tone.
Collapse
Affiliation(s)
- Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
48
|
Oh JY, Lim CS, Yoo KS, Park H, Park YS, Kim EG, Lee YS, Kaang BK, Kim HK. Adenomatous polyposis coli-stimulated GEF 1 (Asef1) is a negative regulator of excitatory synaptic function. J Neurochem 2018; 147:595-608. [PMID: 30125942 DOI: 10.1111/jnc.14570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/18/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023]
Abstract
Guanine nucleotide exchange factors (GEFs) play important roles in many cellular processes, including regulation of the structural plasticity of dendritic spines. A GEF protein, adenomatous polyposis coli-stimulated GEF 1 (Asef1, ARHGEF4) is highly expressed in the nervous system. However, the function of Asef1 has not been investigated in neurons. Here, we present evidence showing that Asef1 negatively regulates the synaptic localization of postsynaptic density protein 95 (PSD-95) in the excitatory synapse by inhibiting Staufen-mediated synaptic localization of PSD-95. Accordingly, Asef1 expression impairs synaptic transmission in hippocampal cultured neurons. In addition, neuronal activity facilitates the dissociation of Asef1 from Staufen in a phosphoinositide 3 kinase (PI3K)-dependent manner. Taken together, our data reveal Asef1 functions as a negative regulator of synaptic localization of PSD-95 and synaptic transmission.
Collapse
Affiliation(s)
- Jun-Young Oh
- Graduate Program in Neuroscience, Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, Korea.,Korea Brain Research Institute, Daegu, Korea
| | - Chae-Seok Lim
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan, Korea
| | - Ki-Seo Yoo
- Graduate Program in Neuroscience, Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | | | - Young Seok Park
- Department of Neurosurgery, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Eung-Gook Kim
- Department of Medicine and Biochemistry, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Yong-Seok Lee
- Department of Physiology, Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Hyong Kyu Kim
- Graduate Program in Neuroscience, Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
49
|
Abstract
Activation of the electrical signal and its transmission as a depolarizing wave in the whole heart requires highly organized myocyte architecture and cell-cell contacts. In addition, complex trafficking and anchoring intracellular machineries regulate the proper surface expression of channels and their targeting to distinct membrane domains. An increasing list of proteins, lipids, and second messengers can contribute to the normal targeting of ion channels in cardiac myocytes. However, their precise roles in the electrophysiology of the heart are far from been extensively understood. Nowadays, much effort in the field focuses on understanding the mechanisms that regulate ion channel targeting to sarcolemma microdomains and their organization into macromolecular complexes. The purpose of the present section is to provide an overview of the characterized partners of the main cardiac sodium channel, NaV1.5, involved in regulating the functional expression of this channel both in terms of trafficking and targeting into microdomains.
Collapse
|
50
|
Bragina L, Conti F. Expression of Neurofilament Subunits at Neocortical Glutamatergic and GABAergic Synapses. Front Neuroanat 2018; 12:74. [PMID: 30254572 PMCID: PMC6141662 DOI: 10.3389/fnana.2018.00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022] Open
Abstract
Neurofilaments (NFs) are neuron-specific heteropolymers that have long been considered as structural proteins. However, it has recently been documented that they may play a functional role at synapses. Indeed, the four NF subunits—NFL, NFM, NFH and α-internexin—are integral components of synapses in the striatum and hippocampus, since their elimination disrupts synaptic plasticity and impairs social memory, an observation that might have important implications for some neuropsychiatric diseases. Here, we studied NFs localization in VGLUT1-, VGLUT2-, VGAT-, PSD-95- and gephyrin-positive (+) puncta, and in glutamatergic and GABAergic synapses in the cerebral cortex of adult rats. Synapses were identified by pre- and postsynaptic markers: glutamatergic synapses by VGLUT1+ or VGLUT2+ puncta contacting PSD-95+ puncta; and GABAergic synapses by VGAT+ puncta contacting gephyrin+ puncta. In VGLUT1 glutamatergic synapses NF showed a greater expression in the compartment labeled by postsynaptic markers (20%–30%) than in those labeled by presynaptic markers (10%–20%), whereas in GABAergic synapses a similar expression was detected in both compartments (20%–30%). Moreover, NF expression was higher in the GABAergic (20%–30%) than in the glutamatergic (10%–15%) compartments labeled by presynaptic markers. Finally, a higher colocalization of VGLUT1+, VGLUT2+ and VGAT+ puncta with NFs was seen when presynaptic puncta contacted elements labeled by postsynaptic markers. These findings show that the four NF subunits are expressed at some neocortical synapses, and contribute to glutamatergic and GABAergic synapse heterogeneity.
Collapse
Affiliation(s)
- Luca Bragina
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| |
Collapse
|