1
|
Marino L, Kim A, Ni B, Celi FS. Thyroid hormone action and liver disease, a complex interplay. Hepatology 2025; 81:651-669. [PMID: 37535802 PMCID: PMC11737129 DOI: 10.1097/hep.0000000000000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Thyroid hormone action is involved in virtually all physiological processes. It is well known that the liver and thyroid are intimately linked, with thyroid hormone playing important roles in de novo lipogenesis, beta-oxidation (fatty acid oxidation), cholesterol metabolism, and carbohydrate metabolism. Clinical and mechanistic research studies have shown that thyroid hormone can be involved in chronic liver diseases, including alcohol-associated or NAFLD and HCC. Thyroid hormone action and synthetic thyroid hormone analogs can exert beneficial actions in terms of lowering lipids, preventing chronic liver disease and as liver anticancer agents. More recently, preclinical and clinical studies have indicated that some analogs of thyroid hormone could also play a role in the treatment of liver disease. These synthetic molecules, thyromimetics, can modulate lipid metabolism, particularly in NAFLD/NASH. In this review, we first summarize the thyroid hormone signaling axis in the context of liver biology, then we describe the changes in thyroid hormone signaling in liver disease and how liver diseases affect the thyroid hormone homeostasis, and finally we discuss the use of thyroid hormone-analog for the treatment of liver disease.
Collapse
Affiliation(s)
- Luigi Marino
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Adam Kim
- Division of Gastroenterology and Hepatology, Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Bin Ni
- Alliance Pharma, Philadelphia, Pennsylvania, USA
| | - Francesco S. Celi
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Aranda A. Thyroid Hormone Action by Genomic and Nongenomic Molecular Mechanisms. Methods Mol Biol 2025; 2876:17-34. [PMID: 39579306 DOI: 10.1007/978-1-0716-4252-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are pivotal in regulating various physiological processes including growth, development, and metabolism. The biological actions of thyroid hormones are primarily initiated by binding to nuclear thyroid hormone receptors (TRs). These receptors, belonging to the superfamily of nuclear receptors, act as ligand-dependent transcription factors. Transcriptional regulation by TRs is mediated by the recruitment of coregulators, governing activation and repression of target genes, thereby modulating cellular responses to thyroid hormones. Beyond this canonical genomic pathway, TH can regulate the expression of genes not directly bound by TRs through cross-talk mechanisms with other transcription factors and signaling pathways. Thyroid hormones can also elicit rapid non-genomic effects, potentially mediated by extranuclear TR proteins or by interactions with membrane receptors such as integrin αvβ3. This non-genomic mode of action adds another layer of complexity to the diverse array of physiological responses orchestrated by thyroid hormones, expanding our understanding of their multifaceted actions.
Collapse
Affiliation(s)
- Ana Aranda
- Instituto de Investigaciones Biomédicas "Sols-Morreale", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Haratipour Z, Foutch D, Blind RD. A novel heuristic of rigid docking scores positively correlates with full-length nuclear receptor LRH-1 regulation. Comput Struct Biotechnol J 2024; 23:3065-3080. [PMID: 39185441 PMCID: PMC11342790 DOI: 10.1016/j.csbj.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nuclear receptor Liver Receptor Homolog-1 (LRH-1, NR5A2) is a ligand-regulated transcription factor and validated drug target for several human diseases. LRH-1 activation is regulated by small molecule ligands, which bind to the ligand binding domain (LBD) within the full-length LRH-1. We recently identified 57 compounds that bind LRH-1, and unexpectedly found these compounds regulated either the isolated LBD, or the full-length LRH-1 in cells, with little overlap. Here, we correlated compound binding energy from a single rigid-body scoring function with full-length LRH-1 activity in cells. Although docking scores of the 57 hit compounds did not correlate with LRH-1 regulation in wet lab assays, a subset of the compounds had large differences in binding energy docked to the isolated LBD vs. full-length LRH-1, which we used to empirically derive a new metric of the docking scores we call "ΔΔG". Initial regressions, correlations and contingency analyses all suggest compounds with high ΔΔG values more frequently regulated LRH-1 in wet lab assays. We then docked all 57 compounds to 18 separate crystal structures of LRH-1 to obtain averaged ΔΔG values for each compound, which robustly and reproducibly associated with full-length LRH-1 activity in cells. Network analyses on the 18 crystal structures of LRH-1 suggest unique communication paths exist between the subsets of LRH-1 crystal structures that produced high vs. low ΔΔG values, identifying a structural relationship between ΔΔG and the position of Helix 6, a previously established regulatory helix important for LRH-1 regulation. Together, these data suggest rigid-body computational docking can be used to quickly calculate ΔΔG, which positively correlated with the ability of these 57 hit compounds to regulate full-length LRH-1 in cell-based assays. We propose ΔΔG as a novel computational tool that can be applied to LRH-1 drug screens to prioritize compounds for resource-intense secondary screening.
Collapse
Affiliation(s)
- Zeinab Haratipour
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232, USA
- Austin Peay State University, Department of Chemistry
| | - David Foutch
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232, USA
| | - Raymond D. Blind
- Vanderbilt University Medical Center, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Nashville, TN 37232, USA
- Vanderbilt University School of Medicine, Departments of Biochemistry and Pharmacology, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Ben Patel R, Barnwal SK, Saleh M A AM, Francis D. Leveraging nuclear receptor mediated transcriptional signaling for drug discovery: Historical insights and current advances. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:191-269. [PMID: 39843136 DOI: 10.1016/bs.apcsb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level. These receptors are involved in a wide range of pathological conditions, including cancer, metabolic disorders, chronic inflammatory diseases, and immune system-related disorders. Modulation of NR function through targeted drugs has shown therapeutic benefits in treating such conditions. NR-targeted drugs, which either completely or selectively activate or block receptor function, represent a significant class of clinically valuable therapeutics. However, the pathways of NR-mediated gene expression and the resulting physiological effects are complex, involving crosstalk between various biomolecular components. As a result, NR-targeted drug discovery is challenging. With improved understanding of how NRs regulate physiological functions and deeper insights into their molecular structure, the process of NR-targeted drug discovery has evolved. While many traditional NR-targeting drugs are associated with side effects of varying severity, new drug candidates are being designed to minimize these adverse effects. Given that NR activity varies according to the tissue in which they are expressed and the specific isoform that is activated or repressed, achieving selectivity in targeting specific tissues and isoform classes may help reduce systemic side effects. In a recent breakthrough, the isoform-selective, hepato-targeted thyroid hormone-β agonist, Resmetirom (marketed as Rezdiffra), was approved for the treatment of non-alcoholic steatohepatitis. This chapter explores the structural and mechanistic principles guiding NR-targeted drug discovery and provides insights into recent developments in this field.
Collapse
Affiliation(s)
- Riya Ben Patel
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Surbhi Kumari Barnwal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arabi Mohammed Saleh M A
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| |
Collapse
|
5
|
Yang Y, Valdés-Rives SA, Liu Q, Gao T, Burudpakdee C, Li Y, Tan J, Tan Y, Koch CA, Rong Y, Houser SR, Wei S, Cai KQ, Wu J, Cheng SY, Wechsler-Reya R, Yang ZJ. Thyroid hormone suppresses medulloblastoma progression through promoting terminal differentiation of tumor cells. Cancer Cell 2024; 42:1434-1449.e5. [PMID: 39137728 PMCID: PMC11565524 DOI: 10.1016/j.ccell.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Hypothyroidism is commonly detected in patients with medulloblastoma (MB). However, whether thyroid hormone (TH) contributes to MB pathogenicity remains undetermined. Here, we find that TH plays a critical role in promoting tumor cell differentiation. Reduction in TH levels frees the TH receptor, TRα1, to bind to EZH2 and repress expression of NeuroD1, a transcription factor that drives tumor cell differentiation. Increased TH reverses EZH2-mediated repression of NeuroD1 by abrogating the binding of EZH2 and TRα1, thereby stimulating tumor cell differentiation and reducing MB growth. Importantly, TH-induced differentiation of tumor cells is not restricted by the molecular subgroup of MB, suggesting that TH can be used to broadly treat MB subgroups. These findings establish an unprecedented association between TH signaling and MB pathogenicity, providing solid evidence for TH as a promising modality for MB treatment.
Collapse
Affiliation(s)
- Yijun Yang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Silvia Anahi Valdés-Rives
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tong Gao
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Chakkapong Burudpakdee
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Yuzhe Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yinfei Tan
- Department of Pathology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Christian A Koch
- Department of Medicine, Division of Endocrinology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Yuan Rong
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, PA 19140, USA
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, PA 19140, USA
| | - Shuanzeng Wei
- Department of Pathology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Jinhua Wu
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Robert Wechsler-Reya
- Brain Tumor Research, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Zeng-Jie Yang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA; Cancer Epigenetic Institute, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA.
| |
Collapse
|
6
|
Nolte TM. Calculating toxic pressure for mixtures of endocrine disruptors. Heliyon 2024; 10:e34501. [PMID: 39149076 PMCID: PMC11325677 DOI: 10.1016/j.heliyon.2024.e34501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Incidence of autoimmune disorders, birth defects, and neurological diseases rose over the past 50 years due to increasing variety and quantity of pollutants. To date, there appear few methods capable to evaluate and predict mixture effects by endocrine disruptors (EDs). For the first time, we have developed calculus to determine mixture effects by all kinds of EDs. Our method uses the golden ratio ϕ and draws from bifurcation and chaos theory. Using also the concept of molecular mimicry, we developed the equation: e f f e c t = 100 % 1 + e 5 · ∑ K i C i - n i ϕ 3 . We successfully tested the equation using a range of cohort studies and biomarkers, and for different pollutants like heavy metals, thyroid hormone mimickants, chromate/chlorate, etc. The equation is simple enough to use with only minor prior knowledge and understanding of basic algebra. The method is universal and calculation is data 'light', requiring only pollutant concentrations [C], potencies K and an integer n for endocrinal involvement. This study offers a comprehensive framework to assess the health effects of pollutant exposure across diverse populations, envisioning far-reaching impact, and presenting practical examples and insights.
Collapse
Affiliation(s)
- Tom M Nolte
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500, GL Nijmegen, the Netherlands
| |
Collapse
|
7
|
Pereira GP, Alessandri R, Domínguez M, Araya-Osorio R, Grünewald L, Borges-Araújo L, Wu S, Marrink SJ, Souza PCT, Mera-Adasme R. Bartender: Martini 3 Bonded Terms via Quantum Mechanics-Based Molecular Dynamics. J Chem Theory Comput 2024; 20:5763-5773. [PMID: 38924075 DOI: 10.1021/acs.jctc.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Coarse-grained (CG) molecular dynamics (MD) simulations have grown in applicability over the years. The recently released version of the Martini CG force field (Martini 3) has been successfully applied to simulate many processes, including protein-ligand binding. However, the current ligand parametrization scheme is manual and requires an a priori reference all-atom (AA) simulation for benchmarking. For systems with suboptimal AA parameters, which are often unknown, this translates into a CG model that does not reproduce the true dynamical behavior of the underlying molecule. Here, we present Bartender, a quantum mechanics (QM)/MD-based parametrization tool written in Go. Bartender harnesses the power of QM simulations and produces reasonable bonded terms for Martini 3 CG models of small molecules in an efficient and user-friendly manner. For small, ring-like molecules, Bartender generates models whose properties are indistinguishable from the human-made models. For more complex, drug-like ligands, it is able to fit functional forms beyond simple harmonic dihedrals and thus better captures their dynamical behavior. Bartender has the power to both increase the efficiency and the accuracy of Martini 3-based high-throughput applications by producing numerically stable and physically realistic CG models.
Collapse
Affiliation(s)
- Gilberto P Pereira
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Moisés Domínguez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estacion Central, Santiago 9170022, Chile
| | - Rocío Araya-Osorio
- Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapacá, Av. Gral. Velasquez 1775, Arica 1000000, Chile
| | - Linus Grünewald
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
| | - Sangwook Wu
- PharmCADD, Busan 48792, Republic of Korea
- Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands
| | - Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon 69364, France
| | - Raul Mera-Adasme
- Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapacá, Av. Gral. Velasquez 1775, Arica 1000000, Chile
| |
Collapse
|
8
|
Chapagain P, Haratipour Z, Malabanan MM, Choi WJ, Blind RD. Bilirubin is a new ligand for nuclear receptor Liver Receptor Homolog-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592606. [PMID: 38853895 PMCID: PMC11160564 DOI: 10.1101/2024.05.05.592606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The nuclear receptor Liver Receptor Homolog-1 (LRH-1, NR5A2 ) binds to phospholipids that regulate important LRH-1 functions in the liver. A recent compound screen unexpectedly identified bilirubin, the product of liver heme metabolism, as a possible ligand for LRH-1. Here, we show unconjugated bilirubin directly binds LRH-1 with apparent K d =9.3uM, altering LRH-1 interaction with all transcriptional coregulator peptides tested. Bilirubin decreased LRH-1 protease sensitivity, consistent with MD simulations predicting bilirubin stably binds LRH-1 within the canonical ligand binding site. Bilirubin activated a luciferase reporter specific for LRH-1, dependent on co-expression with the bilirubin membrane transporter SLCO1B1 , but bilirubin failed to activate ligand-binding genetic mutants of LRH-1. Gene profiling in HepG2 cells shows bilirubin selectively regulated transcripts from endogenous LRH-1 ChIP-seq target genes, which was significantly attenuated by either genetic knockdown of LRH-1, or by a specific chemical competitor of LRH-1. Gene set enrichment suggests bilirubin and LRH-1 share roles in cholesterol metabolism and lipid efflux, thus we propose a new role for LRH-1 in directly sensing intracellular levels of bilirubin.
Collapse
|
9
|
Zhi J, Li F, Jiang X, Bai R. Thyroid receptor β: A promising target for developing novel anti-androgenetic alopecia drugs. Drug Discov Today 2024; 29:104013. [PMID: 38705510 DOI: 10.1016/j.drudis.2024.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Androgenetic alopecia (AGA) significantly impacts the self-confidence and mental well-being of people. Recent research has revealed that thyroid receptor β (TRβ) agonists can activate hair follicles and effectively stimulate hair growth. This review aims to comprehensively elucidate the specific mechanism of action of TRβ in treating AGA from various perspectives, highlighting its potential as a drug target for combating AGA. Moreover, this review provides a thorough summary of the research advances in TRβ agonist candidates with anti-AGA efficacy and outlines the structure-activity relationships (SARs) of TRβ agonists. We hope that this review will provide practical information for the development of effective anti-alopecia drugs.
Collapse
Affiliation(s)
- Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, P.R. China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
10
|
Yang Y, Valdés-Rives SA, Liu Q, Li Y, Tan J, Tan Y, Koch CA, Rong Y, Houser SR, Wei S, Cai KQ, Cheng SY, Curran T, Wechsler-Reya R, Yang ZJ. Thyroid Hormone Suppresses Medulloblastoma Progression Through Promoting Terminal Differentiation of Tumor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580111. [PMID: 38405864 PMCID: PMC10888774 DOI: 10.1101/2024.02.13.580111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypothyroidism is commonly detected in patients with medulloblastoma (MB). A possible link between thyroid hormone (TH) signaling and MB pathogenicity has not been reported. Here, we find that TH plays a critical role in promoting tumor cell differentiation. Reduction in TH levels frees the TH receptor, TRα1, to bind to EZH2 and repress expression of NeuroD1, a transcription factor that drives tumor cell differentiation. Increased TH reverses EZH2-mediated repression of NeuroD1 by abrogating the binding of EZH2 and TRα1, thereby stimulating tumor cell differentiation and reducing MB growth. Importantly, TH-induced differentiation of tumor cells is not restricted by the molecular subgroup of MB. These findings establish an unprecedented association between TH signaling and MB pathogenicity, providing solid evidence for TH as a promising modality for MB treatment.
Collapse
|
11
|
Cho YW, Fu Y, Huang CCJ, Wu X, Ng L, Kelley KA, Vella KR, Berg AH, Hollenberg AN, Liu H, Forrest D. Thyroid hormone-regulated chromatin landscape and transcriptional sensitivity of the pituitary gland. Commun Biol 2023; 6:1253. [PMID: 38081939 PMCID: PMC10713718 DOI: 10.1038/s42003-023-05546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023] Open
Abstract
Thyroid hormone (3,5,3'-triiodothyronine, T3) is a key regulator of pituitary gland function. The response to T3 is thought to hinge crucially on interactions of nuclear T3 receptors with enhancers but these sites in pituitary chromatin remain surprisingly obscure. Here, we investigate genome-wide receptor binding in mice using tagged endogenous thyroid hormone receptor β (TRβ) and analyze T3-regulated open chromatin using an anterior pituitary-specific Cre driver (Thrbb2Cre). Strikingly, T3 regulates histone modifications and chromatin opening primarily at sites that maintain TRβ binding regardless of T3 levels rather than at sites where T3 abolishes or induces de novo binding. These sites associate more frequently with T3-activated than T3-suppressed genes. TRβ-deficiency blunts T3-regulated gene expression, indicating that TRβ confers transcriptional sensitivity. We propose a model of gene activation in which poised receptor-enhancer complexes facilitate adjustable responses to T3 fluctuations, suggesting a genomic basis for T3-dependent pituitary function or pituitary dysfunction in thyroid disorders.
Collapse
Affiliation(s)
- Young-Wook Cho
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yulong Fu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Che Jeff Huang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuefeng Wu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin A Kelley
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kristen R Vella
- Division of Endocrinology, Diabetes and Metabolism, Weill Department of Medicine Weill Cornell Medicine, New York, New York, 10065, USA
| | - Anders H Berg
- Department of Pathology, Cedars Sinai Medical Center, Los Angeles, California, 90048, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Weill Department of Medicine Weill Cornell Medicine, New York, New York, 10065, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Li H, Yang M, Yang J, Seery S, Ma C, Liu Y, Zhang X, Li A, Guo H. Per- and polyfluoroalkyl substances and the associated thyroid cancer risk: A case-control study in China. CHEMOSPHERE 2023; 337:139411. [PMID: 37419160 DOI: 10.1016/j.chemosphere.2023.139411] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/13/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
The role of perfluoroalkyl and polyfluoroalkyl substances (PFAS) as thyroid carcinogens is unclear. Therefore, we intended to identify associations between each PFAS congener and their mixture with thyroid cancer risk. This case-control study of thyroid cancer was conducted in Shijiazhuang, Hebei Province, China. Three hundred participants were recruited from January to May 2022 and were matched according to sex and age. Twelve PFAS were assessed using ultra-high-performance liquid chromatography-tandem mass spectrometry. Associations between PFAS congeners and thyroid cancer risk were considered under conditional logistic regression analysis and a restricted cubic spline model. Mixture effects were also assessed with quantile g-computation and a Bayesian kernel machine regression model. Compared to the first tertile, third tertile PFOA, PFNA, PFHxS, PFDA, and PFUnDA concentrations were associated with lower thyroid cancer risk (ORPFOA: 0.32, 95% confidence interval (CI): 0.15-0.69; ORPFNA: 0.18, 95% CI: 0.07-0.46; ORPFHxS: 0.37, 95% CI: 0.15-0.92; ORPFDA: 0.07, 95% CI: 0.02-0.23; ORPFUnDA: 0.12, 95% CI: 0.05-0.30) after adjusting for confounding factors. PFNA, PFDA, and PFUnDA had a negative dose-response relationship with thyroid cancer risk. Mixture analysis also showed that thyroid cancer risk is negatively associated with the overall mixture and carboxylates. In the overall mixture, PFOS and PFDA contributed most to positive and negative changes in thyroid cancer risk, respectively. However, PFOS, PFNA, PFDA, and PFUnDA were of equally high importance. This study is the first to confirm the effects of the PFAS mixture on thyroid cancer, and further large-scale prospective studies are still warranted to test these inverse associations.
Collapse
Affiliation(s)
- Haoran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, PR China
| | - Jing Yang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Samuel Seery
- Faculty of Health and Medicine, Division of Health Research, Lancaster University, Lancaster, LA1 4YW, UK; School of Humanities and Social Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Chaoying Ma
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, PR China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, PR China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China.
| |
Collapse
|
13
|
Brent GA. A Historical Reflection on Scientific Advances in Understanding Thyroid Hormone Action. Thyroid 2023; 33:1140-1149. [PMID: 37594753 DOI: 10.1089/thy.2022.0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Background: Thyroid hormone (TH) has actions in every tissue of the body and is essential for normal development, as well as having important actions in the adult. The earliest markers of TH action that were identified and monitored clinically, even before TH could be measured in serum, included oxygen consumption, basal metabolic rate, serum cholesterol, and deep tendon reflex time. Cellular, rodent, amphibian, zebrafish, and human models have been used to study TH action. Summary: Early studies of the mechanism of TH action focused on saturable-specific triiodothyronine (T3) nuclear binding and direct actions of T3 that altered protein expression. Additional effects of TH were recognized on mitochondria, stimulation of ion transport, especially the sodium potassium ATPase, augmentation of adrenergic signaling, role as a neurotransmitter, and direct plasma membrane effects. The cloning of the thyroid hormone receptor (THR) genes in 1986 and report of the THR crystal structure in 1995 produced rapid progress in understanding the mechanism of TH nuclear action, as well as the development of modified THR ligands. These findings revealed nuances of TH signaling, including the role of nuclear receptor coactivators and corepressors, repression of positively stimulated genes by the unliganded receptor, THR isoform-specific actions of TRα (THRA) and TRβ (THRB), and THR binding DNA as a heterodimer with retinoid-x-receptor (RXR) for genes positively regulated by TH. The identification of genetic disorders of TH transport and signaling, especially Resistance to Thyroid Hormone (RTH) and monocarboxylate transporter 8 (Mct8) defects, has been highly informative with respect to the mechanism of TH action. Conclusions: The impact of THR isoform, post-translational modifications, receptor cofactors, DNA response element, and selective TH tissue uptake, on TH action, have clinical implications for diagnosing and treating thyroid disease. Additionally, these findings have led to the development of novel TH and TH analogue therapies for metabolic, neurological, and cardiovascular diseases.
Collapse
Affiliation(s)
- Gregory A Brent
- Division of Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
14
|
Kiliti AJ, Sharif GM, Martin MB, Wellstein A, Riegel AT. AIB1/SRC-3/NCOA3 function in estrogen receptor alpha positive breast cancer. Front Endocrinol (Lausanne) 2023; 14:1250218. [PMID: 37711895 PMCID: PMC10498919 DOI: 10.3389/fendo.2023.1250218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
The estrogen receptor alpha (ERα) is a steroid receptor that is pivotal in the initiation and progression of most breast cancers. ERα regulates gene transcription through recruitment of essential coregulators, including the steroid receptor coactivator AIB1 (Amplified in Breast Cancer 1). AIB1 itself is an oncogene that is overexpressed in a subset of breast cancers and is known to play a role in tumor progression and resistance to endocrine therapy through multiple mechanisms. Here we review the normal and pathological functions of AIB1 in regard to its ERα-dependent and ERα-independent actions, as well as its genomic conservation and protein evolution. We also outline the efforts to target AIB1 in the treatment of breast cancer.
Collapse
Affiliation(s)
- Amber J. Kiliti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Ghada M. Sharif
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Mary Beth Martin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, United States
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| | - Anna T. Riegel
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
| |
Collapse
|
15
|
Hu L, Gu Y, Liang J, Ning M, Yang J, Zhang Y, Qu H, Yang Y, Leng Y, Zhou B. Discovery of Highly Potent and Selective Thyroid Hormone Receptor β Agonists for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2023; 66:3284-3300. [PMID: 36799411 DOI: 10.1021/acs.jmedchem.2c01669] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive stage of nonalcoholic fatty liver disease (NAFLD) and is characterized by steatosis, inflammation, hepatocyte ballooning, and fibrosis. While there are currently no approved therapies for NASH, the thyroid hormone receptor β (THR-β), primarily expressed in the liver, is emerging as an effective molecular target for the treatment of NASH. However, the adverse cardiac and bone effects mediated by thyroid hormone receptor α (THR-α) need to be minimized. Herein, we reported the discovery of a series of novel THR-β agonists featuring pyrrolo[3,2-b]pyridin-5-one skeletons based on structure-based drug design. Further optimization led to compound 15, which exhibited higher potency and selectivity for THR-β over THR-α compared to clinical drug MGL-3196. More significantly, an excellent liver-to-serum ratio of 93:1 was observed for compound 15. We believe that the high hepatic concentration of compound 15 may result in no cardiotoxicity.
Collapse
Affiliation(s)
- Liuyu Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yipei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ju Liang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Junli Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaxi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.,University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
16
|
Smajdor J, Paczosa-Bator B, Piech R. Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000. MEMBRANES 2022; 12:1225. [PMID: 36557132 PMCID: PMC9782681 DOI: 10.3390/membranes12121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This article presents advances in the electrochemical determination of hormones and steroids since 2000. A wide spectrum of techniques and working electrodes have been involved in the reported measurements in order to obtain the lowest possible limits of detection. The voltammetric and polarographic techniques, due to their sensitivity and easiness, could be used as alternatives to other, more complicated, analytical assays. Still, growing interest in designing a new construction of the working electrodes enables us to prepare new measurement procedures and obtain lower limits of detection. A brief description of the measured compounds has been presented, along with a comparison of the obtained results.
Collapse
|
17
|
Rastinejad F. Retinoic acid receptor structures: the journey from single domains to full-length complex. J Mol Endocrinol 2022; 69:T25-T36. [PMID: 36069789 PMCID: PMC11376212 DOI: 10.1530/jme-22-0113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022]
Abstract
The retinoic acid receptors (RARα, β, and γ) are multi-domain polypeptides that heterodimerize with retinoid X receptors (RXRα, β, and γ) to form functional transcription factors. Understanding the three-dimensional molecular organization of these nuclear receptors (NRs) began with RAR and RXR DNA-binding domains (DBDs), and were followed with studies on isolated ligand-binding domains (LBDs). The more complete picture emerged in 2017 with the multi-domain crystal structure of RXRα-RARβ on its response element with retinoic acid molecules and coactivator segments on both proteins. The analysis of that structure and its complementary studies have clarified the direct communication pathways within RXR-RAR polypeptides, through which DNA binding, protein-ligand, and protein-protein interactions are integrated for overall functional responses. Understanding the molecular connections in the RXR-RAR complex has benefited from direct observations of the multi-domain structures of RXRα-PPARγ, RXRα-LXRβ, HNF-4α homodimer, and androgen receptor homodimer, each bound to its response element. These comprehensive NR structures show unique quaternary architectures, yet all have DBD-DBD, LBD-LBD, and DBD-LBD domain-domain contacts within them. These convergence zones allow signals from discrete domains of their polypeptides to be propagated and integrated across their entire complex, shaping their overall responses in an allosteric fashion.
Collapse
Affiliation(s)
- Fraydoon Rastinejad
- Nuffield Department of Medicine, University of Oxford, Target Discovery Institute (NDM RB), Oxford, UK
| |
Collapse
|
18
|
Yao B, Yang C, Pan C, Li Y. Thyroid hormone resistance: Mechanisms and therapeutic development. Mol Cell Endocrinol 2022; 553:111679. [PMID: 35738449 DOI: 10.1016/j.mce.2022.111679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/03/2021] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
As an essential primary hormone, thyroid hormone (TH) is indispensable for human growth, development and metabolism. Impairment of TH function in several aspects, including TH synthesis, activation, transportation and receptor-dependent transactivation, can eventually lead to thyroid hormone resistance syndrome (RTH). RTH is a rare syndrome that manifests as a reduced target cell response to TH signaling. The majority of RTH cases are related to thyroid hormone receptor β (TRβ) mutations, and only a few RTH cases are associated with thyroid hormone receptor α (TRα) mutations or other causes. Patients with RTH suffer from goiter, mental retardation, short stature and bradycardia or tachycardia. To date, approximately 170 mutated TRβ variants and more than 20 mutated TRα variants at the amino acid level have been reported in RTH patients. In addition to these mutated proteins, some TR isoforms can also reduce TH function by competing with primary TRs for TRE and RXR binding. Fortunately, different treatments for RTH have been explored with structure-activity relationship (SAR) studies and drug design, and among these treatments. With thyromimetic potency but biochemical properties that differ from those of primary TH (T3 and T4), these TH analogs can bypass specific defective transporters or reactive mutant TRs. However, these compounds must be carefully applied to avoid over activating TRα, which is associated with more severe heart impairment. The structural mechanisms of mutation-induced RTH in the TR ligand-binding domain are summarized in this review. Furthermore, strategies to overcome this resistance for therapeutic development are also discussed.
Collapse
Affiliation(s)
- Benqiang Yao
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China
| | - Chunyan Yang
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China.
| | - Chengxi Pan
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China
| | - Yong Li
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, 361005, China.
| |
Collapse
|
19
|
Jafari H, Hussain S, Campbell MJ. Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers (Basel) 2022; 14:2402. [PMID: 35626007 PMCID: PMC9139824 DOI: 10.3390/cancers14102402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Nuclear receptors (NRs) function collectively as a transcriptional signaling network that mediates gene regulatory actions to either maintain cellular homeostasis in response to hormonal, dietary and other environmental factors, or act as orphan receptors with no known ligand. NR complexes are large and interact with multiple protein partners, collectively termed coregulators. Coregulators are essential for regulating NR activity and can dictate whether a target gene is activated or repressed by a variety of mechanisms including the regulation of chromatin accessibility. Altered expression of coregulators contributes to a variety of hormone-dependent cancers including breast and prostate cancers. Therefore, understanding the mechanisms by which coregulators interact with and modulate the activity of NRs provides opportunities to develop better prognostic and diagnostic approaches, as well as novel therapeutic targets. This review aims to gather and summarize recent studies, techniques and bioinformatics methods used to identify distorted NR coregulator interactions that contribute as cancer drivers in hormone-dependent cancers.
Collapse
Affiliation(s)
- Hedieh Jafari
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Shahid Hussain
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Moray J. Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
20
|
Bauer JO, Koschabek S, Falk A. Interplay of Hydrogen and Halogen Bonding in the Crystal Structures of 2,6‐Dihalogenated Phenols. ChemistrySelect 2021. [DOI: 10.1002/slct.202101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jonathan O. Bauer
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 D-93053 Regensburg Germany
| | - Sarah Koschabek
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 D-93053 Regensburg Germany
| | - Alexander Falk
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 D-93053 Regensburg Germany
| |
Collapse
|
21
|
Bryant JM, Malabanan MM, Vanderloop BH, Nichols CM, Haratipour Z, Poon KT, Sherrod SD, McLean JA, Blind RD. The acyl chains of phosphoinositide PIP3 alter the structure and function of nuclear receptor steroidogenic factor-1. J Lipid Res 2021; 62:100081. [PMID: 33933440 PMCID: PMC8178125 DOI: 10.1016/j.jlr.2021.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/28/2022] Open
Abstract
Nuclear receptors are transcription factors that bind lipids, an event that induces a structural conformation of the receptor that favors interaction with transcriptional coactivators. The nuclear receptor steroidogenic factor-1 (SF-1, NR5A1) binds the signaling phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), and our previous crystal structures showed how the phosphoinositide headgroups regulate SF-1 function. However, what role the acyl chains play in regulating SF-1 structure remains unaddressed. Here, we used X-ray crystallography with in vitro binding and functional assays to examine how the acyl chains of PIP3 regulate human SF-1 ligand-binding domain structure and function. Altering acyl chain length and unsaturation regulates apparent binding of all tested phosphoinositides to SF-1. Mass spectrometry-based lipidomics data suggest C16 and C18 phospholipids preferentially associate with SF-1 expressed ectopically in bacteria. We then solved the 2.5 Å crystal structure of SF-1 bound to dioleoyl PIP3(18:1/18:1) to compare it with a matched structure of SF-1 bound to dipalmitoyl PIP3(16:0/16:0). The dioleoyl-bound structure was severely disordered in a specific SF-1 region associated with pathogenic human polymorphisms and within the coactivator-binding region critical for SF-1 function while inducing increased sensitivity to protease digestion in solution. Validating these structural observations, in vitro functional studies showed dioleoyl PIP3 induced 6-fold poorer affinity of a peroxisome proliferator-activated receptor gamma coactivator 1-alpha coactivator peptide for SF-1 compared with dipalmitoyl PIP3. Together, these data suggest the chemical nature of the phosphoinositide acyl chains controls the ordered state of specific, clinically important structural regions in SF-1, regulating SF-1 function in vitro.
Collapse
Affiliation(s)
- Jamal M Bryant
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Merced Malabanan
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Boden H Vanderloop
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charles M Nichols
- Center for Innovative Technology and Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Zeinab Haratipour
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA; Genomic Medicine Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Katrina T Poon
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stacy D Sherrod
- Center for Innovative Technology and Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology and Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Raymond D Blind
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, TN, USA; Genomic Medicine Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
22
|
Fischer A, Frehner G, Lill MA, Smieško M. Conformational Changes of Thyroid Receptors in Response to Antagonists. J Chem Inf Model 2021; 61:1010-1019. [PMID: 33449688 DOI: 10.1021/acs.jcim.0c01403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thyroid hormone receptors (TRs) play a critical role in human development, growth, and metabolism. Antagonists of TRs offer an attractive strategy to treat hyperthyroidism without the disadvantage of a delayed onset of drug action. While it is challenging to examine the atomistic behavior of TRs in a laboratory setting, computational methods such as molecular dynamics (MD) simulations have proven their value to elucidate ligand-induced conformational changes in nuclear receptors. Here, we performed MD simulations of TRα and TRβ complexed to their native ligand triiodothyronine (T3) as well as several antagonists. Based on the examination of 27 μs MD trajectories, we showed how binding of these compounds influences various structural features of the receptors including the helicity of helices 3 and 10 as well as the location of helix-12. Helices 3 and 12 are known to mediate coactivator association required for downstream signaling, suggesting these changes to be the molecular basis for TR antagonism. A mechanistic analysis of the trajectories revealed an allosteric pathway between H3 and H12 to be responsible for the conformational adaptations. Even though a mechanistic understanding of conformational adaptations triggered by TR antagonists is important for the development of novel therapeutics, they have not been previously examined in detail as it was done here.
Collapse
Affiliation(s)
- André Fischer
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| | - Gabriela Frehner
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| | - Markus A Lill
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| | - Martin Smieško
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| |
Collapse
|
23
|
Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr Rev 2020; 41:5835826. [PMID: 32392281 PMCID: PMC7334005 DOI: 10.1210/endrev/bnaa014] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
All biological processes, living organisms, and ecosystems have evolved with the Sun that confers a 24-hour periodicity to life on Earth. Circadian rhythms arose from evolutionary needs to maximize daily organismal fitness by enabling organisms to mount anticipatory and adaptive responses to recurrent light-dark cycles and associated environmental changes. The clock is a conserved feature in nearly all forms of life, ranging from prokaryotes to virtually every cell of multicellular eukaryotes. The mammalian clock comprises transcription factors interlocked in negative feedback loops, which generate circadian expression of genes that coordinate rhythmic physiology. In this review, we highlight previous and recent studies that have advanced our understanding of the transcriptional architecture of the mammalian clock, with a specific focus on epigenetic mechanisms, transcriptomics, and 3-dimensional chromatin architecture. In addition, we discuss reciprocal ways in which the clock and metabolism regulate each other to generate metabolic rhythms. We also highlight implications of circadian biology in human health, ranging from genetic and environment disruptions of the clock to novel therapeutic opportunities for circadian medicine. Finally, we explore remaining fundamental questions and future challenges to advancing the field forward.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Rana A, Mahajan VK, Chauhan PS, Mehta KS, Sharma SB, Sharma A, Sharma R. The Association of Thyroid Dysfunction with Chronic Plaque Psoriasis: A Hospital-Based Retrospective Descriptive Observational Study. Indian Dermatol Online J 2020; 11:771-776. [PMID: 33235844 PMCID: PMC7678532 DOI: 10.4103/idoj.idoj_432_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/11/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Associations among thyroid dysfunction, thyroid autoimmunity, and clinical features including age, gender, disease duration, and severity of psoriasis is less studied. OBJECTIVES To study frequency of thyroid dysfunction and thyroid autoimmunity and examine association among thyroid dysfunction, thyroid autoimmunity, and clinical features including gender, age, duration, and severity of psoriasis. MATERIAL AND METHODS The medical records of 290 (m:f 2.15:1) patients aged 13-75 years with plaque psoriasis were analyzed for thyroid dysfunction and thyroid autoimmunity. Thyroid dysfunction was defined as 10% variation in any thyroid hormone levels. Thyroid autoimmunity was diagnosed from presence of antithyroid peroxide (anti-TPO) antibodies. RESULTS The majority, 57.9% patients, was aged ≥41 years (Type-2 psoriasis) and duration of disease was <5 years in 58.6% patients. Mild and moderate to severe psoriasis was present in 58.3% and 41.7% patients, respectively. Deranged thyroid functions were present in 29 (10%) patients. Hypothyroidism and hyperthyroidism occurred in 5.4% and 2.7% patients, respectively. Anti-TPO antibodies were observed in 13.5% patients; 11had hypothyroidism. There was no statistically significant difference in gender, age, duration, and severity of psoriasis when compared with patients having normal thyroid function tests. CONCLUSION The study suggests possible thyroid dysregulation and thyroid autoimmunity in psoriasis but results need careful interpretation and clinical application. Their significance as standalone risk factor for the chronicity, severity, and relapses in psoriasis or whether thyroid hormone replacement or antithyroid drugs become a useful therapeutic option remains tenuous at best for need of more robust evidence. Retrospective, observational, cross-sectional study design, small number of patients, and lack of controls remain major limitations.
Collapse
Affiliation(s)
- Ashwani Rana
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra (Tanda), Himachal Pradesh, India
| | - Vikram K. Mahajan
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra (Tanda), Himachal Pradesh, India
| | - Pushpinder S. Chauhan
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra (Tanda), Himachal Pradesh, India
| | - Karaninder S. Mehta
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra (Tanda), Himachal Pradesh, India
| | - Satya Bhushan Sharma
- Department of Biochemistry, Dr. R. P. Govt. Medical College, Kangra (Tanda), Himachal Pradesh, India
| | - Anuj Sharma
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra (Tanda), Himachal Pradesh, India
| | - Reena Sharma
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra (Tanda), Himachal Pradesh, India
| |
Collapse
|
25
|
Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. PLoS Genet 2020; 16:e1008770. [PMID: 32453730 PMCID: PMC7274477 DOI: 10.1371/journal.pgen.1008770] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/05/2020] [Accepted: 04/08/2020] [Indexed: 01/18/2023] Open
Abstract
Hormone-dependent activation of enhancers includes histone hyperacetylation and mediator recruitment. Histone hyperacetylation is mostly explained by a bimodal switch model, where histone deacetylases (HDACs) disassociate from chromatin, and histone acetyl transferases (HATs) are recruited. This model builds on decades of research on steroid receptor regulation of transcription. Yet, the general concept of the bimodal switch model has not been rigorously tested genome wide. We have used a genomics approach to study enhancer hyperacetylation by the thyroid hormone receptor (TR), described to operate as a bimodal switch. H3 acetylation, HAT and HDAC ChIP-seq analyses of livers from hypo- and hyperthyroid wildtype, TR deficient and NCOR1 disrupted mice reveal three types of thyroid hormone (T3)-regulated enhancers. One subset of enhancers is bound by HDAC3-NCOR1 in the absence of hormone and constitutively occupy TR and HATs irrespective of T3 levels, suggesting a poised enhancer state in absence of hormone. In presence of T3, HDAC3-NCOR1 dissociates from these enhancers leading to histone hyperacetylation, suggesting a histone acetylation rheostat function of HDACs at poised enhancers. Another subset of enhancers, not occupied by HDACs, is hyperacetylated in a T3-dependent manner, where TR is recruited to chromatin together with HATs. Lastly, a subset of enhancers, is not occupied directly by TR yet requires TR for histone hyperacetylation. This indirect enhancer activation involves co-association with TR bound enhancers within super-enhancers or topological associated domains. Collectively, this demonstrates various mechanisms controlling hormone-dependent transcription and adds significant details to the otherwise simple bimodal switch model. Thyroid hormone (T3) is a central regulator of growth, thermogenesis, heart rate and metabolism. In the liver T3 binds thyroid hormone receptor beta (TRβ) controlling expression of genes involved in processes such as lipid and cholesterol metabolism. The molecular mechanisms controlling TR-dependent gene regulation are centred on a bimodal switch model. In the absence of T3 co-repressors bind TR reducing gene expression. When hormone binds TR, co-repressors dissociate, and co-activators are recruited inducing gene expression. This model predominates the current understanding of T3-regulated gene expression. However, only a few studies have tested this model by genome-wide approaches. We have quantified histone3 acetylation genome-wide in the liver of hypo- and hyperthyroid mice and identified gene regulatory regions regulated by T3. Probing TR and co-regulators at these regulatory regions, and analysing histone3 acetylation in mouse models for disrupted co-repressor and TR activity, reveal additional insights to the mechanisms regulating T3-dependent gene expression. We suggest a revision of the prevailing bimodal switch model which helps understanding T3-regulated gene expression in tissues such as liver. We hope that this study, together with future studies, will add new perspectives on nuclear receptor-mediated transcriptional regulation to reveal general principles.
Collapse
|
26
|
Cardoso LF, de Carvalho Melo MC, Takahashi MH, Nascimento AS, Chiamolera MI, Maciel LMZ. Structural insights revealed by two novel THRB mutations. Endocrine 2020; 68:241-247. [PMID: 31902113 DOI: 10.1007/s12020-019-02177-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/26/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE Among the inheritable forms of impaired sensitivity to thyroid hormone, resistance to thyroid hormone (RTH) due to mutations in the thyroid hormone receptor beta gene (THRB) is the first and best known described defect, revealing a wide phenotypic variability with an incompletely understood physiopathology. The objective of this study was to evaluate two novel mutations in THRB, N331H and L346R, in an attempt to provide a rational understanding of the harmful effects caused by them. METHODS The mutations of two patients with RTHβ were reproduced for analysis of gene transactivation by dual-luciferase reporter assay, and for molecular modeling for crystallography-based structural assessment. Serum measurements of TSH and FT4 were performed to compare the thyrotrophic resistance to thyroid hormone between RTHβ patients and controls. RESULTS Both mutants showed impaired gene transactivation, with greater damage in L346R. Molecular modeling suggested that the damage occurring in N331H is primarily due to reduced strength of the hydrogen bonds that stabilize T3 in its ligand-binding cavity (LBC), whereas in L346R, the damage is more marked and is mainly due to changes in hydrophobicity and molecular volume inside the LBC. Hormonal dosages indicated that the L346R mutant exhibited greater thyrotrophic resistance than N331H. CONCLUSIONS This study provides a rational understanding of the effects of mutations, indicating deleterious structural changes in the LBC in both THR, and discloses that not only the position of the mutation but, notably, the nature of the amino acid exchange, has a cardinal role in the functional damage of the receptor.
Collapse
Affiliation(s)
- Ludmilla Ferreira Cardoso
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Clara de Carvalho Melo
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | - Maria Izabel Chiamolera
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Léa Maria Zanini Maciel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
27
|
Leitch VD, Bassett JHD, Williams GR. Role of thyroid hormones in craniofacial development. Nat Rev Endocrinol 2020; 16:147-164. [PMID: 31974498 DOI: 10.1038/s41574-019-0304-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
The development of the craniofacial skeleton relies on complex temporospatial organization of diverse cell types by key signalling molecules. Even minor disruptions to these processes can result in deleterious consequences for the structure and function of the skull. Thyroid hormone deficiency causes delayed craniofacial and tooth development, dysplastic facial features and delayed development of the ossicles in the middle ear. Thyroid hormone excess, by contrast, accelerates development of the skull and, in severe cases, might lead to craniosynostosis with neurological sequelae and facial hypoplasia. The pathogenesis of these important abnormalities remains poorly understood and underinvestigated. The orchestration of craniofacial development and regulation of suture and synchondrosis growth is dependent on several critical signalling pathways. The underlying mechanisms by which these key pathways regulate craniofacial growth and maturation are largely unclear, but studies of single-gene disorders resulting in craniofacial malformations have identified a number of critical signalling molecules and receptors. The craniofacial consequences resulting from gain-of-function and loss-of-function mutations affecting insulin-like growth factor 1, fibroblast growth factor receptor and WNT signalling are similar to the effects of altered thyroid status and mutations affecting thyroid hormone action, suggesting that these critical pathways interact in the regulation of craniofacial development.
Collapse
Affiliation(s)
- Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Royal Melbourne Institute of Technology (RMIT) Centre for Additive Manufacturing, RMIT University, Melbourne, VIC, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
28
|
Tang S, Sun L, Wang F. Identification of highly active natural thyroid hormone receptor agonists by pharmacophore-based virtual screening. J Biomol Struct Dyn 2020; 39:901-910. [PMID: 31997713 DOI: 10.1080/07391102.2020.1719890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Thyroid hormone receptor (TR) is an important target for the treatment of metabolic diseases. The X-ray crystallographic data for the TR complexed with different ligands were employed to generate feature-based pharmacophore models of the active site of TR receptor. The derived hypothesis was then used to find novel hit compounds through an in silico virtual screening on the Universal Natural Products Database (UNPD). The binding mode and action mechanism of the hit compounds were further investigated by molecular docking and molecular dynamics studies, then compounds possessing similar binding site with the crystal ligand were subjected to binding activity assay. Finally, UNPD19665 and UNPD184785 were proved to be more active than crystal TR ligands, with a binding activity value of 9.82 nM and 12.62 nM, respectively. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shenjiao Tang
- School of Life Science, Linyi University, Linyi, China
| | - Lin Sun
- School of Life Science, Linyi University, Linyi, China
| | - Fangfang Wang
- School of Life Science, Linyi University, Linyi, China
| |
Collapse
|
29
|
Ren XM, Li CH, Zhang JQ, Guo LH. Binding and activity of sulfated metabolites of lower-chlorinated polychlorinated biphenyls towards thyroid hormone receptor alpha. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:686-692. [PMID: 31146155 DOI: 10.1016/j.ecoenv.2019.05.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
There has been long-standing evidence that the lower-chlorinated polychlorinated biphenyls (LC-PCBs) can be metabolized to hydroxylated metabolites (OH-PCBs), which play important roles in the LC-PCBs induced toxicity. Recently, multiple studies have demonstrated the further metabolic transformation of OH-PCBs to LC-PCB sulfates in vitro and in vivo. Several studies found LC-PCB sulfates could bind with thyroid hormone (TH) transport proteins in the serum, indicating the potential relevance of these metabolites in the TH system disruption effects. However, the interaction of LC-PCB sulfates with the TH nuclear receptor (TR), another kind of important functional protein in the TH system, has not been explored. Here, by using a fluorescence competitive binding assay, we demonstrated that LC-PCB sulfates could bind with TRα. Moreover, the LC-PCB sulfates had higher binding potency than their corresponding OH-PCB precursors. By using a luciferase reporter gene assay, we found the LC-PCB sulfates showed agonistic activity towards the TRα signaling pathway. Molecular docking simulation showed all the tested LC-PCB sulfates could fit into the ligand binding pocket of the TRα. The LC-PCB sulfates formed hydrogen bond interaction with arginine 228 residue of TRα by their sulfate groups, which might facilitate the TR binding and agonistic activity. The present study suggests that interaction with the TR might be another possible mechanism by which LC-PCB sulfate induce TH system disruption effects.
Collapse
Affiliation(s)
- Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, PR China
| | - Chuan-Hai Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Jian-Qing Zhang
- Shenzhen Center for Disease Control and Prevention, No.8 Longyuan Road, Shenzhen, 518055, Guangdong, China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| |
Collapse
|
30
|
Paul-Friedman K, Martin M, Crofton KM, Hsu CW, Sakamuru S, Zhao J, Xia M, Huang R, Stavreva DA, Soni V, Varticovski L, Raziuddin R, Hager GL, Houck KA. Limited Chemical Structural Diversity Found to Modulate Thyroid Hormone Receptor in the Tox21 Chemical Library. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:97009. [PMID: 31566444 PMCID: PMC6792352 DOI: 10.1289/ehp5314] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Thyroid hormone receptors (TRs) are critical endocrine receptors that regulate a multitude of processes in adult and developing organisms, and thyroid hormone disruption is of high concern for neurodevelopmental and reproductive toxicities in particular. To date, only a small number of chemical classes have been identified as possible TR modulators, and the receptors appear highly selective with respect to the ligand structural diversity. Thus, the question of whether TRs are an important screening target for protection of human and wildlife health remains. OBJECTIVE Our goal was to evaluate the hypothesis that there is limited structural diversity among environmentally relevant chemicals capable of modulating TR activity via the collaborative interagency Tox21 project. METHODS We screened the Tox21 chemical library (8,305 unique structures) in a quantitative high-throughput, cell-based reporter gene assay for TR agonist or antagonist activity. Active compounds were further characterized using additional orthogonal assays, including mammalian one-hybrid assays, coactivator recruitment assays, and a high-throughput, fluorescent imaging, nuclear receptor translocation assay. RESULTS Known agonist reference chemicals were readily identified in the TR transactivation assay, but only a single novel, direct agonist was found, the pharmaceutical betamipron. Indirect activation of TR through activation of its heterodimer partner, the retinoid-X-receptor (RXR), was also readily detected by confirmation in an RXR agonist assay. Identifying antagonists with high confidence was a challenge with the presence of significant confounding cytotoxicity and other, non-TR-specific mechanisms common to the transactivation assays. Only three pharmaceuticals-mefenamic acid, diclazuril, and risarestat-were confirmed as antagonists. DISCUSSION The results support limited structural diversity for direct ligand effects on TR and imply that other potential target sites in the thyroid hormone axis should be a greater priority for bioactivity screening for thyroid axis disruptors. https://doi.org/10.1289/EHP5314.
Collapse
Affiliation(s)
- Katie Paul-Friedman
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Matt Martin
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Chia-Wen Hsu
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Washington, DC, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Diana A Stavreva
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Vikas Soni
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Lyuba Varticovski
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Razi Raziuddin
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Gordon L Hager
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Keith A Houck
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
31
|
Lazcano I, Hernández-Puga G, Robles JP, Orozco A. Alternative ligands for thyroid hormone receptors. Mol Cell Endocrinol 2019; 493:110448. [PMID: 31100496 DOI: 10.1016/j.mce.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that activate or repress gene transcription, resulting in the regulation of numerous physiological programs. While 3,3',5-L-triiodothyronine is the TR cognate ligand, these receptors can also be activated by various alternative ligands, including endogenous and synthetic molecules capable of inducing diverse active receptor conformations that influence thyroid hormone-dependent signaling pathways. This review mainly discusses current knowledge on 3,5-diiodo-L-thyronine and 3,5,3'-triiodothyroacetic acid, two endogenous molecules that bind to TRs and regulate gene expression; and the molecular interactions between TRs and ligands, like synthetic thyromimetics developed to target specific TR isoforms for tissue-specific regulation of thyroid-related disorders, or endocrine disruptors that have allowed the design of new analogues and revealed essential amino acids for thyroid hormone binding.
Collapse
Affiliation(s)
- Iván Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro, Mexico; Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Qro, Mexico
| | - Gabriela Hernández-Puga
- Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Qro, Mexico
| | - Juan Pablo Robles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro, Mexico
| | - Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Qro, Mexico.
| |
Collapse
|
32
|
Wejaphikul K, Groeneweg S, Hilhorst-Hofstee Y, Chatterjee VK, Peeters RP, Meima ME, Visser WE. Insight Into Molecular Determinants of T3 vs T4 Recognition From Mutations in Thyroid Hormone Receptor α and β. J Clin Endocrinol Metab 2019; 104:3491-3500. [PMID: 30817817 PMCID: PMC6599431 DOI: 10.1210/jc.2018-02794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
Abstract
CONTEXT The two major forms of circulating thyroid hormones (THs) are T3 and T4. T3 is regarded as the biologically active hormone because it binds to TH receptors (TRs) with greater affinity than T4. However, it is currently unclear what structural mechanisms underlie this difference in affinity. OBJECTIVE Prompted by the identification of a novel M256T mutation in a resistance to TH (RTH)α patient, we investigated Met256 in TRα1 and the corresponding residue (Met310) in TRβ1, residues previously predicted by crystallographic studies in discrimination of T3 vs T4. METHODS Clinical characterization of the RTHα patient and molecular studies (in silico protein modeling, radioligand binding, transactivation, and receptor-cofactor studies) were performed. RESULTS Structural modeling of the TRα1-M256T mutant showed that distortion of the hydrophobic niche to accommodate the outer ring of ligand was more pronounced for T3 than T4, suggesting that this substitution has little impact on the affinity for T4. In agreement with the model, TRα1-M256T selectively reduced the affinity for T3. Also, unlike other naturally occurring TRα mutations, TRα1-M256T had a differential impact on T3- vs T4-dependent transcriptional activation. TRα1-M256A and TRβ1-M310T mutants exhibited similar discordance for T3 vs T4. CONCLUSIONS Met256-TRα1/Met310-TRβ1 strongly potentiates the affinity of TRs for T3, thereby largely determining that T3 is the bioactive hormone rather than T4. These observations provide insight into the molecular basis for underlying the different affinity of TRs for T3 vs T4, delineating a fundamental principle of TH signaling.
Collapse
Affiliation(s)
- Karn Wejaphikul
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, Netherlands
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, Netherlands
| | | | - V Krishna Chatterjee
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, Netherlands
| | - Marcel E Meima
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, Netherlands
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, Rotterdam, Netherlands
- Correspondence and Reprint Requests: W. Edward Visser, MD, PhD, Department of Internal Medicine, Erasmus Medical Center, Academic Center for Thyroid Diseases, 3015 CN Rotterdam, Netherlands. E-mail:
| |
Collapse
|
33
|
Qin WP, Li CH, Guo LH, Ren XM, Zhang JQ. Binding and activity of polybrominated diphenyl ether sulfates to thyroid hormone transport proteins and nuclear receptors. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:950-956. [PMID: 31143904 DOI: 10.1039/c9em00095j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) can be metabolized to hydroxylated PBDEs (OH-PBDEs), which play important roles in their disruption effects on the thyroid hormone (TH) system. Recently, multiple in vitro studies suggested that OH-PBDEs might be further metabolically transformed to PBDE sulfates. However, information about the bioactivity of PBDE sulfate metabolites is limited. In the present study, we explored the possible disruption effects of PBDE sulfates to the TH system by studying their binding and activity towards TH transport proteins and nuclear receptors. We found PBDE sulfates could bind to two major TH transport proteins (thyroxine-binding globulin and transthyretin). Besides, PBDE sulfates could also bind to two subtypes of TH nuclear receptors (TRα and TRβ) and showed agonistic activity towards the subsequent signaling pathway. Moreover, the PBDE sulfates showed higher binding potency to TH transport proteins and TRs compared with their corresponding OH-PBDE precursors. Molecular docking results showed that replacement of hydroxyl groups with sulfate groups might lead to more hydrogen bond interactions with these proteins. Overall, our study suggested that PBDE sulfates might disturb the TH system by binding to TH transport proteins or TRs. Our finding indicated a possible mechanism for the TH system disruption effects of PBDEs through their sulfate metabolites.
Collapse
Affiliation(s)
- Wei-Ping Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, P.O. Box 2871, Beijing, 100085, China.
| | | | | | | | | |
Collapse
|
34
|
Liu S, Zheng B, Sheng Y, Kong Q, Jiang Y, Yang Y, Han X, Cheng L, Zhang Y, Han J. Identification of Cancer Dysfunctional Subpathways by Integrating DNA Methylation, Copy Number Variation, and Gene-Expression Data. Front Genet 2019; 10:441. [PMID: 31156704 PMCID: PMC6529853 DOI: 10.3389/fgene.2019.00441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
A subpathway is defined as the local region of a biological pathway with specific biological functions. With the generation of large-scale sequencing data, there are more opportunities to study the molecular mechanisms of cancer development. It is necessary to investigate the potential impact of DNA methylation, copy number variation (CNV), and gene-expression changes in the molecular states of oncogenic dysfunctional subpathways. We propose a novel method, Identification of Cancer Dysfunctional Subpathways (ICDS), by integrating multi-omics data and pathway topological information to identify dysfunctional subpathways. We first calculated gene-risk scores by integrating the three following types of data: DNA methylation, CNV, and gene expression. Second, we performed a greedy search algorithm to identify the key dysfunctional subpathways within pathways for which the discriminative scores were locally maximal. Finally, a permutation test was used to calculate the statistical significance level for these key dysfunctional subpathways. We validated the effectiveness of ICDS in identifying dysregulated subpathways using datasets from liver hepatocellular carcinoma (LIHC), head-neck squamous cell carcinoma (HNSC), cervical squamous cell carcinoma, and endocervical adenocarcinoma. We further compared ICDS with methods that performed the same subpathway identification algorithm but only considered DNA methylation, CNV, or gene expression (defined as ICDS_M, ICDS_CNV, or ICDS_G, respectively). With these analyses, we confirmed that ICDS better identified cancer-associated subpathways than the three other methods, which only considered one type of data. Our ICDS method has been implemented as a freely available R-based tool (https://cran.r-project.org/web/packages/ICDS).
Collapse
Affiliation(s)
- Siyao Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Baotong Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuqi Sheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qingfei Kong
- College of Basic Medical Science, Harbin Medical University, Harbin, China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xudong Han
- College of Basic Medical Science, Harbin Medical University, Harbin, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Veras Ribeiro Filho H, Tambones IL, Mariano Gonçalves Dias M, Bernardi Videira N, Bruder M, Amorim Amato A, Migliorini Figueira AC. Modulation of nuclear receptor function: Targeting the protein-DNA interface. Mol Cell Endocrinol 2019; 484:1-14. [PMID: 30703486 DOI: 10.1016/j.mce.2019.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023]
Abstract
Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that modulate several biological processes. Traditionally, modulation of NRs has been focused on the development of ligands that recognize and bind to the ligand binding domain (LBD), resulting in activation or repression of transcription through the recruitment of coregulators. However, for more severe diseases, such as breast and prostate cancer, the conventional treatment addressing LBD modulation is not always successful, due to tumor resistance. To overcome these challenges and aiming to modulate NR activity by inhibiting the NR-DNA interaction, new studies focus on the development of molecules targeting alternative sites and domains on NRs. Here, we discuss two different approaches for this alternative NR modulation: one targeting the NR DNA binding domain (DBD); and the other targeting the DNA sites recognized by NRs. Our aim is to present the challenges and perspectives for developing specific inhibitors for each purpose, alongside with already reported examples.
Collapse
Affiliation(s)
- Helder Veras Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, 13083-970, Brazil
| | - Izabella Luisa Tambones
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, 13083-970, Brazil
| | - Marieli Mariano Gonçalves Dias
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil; Graduate Program in Molecular and Functional Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas, SP, 13083-970, Brazil
| | - Natalia Bernardi Videira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil
| | - Marjorie Bruder
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil
| | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Science, University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil
| | - Ana Carolina Migliorini Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
36
|
Eberhardt J, McEwen AG, Bourguet W, Moras D, Dejaegere A. A revisited version of the apo structure of the ligand-binding domain of the human nuclear receptor retinoic X receptor α. Acta Crystallogr F Struct Biol Commun 2019; 75:98-104. [PMID: 30713160 PMCID: PMC6360438 DOI: 10.1107/s2053230x18018022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
The retinoic X receptor (RXR) plays a crucial role in the superfamily of nuclear receptors (NRs) by acting as an obligatory partner of several nuclear receptors; its role as a transcription factor is thus critical in many signalling pathways, such as metabolism, cell development, differentiation and cellular death. The first published structure of the apo ligand-binding domain (LBD) of RXRα, which is still used as a reference today, contained inaccuracies. In the present work, these inaccuracies were corrected using modern crystallographic tools. The most important correction concerns the presence of a π-bulge in helix H7, which was originally built as a regular α-helix. The presence of several CHAPS molecules, which are visible for the first time in the electron-density map and which stabilize the H1-H3 loop, which contains helix H2, are also revealed. The apo RXR structure has played an essential role in deciphering the molecular mode of action of NR ligands and is still used in numerous biophysical studies. This refined structure should be used preferentially in the future in interpreting experiments as well as for modelling and structural dynamics studies of the apo RXRα LBD.
Collapse
Affiliation(s)
- Jérôme Eberhardt
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Alastair G. McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - William Bourguet
- Centre de Biochimie Structurale (CBS), CNRS, Inserm, Université de Montpellier, Montpellier, France
| | - Dino Moras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Annick Dejaegere
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
37
|
Jakobsson T, Vedin LL, Parini P. Potential Role of Thyroid Receptor β Agonists in the Treatment of Hyperlipidemia. Drugs 2019; 77:1613-1621. [PMID: 28865063 PMCID: PMC5613055 DOI: 10.1007/s40265-017-0791-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thyroid hormones have important effects on cellular development, growth, and metabolism and are necessary for the healthy function of almost all tissues. Hyperthyroid patients with excess thyroid hormone levels experience tachycardia, fatigue, muscle wasting, and osteoporosis. However, although high thyroid hormone levels have adverse effects, efforts have been made to harness the beneficial effects, such as reduced serum low-density lipoprotein (LDL) cholesterol levels, elevated basal metabolic rate, and weight loss. Thyroid hormones interact with nuclear thyroid hormone receptors (TRs), and cholesterol levels are reduced through TRβ, whereas extrahepatic adverse actions are primarily connected to TRα. Thus, to develop a useful compound for clinical use, efforts have been focusing on developing compounds with isomer-specific functions based on the structure of thyroid hormones, i.e., thyromimetics that are liver and/or TRβ specific. In this short review, we discuss the development of the early thyromimetics that enabled, through modern molecular techniques, the progress towards improved design of TRβ-selective thyromimetics. We also address the early promise shown in human clinical trials and the current status of these drugs and other emerging compounds.
Collapse
Affiliation(s)
- Tomas Jakobsson
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Lise-Lotte Vedin
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, C1:74, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden. .,Metabolism Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. .,Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
38
|
Xin Y, Ren XM, Ruan T, Li CH, Guo LH, Jiang G. Chlorinated Polyfluoroalkylether Sulfonates Exhibit Similar Binding Potency and Activity to Thyroid Hormone Transport Proteins and Nuclear Receptors as Perfluorooctanesulfonate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9412-9418. [PMID: 30052437 DOI: 10.1021/acs.est.8b01494] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chlorinated polyfluoroalkylether sulfonates (Cl-PFAESs) have been used as perfluorooctanesulfonate (PFOS) alternatives in the chrome plating industry for years. Although Cl-PFAESs have become ubiquitous environmental contaminants, knowledge on their toxicological mechanism remains very limited. We compared potential thyroid hormone (TH) disruption effects of Cl-PFAESs and PFOS via the mechanisms of competitive binding to TH transport proteins and activation of TH receptors (TRs). Fluorescence binding assays revealed that 6:2 Cl-PFAES, 8:2 Cl-PFAES and F-53B (a mixture of 6:2 and 8:2 Cl-PFAES) all interacted with a TH transport protein transthyretin (TTR), with 6:2 Cl-PFAES showing the highest affinity. It was also found that the chemicals interacted with TRs, with the affinity following the order of 6:2 Cl-PFAES > PFOS > 8:2 Cl-PFAES. In reporter gene assays the chemicals exhibited agonistic activity toward TRs, with the potency of 6:2 Cl-PFAES comparable to that of PFOS. The chemicals also promoted GH3 cell proliferation, with 6:2 Cl-PFAES displaying the highest potency. Molecular docking and molecular dynamic simulation revealed that both Cl-PFAESs fit into the ligand binding pockets of TTR and TRs with the binding modes similar to PFOS. Collectively, our results demonstrate that Cl-PFAESs might cause TH disruption effects through competitive binding to transport proteins and activation of TRs.
Collapse
Affiliation(s)
- Yan Xin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , China
| | - Chuan-Hai Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100039 , China
- The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou 510150 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100039 , China
| |
Collapse
|
39
|
Kino T. Single Nucleotide Variations of the Human GR Gene Manifested as Pathologic Mutations or Polymorphisms. Endocrinology 2018; 159:2506-2519. [PMID: 29762667 DOI: 10.1210/en.2017-03254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/21/2018] [Indexed: 12/19/2022]
Abstract
The human genome contains numerous single nucleotide variations, and the human glucocorticoid receptor (GR) gene harbors ∼450 of these genetic changes. Among them, extremely rare, nonsynonymous variants, known as pathologic GR gene mutations, develop a characteristic pathologic condition, familial/sporadic generalized glucocorticoid resistance syndrome, by replacing the amino acids critical for GR protein structure and functions, whereas others, known as pathologic polymorphisms, develop mild manifestations recognized mainly at population bases by changing the GR activities slightly. Recent progress on the structural analysis to the GR protein and subsequent computer-based structural simulation revealed details of the molecular defects caused by such pathologic GR gene mutations, including their impact on the receptor interaction to ligands, nuclear receptor coactivators (NCoAs) or DNA glucocorticoid response elements (GREs). Indeed, those found in the GR ligand-binding domain significantly damage protein structure of the ligand-binding pocket and/or the activation function-2 transactivation domain and change their molecular interaction to glucocorticoids or the LxxLL signature motif of NCoAs. Two mutations found in GR DNA-binding domain also affect interaction of the mutant receptors to GRE DNA by affecting the critical amino acid for the interaction or changing local hydrophobic circumstance. In this review, I discuss recent findings on the structural simulation of the pathologic GR mutants in connection to their functional and clinical impacts, along with a brief explanation to recent research achievement on the GR polymorphisms.
Collapse
Affiliation(s)
- Tomoshige Kino
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
40
|
Kollitz EM, De Carbonnel L, Stapleton HM, Lee Ferguson P. The Affinity of Brominated Phenolic Compounds for Human and Zebrafish Thyroid Receptor β: Influence of Chemical Structure. Toxicol Sci 2018; 163:226-239. [PMID: 29409039 PMCID: PMC5920296 DOI: 10.1093/toxsci/kfy028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Brominated phenolic compounds (BPCs) are found in the environment, and in human and wildlife tissues, and some are considered to have endocrine disrupting activities. The goal of this study was to determine how structural differences of 3 BPC classes impact binding affinities for the thyroid receptor beta (TRβ) in humans and zebrafish. BPC classes included halogenated bisphenol A derivatives, halogenated oxidative transformation products of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), and brominated phenols. Affinities were assessed using recombinant TRβ protein in competitive binding assays with 125I-triiodothyronine (125I-T3) as the radioligand. Zebrafish and human TRβ displayed similar binding affinities for T3 (Ki = 0.40 and 0.49 nM) and thyroxine (T4, Ki = 6.7 and 6.8 nM). TRβ affinity increased with increasing halogen mass and atomic radius for both species, with the iodinated compounds having the highest affinity within their compound classes. Increasing halogen mass and radius increases the molecular weight, volume, and hydrophobicity of a compound, which are all highly correlated with increasing affinity. TRβ affinity also increased with the degree of halogenation for both species. Human TRβ displayed higher binding affinities for the halogenate bisphenol A compounds, whereas zebrafish TRβ displayed higher affinities for 2,4,6-trichlorophenol and 2,4,6-trifluorophenol. Observed species differences may be related to amino acid differences within the ligand binding domains. Overall, structural variations impact TRβ affinities in a similar manner, supporting the use of zebrafish as a model for TRβ disruption. Further studies are necessary to investigate how the identified structural modifications impact downstream receptor activities and potential in vivo effects.
Collapse
Affiliation(s)
| | | | | | - Patrick Lee Ferguson
- Nicholas School of the Environment
- Pratt School of Engineering, Duke University, Durham, North Carolina 27708
| |
Collapse
|
41
|
Mackenzie LS. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules. VITAMINS AND HORMONES 2018; 106:147-162. [DOI: 10.1016/bs.vh.2017.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
42
|
|
43
|
Devereaux J, Ferrara SJ, Scanlan TS. Quantification of Thyromimetic Sobetirome Concentration in Biological Tissue Samples. Methods Mol Biol 2018; 1801:193-206. [PMID: 29892826 DOI: 10.1007/978-1-4939-7902-8_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thyroid hormone is a principal regulator of essential processes in vertebrate physiology and homeostasis. Synthetic derivatives of thyroid hormone, known as thyromimetics, display desirable therapeutic properties. Thoroughly understanding how thyromimetics distribute throughout the body is crucial for their development and this requires appropriate bioanalytical techniques to quantify drug levels in different tissues. Here, we describe a detailed protocol for the quantification of the thyromimetic sobetirome using liquid chromatography tandem-mass spectrometry (LC-MS/MS).
Collapse
Affiliation(s)
- Jordan Devereaux
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Skylar J Ferrara
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Thomas S Scanlan
- Program in Chemical Biology, Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
44
|
Galton VA. The ups and downs of the thyroxine pro-hormone hypothesis. Mol Cell Endocrinol 2017; 458:105-111. [PMID: 28130114 DOI: 10.1016/j.mce.2017.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022]
Abstract
Thyroxine (T4) is the major thyroid hormone in the thyroid gland and the circulation. However, it is widely accepted on the basis of abundant evidence that 3,5,3'-triiodothyronine (T3) is responsible for most, if not all, of the physiological effects of TH in extrathyroidal tissues, and T4 functions as the pro-hormone. Whether T4 has any intrinsic activity per se or is merely a pro-hormone that must be converted to T3 in order to exert any TH action has yet to be resolved. Although there are some physiological actions of T4 that are mediated by receptors at the cell membrane (non-genomic effects), the vast majority of the physiological effects of the THs identified to date involve the binding of T3 to specific nuclear receptors to regulate gene expression (genomic effects). This review examines how the role of T4 in genomic TH action has been viewed and debated during the hundred years since it was first isolated in 1914.
Collapse
Affiliation(s)
- Valerie Anne Galton
- Department of Physiology and Neurobiology, The Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
45
|
Liu Y, Qu K, Hai Y, Li X, Zhao L, Zhao C. SNP mutations occurring in thyroid hormone receptor influenced individual susceptibility to triiodothyronine: Molecular dynamics and site-directed mutagenesis approaches. J Cell Biochem 2017; 119:2604-2616. [PMID: 29024007 DOI: 10.1002/jcb.26425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
The increasing evidences have suggested that expression of single nucleotide polymorphisms (SNP) coded thyroid hormone receptors (THR) generally are associated with individual susceptibility to chemicals. In the present research, multiple molecular dynamics simulations on four SNP mutants (G332R, T337Δ, G345R, and G347E) were performed to investigate the structural and dynamical altering, which could lead to a binding capability variation to triiodothyronine (T3). It proved the structures of two SNP mutants (G345R and T337Δ) occurring in the THR proteins had experienced conformational change to a great extend, which also led to a significant decreasing in binding ability with T3. In addition, two mutates (G345R and G347E) and wild type THR proteins were expressed and purified based on site-directed mutagenesis technology to test their binding abilities with T3 by fluorescence experiments. The fluorescence quenching efficiencies of two mutates displayed that the conjugation with T3 decreased with a significant rate in G345R system and a little rate in G347E system compared with its wild type. It was consistent with the molecular dynamic research that the SNP mutations did change structures of THR protein, and thereby decreased the binding behavior of T3 at different extent. The overall molecular-level look at the protein structure may provide the structural basis to explain how one amino acid change can create a ripple effect on the protein structures and eventually affect the binding affinity of the ligands, which maybe the first stage to understand how SNP mutation results in individual difference in susceptibility to variant chemicals.
Collapse
Affiliation(s)
- Yaquan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Kaili Qu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ying Hai
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Lei Zhao
- Key Laboratory of Chemistry and Quality for Traditional Chinese Medicines of the University of Gansu Province, Gansu University of Chinese Medicines, Lanzhou, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
46
|
Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:601-614. [PMID: 28399499 DOI: 10.1016/j.scitotenv.2017.03.286] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/26/2017] [Accepted: 03/31/2017] [Indexed: 05/27/2023]
Abstract
Personal care products (PCPs) are a diverse group of common household substances used for health, beauty and cleaning purposes. These include disinfectants, fragrances, insect repellents, preservatives and UV filters, among others. Some of them are considered chemicals of emerging concern due to their presence and negative impact on aquatic ecosystems, specially related to endocrine disruption and reproductive disorders. The entry of those chemicals to water bodies occurs mainly through the sewage effluents from wastewater treatment plants due to their incomplete or inefficient removal. The purpose of this review was to collect and analyze data about the incidence and concentrations of PCPs reported as emerging pollutants in different water matrices, including wastewater influents and effluents. Our database is composed of 141 articles with information about 72 PCPs recorded as emerging pollutants in 30 countries, in concentrations ranging from 0.029ng/L to 7.811×106ng/L. Fragrances, antiseptics and sunscreens were the most reported groups. As expected, the largest number of PCPs documented as emerging pollutants were found in wastewater treatment plant effluents with a total of 64 compounds, compared to 43 in surface water and 23 in groundwater, which evidence the anthropological contribution of PCPs to water bodies. These molecules were found in all the continents, however, there is a lack of information regarding the presence of emerging pollutants from PCPs in developing countries. Therefore, we suggest further efforts in assessing the occurrence and concentrations of these chemicals in those areas.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Grupo de Investigación en Estudios Químicos y Biológicos, School of Basic Sciences, Universidad Tecnológica de Bolívar, Cartagena 130010, Colombia; Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 565-A, Mexico.
| | - Mary Fennix-Agudelo
- Grupo de Investigación en Estudios Químicos y Biológicos, School of Basic Sciences, Universidad Tecnológica de Bolívar, Cartagena 130010, Colombia
| | - Wendy Miranda-Castro
- Grupo de Investigación en Estudios Químicos y Biológicos, School of Basic Sciences, Universidad Tecnológica de Bolívar, Cartagena 130010, Colombia
| |
Collapse
|
47
|
Kalikiri MK, Mamidala MP, Rao AN, Rajesh V. Analysis and functional characterization of sequence variations in ligand binding domain of thyroid hormone receptors in autism spectrum disorder (ASD) patients. Autism Res 2017; 10:1919-1928. [DOI: 10.1002/aur.1838] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/20/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Mahesh Kumar Kalikiri
- Department of Biological Sciences; Birla Institute of Technology and Science; Hyderabad Campus, Pilani Andhra Pradesh 500078 India
| | - Madhu Poornima Mamidala
- Department of Biological Sciences; Birla Institute of Technology and Science; Hyderabad Campus, Pilani Andhra Pradesh 500078 India
| | - Ananth N. Rao
- Metabolic Diseases and Research Unit, Apollo Hospitals; Bangalore India
| | - Vidya Rajesh
- Department of Biological Sciences; Birla Institute of Technology and Science; Hyderabad Campus, Pilani Andhra Pradesh 500078 India
| |
Collapse
|
48
|
Exploring Binding Mechanisms in Nuclear Hormone Receptors by Monte Carlo and X-ray-derived Motions. Biophys J 2017; 112:1147-1156. [PMID: 28355542 DOI: 10.1016/j.bpj.2017.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
In this study, we performed an extensive exploration of the ligand entry mechanism for members of the steroid nuclear hormone receptor family (androgen receptor, estrogen receptor α, glucocorticoid receptor, mineralocorticoid receptor, and progesterone receptor) and their endogenous ligands. The exploration revealed a shared entry path through the helix 3, 7, and 11 regions. Examination of the x-ray structures of the receptor-ligand complexes further showed two distinct folds of the helix 6-7 region, classified as "open" and "closed", which could potentially affect ligand binding. To improve sampling of the helix 6-7 loop, we incorporated motion modes based on principal component analysis of existing crystal structures of the receptors and applied them to the protein-ligand sampling. A detailed comparison with the anisotropic network model (an elastic network model) highlights the importance of flexibility in the entrance region. While the binding (interaction) energy of individual simulations can be used to score different ligands, extensive sampling further allows us to predict absolute binding free energies and analyze reaction kinetics using Markov state models and Perron-cluster cluster analysis, respectively. The predicted relative binding free energies for three ligands binding to the progesterone receptor are in very good agreement with experimental results and the Perron-cluster cluster analysis highlighted the importance of a peripheral binding site. Our analysis revealed that the flexibility of the helix 3, 7, and 11 regions represents the most important factor for ligand binding. Furthermore, the hydrophobicity of the ligand influences the transition between the peripheral and the active binding site.
Collapse
|
49
|
Brown DI, Parry TL, Willis MS. Ubiquitin Ligases and Posttranslational Regulation of Energy in the Heart: The Hand that Feeds. Compr Physiol 2017. [PMID: 28640445 DOI: 10.1002/cphy.c160024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heart failure (HF) is a costly and deadly syndrome characterized by the reduced capacity of the heart to adequately provide systemic blood flow. Mounting evidence implicates pathological changes in cardiac energy metabolism as a contributing factor in the development of HF. While the main source of fuel in the healthy heart is the oxidation of fatty acids, in the failing heart the less energy efficient glucose and glycogen metabolism are upregulated. The ubiquitin proteasome system plays a key role in regulating metabolism via protein-degradation/regulation of autophagy and regulating metabolism-related transcription and cell signaling processes. In this review, we discuss recent research that describes the role of the ubiquitin-proteasome system (UPS) in regulating metabolism in the context of HF. We focus on ubiquitin ligases (E3s), the component of the UPS that confers substrate specificity, and detail the current understanding of how these E3s contribute to cardiac pathology and metabolism. © 2017 American Physiological Society. Compr Physiol 7:841-862, 2017.
Collapse
Affiliation(s)
- David I Brown
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
Abstract
Members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors play important roles in reproduction, development, and physiology. In humans, genetic mutations in NRs are causes of rare diseases, while hormones and drugs that target NRs are in widespread therapeutic use. The present issue of the JCI includes a series of Review articles focused on specific NRs and their wide range of biological functions. Here I reflect on the past, present, and potential future highlights of research on the NR superfamily.
Collapse
|