1
|
Chaibi R, Mimoune N, Benaceur F, Stambouli L, Hamida L, Khedim R, Saidi R, Benaissa MH, Gouzi H, Neffar S, Chenchouni H. Extrinsic and intrinsic drivers of prevalence and abundance of hard-bodied ticks (Acari: Ixodidae) in one-humped camel ( Camelus dromedarius). Parasite Epidemiol Control 2024; 27:e00387. [PMID: 39507770 PMCID: PMC11539347 DOI: 10.1016/j.parepi.2024.e00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
Background Ticks are ectoparasites and can be vectors of a wide range of pathogens, posing significant health risks to livestock. In the Sahara Desert of Algeria, particularly among one-humped camels (Camelus dromedarius), there is a need to better understand the factors influencing tick infestation patterns to improve livestock management and health outcomes. Objectives This study aimed to investigate the prevalence, intensity, and abundance of hard-bodied ticks (Acari: Ixodidae) among dromedaries, examining both intrinsic factors (sex, age, coat color) and extrinsic variables (farming systems, vegetation types, climate zones, and elevation) that might influence tick infestation in this region. Methods Ticks were collected from 286 dromedaries across nine sites in the pre-Saharan regions of Algeria, with elevations ranging from 736 m to 980 m. The sampled camels, which ranged in age from 6 days to 21 years, were examined for tick infestations. The ticks were identified through macroscopic and microscopic methods, and their abundance was analyzed in relation to the camels' characteristics and environmental factors. Three breeding systems were recognized: extensive, intensive, and mixed. Results A total of 980 ticks were collected, with Hyalomma dromedarii Koch, 1844 being the most abundant species (553 specimens), followed by Hyalomma impeltatum Schulze & Schlottke, 1930 (393 specimens), and Hyalomma excavatum Koch, 1844 (34 specimens). H. dromedarii showed a preference for parasitizing brown-coated dromedaries and exhibited significantly higher infestation levels during spring (p < 0.001). No significant association was observed between tick infestation and the camels' age or sex (p > 0.05). However, the farming system had a significant impact on tick abundance, with extensive and mixed systems showing higher tick burdens compared to intensive systems (p < 0.01). Additionally, the vegetation type, climate zone, and foraging habitat elevation were found to significantly influence tick densities and prevalence. Conclusion This study provides essential insights into the tick infestation dynamics in dromedaries in drylands of Algeria. It highlights the influence of coat color, seasonality, and farming practices on tick burden, with brown-coated camels being more susceptible during the spring. The findings underline the importance of considering both intrinsic and extrinsic factors when developing effective tick control strategies, especially for camels raised in extensive or mixed farming systems in diverse arid rangelands. Future research should expand the scope to cover other arid regions in North Africa for a comprehensive understanding of tick-host dynamics.
Collapse
Affiliation(s)
- Rachid Chaibi
- Department of Biology, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
| | - Nora Mimoune
- Animal Health and Production Laboratory, Higher National Veterinary School, Algiers, Algeria
- Institute of Veterinary Sciences, LBRA, University of Blida 1, 09000 Blida, Algeria
| | - Farouk Benaceur
- Department of Biology, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
| | - Latifa Stambouli
- Department of Biology, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
| | - Lamine Hamida
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
- Aflou University Center, 03001 Aflou, Laghouat, Algeria
| | - Rabah Khedim
- Department of Biology, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
| | - Radhwane Saidi
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
- Department of Agronomy, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
| | - Mohammed Hocine Benaissa
- Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, 30010 Nezla, Touggourt, Algeria
| | - Hicham Gouzi
- Department of Biology, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
| | - Souad Neffar
- Department of Nature and Life Sciences, Faculty of Exact Sciences and Nature and Life Sciences, University of Tebessa, 12002 Tebessa, Algeria
- Laboratory “Water and Environment”, University of Tebessa, 12002 Tebessa, Algeria
| | - Haroun Chenchouni
- Laboratory of Algerian Forests and Climate Change 'LAFCC', Higher National School of Forests, 40000 Khenchela, Algeria
- Laboratory of Natural Resources and Management of Sensitive Environments ‘RNAMS’, University of Oum-El-Bouaghi, 04000 Oum-El-Bouaghi, Algeria
| |
Collapse
|
2
|
Replication initiation: Implications in genome integrity. DNA Repair (Amst) 2021; 103:103131. [PMID: 33992866 DOI: 10.1016/j.dnarep.2021.103131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/01/2023]
Abstract
In every cell cycle, billions of nucleotides need to be duplicated within hours, with extraordinary precision and accuracy. The molecular mechanism by which cells regulate the replication event is very complicated, and the entire process begins way before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by assembling essential replication factors to establish the pre-replicative complex at origins, sites that dictate where replication would initiate during S phase. During S phase, the replication process is tightly coupled with the DNA repair system to ensure the fidelity of replication. Defects in replication and any error must be recognized by DNA damage response and checkpoint signaling pathways in order to halt the cell cycle before cells are allowed to divide. The coordination of these processes throughout the cell cycle is therefore critical to achieve genomic integrity and prevent diseases. In this review, we focus on the current understanding of how the replication initiation events are regulated to achieve genome stability.
Collapse
|
3
|
Abstract
Besides TopBP1, ETAA1 has been identified more recently as an activator of the ATR-ATRIP complex in human cells. We have examined the role of ETAA1 in the Xenopus egg-extract system, which has been instrumental in the study of ATR-ATRIP. Depletion of ETAA1 from egg extracts did not noticeably reduce the activation of ATR-ATRIP in response to replication stress, as monitored by the ATR-dependent phosphorylation of Chk1 and RPA. Moreover, lack of ETAA1 did not appear to affect DNA replication during an unperturbed S-phase. Significantly, we find that TopBP1 is considerably more abundant than ETAA1 in egg extracts. We proceeded to show that ETAA1 could support the activation of ATR-ATRIP in response to replication stress if we increased its concentration in egg extracts by adding extra full-length recombinant ETAA1. Thus, TopBP1 appears to be the predominant activator of ATR-ATRIP in response to replication stress in this system. We have also explored the biochemical mechanism by which ETAA1 activates ATR-ATRIP. We have developed an in vitro system in which full-length recombinant ETAA1 supports activation of ATR-ATRIP in the presence of defined components. We find that binding of ETAA1 to RPA associated with single-stranded DNA (ssDNA) greatly stimulates its ability to activate ATR-ATRIP. Thus, RPA-coated ssDNA serves as a direct positive effector in the ETAA1-mediated activation of ATR-ATRIP.
Collapse
Affiliation(s)
- Ke Lyu
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| | - Akiko Kumagai
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| | - William G Dunphy
- a Division of Biology and Biological Engineering , California Institute of Technology , Pasadena , CA , USA
| |
Collapse
|
4
|
Siddiqa A, Cirillo E, Tareen SHK, Ali A, Kutmon M, Eijssen LMT, Ahmad J, Evelo CT, Coort SL. Biological Pathways Leading From ANGPTL8 to Diabetes Mellitus-A Co-expression Network Based Analysis. Front Physiol 2019; 9:1841. [PMID: 30627105 PMCID: PMC6309236 DOI: 10.3389/fphys.2018.01841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 12/06/2018] [Indexed: 01/11/2023] Open
Abstract
Angiopoietin like protein 8 (ANGPTL8) is a newly identified hormone with unique nature due to its ability to regulate both glucose and lipid metabolic pathways. It is characterized as an important molecular player of insulin induced nutrient storage and utilization pathway during fasting to re-feeding metabolic transition. Several studies have contributed to increase our knowledge regarding its function and mechanism of action. Moreover, its altered expression levels have been observed in Insulin Resistance, Diabetes Mellitus (Types I & II) and Non Alcohlic Fatty Liver Disease emphasizing its assessment as a drug target. However, there is still a great deal of information that remains to be investigated including its associated biological processes, partner proteins in these processes, its regulators and its association with metabolic pathogenesis. In the current study, the analysis of a transcriptomic data set was performed for functional assessment of ANGPTL8 in liver. Weighted Gene Co-expression Network Analysis coupled with pathway analysis tools was performed to identify genes that are significantly co-expressed with ANGPTL8 in liver and investigate their presence in biological pathways. Gene ontology term enrichment analysis was performed to select the gene ontology classes that over-represent the hepatic ANGPTL8-co-expressed genes. Moreover, the presence of diabetes linked SNPs within the genes set co-expressed with ANGPTL8 was investigated. The co-expressed genes of ANGPTL8 identified in this study (n = 460) provides narrowed down list of molecular targets which are either co-regulated with it and/or might be regulation partners at different levels of interaction. These results are coherent with previously demonstrated roles and regulators of ANGPTL8. Specifically, thirteen co-expressed genes (MAPK8, CYP3A4, PIK3R2, PIK3R4,PRKAB2, G6PC, MAP3K11, FLOT1, PIK3C2G, SHC1, SLC16A2, and RAPGEF1) are also present in the literature curated pathway of ANGPTL8 (WP39151). Moreover, the gene-SNP analysis of highly associated biological processes with ANGPTL8 revealed significant genetic signals associated to Diabetes Mellitus and similar phenotypic traits. It provides meaningful insights on the influencing genes involved and co-expressed in these pathways. Findings of this study have implications in functional characterization of ANGPTL8 with emphasis on the identified genes and pathways and their possible involvement in the pathogenesis of Diabetes Mellitus and Insulin Resistance.
Collapse
Affiliation(s)
- Amnah Siddiqa
- Research Centre for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan.,Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Elisa Cirillo
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Samar H K Tareen
- Maastricht Centre for Systems Biology(MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Martina Kutmon
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology(MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Lars M T Eijssen
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jamil Ahmad
- Research Centre for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan.,Department of Computer Science and Information Technology, University of Malakand, Chakdara, Pakistan
| | - Chris T Evelo
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands.,Maastricht Centre for Systems Biology(MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Susan L Coort
- Department of Bioinformatics - BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression. Genetics 2017; 207:29-47. [PMID: 28874453 PMCID: PMC5586379 DOI: 10.1534/genetics.115.186627] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation.
Collapse
|
6
|
Agarwal M, Bhowmick K, Shah K, Krishnamachari A, Dhar SK. Identification and characterization of ARS-like sequences as putative origin(s) of replication in human malaria parasite Plasmodium falciparum. FEBS J 2017. [PMID: 28644560 DOI: 10.1111/febs.14150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
DNA replication is a fundamental process in genome maintenance, and initiates from several genomic sites (origins) in eukaryotes. In Saccharomyces cerevisiae, conserved sequences known as autonomously replicating sequences (ARSs) provide a landing pad for the origin recognition complex (ORC), leading to replication initiation. Although origins from higher eukaryotes share some common sequence features, the definitive genomic organization of these sites remains elusive. The human malaria parasite Plasmodium falciparum undergoes multiple rounds of DNA replication; therefore, control of initiation events is crucial to ensure proper replication. However, the sites of DNA replication initiation and the mechanism by which replication is initiated are poorly understood. Here, we have identified and characterized putative origins in P. falciparum by bioinformatics analyses and experimental approaches. An autocorrelation measure method was initially used to search for regions with marked fluctuation (dips) in the chromosome, which we hypothesized might contain potential origins. Indeed, S. cerevisiae ARS consensus sequences were found in dip regions. Several of these P. falciparum sequences were validated with chromatin immunoprecipitation-quantitative PCR, nascent strand abundance and a plasmid stability assay. Subsequently, the same sequences were used in yeast to confirm their potential as origins in vivo. Our results identify the presence of functional ARSs in P. falciparum and provide meaningful insights into replication origins in these deadly parasites. These data could be useful in designing transgenic vectors with improved stability for transfection in P. falciparum.
Collapse
Affiliation(s)
- Meetu Agarwal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Kushal Shah
- Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India
| | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
8
|
Abstract
DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Superieure, PSL Research University, Paris, France
| |
Collapse
|
9
|
Siena LA, Ortiz JPA, Calderini O, Paolocci F, Cáceres ME, Kaushal P, Grisan S, Pessino SC, Pupilli F. An apomixis-linked ORC3-like pseudogene is associated with silencing of its functional homolog in apomictic Paspalum simplex. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1965-78. [PMID: 26842983 DOI: 10.1093/jxb/erw018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Apomixis in plants consists of asexual reproduction by seeds. Here we characterized at structural and functional levels an apomixis-linked sequence of Paspalum simplex homologous to subunit 3 of the ORIGIN RECOGNITION COMPLEX (ORC3). ORC is a multiprotein complex which controls DNA replication and cell differentiation in eukaryotes. Three PsORC3 copies were identified, each one characterized by a specific expression profile. Of these, PsORC3a, specific for apomictic genotypes, is a pseudogene that was poorly and constitutively expressed in all developmental stages of apomictic flowers, whereas PsORC3b, the putative functional gene in sexual flowers, showed a precise time-related regulation. Sense transcripts of PsORC3 were expressed in the female cell lineage of both apomictic and sexual reproductive phenotypes, and in aposporous initials. Although strong expression was detected in sexual early endosperm, no expression was present in the apomictic endosperm. Antisense PsORC3 transcripts were revealed exclusively in apomictic germ cell lineages. Defective orc3 mutants of rice and Arabidopsis showed normal female gametophytes although the embryo and endosperm were arrested at early phases of development. We hypothesize that PsORC3a is associated with the down-regulation of its functional homolog and with the development of apomictic endosperm which deviates from the canonical 2(maternal):1(paternal) genome ratio.
Collapse
Affiliation(s)
- Lorena A Siena
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Juan Pablo A Ortiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Ornella Calderini
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Francesco Paolocci
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Maria E Cáceres
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Pankaj Kaushal
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Simone Grisan
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| | - Silvina C Pessino
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, (S2125ZAA) Zavalla, Argentina
| | - Fulvio Pupilli
- Istituto di Bioscienze e Biorisorse (IBBR-CNR), via della Madonna alta 130, I-06128 Perugia, Italy
| |
Collapse
|
10
|
Abstract
The origin recognition complex (ORC) proteins, ORC1-6, are the first known proteins that bind DNA replication origins to mark the competency for the initiation of DNA synthesis. These proteins have complex mechanisms of assembly into the ORC complex and unexpected localizations in the mitotic chromosomes, cytoplasm, and nuclear structures. The mammalian zygote is a potentially important model that may contribute to our understanding of the mechanisms and features influencing origin establishment and in the identification of other functions of the ORC proteins. Together with expected localizations to the chromatin during G1, we found an unexpected distribution in the cytoplasm that appeared to accumulate ORC proteins suggesting potential roles for ORC subunits in mitosis and chromatin segregation. ORC1, 2, 3, and 5 all localize to the area between the separating maternal chromosomes shortly after fertilization. ORC4 forms a cage around the set of chromosomes that will be extruded during polar body formation before it binds to the chromatin shortly before zygotic DNA replication. These data suggest that the ORC proteins may also play roles in preparing the cell for DNA replication in addition to their direct role in establishing functional replication origins.
Collapse
|
11
|
Taylor EM, Bonsu NM, Price RJ, Lindsay HD. Depletion of Uhrf1 inhibits chromosomal DNA replication in Xenopus egg extracts. Nucleic Acids Res 2013; 41:7725-37. [PMID: 23788677 PMCID: PMC3763540 DOI: 10.1093/nar/gkt549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022] Open
Abstract
UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) has a well-established role in epigenetic regulation through the recognition of various histone marks and interaction with chromatin-modifying proteins. However, its function in regulating cell cycle progression remains poorly understood and has been largely attributed to a role in transcriptional regulation. In this study we have used Xenopus laevis egg extracts to analyse Uhrf1 function in DNA replication in the absence of transcriptional influences. We demonstrate that removal of Uhrf1 inhibits chromosomal replication in this system. We further show that this requirement for Uhrf1, or an associated factor, occurs at an early stage of DNA replication and that the consequences of Uhrf1 depletion are not solely due to its role in loading Dnmt1 onto newly replicated DNA. We describe the pattern of Uhrf1 chromatin association before the initiation of DNA replication and show that this reflects functional requirements both before and after origin licensing. Our data demonstrate that the removal of Xenopus Uhrf1 influences the chromatin association of key replication proteins and reveal Uhrf1 as an important new factor required for metazoan DNA replication.
Collapse
Affiliation(s)
- Elaine M. Taylor
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Nicola M. Bonsu
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - R. Jordan Price
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Howard D. Lindsay
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| |
Collapse
|
12
|
Kumar S, Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Role for Rif1 in the checkpoint response to damaged DNA in Xenopus egg extracts. Cell Cycle 2012; 11:1183-94. [PMID: 22391207 DOI: 10.4161/cc.11.6.19636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TopBP1 is critical for both DNA replication and checkpoint regulation in vertebrate cells. In this study, we have identified Rif1 as a binding partner of TopBP1 in Xenopus egg extracts. In addition, Rif1 also interacts with both ATM and the Mre11-Rad50-Nbs1 (MRN) complex, which are key regulators of checkpoint responses to double-stranded DNA breaks (DSBs). Depletion of Rif1 from egg extracts compromises the activation of Chk1 in response to DSBs but not stalled replication forks. Removal of Rif1 also has a significant impact on the chromatin-binding behavior of key checkpoint proteins. In particular, binding of TopBP1, ATR and the MRN complex to chromatin containing DSBs is reduced in the absence of Rif1. Rif1 interacts with chromatin in a highly regulated and dynamic manner. In unperturbed egg extracts, the association of Rif1 with chromatin depends upon formation of replication forks. In the presence of DSBs, there is elevated accumulation of Rif1 on chromatin under conditions where the activation of ATM is suppressed. Taken together, these results suggest that Rif1 plays a dynamic role in the early steps of a checkpoint response to DSBs in the egg-extract system by promoting the correct accumulation of key regulators on the DNA.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology 147-75, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Gotoh T, Villa LM, Capelluto DGS, Finkielstein CV. Regulatory pathways coordinating cell cycle progression in early Xenopus development. Results Probl Cell Differ 2011; 53:171-99. [PMID: 21630146 DOI: 10.1007/978-3-642-19065-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
14
|
Wawrousek KE, Fortini BK, Polaczek P, Chen L, Liu Q, Dunphy WG, Campbell JL. Xenopus DNA2 is a helicase/nuclease that is found in complexes with replication proteins And-1/Ctf4 and Mcm10 and DSB response proteins Nbs1 and ATM. Cell Cycle 2010; 9:1156-66. [PMID: 20237432 PMCID: PMC3059328 DOI: 10.4161/cc.9.6.11049] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have used the Xenopus laevis egg extract system to study the roles of vertebrate Dna2 in DNA replication and double-strand-break (DSB) repair. We first establish that Xenopus Dna2 is a helicase, as well as a nuclease. We further show that Dna2 is a nuclear protein that is actively recruited to DNA only after replication origin licensing. Dna2 co-localizes in foci with RPA and is found in a complex with replication fork components And-1 and Mcm10. Dna2 interacts with the DSB repair and checkpoint proteins Nbs1 and ATM. We also determine the order of arrival of ATM, MRN, Dna2, TopBP1, and RPA to duplex DNA ends and show that it is the same both in S phase and M phase extracts. Interestingly, Dna2 can bind to DNA ends independently of MRN, but efficient nucleolytic resection, as measured by RPA recruitment, requires both MRN and Dna2. The nuclease activity of Mre11 is required, since its inhibition delays both full Dna2 recruitment and resection. Dna2 depletion inhibits but does not block resection, and Chk1 and Chk2 induction occurs in the absence of Dna2.
Collapse
Affiliation(s)
- Karen E. Wawrousek
- Division of Biology, California Institute of Technology, Pasadena, CA USA
| | - Barbara K. Fortini
- Division of Biology, California Institute of Technology, Pasadena, CA USA
| | - Piotr Polaczek
- Braun Laboratories, California Institute of Technology, Pasadena, CA USA
| | - Lu Chen
- Braun Laboratories, California Institute of Technology, Pasadena, CA USA
| | - Qingquan Liu
- Braun Laboratories, California Institute of Technology, Pasadena, CA USA
| | - William G. Dunphy
- Division of Biology, California Institute of Technology, Pasadena, CA USA
| | - Judith L. Campbell
- Braun Laboratories, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
15
|
Ogawara D, Muroya T, Yamauchi K, Iwamoto TA, Yagi Y, Yamashita Y, Waga S, Akiyama M, Maki H. Near-full-length REV3L appears to be a scarce maternal factor in Xenopus laevis eggs that changes qualitatively in early embryonic development. DNA Repair (Amst) 2009; 9:90-5. [PMID: 19896909 DOI: 10.1016/j.dnarep.2009.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 11/17/2022]
Abstract
REV3 is the catalytic subunit of DNA polymerase zeta (pol zeta), which is responsible for the damage-induced mutagenesis that arises during error-prone translesion synthesis in eukaryotes. The related REV3L genes in human and mouse encode proteins of approximately 350kDa, twice as large as yeast REV3, but full-length REV3L has not been identified in any vertebrate cell. We report that Xenopus laevisREV3L encodes a 352-kDa protein that has high overall amino acid sequence similarity to its mammalian counterparts, and, for the first time in a vertebrate species, we have detected putative REV3L polypeptides of 300 and 340kDa in X. laevis oocytes. Only the 300-kDa form is stored in eggs, where its concentration of about 65pM is much lower than those of other replication and repair proteins including the accessory pol zeta subunit REV7. In fertilized eggs, the levels of this polypeptide did not change until neurula; the larger 340-kDa form first appeared at stages after gastrula, suggesting a pattern of regulation during development. These observations indicate the existence of REV3L as a scarce protein, of approximately the full predicted size, whose level may impose severe constraints on the assembly of pol zeta in X. laevis.
Collapse
Affiliation(s)
- Daichi Ogawara
- Division of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Clarey MG, Botchan M, Nogales E. Single particle EM studies of the Drosophila melanogaster origin recognition complex and evidence for DNA wrapping. J Struct Biol 2008; 164:241-9. [PMID: 18824234 PMCID: PMC2640233 DOI: 10.1016/j.jsb.2008.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 12/22/2022]
Abstract
Hyperphosphorylation of the Drosophila melanogaster origin recognition complex (DmORC) by cyclin dependent kinases (CDKs) allows nucleotide binding but inhibits the ATPase activity of Orc1, and ablates the ATP-dependent interaction of ORC with DNA. Here we present single particle electron microscopy (EM) studies of ORC bound to nucleotide in both the dephosphorylated and hyper-phosphorylated states. 3D image reconstructions show that nucleotide binding gives rise to an analogous conformation independent of phosphorylation state. At the intermediate resolution achieved in our studies, ATP promotes changes along the toroidal core of the complex with negligible differences contributed by phosphorylation. Thus, hyperphosphorylation of DmORC does not induce meso-scale rearrangement of the ORC structure. To better understand ORC's role in origin remodeling, we performed atomic force microscopy (AFM) studies that show the contour length of a 688bp linear DNA fragment shortens by the equivalent of approximately 130bp upon ORC binding. This data, coupled with previous studies that showed a linking number change in circular DNA upon ORC binding, suggests that ORC may wrap the DNA in a manner akin to DnaA. Based on existing data and our structures, we propose a subunit arrangement for the AAA+ and winged helix domains, and in addition, speculate on a path of the 133bp of DNA around the ORC complex.
Collapse
Affiliation(s)
- Megan G. Clarey
- Molecular & Cell Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michael Botchan
- Molecular & Cell Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Eva Nogales
- Molecular & Cell Biology Department, University of California at Berkeley, Berkeley, CA 94720, USA
- Life Science Division, Lawrence Berkeley National Laboratory, 1, Cyclotron Road, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, UC Berkeley, Berkeley CA 94720, USA
| |
Collapse
|
17
|
Qian J, Sarnaik AA, Bonney TM, Keirsey J, Combs KA, Steigerwald K, Acharya S, Behbehani GK, Barton MC, Lowy AM, Groden J. The APC tumor suppressor inhibits DNA replication by directly binding to DNA via its carboxyl terminus. Gastroenterology 2008; 135:152-62. [PMID: 18474248 PMCID: PMC2832605 DOI: 10.1053/j.gastro.2008.03.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/26/2008] [Accepted: 03/27/2008] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS The APC tumor suppressor is well known for its ability to regulate Wnt signaling through mediation of beta-catenin levels in the cell. Transient over expression of the tumor suppressor gene APC in colon cancer cells prevents entry into S phase of the cell cycle, a phenotype only partially restored by cotransfection of a transcriptionally active form of beta-catenin. In an attempt to define its transcription-independent tumor suppressor functions, we tested whether APC directly affects DNA replication. METHODS A transcriptionally quiescent in vitro DNA replication system, the polymerase chain reaction, DNA binding assays, and transient transfections in colon cancer cell lines were used to determine the effects of APC on DNA replication and the mechanism by which it works. RESULTS We report that exogenous full-length APC inhibits replication of template DNA through a function that maps to amino acids 2140-2421, a region of the protein commonly lost by somatic or germline mutation. This segment of APC directly interacts with DNA, while mutation of the DNA-binding S(T)PXX motifs within it abolishes DNA binding and reduces inhibition of DNA replication. Phosphorylation of this segment by cyclin-dependent kinases also reduces inhibition of DNA replication. Furthermore, transient transfection of an APC segment encoding amino acids 2140-2421 into a colon cancer cell line with mutant APC prevents cell cycle progression into or through S phase. CONCLUSIONS Our results suggest that APC can negatively regulate cell cycle progression through inhibition of DNA replication by direct interaction with DNA.
Collapse
Affiliation(s)
- Jiang Qian
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210-2207
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Amod A. Sarnaik
- Division of Surgical Oncology in the Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Tera M. Bonney
- Division of Surgical Oncology in the Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jeremy Keirsey
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210-2207
| | - Kelly A. Combs
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Kira Steigerwald
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Samir Acharya
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210-2207
| | - Gregory K. Behbehani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Michelle C. Barton
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Andy M. Lowy
- Division of Surgical Oncology in the Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Joanna Groden
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210-2207
| |
Collapse
|
18
|
Philpott A, Yew PR. The Xenopus cell cycle: an overview. Mol Biotechnol 2008; 39:9-19. [PMID: 18266114 DOI: 10.1007/s12033-008-9033-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 12/28/2007] [Indexed: 01/03/2023]
Abstract
Oocytes, eggs and embryos from the frog Xenopus laevis have been an important model system for studying cell-cycle regulation for several decades. First, progression through meiosis in the oocyte has been extensively investigated. Oocyte maturation has been shown to involve complex networks of signal transduction pathways, culminating in the cyclic activation and inactivation of Maturation Promoting Factor (MPF), composed of cyclin B and cdc2. After fertilisation, the early embryo undergoes rapid simplified cell cycles which have been recapitulated in cell-free extracts of Xenopus eggs. Experimental manipulation of these extracts has given a wealth of biochemical information about the cell cycle, particularly concerning DNA replication and mitosis. Finally, cells of older embryos adopt a more somatic-type cell cycle and have been used to study the balance between cell cycle and differentiation during development.
Collapse
Affiliation(s)
- Anna Philpott
- Department of Oncology, Hutchison/MRC Research Centre, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, England.
| | | |
Collapse
|
19
|
Powers M, Evans EK, Yang J, Kornbluth S. Preparation and use of interphase Xenopus egg extracts. ACTA ACUST UNITED AC 2008; Chapter 11:Unit 11.10. [PMID: 18228302 DOI: 10.1002/0471143030.cb1110s09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this unit, Xenopus eggs are isolated from hormonally primed female frogs, and then the extract is treated with cyclohexamide so it remains in interphase of the cell cycle. In the presence of sperm chromatin and ATP, membrane vesicles in the extract fuse to assemble nuclei, making the extract suitable for studies of DNA replication and nuclear transport.
Collapse
Affiliation(s)
- M Powers
- Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
20
|
Zellner E, Herrmann T, Schulz C, Grummt F. Site-specific interaction of the murine pre-replicative complex with origin DNA: assembly and disassembly during cell cycle transit and differentiation. Nucleic Acids Res 2007; 35:6701-13. [PMID: 17916579 PMCID: PMC2175324 DOI: 10.1093/nar/gkm555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic DNA replication initiates at origins of replication by the assembly of the highly conserved pre-replicative complex (pre-RC). However, exact sequences for pre-RC binding still remain unknown. By chromatin immunoprecipitation we identified in vivo a pre-RC-binding site within the origin of bidirectional replication in the murine rDNA locus. At this sequence, ORC1, -2, -4 and -5 are bound in G1 phase and at the G1/S transition. During S phase, ORC1 is released. An ATP-dependent and site-specific assembly of the pre-RC at origin DNA was demonstrated in vitro using partially purified murine pre-RC proteins in electrophoretic mobility shift assays. By deletion experiments the sequence required for pre-RC binding was confined to 119 bp. Nucleotide substitutions revealed that two 9 bp sequence elements, CTCGGGAGA, are essential for the binding of pre-RC proteins to origin DNA within the murine rDNA locus. During myogenic differentiation of C2C12 cells, we demonstrated a reduction of ORC1 and ORC2 by immunoblot analyses. ChIP analyses revealed that ORC1 completely disappears from chromatin of terminally differentiated myotubes, whereas ORC2, -4 and -5 still remain associated.
Collapse
Affiliation(s)
- Elisabeth Zellner
- Institute of Biochemistry, Biocenter at the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
21
|
Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M. Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol 2007; 27:2572-81. [PMID: 17242188 PMCID: PMC1899884 DOI: 10.1128/mcb.01611-06] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chk1 is a multifunctional protein kinase that plays essential roles in cell survival and cell cycle checkpoints. Chk1 is phosphorylated at multiple sites by several protein kinases, but the precise effects of these phosphorylations are largely unknown. Using a knockout-knockin system, we examined the abilities of Chk1 mutants to reverse the defects of Chk1-null cells. Wild-type Chk1 could rescue all the defects of Chk1-null cells. Like endogenous Chk1, wild-type Chk1 localized in both the cytoplasm and the nucleus, and its centrosomal association was enhanced by DNA damage. The mutation at S345 resulted in mitotic catastrophe, impaired checkpoints, and loss of the ability to localize in the cytoplasm, but the mutant retained the ability to be released from chromatin upon encountering genotoxic stressors. In contrast, the mutation at S317 resulted in impaired checkpoints and loss of chromatin release upon encountering genotoxic stressors, but its mutant retained the abilities to prevent mitotic catastrophes and to localize in the cytoplasm, suggesting the distinct effects of these phosphorylations. The forced immobilization of S317A/S345A in centrosomes resulted in the prevention of apoptosis in the presence or absence of DNA damage. Thus, two-step phosphorylation of Chk1 at S317 and S345 appeared to be required for proper localization of Chk1 to centrosomes.
Collapse
Affiliation(s)
- Hiroyuki Niida
- Department of Biochemistry and Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-ku, Mizuho-cho, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
The origin recognition complex (ORC), a heteromeric six-subunit protein, is a central component for eukaryotic DNA replication. The ORC binds to DNA at replication origin sites in an ATP-dependent manner and serves as a scaffold for the assembly of other key initiation factors. Sequence rules for ORC-DNA binding appear to vary widely. In budding yeast the ORC recognizes specific ori elements, however, in higher eukaryotes origin site selection does not appear to depend on the specific DNA sequence. In metazoans, during cell cycle progression, one or more of the ORC subunits can be modified in such a way that ORC activity is inhibited until mitosis is complete and a nuclear membrane is assembled. In addition to its well-documented role in the initiation of DNA replication, the ORC is also involved in other cell functions. Some of these activities directly link cell cycle progression with DNA replication, while other functions seem distinct from replication. The function of ORCs in the establishment of transcriptionally repressed regions is described for many species and may be a conserved feature common for both unicellular eukaryotes and metazoans. ORC subunits were found at centrosomes, at the cell membranes, at the cytokinesis furrows of dividing cells, as well as at the kinetochore. The exact mechanism of these localizations remains to be determined, however, latest results support the idea that ORC proteins participate in multiple aspects of the chromosome inheritance cycle. In this review, we discuss the participation of ORC proteins in various cell functions, in addition to the canonical role of ORC in initiating DNA replication.
Collapse
Affiliation(s)
- Igor N Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
23
|
Abstract
Regulation of DNA replication is critical for accurate and timely dissemination of genomic material to daughter cells. The cell uses a variety of mechanisms to control this aspect of the cell cycle. There are various determinants of origin identification, as well as a large number of proteins required to load replication complexes at these defined genomic regions. A pre-Replication Complex (pre-RC) associates with origins in the G1 phase. This complex includes the Origin Recognition Complex (ORC), which serves to recognize origins, the putative helicase MCM2-7, and other factors important for complex assembly. Following pre-RC loading, a pre-Initiation Complex (pre-IC) builds upon the helicase with factors required for eventual loading of replicative polymerases. The chromatin association of these two complexes is temporally distinct, with pre-RC being inhibited, and pre-IC being activated by cyclin-dependent kinases (Cdks). This regulation is the basis for replication licensing, which allows replication to occur at a specific time once, and only once, per cell cycle. By preventing extra rounds of replication within a cell cycle, or by ensuring the cell cycle cannot progress until the environmental and intracellular conditions are most optimal, cells are able to carry out a successful replication cycle with minimal mutations.
Collapse
Affiliation(s)
- Jamie K Teer
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
24
|
Chuang LC, Yew PR. Proliferating cell nuclear antigen recruits cyclin-dependent kinase inhibitor Xic1 to DNA and couples its proteolysis to DNA polymerase switching. J Biol Chem 2005; 280:35299-309. [PMID: 16118211 DOI: 10.1074/jbc.m506429200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Xenopus cyclin-dependent kinase (CDK) inhibitor, p27(Xic1) (Xic1), binds to CDK2-cyclins and proliferating cell nuclear antigen (PCNA), inhibits DNA synthesis in Xenopus extracts, and is targeted for ubiquitin-mediated proteolysis. Previous studies suggest that Xic1 ubiquitination and degradation are coupled to the initiation of DNA replication, but the precise timing and molecular mechanism of Xic1 proteolysis has not been determined. Here we demonstrate that Xic1 proteolysis is temporally restricted to late replication initiation following the requirements for DNA polymerase alpha-primase, replication factor C, and PCNA. Our studies also indicate that Xic1 degradation is absolutely dependent upon the binding of Xic1 to PCNA in both Xenopus egg and gastrulation stage extracts. Additionally, extracts depleted of PCNA do not support Xic1 proteolysis. Importantly, while the addition of recombinant wild-type PCNA alone restores Xic1 degradation, the addition of a PCNA mutant defective for trimer formation does not restore Xic1 proteolysis in PCNA-depleted extracts, suggesting Xic1 proteolysis requires both PCNA binding to Xic1 and the ability of PCNA to be loaded onto primed DNA by replication factor C. Taken together, our studies suggest that Xic1 is targeted for ubiquitination and degradation during DNA polymerase switching through its interaction with PCNA at a site of initiation.
Collapse
Affiliation(s)
- Li-Chiou Chuang
- University of Texas Health Science Center at San Antonio, Department of Molecular Medicine, Institute of Biotechnology, San Antonio, Texas 78245-3207, USA
| | | |
Collapse
|
25
|
Giordano-Coltart J, Ying CY, Gautier J, Hurwitz J. Studies of the properties of human origin recognition complex and its Walker A motif mutants. Proc Natl Acad Sci U S A 2004; 102:69-74. [PMID: 15618391 PMCID: PMC544074 DOI: 10.1073/pnas.0408690102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic six-subunit origin recognition complex (ORC) governs the initiation site of DNA replication and formation of the prereplication complex. In this report we describe the isolation of the wild-type Homo sapiens (Hs)ORC and variants containing a Walker A motif mutation in the Orc1, Orc4, or Orc5 subunit using the baculovirus-expression system. Coexpression of all six HsORC subunits yielded a stable complex containing HsOrc subunits 1-5 (HsORC1-5) with virtually no Orc6 protein (Orc6p). We examined the ATPase, DNA-binding, and replication activities of these complexes. Similar to other eukaryotic ORCs, wild-type HsORC1-5 possesses ATPase activity that is stimulated only 2-fold by single-stranded DNA. HsORC1-5 with a mutated Walker A motif in Orc1p contains no ATPase activity, whereas a similar mutation of either the Orc4 or Orc5 subunit did not affect this activity. The DNA-binding activity of HsORC1-5, using lamin B2 DNA as substrate, is stimulated by ATP 3- to 5-fold. Mutations in the Walker A motif of Orc1p, Orc4p, or Orc5p reduced the binding efficiency of HsORC1-5 modestly (2- to 5-fold). Xenopus laevis ORC-depleted extracts supplemented with HsORC1-5 supported prereplication complex formation and X. laevis sperm DNA replication, whereas the complex with a mutation in the Walker A motif of the Orc1, Orc4, or Orc5 subunit did not. These studies indicate that the ATP-binding motifs of Orc1, Orc4, and Orc5 are all essential for the replication activity associated with HsORC.
Collapse
Affiliation(s)
- Jennifer Giordano-Coltart
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 97, New York, NY 10021, USA
| | | | | | | |
Collapse
|
26
|
McSherry TD, Mueller PR. Xenopus Cds1 is regulated by DNA-dependent protein kinase and ATR during the cell cycle checkpoint response to double-stranded DNA ends. Mol Cell Biol 2004; 24:9968-85. [PMID: 15509799 PMCID: PMC525475 DOI: 10.1128/mcb.24.22.9968-9985.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The checkpoint kinase Cds1 (Chk2) plays a key role in cell cycle checkpoint responses with functions in cell cycle arrest, DNA repair, and induction of apoptosis. Proper regulation of Cds1 is essential for appropriate cellular responses to checkpoint-inducing insults. While the kinase ATM has been shown to be important in the regulation of human Cds1 (hCds1), here we report that the kinases ATR and DNA-dependent protein kinase (DNA-PK) play more significant roles in the regulation of Xenopus Cds1 (XCds1). Under normal cell cycle conditions, nonactivated XCds1 constitutively associates with a Xenopus ATR complex. The association of XCds1 with this complex does not require a functional forkhead activation domain but does require a putative SH3 binding region that is found in XCds1. In response to double-stranded DNA ends, the amino terminus of XCds1 is rapidly phosphorylated in a sequential pattern. First DNA-PK phosphorylates serine 39, a site not previously recognized as important in Cds1 regulation. Xenopus ATM, ATR, and/or DNA-PK then phosphorylate three consensus serine/glutamine sites. Together, these phosphorylations have the dual function of inducing dissociation from the ATR complex and independently promoting the full activation of XCds1. Thus, the checkpoint-mediated activation of XCds1 requires phosphorylation by multiple phosphoinositide 3-kinase-related kinases, protein-protein dissociation, and autophosphorylation.
Collapse
Affiliation(s)
- Troy D McSherry
- Center for Molecular Oncology, Department of Biochemistry and Molecular Biology, University of Chicago, JFK R318, 924 E. 57th St., Chicago, IL 60637, USA
| | | |
Collapse
|
27
|
Danis E, Brodolin K, Menut S, Maiorano D, Girard-Reydet C, Méchali M. Specification of a DNA replication origin by a transcription complex. Nat Cell Biol 2004; 6:721-30. [PMID: 15247921 DOI: 10.1038/ncb1149] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 06/14/2004] [Indexed: 11/08/2022]
Abstract
In early Xenopus development, transcription is repressed and DNA replication initiates at non-specific sites. Here, we show that a site-specific DNA replication origin can be induced in this context by the assembly of a transcription domain. Deletion of the promoter element abolishes site-specific initiation, and its relocalization to an ectopic site induces a new origin of replication. This process does not require active transcription, and specification of the origin occurs mainly through a decrease in non-specific initiation at sites distant from the promoter. Finally, chromatin immunoprecipitation experiments suggest that site-specific acetylation of histones favours the selection of the active DNA replication origin. We propose that the specification of active DNA replication origins occurs by secondary epigenetic events and that the programming of chromatin for transcription during development contributes to this selection in higher eukaryotes.
Collapse
Affiliation(s)
- Etienne Danis
- Institute of Human Genetics, CNRS, Genome Dynamics and Development, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
28
|
Prasanth SG, Prasanth KV, Siddiqui K, Spector DL, Stillman B. Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO J 2004; 23:2651-63. [PMID: 15215892 PMCID: PMC449767 DOI: 10.1038/sj.emboj.7600255] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 05/05/2004] [Indexed: 01/04/2023] Open
Abstract
The initiation of DNA replication in S phase requires the prior assembly of an origin recognition complex (ORC)-dependent pre-replicative complex on chromatin during G1 phase of the cell division cycle. In human cells, the Orc2 subunit localized to the nucleus as expected, but it also localized to centrosomes throughout the entire cell cycle. Furthermore, Orc2 was tightly bound to heterochromatin and heterochromatin protein 1alpha (HP1alpha) and HP1beta in G1 and early S phase, but during late S, G2 and M phases tight chromatin association was restricted to centromeres. Depletion of Orc2 by siRNA caused multiple phenotypes. A population of cells showed an S-phase defect with little proliferating cell nuclear antigen (PCNA) on chromatin, although MCM proteins remained. Orc2 depletion also disrupted HP1 localization, but not histone-H3-lysine-9 methylation at prominent heterochromatic foci. Another subset of Orc2-depleted cells containing replicated DNA arrested with abnormally condensed chromosomes, failed chromosome congression and multiple centrosomes. These results implicate Orc2 protein in chromosome duplication, chromosome structure and centrosome copy number control, suggesting that it coordinates all stages of the chromosome inheritance cycle.
Collapse
Affiliation(s)
| | | | | | | | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA. Tel.: +1 516 367 8383; Fax: +1 516 367 8879; E-mail:
| |
Collapse
|
29
|
Robinson NP, Dionne I, Lundgren M, Marsh VL, Bernander R, Bell SD. Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 2004; 116:25-38. [PMID: 14718164 DOI: 10.1016/s0092-8674(03)01034-1] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eukaryotic chromosomes possess multiple origins of replication, whereas bacterial chromosomes are replicated from a single origin. The archaeon Pyrococcus abyssi also appears to have a single origin, suggesting a common rule for prokaryotes. However, in the current work, we describe the identification of two active origins of replication in the single chromosome of the hyperthermophilic archaeon Sulfolobus solfataricus. Further, we identify conserved sequence motifs within the origins that are recognized by a family of three Sulfolobus proteins that are homologous to the eukaryotic initiator proteins Orc1 and Cdc6. We demonstrate that the two origins are recognized by distinct subsets of these Orc1/Cdc6 homologs. These data, in conjunction with an analysis of the levels of the three Orc1/Cdc6 proteins in different growth phases and cell cycle stages, lead us to propose a model for the roles for these proteins in modulating origin activity.
Collapse
Affiliation(s)
- Nicholas P Robinson
- Medical Research Council Cancer Cell Unit, Hutchison MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
30
|
Méndez J, Stillman B. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays 2004; 25:1158-67. [PMID: 14635251 DOI: 10.1002/bies.10370] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hardest part of replicating a genome is the beginning. The first step of DNA replication (called "initiation") mobilizes a large number of specialized proteins ("initiators") that recognize specific sequences or structural motifs in the DNA, unwind the double helix, protect the exposed ssDNA, and recruit the enzymatic activities required for DNA synthesis, such as helicases, primases and polymerases. All of these components are orderly assembled before the first nucleotide can be incorporated. On the occasion of the 50th anniversary of the discovery of the DNA structure, we review our current knowledge of the molecular mechanisms that control initiation of DNA replication in eukaryotic cells, with particular emphasis on the recent identification of novel initiator proteins. We speculate how these initiators assemble molecular machines capable of performing specific biochemical tasks, such as loading a ring-shaped helicase onto the DNA double helix.
Collapse
Affiliation(s)
- Juan Méndez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
31
|
Makise M, Takenaka H, Kuwae W, Takahashi N, Tsuchiya T, Mizushima T. Kinetics of ATP binding to the origin recognition complex of Saccharomyces cerevisiae. J Biol Chem 2003; 278:46440-5. [PMID: 12966094 DOI: 10.1074/jbc.m307392200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin recognition complex (ORC), a candidate initiator of chromosomal DNA replication in eukaryotes, binds specifically to ATP through two of its subunits (Orc1p and Orc5p). In this study, we investigated the kinetics of ATP binding to ORC by a filter binding assay. The Kd values for the ATP of wild-type ORC and ORC-1A (mutant ORC containing Orc1p with a defective Walker A motif) were less than 10 nm, suggesting that the affinity of Orc5p for ATP is very high. On the other hand, the Kd values for the ATP of ORC-5A (mutant ORC containing Orc5p with a defective Walker A motif) was much higher (about 1.5 microm), suggesting that the affinity of Orc1p for ATP is relatively low in the absence of origin DNA. ATP dissociated more rapidly from its complex with ORC-5A than from its complex with ORC-1A, suggesting that the ATP-Orc5p complex is more stable than ATP-Orc1p complex. Origin DNA fragments decreased the Kd value of ORC-5A for ATP and stabilized the complex of ATP with ORC-5A. Wild-type ORC, ORC-1A, and ORC-5A required different concentrations of ATP for specific binding to origin DNA. All of these results imply that ATP binding to Orc5p, ATP binding to Orc1p, and origin DNA binding to ORC are co-operatively regulated, which may be important for the initiation of DNA replication.
Collapse
Affiliation(s)
- Masaki Makise
- Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Ohta S, Tatsumi Y, Fujita M, Tsurimoto T, Obuse C. The ORC1 cycle in human cells: II. Dynamic changes in the human ORC complex during the cell cycle. J Biol Chem 2003; 278:41535-40. [PMID: 12909626 DOI: 10.1074/jbc.m307535200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The origin recognition complex (ORC) plays a central role in regulating the initiation of DNA replication in eukaryotes. The level of the ORC1 subunit oscillates throughout the cell cycle, defining an ORC1 cycle. ORC1 accumulates in G1 and is degraded in S phase, although other ORC subunits (ORCs 2-5) remain at almost constant levels. The behavior of ORC components in human cell nuclei with respect to the ORC1 cycle demonstrates that ORCs 2-5 form a complex that is present throughout the cell cycle and that associates with ORC1 when it accumulates in G1 nuclei. ORCs 2-5 are found in both nuclease-insoluble and -soluble fractions. The appearance of nuclease-insoluble ORCs 2-5 parallels the increase in the level of ORC1 associating with nuclease-insoluble, non-chromatin nuclear structures. Thus, ORCs 2-5 are temporally recruited to nuclease-insoluble structures by formation of the ORC1-5 complex. An artificial reduction in the level of ORC1 in human cells by RNA interference results in a shift of ORC2 to the nuclease-soluble fraction, and the association of MCM proteins with chromatin fractions is also blocked by this treatment. These results indicate that ORC1 regulates the status of the ORC complex in human nuclei by tethering ORCs 2-5 to nuclear structures. This dynamic shift is further required for the loading of MCM proteins onto chromatin. Thus, the pre-replication complex in human cells may be regulated by the temporal accumulation of ORC1 in G1 nuclei.
Collapse
Affiliation(s)
- Satoshi Ohta
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
33
|
Yanow SK, Gold DA, Yoo HY, Dunphy WG. Xenopus Drf1, a regulator of Cdc7, displays checkpoint-dependent accumulation on chromatin during an S-phase arrest. J Biol Chem 2003; 278:41083-92. [PMID: 12897072 DOI: 10.1074/jbc.m307144200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have cloned a Xenopus Dbf4-related factor named Drf1 and characterized this protein by using Xenopus egg extracts. Drf1 forms an active complex with the kinase Cdc7. However, most of the Cdc7 in egg extracts is not associated with Drf1, which raises the possibility that some or all of the remaining Cdc7 is bound to another Dbf4-related protein. Immunodepletion of Drf1 does not prevent DNA replication in egg extracts. Consistent with this observation, Cdc45 can still associate with chromatin in Drf1-depleted extracts, albeit at significantly reduced levels. Nonetheless, Drf1 displays highly regulated binding to replicating chromatin. Treatment of egg extracts with aphidicolin results in a substantial accumulation of Drf1 on chromatin. This accumulation is blocked by addition of caffeine and by immunodepletion of either ATR or Claspin. These observations suggest that the increased binding of Drf1 to aphidicolin-treated chromatin is an active process that is mediated by a caffeine-sensitive checkpoint pathway containing ATR and Claspin. Abrogation of this pathway also leads to a large increase in the binding of Cdc45 to chromatin. This increase is substantially reduced in the absence of Drf1, which suggests that regulation of Drf1 might be involved in the suppression of Cdc45 loading during replication arrest. We also provide evidence that elimination of this checkpoint causes resumed initiation of DNA replication in both Xenopus tissue culture cells and egg extracts. Taken together, these observations argue that Drf1 is regulated by an intra-S-phase checkpoint mechanism that down-regulates the loading of Cdc45 onto chromatin containing DNA replication blocks.
Collapse
Affiliation(s)
- Stephanie K Yanow
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
34
|
Tatsumi Y, Ohta S, Kimura H, Tsurimoto T, Obuse C. The ORC1 cycle in human cells: I. cell cycle-regulated oscillation of human ORC1. J Biol Chem 2003; 278:41528-34. [PMID: 12909627 DOI: 10.1074/jbc.m307534200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Components of ORC (the origin recognition complex) are highly conserved among eukaryotes and are thought to play an essential role in the initiation of DNA replication. The level of the largest subunit of human ORC (ORC1) during the cell cycle was studied in several human cell lines with a specific antibody. In all cell lines, ORC1 levels oscillate: ORC1 starts to accumulate in mid-G1 phase, reaches a peak at the G1/S boundary, and decreases to a basal level in S phase. In contrast, the levels of other ORC subunits (ORCs 2-5) remain constant throughout the cell cycle. The oscillation of ORC1, or the ORC1 cycle, also occurs in cells expressing ORC1 ectopically from a constitutive promoter. Furthermore, the 26 S proteasome inhibitor MG132 blocks the decrease in ORC1, suggesting that the ORC1 cycle is mainly due to 26 S proteasome-dependent degradation. Arrest of the cell cycle in early S phase by hydroxyurea, aphidicolin, or thymidine treatment is associated with basal levels of ORC1, indicating that ORC1 proteolysis starts in early S phase and is independent of S phase progression. These observations indicate that the ORC1 cycle in human cells is highly linked with cell cycle progression, allowing the initiation of replication to be coordinated with the cell cycle and preventing origins from refiring.
Collapse
Affiliation(s)
- Yasutoshi Tatsumi
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
35
|
Harvey KJ, Newport J. CpG methylation of DNA restricts prereplication complex assembly in Xenopus egg extracts. Mol Cell Biol 2003; 23:6769-79. [PMID: 12972597 PMCID: PMC193934 DOI: 10.1128/mcb.23.19.6769-6779.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In a Xenopus egg replication system, the origin recognition complex (ORC) does not bind to CpG methylated DNA and DNA replication is inhibited. Insertion of low density CpG DNA of at least 1.2 kb into methylated plasmids rescues both replication and ORC binding. Using this pseudo-origin, we find that ORC binding is restricted to low-CpG-density DNA; however, MCM is loaded onto both weakly and highly methylated DNA and occupies at least approximately 2 kb of DNA. Replication initiates coincident with MCM, and even the most distally bound MCM is associated with sites of replication initiation. These results suggest that in metazoans MCM is loaded onto and initiates replication over a large region distant from ORC.
Collapse
Affiliation(s)
- Kevin J Harvey
- Division of Biology, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
36
|
Abstract
Xenopus laevis early development is characterized by rapid and synchronous cleavage cycles, which consist of alternating S and M phases. At midblastula transition, zygotic transcription begins and these cleavage cycles are replaced by longer cell division cycles that include gap phases and checkpoints. Herein, we demonstrate developmentally regulated Cdc6 isoform switching that contributes to this developmental cell cycle remodeling. Cdc6 is an essential component of the eukaryotic DNA replication machine that licenses each origin to one round of DNA replication each cell division cycle. The originally characterized Xenopus Cdc6 isoform (here termed Xcdc6A) and a novel isoform (Xcdc6B) have divergent N-terminal regulatory regions and different temporal patterns of expression. Although abundant in the early embryo, Xcdc6A becomes undetectable following midblastula transition. In contrast, while Xcdc6B is present in the early embryo, it is nonfunctional, as judged by lack of chromatin binding. In somatic tissue, however, Xcdc6B binds chromatin and its inhibition blocks entry into S phase. This is the first example of developmental regulation of Cdc6, raising intriguing implications for cell cycle remodeling during embryogenesis.
Collapse
Affiliation(s)
- Nadia Tikhmyanova
- Molecular Oncology Program, Institute for Cancer Research, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
37
|
Kong D, Coleman TR, DePamphilis ML. Xenopus origin recognition complex (ORC) initiates DNA replication preferentially at sequences targeted by Schizosaccharomyces pombe ORC. EMBO J 2003; 22:3441-50. [PMID: 12840006 PMCID: PMC165644 DOI: 10.1093/emboj/cdg319] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe.
Collapse
Affiliation(s)
- Daochun Kong
- National Institute of Child Health and Human Development, Building 6/416, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | |
Collapse
|
38
|
Mohammad M, York RD, Hommel J, Kapler GM. Characterization of a novel origin recognition complex-like complex: implications for DNA recognition, cell cycle control, and locus-specific gene amplification. Mol Cell Biol 2003; 23:5005-17. [PMID: 12832485 PMCID: PMC162205 DOI: 10.1128/mcb.23.14.5005-5017.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Revised: 03/14/2003] [Accepted: 04/17/2003] [Indexed: 11/20/2022] Open
Abstract
The origin recognition complex (ORC) plays a central role in eukaryotic DNA replication. Here we describe a unique ORC-like complex in Tetrahymena thermophila, TIF4, which bound in an ATP-dependent manner to sequences required for cell cycle-controlled replication and gene amplification (ribosomal DNA [rDNA] type I elements). TIF4's mode of DNA recognition was distinct from that of other characterized ORCs, as it bound exclusively to single-stranded DNA. In contrast to yeast ORCs, TIF4 DNA binding activity was cell cycle regulated and peaked during S phase, coincident with the redistribution of the Orc2-related subunit, p69, from the cytoplasm to the macronucleus. Origin-binding activity and nuclear p69 immunoreactivity were further regulated during development, where they distinguished replicating from nonreplicating nuclei. Both activities were lost from germ line micronuclei following the programmed arrest of micronuclear replication. Replicating macronuclei stained with Orc2 antibodies throughout development in wild-type cells but failed to do so in the amplification-defective rmm11 mutant. Collectively, these findings indicate that the regulation of TIF4 is intimately tied to the cell cycle and developmentally programmed replication cycles. They further implicate TIF4 in rDNA gene amplification. As type I elements interact with other sequence-specific single-strand breaks (in vitro and in vivo), the dynamic interplay of Orc-like (TIF4) and non-ORC-like proteins with this replication determinant may provide a novel mechanism for regulation.
Collapse
Affiliation(s)
- Mohammad Mohammad
- Department of Medical Biochemistry and Genetics, Texas A&M Health Science Center, College Station, Texas 77843-1114, USA
| | | | | | | |
Collapse
|
39
|
Witmer X, Alvarez-Venegas R, San-Miguel P, Danilevskaya O, Avramova Z. Putative subunits of the maize origin of replication recognition complex ZmORC1-ZmORC5. Nucleic Acids Res 2003; 31:619-28. [PMID: 12527770 PMCID: PMC140504 DOI: 10.1093/nar/gkg138] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The finding in animal species of complexes homologous to the products of six Saccharomyces cerevisiae genes, origin of replication recognition complex (ORC), has suggested that ORC-related mechanisms have been conserved in all eukaryotes. In plants, however, the only cloned putative homologs of ORC subunits are the Arabidopsis ORC2 and the rice ORC1. Homologs of other subunits of plant origin have not been cloned and characterized. A striking observation was the absence from the Arabidopsis genome of an obvious candidate gene-homolog of ORC4. This fact raised compelling questions of whether plants, in general, and Arabidopsis, in particular, may have lost the ORC4 gene, whether ORC-homologous subunits function within a complex in plants, whether an ORC complex may form and function without an ORC4 subunit, whether a functional (but not sequence) protein homolog may have taken up the role of ORC4 in Arabidopsis, and whether lack of ORC4 is a plant feature, in general. Here, we report the first cloned and molecularly characterized five genes coding for the maize putative homologs of ORC subunits ZmORC1, ZmORC2, ZmORC3, ZmORC4 and ZmORC5. Their expression profiles in tissues with different cell-dividing activities are compatible with a role in DNA replication. Based on the potential of ORC-homologous maize proteins to bind each other in yeast, we propose a model for their possible assembly within a maize ORC. The isolation and molecular characterization of an ORC4-homologous gene from maize argues that, in its evolution, Arabidopsis may have lost the homologous ORC4 gene.
Collapse
Affiliation(s)
- Xiaohong Witmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and the time during the cell cycle they assemble at the origin. Interestingly, despite distinct differences in origin structure, the identity and order of assembly of eukaryotic replication factors is highly conserved across all species. This review describes our current understanding of these events and how they are coordinated with cell cycle progression. We focus on bringing together the results from different organisms to provide a coherent model of the events of initiation. We emphasize recent progress in determining the function of the different replication factors once they have been assembled at the origin.
Collapse
Affiliation(s)
- Stephen P Bell
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| | | |
Collapse
|
41
|
Nasheuer HP, Smith R, Bauerschmidt C, Grosse F, Weisshart K. Initiation of eukaryotic DNA replication: regulation and mechanisms. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:41-94. [PMID: 12206458 DOI: 10.1016/s0079-6603(02)72067-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The accurate and timely duplication of the genome is a major task for eukaryotic cells. This process requires the cooperation of multiple factors to ensure the stability of the genetic information of each cell. Mutations, rearrangements, or loss of chromosomes can be detrimental to a single cell as well as to the whole organism, causing failures, disease, or death. Because of the size of eukaryotic genomes, chromosomal duplication is accomplished in a multiparallel process. In human somatic cells between 10,000 and 100,000 parallel synthesis sites are present. This raises fundamental problems for eukaryotic cells to coordinate the start of DNA replication at each origin and to prevent replication of already duplicated DNA regions. Since these general phenomena were recognized in the middle of the 20th century the regulation and mechanisms of the initiation of eukaryotic DNA replication have been intensively investigated. These studies were carried out to find the essential factors involved in the process and to determine their functions during DNA replication. These studies gave rise to a model of the organization and the coordination of DNA replication within the eukaryotic cell. The elegant experiments carried out by Rao and Johnson (1970) (1), who fused cells in different phases of the cell cycle, showed that G1 cells are competent for replication of their chromosomes, but lack a specific diffusible factor required to activate their replicaton machinery and showed that G2 cells are incompetent for DNA replication. These findings suggested that eukaryotic cells exist in two states. In G1 phase, cells are competent to initiate DNA replication, which is subsequently triggered in S phase. After completion of S phase, cells in G2 are no longer able to initiate DNA replication and they require a transition through mitosis to reenable initiation of DNA replication to take place in the next S phase. The Xenopus cell-free replication system has proved a good model system in which to study DNA replication in vitro as well as the mechanism preventing rereplication within a single cell cycle (2). Studies using this system resulted in the development of a model postulating the existence of a replication licensing factor, which binds to chromatin before the G1-S transition and which is displaced during replication (2, 3). These results were supported by genetic and biochemical experiments in Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast) (4, 5). The investigation of cell division cycle mutants and the budding yeast origin of replication resulted in the concept of a prereplicative and a postreplicative complex of initiation proteins (6-9). These three individual concepts have recently started to merge and it has become obvious that initiation in eukaryotes is generally governed by the same ubiquitous mechanisms.
Collapse
|
42
|
Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC. MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem 2002; 277:33049-57. [PMID: 12087101 DOI: 10.1074/jbc.m204438200] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MCM2-7 complex is believed to function as the eukaryotic replicative DNA helicase. It is recruited to chromatin by the origin recognition complex (ORC), Cdc6, and Cdt1, and it is activated at the G(1)/S transition by Cdc45 and the protein kinases Cdc7 and Cdk2. Paradoxically, the number of chromatin-bound MCM complexes greatly exceeds the number of bound ORC complexes. To understand how the high MCM2-7:ORC ratio comes about, we examined the binding of these proteins to immobilized linear DNA fragments in Xenopus egg extracts. The minimum length of DNA required to recruit ORC and MCM2-7 was approximately 80 bp, and the MCM2-7:ORC ratio on this fragment was approximately 1:1. With longer DNA fragments, the MCM2-7:ORC ratio increased dramatically, indicating that MCM complexes normally become distributed over a large region of DNA surrounding ORC. Only a small subset of the chromatin-bound MCM2-7 complexes recruited Cdc45 at the onset of DNA replication, and unlike Cdc45, MCM2-7 was not limiting for DNA replication. However, all the chromatin-bound MCM complexes may be functional, because they were phosphorylated in a Cdc7-dependent fashion, and because they could be induced to support Cdk2-dependent Cdc45 loading. The data suggest that in Xenopus egg extracts, origins of replication contain multiple, distributed, initiation-competent MCM2-7 complexes.
Collapse
Affiliation(s)
- Melissa C Edwards
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The Wee kinases block entry into mitosis by phosphorylating and inhibiting the activity of the mitotic cyclin-dependent kinase, Cdk1. We have found that the various Xenopus Wee kinases have unique temporal and spatial patterns of expression during development. In addition, we have isolated and characterized a new Wee1-like kinase, Xenopus Wee2. By both in vivo and in vitro tests, Xenopus Wee2 functions as a Wee1-like kinase. The previously isolated Wee1-like kinase, Xenopus Wee1, is expressed only as maternal gene product. In contrast, Xenopus Wee2 is predominantly a zygotic gene product, while the third Wee kinase, Xenopus Myt1, is both a maternal and zygotic gene product. Concurrent with the changing levels of these Cdk inhibitory kinases, the pattern of embryonic cell division becomes asynchronous and spatially restricted in the Xenopus embryo. Interestingly, once zygotic transcription begins, Xenopus Wee2 is expressed in regions of the embryo that are devoid of mitotic cells, such as the involuting mesoderm. In contrast, Xenopus Myt1 is expressed in regions of the embryo that have high levels of proliferation, such as the developing neural tissues. The existence of multiple Wee kinases may help explain how distinct patterns of cell division arise and are regulated during development.
Collapse
Affiliation(s)
- Walter Leise
- Department of Biochemistry and Molecular Biology, Cener for Molecular Oncology and Committees on Developmental Biology, Cancer Biology, and Genetics, University of Chicago, Ill 60637, USA
| | | |
Collapse
|
44
|
Calzada A, Bueno A. Genes involved in the initiation of DNA replication in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:133-207. [PMID: 11804036 DOI: 10.1016/s0074-7696(01)12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Replication and segregation of the information contained in genomic DNA are strictly regulated processes that eukaryotic cells alternate to divide successfully. Experimental work on yeast has suggested that this alternation is achieved through oscillations in the activity of a serine/threonine kinase complex, CDK, which ensures the timely activation of DNA synthesis. At the same time, this CDK-mediated activation sets up the basis of the mechanism that ensures ploidy maintenance in eukaryotes. DNA synthesis is initiated at discrete sites of the genome called origins of replication on which a prereplicative complex (pre-RC) of different protein subunits is formed during the G1 phase of the cell division cycle. Only after pre-RCs are formed is the genome competent to be replicated. Several lines of evidence suggest that CDK activity prevents the assembly of pre-RCs ensuring single rounds of genome replication during each cell division cycle. This review offers a descriptive discussion of the main molecular events that a unicellular eukaryote such as the budding yeast Saccharomyces cerevisiae undergoes to initiate DNA replication.
Collapse
Affiliation(s)
- Arturo Calzada
- Instituto de Microbiología--Bioquímica/Centro de Investigación del Cancer, Departamento de Microbiología y Genética, Edificio Departamental, CSIC/Universidad de Salamanca, Spain
| | | |
Collapse
|
45
|
Frolova NS, Schek N, Tikhmyanova N, Coleman TR. Xenopus Cdc6 performs separate functions in initiating DNA replication. Mol Biol Cell 2002; 13:1298-312. [PMID: 11950940 PMCID: PMC102270 DOI: 10.1091/mbc.01-08-0382] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cdc6 performs an essential role in the initiation of eukaryotic DNA replication by recruiting the minichromosome maintenance (MCM) complex onto DNA. Using immunodepletion/add-back experiments in Xenopus egg extracts, we have determined that both Walker A (ATP binding) and Walker B (ATP hydrolysis) motifs of Xenopus Cdc6 (Xcdc6) are essential, but have distinct functional roles. Although Walker B mutant protein binds chromatin well, Walker A mutant protein binds chromatin poorly. Neither Walker A nor Walker B mutant protein, however, load appreciable MCM onto DNA. Herein, we provide evidence that Cdc6 functions as a multimer: 1) mutant and wild-type Xcdc6 form multimers; 2) either mutant protein is dominant negative when added before wild-type Xcdc6, but stimulates DNA replication when added simultaneously with wild-type Xcdc6; and 3) the two mutants restore DNA replication when added together, in the absence of wild-type Xcdc6. Our findings suggest that ATP may play a key regulatory role within this multimer: its binding to Cdc6 promotes chromatin association and its hydrolysis facilitates MCM loading. Moreover, ATP binding and hydrolysis may occur in trans between Cdc6 subunits within the complex.
Collapse
Affiliation(s)
- Natalya S Frolova
- Molecular Oncology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
47
|
Sun WH, Coleman TR, DePamphilis ML. Cell cycle-dependent regulation of the association between origin recognition proteins and somatic cell chromatin. EMBO J 2002; 21:1437-46. [PMID: 11889049 PMCID: PMC125915 DOI: 10.1093/emboj/21.6.1437] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have suggested that cell cycle-dependent changes in the affinity of the origin recognition complex (ORC) for chromatin are involved in regulating initiation of DNA replication. To test this hypothesis, chromatin lacking functional ORCs was isolated from metaphase hamster cells and incubated in Xenopus egg extracts to initiate DNA replication. Intriguingly, Xenopus ORC rapidly bound to hamster somatic chromatin in a Cdc6-dependent manner and was then released, concomitant with initiation of DNA replication. Once pre-replication complexes (pre-RCs) were assembled either in vitro or in vivo, further binding of XlORC was inhibited. Neither binding nor release of XlORC was affected by inhibitors of either cyclin-dependent protein kinase activity or DNA synthesis. In contrast, inhibition of pre-RC assembly, either by addition of Xenopus geminin or by depletion of XlMcm proteins, augmented ORC binding by inhibiting ORC release. These results demonstrate a programmed release of XlORC from somatic cell chromatin as it enters S phase, consistent with the proposed role for ORC in preventing re-initiation of DNA replication during S phase.
Collapse
Affiliation(s)
- Wei-Hsin Sun
- National Institute of Child Health and Human Development, Building 6/416, National Institutes of Health, Bethesda, MD 20892-2753, National Institute of Mental Health, Building 36/3D06, Bethesda, MD 20892-4094 and Fox Chase Cancer Center, Philadelphia, PA 19111, USA Corresponding author e-mail:
| | - Thomas R. Coleman
- National Institute of Child Health and Human Development, Building 6/416, National Institutes of Health, Bethesda, MD 20892-2753, National Institute of Mental Health, Building 36/3D06, Bethesda, MD 20892-4094 and Fox Chase Cancer Center, Philadelphia, PA 19111, USA Corresponding author e-mail:
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, Building 6/416, National Institutes of Health, Bethesda, MD 20892-2753, National Institute of Mental Health, Building 36/3D06, Bethesda, MD 20892-4094 and Fox Chase Cancer Center, Philadelphia, PA 19111, USA Corresponding author e-mail:
| |
Collapse
|
48
|
Pasion SG, Forsburg SL. Deconstructing a conserved protein family: the role of MCM proteins in eukaryotic DNA replication. GENETIC ENGINEERING 2002; 23:129-55. [PMID: 11570101 DOI: 10.1007/0-306-47572-3_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- S G Pasion
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
49
|
Schwed G, May N, Pechersky Y, Calvi BR. Drosophila minichromosome maintenance 6 is required for chorion gene amplification and genomic replication. Mol Biol Cell 2002; 13:607-20. [PMID: 11854416 PMCID: PMC65653 DOI: 10.1091/mbc.01-08-0400] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Duplication of the eukaryotic genome initiates from multiple origins of DNA replication whose activity is coordinated with the cell cycle. We have been studying the origins of DNA replication that control amplification of eggshell (chorion) genes during Drosophila oogenesis. Mutation of genes required for amplification results in a thin eggshell phenotype, allowing a genetic dissection of origin regulation. Herein, we show that one mutation corresponds to a subunit of the minichromosome maintenance (MCM) complex of proteins, MCM6. The binding of the MCM complex to origins in G1 as part of a prereplicative complex is critical for the cell cycle regulation of origin licensing. We find that MCM6 associates with other MCM subunits during amplification. These results suggest that chorion origins are bound by an amplification complex that contains MCM proteins and therefore resembles the prereplicative complex. Lethal alleles of MCM6 reveal it is essential for mitotic cycles and endocycles, and suggest that its function is mediated by ATP. We discuss the implications of these findings for the role of MCMs in the coordination of DNA replication during the cell cycle.
Collapse
Affiliation(s)
- Gina Schwed
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
50
|
Alexandrow MG, Ritzi M, Pemov A, Hamlin JL. A potential role for mini-chromosome maintenance (MCM) proteins in initiation at the dihydrofolate reductase replication origin. J Biol Chem 2002; 277:2702-8. [PMID: 11723123 DOI: 10.1074/jbc.m108118200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mini-chromosome maintenance (MCM) proteins were originally identified in yeast, and homologues have been identified in several other eukaryotic organisms, including mammals. These findings suggest that the mechanisms by which eukaryotic cells initiate and regulate DNA replication have been conserved throughout evolution. However, it is clear that many mammalian origins are much more complex than those of yeast. An example is the Chinese hamster dihydrofolate reductase (DHFR) origin, which resides in the spacer between the DHFR and 2BE2121 genes. This origin consists of a broad zone of potential sites scattered throughout the 55-kb spacer, with several subregions (e.g. ori-beta, ori-beta', and ori-gamma) being preferred. We show here that antibodies to human MCMs 2-7 recognize counterparts in extracts prepared from hamster cells; furthermore, co-immunoprecipitation data demonstrate the presence of an MCM2-3-5 subcomplex as observed in other species. To determine whether MCM proteins play a role in initiation and/or elongation in Chinese hamster cells, we have examined in vivo protein-DNA interactions between the MCMs and chromatin in the DHFR locus using a chromatin immunoprecipitation (ChIP) approach. In synchronized cultures, MCM complexes associate preferentially with DNA in the intergenic initiation zone early in S-phase during the time that replication initiates. However, significant amounts of MCMs were also detected over the two genes, in agreement with recent observations that the MCM complex co-purifies with RNA polymerase II. As cells progress through S-phase, the MCMs redistribute throughout the DHFR domain, suggesting a dynamic interaction with DNA. In asynchronous cultures, in which replication forks should be found at any position in the genome, MCM proteins were distributed relatively evenly throughout the DHFR locus. Altogether, these data are consistent with studies in yeast showing that MCM subunits localize to origins during initiation and then migrate outward with the replication forks. This constitutes the first evidence that mammalian MCM complexes perform a critical role during the initiation and elongation phases of replication at the DHFR origin in hamster cells.
Collapse
Affiliation(s)
- Mark G Alexandrow
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|