1
|
Moser SC, Jonkers J. Thirty Years of BRCA1: Mechanistic Insights and Their Impact on Mutation Carriers. Cancer Discov 2025; 15:461-480. [PMID: 40025950 PMCID: PMC11893084 DOI: 10.1158/2159-8290.cd-24-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
SIGNIFICANCE Here, we explore the impact of three decades of BRCA1 research on the lives of mutation carriers and propose strategies to improve the prevention and treatment of BRCA1-associated cancer.
Collapse
Affiliation(s)
- Sarah C. Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Yadegari F, Farahmand L, Esmaeili R, Zarinfam S, Majidzadeh-A K. Inter-BRCT linker is probably the most intolerant region of the BRCA1 BRCT domain. J Biomol Struct Dyn 2024; 42:5734-5746. [PMID: 37948190 DOI: 10.1080/07391102.2023.2274517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/15/2023] [Indexed: 11/12/2023]
Abstract
Pathogenic mutations in BRCA1 are associated with an increased risk of hereditary breast, ovarian, and some other cancers; however, the clinical significance of many mutations in this gene remains unknown (Variants of Unknown Significance/VUS). Since mutations in intolerant regions of a protein lead to dysfunction and pathogenicity, identifying these regions helps to predict the clinical importance of VUSs. This study aimed to identify intolerant regions of BRCA1 and understand the possible root of this susceptibility. Intolerant regions appear to carry more pathogenic mutations than expected due to their lower tolerance to missense variations. Therefore, we hypothesized that among the BRCA1 regions, the higher the mutation density, the greater the intolerance. Thus, pathogenic mutation density and regional intolerance scores were calculated to identify BRCA1-intolerant regions. To investigate the pathogenic mechanisms of missense-intolerant regions in BRCA1, transcription activation (TA) experiments and molecular dynamics (MD) simulations were also performed. The results showed that the RING domain, followed by the BRCT domain, has the highest density of pathogenic mutations. In the BRCT domain, a higher density of pathogenic mutations was observed in the inter-BRCT linker. Additionally, scores generated by Missense Tolerance Ratio-3D (MTR3D) and the Missense Tolerance Ratio consensus (MTRX) showed that the inter-BRCT linker is more intolerant than other regions of the BRCT domain. The MD results showed that mutations in the inter-BRCT linker led to cancer susceptibility, likely due to disruption of the interaction between BRCA1 and phosphopeptides. TA laboratory assays further supported the importance of the inter-BRCT linker.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Yadegari
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shiva Zarinfam
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Bassi N, Hovland HN, Rasheed K, Jarhelle E, Pedersen N, Mchaina EK, Bakkan SME, Iversen N, Høberg-Vetti H, Haukanes BI, Knappskog PM, Aukrust I, Ognedal E, Van Ghelue M. Functional analyses of rare germline BRCA1 variants by transcriptional activation and homologous recombination repair assays. BMC Cancer 2023; 23:368. [PMID: 37085799 PMCID: PMC10122298 DOI: 10.1186/s12885-023-10790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Damaging alterations in the BRCA1 gene have been extensively described as one of the main causes of hereditary breast and ovarian cancer (HBOC). BRCA1 alterations can lead to impaired homologous recombination repair (HRR) of double-stranded DNA breaks, a process which involves the RING, BRCT and coiled-coil domains of the BRCA1 protein. In addition, the BRCA1 protein is involved in transcriptional activation (TA) of several genes through its C-terminal BRCT domain. METHODS In this study, we have investigated the effect on HRR and TA of 11 rare BRCA1 missense variants classified as variants of uncertain clinical significance (VUS), located within or in close proximity to the BRCT domain, with the aim of generating additional knowledge to guide the correct classification of these variants. The variants were selected from our previous study "BRCA1 Norway", which is a collection of all BRCA1 variants detected at the four medical genetic departments in Norway. RESULTS All variants, except one, showed a significantly reduced HRR activity compared to the wild type (WT) protein. Two of the variants (p.Ala1708Val and p.Trp1718Ser) also exhibited low TA activity similar to the pathogenic controls. The variant p.Trp1718Ser could be reclassified to likely pathogenic. However, for ten of the variants, the total strength of pathogenic evidence was not sufficient for reclassification according to the CanVIG-UK BRCA1/BRCA2 gene-specific guidelines for variant interpretation. CONCLUSIONS When including the newly achieved functional evidence with other available information, one VUS was reclassified to likely pathogenic. Eight of the investigated variants affected only one of the assessed activities of BRCA1, highlighting the importance of comparing results obtained from several functional assays to better understand the consequences of BRCA1 variants on protein function. This is especially important for multifunctional proteins such as BRCA1.
Collapse
Affiliation(s)
- Nicola Bassi
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
| | - Henrikke Nilsen Hovland
- Familial Cancer Center, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kashif Rasheed
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
- Present address: Institute for Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Elisabeth Jarhelle
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
- Northern Norway Family Cancer Center, University Hospital of North Norway, Tromsø, Norway
| | - Nikara Pedersen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Eunice Kabanyana Mchaina
- Familial Cancer Center, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | | | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Hildegunn Høberg-Vetti
- Familial Cancer Center, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Ivar Haukanes
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Per Morten Knappskog
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingvild Aukrust
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Elisabet Ognedal
- Familial Cancer Center, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway
- Northern Norway Family Cancer Center, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| |
Collapse
|
4
|
Nepomuceno TC, Dos Santos APP, Fernandes VC, Elias ABR, Gomes TT, Suarez-Kurtz G, Iversen ES, Couch FJ, Monteiro ANA, Carvalho MA. Assessment of small in-frame indels and C-terminal nonsense variants of BRCA1 using a validated functional assay. Sci Rep 2022; 12:16203. [PMID: 36171434 PMCID: PMC9519549 DOI: 10.1038/s41598-022-20500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
BRCA1 (Breast Cancer 1, early onset) is linked to breast and ovarian cancer predisposition. Still, the risks conferred by a significant portion of BRCA1 variants identified in the population remains unknown. Most of these variants of uncertain significance are missense alterations. However, the functional implications of small in-frame deletions and/or insertions (indels) are also difficult to predict. Our group has previously evaluated the functional impact of 347 missense variants using an extensively validated transcriptional activity assay. Here we show a systematic assessment of 30 naturally occurring in-frame indels located at the C-terminal region of BRCA1. We identified positions sensitive and tolerant to alterations, expanding the knowledge of structural determinants of BRCA1 function. We further designed and assessed the impact of four single codon deletions in the tBRCT linker region and six nonsense variants at the C-terminus end of BRCA1. Amino acid substitutions, deletions or insertions in the disordered region do not significantly impact activity and are not likely to constitute pathogenic alleles. On the other hand, a sizeable fraction of in-frame indels at the BRCT domain significantly impact function. We then use a Bayesian integrative statistical model to derive the probability of pathogenicity for each variant. Our data highlights the importance of assessing the impact of small in-frame indels in BRCA1 to improve risk assessment and clinical decisions for carriers.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil.,Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Ana P P Dos Santos
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Vanessa C Fernandes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Anna B R Elias
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Thiago T Gomes
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Guilherme Suarez-Kurtz
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA
| | | | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Marcelo A Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro, 20230-130, Brazil. .,Laboratório de Genética Molecular, Instituto Federal Do Rio de Janeiro, Rua Senador Furtado, Campus Rio de Janeiro121, Rio de Janeiro, RJ, 20270-021, Brazil.
| |
Collapse
|
5
|
The Breast Cancer Protooncogenes HER2, BRCA1 and BRCA2 and Their Regulation by the iNOS/NOS2 Axis. Antioxidants (Basel) 2022; 11:antiox11061195. [PMID: 35740092 PMCID: PMC9227079 DOI: 10.3390/antiox11061195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
The expression of inducible nitric oxide synthase (iNOS; NOS2) and derived NO in various cancers was reported to exert pro- and anti-tumorigenic effects depending on the levels of expression and the tumor types. In humans, the breast cancer level of iNOS was reported to be overexpressed, to exhibit pro-tumorigenic activities, and to be of prognostic significance. Likewise, the expression of the oncogenes HER2, BRCA1, and BRCA2 has been associated with malignancy. The interrelationship between the expression of these protooncogenes and oncogenes and the expression of iNOS is not clear. We have hypothesized that there exist cross-talk signaling pathways between the breast cancer protooncogenes, the iNOS axis, and iNOS-mediated NO mutations of these protooncogenes into oncogenes. We review the molecular regulation of the expression of the protooncogenes in breast cancer and their interrelationships with iNOS expression and activities. In addition, we discuss the roles of iNOS, HER2, BRCA1/2, and NO metabolism in the pathophysiology of cancer stem cells. Bioinformatic analyses have been performed and have found suggested molecular alterations responsible for breast cancer aggressiveness. These include the association of BRCA1/2 mutations and HER2 amplifications with the dysregulation of the NOS pathway. We propose that future studies should be undertaken to investigate the regulatory mechanisms underlying the expression of iNOS and various breast cancer oncogenes, with the aim of identifying new therapeutic targets for the treatment of breast cancers that are refractory to current treatments.
Collapse
|
6
|
Adamovich AI, Diabate M, Banerjee T, Nagy G, Smith N, Duncan K, Mendoza Mendoza E, Prida G, Freitas MA, Starita LM, Parvin JD. The functional impact of BRCA1 BRCT domain variants using multiplexed DNA double-strand break repair assays. Am J Hum Genet 2022; 109:618-630. [PMID: 35196514 DOI: 10.1016/j.ajhg.2022.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022] Open
Abstract
Pathogenic variants in BRCA1 are associated with a greatly increased risk of hereditary breast and ovarian cancer (HBOC). With the increased availability and affordability of genetic testing, many individuals have been identified with BRCA1 variants of uncertain significance (VUSs), which are individually detected in the population too infrequently to ascertain a clinical risk. Functional assays can be used to experimentally assess the effects of these variants. In this study, we used multiplexed DNA repair assays of variants in the BRCA1 carboxyl terminus to functionally characterize 2,271 variants for homology-directed repair function (HDR) and 1,427 variants for cisplatin resistance (CR). We found a high level of consistent results (Pearson's r = 0.74) in the two multiplexed functional assays with non-functional variants located within regions of the BRCA1 protein necessary for its tumor suppression activity. In addition, functional categorizations of variants tested in the multiplex HDR and CR assays correlated with known clinical significance and with other functional assays for BRCA1 (Pearson's r = 0.53 to 0.71). The results of the multiplex HDR and CR assays are useful resources for characterizing large numbers of BRCA1 VUSs.
Collapse
Affiliation(s)
- Aleksandra I Adamovich
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mariame Diabate
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Gregory Nagy
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Nahum Smith
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Kathryn Duncan
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Erika Mendoza Mendoza
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Gisselle Prida
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Lea M Starita
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Witus SR, Zhao W, Brzovic PS, Klevit RE. BRCA1/BARD1 is a nucleosome reader and writer. Trends Biochem Sci 2022; 47:582-595. [DOI: 10.1016/j.tibs.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
|
8
|
Senescence induction dictates response to chemo- and immunotherapy in preclinical models of ovarian cancer. Proc Natl Acad Sci U S A 2022; 119:2117754119. [PMID: 35082152 PMCID: PMC8812522 DOI: 10.1073/pnas.2117754119] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Efforts to understand and find new treatment options for high-grade serous ovarian cancer (HGSOC) have been confounded by a paucity of immune-competent models that accurately reflect the genetics and biology of the disease. Here, we leverage somatic tissue engineering to develop a fast and flexible immune-competent mouse model of HGSOC and reveal mechanistic insights into factors that dictate the response of ovarian tumors to conventional chemotherapy and immune checkpoint blockade. Our results identify a genotype-dependent therapy-induced senescence program that mediates sensitivity and resistance to first line chemotherapy and point to strategies to harness the senescence program to sensitize ovarian tumors to immune checkpoint blockade. High-grade serous ovarian carcinoma (HGSOC) is a cancer with dismal prognosis due to the limited effectiveness of existing chemo- and immunotherapies. To elucidate mechanisms mediating sensitivity or resistance to these therapies, we developed a fast and flexible autochthonous mouse model based on somatic introduction of HGSOC-associated genetic alterations into the ovary of immunocompetent mice using tissue electroporation. Tumors arising in these mice recapitulate the metastatic patterns and histological, molecular, and treatment response features of the human disease. By leveraging these models, we show that the ability to undergo senescence underlies the clinically observed increase in sensitivity of homologous recombination (HR)–deficient HGSOC tumors to platinum-based chemotherapy. Further, cGas/STING-mediated activation of a restricted senescence-associated secretory phenotype (SASP) was sufficient to induce immune infiltration and sensitize HR-deficient tumors to immune checkpoint blockade. In sum, our study identifies senescence propensity as a predictor of therapy response and defines a limited SASP profile that appears sufficient to confer added vulnerability to concurrent immunotherapy and, more broadly, provides a blueprint for the implementation of electroporation-based mouse models to reveal mechanisms of oncogenesis and therapy response in HGSOC.
Collapse
|
9
|
Abstract
The breast and ovarian cancer susceptibility gene (BRCA1) is a tumor suppressor whose mutation has been associated with the development of breast, ovarian and, probably, other malignancies at young ages. The BRCA1 gene product participates in multiple biological pathways including the DNA damage response, transcriptional control, cell growth and apoptosis. Inactivating germline mutations of the BRCA1 gene can be detected in a substantial portion of families with inherited breast and/or ovarian cancer. While the genomic and cancer-related actions of BRCA1 have been extensively investigated, not much information exists regarding the cellular and circulating factors involved in regulation of BRCA1 expression and action. The present review article dissects the emerging role of BRCA1 as an important regulator of various endocrine and metabolic axes. Experimental and clinical evidence links BRCA1 with a number of peptide and steroid hormones. Furthermore, comprehensive analyses identified complex interactions between the insulin/insulin-like growth factor-1 (IGF1) signaling axis and BRCA1. The correlation between metabolic disorders, including diabetes and the metabolic syndrome, and BRCA1 mutations, are discussed in this article.
Collapse
|
10
|
Ozgencil M, Barwell J, Tischkowitz M, Izatt L, Kesterton I, Simpson M, Sharpe P, de Sepulveda P, Voisset E, Solomon E. Assessing BRCA1 activity in DNA damage repair using human induced pluripotent stem cells as an approach to assist classification of BRCA1 variants of uncertain significance. PLoS One 2021; 16:e0260852. [PMID: 34855882 PMCID: PMC8638976 DOI: 10.1371/journal.pone.0260852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
Establishing a universally applicable protocol to assess the impact of BRCA1 variants of uncertain significance (VUS) expression is a problem which has yet to be resolved despite major progresses have been made. The numerous difficulties which must be overcome include the choices of cellular models and functional assays. We hypothesised that the use of induced pluripotent stem (iPS) cells might facilitate the standardisation of protocols for classification, and could better model the disease process. We generated eight iPS cell lines from patient samples expressing either BRCA1 pathogenic variants, non-pathogenic variants, or BRCA1 VUSs. The impact of these variants on DNA damage repair was examined using a ɣH2AX foci formation assay, a Homologous Repair (HR) reporter assay, and a chromosome abnormality assay. Finally, all lines were tested for their ability to differentiate into mammary lineages in vitro. While the results obtained from the two BRCA1 pathogenic variants were consistent with published data, some other variants exhibited differences. The most striking of these was the BRCA1 variant Y856H (classified as benign), which was unexpectedly found to present a faulty HR repair pathway, a finding linked to the presence of an additional variant in the ATM gene. Finally, all lines were able to differentiate first into mammospheres, and then into more advanced mammary lineages expressing luminal- or basal-specific markers. This study stresses that BRCA1 genetic analysis alone is insufficient to establish a reliable and functional classification for assessment of clinical risk, and that it cannot be performed without considering the other genetic aberrations which may be present in patients. The study also provides promising opportunities for elucidating the physiopathology and clinical evolution of breast cancer, by using iPS cells.
Collapse
Affiliation(s)
- Meryem Ozgencil
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Julian Barwell
- Department of Genetics and Genome Biology at the University of Leicester, Leicester, United Kingdom
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Louise Izatt
- Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Ian Kesterton
- Cytogenetics Laboratory, Viapath Analytics, Guy’s and St. Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Michael Simpson
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Paul Sharpe
- Department of Craniofacial Development & Stem Cell Biology, King’s College London, London, United Kingdom
| | - Paulo de Sepulveda
- Signaling Hematopoiesis and Mechanism of Oncogenesis Lab, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Aix Marseille University, Marseille, France
| | - Edwige Voisset
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
- * E-mail: (EV); (ES)
| | - Ellen Solomon
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
- * E-mail: (EV); (ES)
| |
Collapse
|
11
|
San Martin Alonso M, Noordermeer S. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021; 49:4848-4863. [PMID: 33755171 PMCID: PMC8136775 DOI: 10.1093/nar/gkab178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.
Collapse
Affiliation(s)
- Marta San Martin Alonso
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
12
|
Nameki R, Chang H, Reddy J, Corona RI, Lawrenson K. Transcription factors in epithelial ovarian cancer: histotype-specific drivers and novel therapeutic targets. Pharmacol Ther 2020; 220:107722. [PMID: 33137377 DOI: 10.1016/j.pharmthera.2020.107722] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Transcription factors (TFs) are major contributors to cancer risk and somatic development. In preclinical and clinical studies, direct or indirect inhibition of TF-mediated oncogenic gene expression profiles have proven to be effective in many tumor types, highlighting this group of proteins as valuable therapeutic targets. In spite of this, our understanding of TFs in epithelial ovarian cancer (EOC) is relatively limited. EOC is a heterogeneous disease composed of five major histologic subtypes; high-grade serous, low-grade serous, endometrioid, clear cell and mucinous. Each histology is associated with unique clinical etiologies, sensitivity to therapies, and molecular signatures - including diverse transcriptional regulatory programs. While some TFs are shared across EOC subtypes, a set of TFs are expressed in a histotype-specific manner and likely explain part of the histologic diversity of EOC subtypes. Targeting TFs present with unique opportunities for development of novel precision medicine strategies for ovarian cancer. This article reviews the critical TFs in EOC subtypes and highlights the potential of exploiting TFs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robbin Nameki
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heidi Chang
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Reddy
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosario I Corona
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Dong W, Wu P, Qin M, Guo S, Liu H, Yang X, He W, Bouakaz A, Wan M, Zong Y. Multipotent miRNA Sponge-Loaded Magnetic Nanodroplets with Ultrasound/Magnet-Assisted Delivery for Hepatocellular Carcinoma Therapy. Mol Pharm 2020; 17:2891-2910. [PMID: 32678617 DOI: 10.1021/acs.molpharmaceut.0c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene therapy is likely to be the most promising way to tackle cancer, while defects in molecular strategies and delivery systems have led to an impasse in clinical application. Here, it is found that onco-miRNAs of the miR-515 and -449 families were upregulated in hepatocellular carcinoma (HCC), and the sponge targeting miR-515 family had a significant probability to suppress cancer cell proliferation. Then, we constructed non-toxic sponge-loaded magnetic nanodroplets containing 20% C6F14 (SLMNDs-20%) that are incorporated with fluorinated superparamagnetic iron oxide nanoparticles enhancing external magnetism-assisted targeting and enabling a direct visualization of SLMNDs-20% distribution in vivo via magnetic resonance imaging monitoring. SLMNDs-20% could be vaporized by programmable focused ultrasound (FUS) activation, achieving ∼45% in vitro sponge delivery efficiency and significantly enhancing in vivo sponge delivery without a clear apoptosis. Moreover, the sponge-1-carrying SLMNDs-20% could effectively suppress proliferation of xenograft HCC after FUS exposure because sponge-1-suppressing onco-miR-515 enhanced the expression of anti-oncogenes (P21, CD22, TIMP1, NFKB, and E-cadherin) in cancer cells. The current results indicated that ultrasonic cavitation-inducing sonoporation enhanced the intracellular delivery of sponge-1 using SLMNDs-20% after magnetic-assisted accumulation, which was a therapeutic approach to inhibit HCC progression.
Collapse
Affiliation(s)
- Wei Dong
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Pengying Wu
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mengfan Qin
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shifang Guo
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huasheng Liu
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xinxing Yang
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Department of Ultrasound, The First Affiliated Hospital of AFMU (Xijing Hospital), Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Wen He
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ayache Bouakaz
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours 37000, France
| | - Mingxi Wan
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yujin Zong
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
14
|
Yadegari F, Farahmand L, Esmaeili R, Samadi T, Majidzadeh K. Functional investigation of the BRCA1 Val1714Gly and Asp1733Gly variants by computational tools and yeast transcription activation assay. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2020; 8:113-118. [PMID: 31998812 PMCID: PMC6802689 DOI: 10.22099/mbrc.2019.33971.1414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mutations in the BRCA1 gene are known to be a major cause of hereditary breast cancer. However, characterizing the point mutations associated with cancer in BRCA1 is challenging because the functional impact of most of them is still unknown. Nowadays, a variety of methods are employed to identify cancer-associated mutations in BRCA1. This study is aimed to assess the functional effects of two mutations, Asp1733Gly and Val1714Gly, using a combination of insilico tools and yeast functional transcription activator assay. Our computational analysis showed that theVal1714Gly mutation was deleterious, while the other one, Asp1733Gly, predicted as neutral. Also using yeast functional transcription activator assay, we found that the Asp1733Gly mutation displayed similar ability with positive controls. In contrast, the Val1714Gly mutation completely abrogated transcriptional activity in the yeast. These results suggested that Val1714Gly and Asp1733Gly can be classified as pathogenic and benign mutations for the BRCA1, respectively.
Collapse
Affiliation(s)
- Fatemeh Yadegari
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Tannaz Samadi
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Keivan Majidzadeh
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
15
|
Cardenas H, Jiang G, Thomes Pepin J, Parker JB, Condello S, Nephew KP, Nakshatri H, Chakravarti D, Liu Y, Matei D. Interferon-γ signaling is associated with BRCA1 loss-of-function mutations in high grade serous ovarian cancer. NPJ Precis Oncol 2019; 3:32. [PMID: 31840082 PMCID: PMC6897992 DOI: 10.1038/s41698-019-0103-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Loss-of-function mutations of the breast cancer type 1 susceptibility protein (BRCA1) are associated with breast (BC) and ovarian cancer (OC). To identify gene signatures regulated by epigenetic mechanisms in OC cells carrying BRCA1 mutations, we assessed cellular responses to epigenome modifiers and performed genome-wide RNA- and chromatin immunoprecipitation-sequencing in isogenic OC cells UWB1.289 (carrying a BRCA1 mutation, BRCA1-null) and UWB1.289 transduced with wild-type BRCA1 (BRCA1+). Increased sensitivity to histone deacetylase inhibitors (HDACi) was observed in BRCA1-null vs. BRCA1+ cells. Gene expression profiles of BRCA1-null vs. BRCA1+ cells and treated with HDACi were integrated with chromatin mapping of histone H3 lysine 9 or 27 acetylation. Gene networks activated in BRCA1-null vs. BRCA1 + OC cells related to cellular movement, cellular development, cellular growth and proliferation, and activated upstream regulators included TGFβ1, TNF, and IFN-γ. The IFN-γ pathway was altered by HDACi in BRCA1+ vs. BRCA1-null cells, and in BRCA1-mutated/or low vs. BRCA1-normal OC tumors profiled in the TCGA. Key IFN-γ-induced genes upregulated at baseline in BRCA1-null vs. BRCA1+OC and BC cells included CXCL10, CXCL11, and IFI16. Increased localization of STAT1 in the promoters of these genes occurred in BRCA1-null OC cells, resulting in diminished responses to IFN-γ or to STAT1 knockdown. The IFN-γ signature was associated with improved survival among OC patients profiled in the TCGA. In all, our results support that changes affecting IFN-γ responses are associated with inactivating BRCA1 mutations in OC. This signature may contribute to altered responses to anti-tumor immunity in BRCA1-mutated cells or tumors.
Collapse
Affiliation(s)
- Horacio Cardenas
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL USA
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN USA
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN USA
| | - Jessica Thomes Pepin
- Department of Obstetrics and Gynecology, Indiana University, Indianapolis, IN USA
| | - J. Brandon Parker
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL USA
| | - Kenneth P. Nephew
- Department of Obstetrics and Gynecology, Indiana University, Indianapolis, IN USA
- Melvin and Bren Simon Cancer Center, Indianapolis, IN USA
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Harikrishna Nakshatri
- Melvin and Bren Simon Cancer Center, Indianapolis, IN USA
- Departments of Surgery, Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN USA
| | - Debabrata Chakravarti
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL USA
- Robert H Lurie Comprehensive Cancer Center, Chicago, IL USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN USA
- Melvin and Bren Simon Cancer Center, Indianapolis, IN USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL USA
- Robert H Lurie Comprehensive Cancer Center, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| |
Collapse
|
16
|
BRCA1/BARD1-dependent ubiquitination of NF2 regulates Hippo-YAP1 signaling. Proc Natl Acad Sci U S A 2019; 116:7363-7370. [PMID: 30918126 DOI: 10.1073/pnas.1822155116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coordination of growth and genomic stability is critical for normal cell physiology. Although the E3 ubiquitin ligase BRCA1 is a key player in maintenance of genomic stability, its role in growth signaling remains elusive. Here, we show that BRCA1 facilitates stabilization of YAP1 protein and turning "off" the Hippo pathway through ubiquitination of NF2. In BRCA1-deficient cells Hippo pathway is "turned On." Phosphorylation of YAP1 is crucial for this signaling process because a YAP1 mutant harboring alanine substitutions (Mt-YAP5SA) in LATS1 kinase recognition sites not only resists degradation but also rescues YAP1 transcriptional activity in BRCA1-deficient cells. Furthermore, an ectopic expression of the active Mt-YAP5SA, but not inactive Mt-YAP6SA, promotes EGF-independent proliferation and tumorigenesis in BRCA1-/- mammary epithelial cells. These findings establish an important role of BRCA1 in regulating stability of YAP1 protein that correlates positively with cell proliferation.
Collapse
|
17
|
Wang Z, Zhang J, Zhang Y, Deng Q, Liang H. Expression and mutations of BRCA in breast cancer and ovarian cancer: Evidence from bioinformatics analyses. Int J Mol Med 2018; 42:3542-3550. [PMID: 30221688 DOI: 10.3892/ijmm.2018.3870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/27/2018] [Indexed: 11/06/2022] Open
Abstract
Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) are the most well‑known genes linked to breast cancer and ovarian cancer, which are crucial in DNA repair and transcriptional regulation. The present study aimed to elucidate the expression profiles, mutations and interaction networks of BRCA1 and BRCA2, which may provide insights to reveal the mechanisms of BRCA genes ultimately leading to breast or ovarian tumorigenesis. Bioinformatics analyses were performed in the present study. The mRNA levels of BRCA1 and BRCA2 were evaluated using FIREHOSE analysis, SAGE Genie tools and Oncomine analysis. cBioPortal analysis, and Catalogue Of Somatic Mutations In Cancer analysis were used to examine the BRCA1 and BRCA2 mutations. Kaplan‑Meier Plotter analysis was performed to identify the prognostic roles of BRCA1 and BRCA2 in breast cancer and ovarian cancer. The results of the present study showed that the mRNA expression levels of BRCA1 and BRCA2 were elevated in breast cancer and ovarian cancer tissues, compared with their matched normal tissues. Second, several common mutations of BRCA1 and BRCA2 genes were identified in breast cancer and ovarian cancer. Finally, neurofibromin 1, synaptonemal complex protein 2 and tumor protein 53 were predicted to be involved in the interaction network of BRCA1 and BRCA2 in breast cancer and ovarian cancer. Taken together, these results provide a significant insight into certain mutations and proteins involved in the interaction network of BRCA1 and BRCA2, which may have common roles in breast cancer and ovarian cancer. However, the complex mechanism underlying these observations remains to be fully elucidated, and further investigations are required in the future.
Collapse
Affiliation(s)
- Zhu Wang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong 518109, P.R. China
| | - Jianwen Zhang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong 518109, P.R. China
| | - Ying Zhang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong 518109, P.R. China
| | - Qiong Deng
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong 518109, P.R. China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong 518109, P.R. China
| |
Collapse
|
18
|
Nguyen DD, Lee DG, Kim S, Kang K, Rhee JK, Chang S. Integrative Bioinformatics and Functional Analyses of GEO, ENCODE, and TCGA Reveal FADD as a Direct Target of the Tumor Suppressor BRCA1. Int J Mol Sci 2018; 19:ijms19051458. [PMID: 29757984 PMCID: PMC5983697 DOI: 10.3390/ijms19051458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023] Open
Abstract
BRCA1 is a multifunctional tumor suppressor involved in several essential cellular processes. Although many of these functions are driven by or related to its transcriptional/epigenetic regulator activity, there has been no genome-wide study to reveal the transcriptional/epigenetic targets of BRCA1. Therefore, we conducted a comprehensive analysis of genomics/transcriptomics data to identify novel BRCA1 target genes. We first analyzed ENCODE data with BRCA1 chromatin immunoprecipitation (ChIP)-sequencing results and identified a set of genes with a promoter occupied by BRCA1. We collected 3085 loci with a BRCA1 ChIP signal from four cell lines and calculated the distance between the loci and the nearest gene transcription start site (TSS). Overall, 66.5% of the BRCA1-bound loci fell into a 2-kb region around the TSS, suggesting a role in transcriptional regulation. We selected 45 candidate genes based on gene expression correlation data, obtained from two GEO (Gene Expression Omnibus) datasets and TCGA data of human breast cancer, compared to BRCA1 expression levels. Among them, we further tested three genes (MEIS2, CKS1B and FADD) and verified FADD as a novel direct target of BRCA1 by ChIP, RT-PCR, and a luciferase reporter assay. Collectively, our data demonstrate genome-wide transcriptional regulation by BRCA1 and suggest target genes as biomarker candidates for BRCA1-associated breast cancer.
Collapse
Affiliation(s)
- Dinh-Duc Nguyen
- Department of Biomedical Sciences, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
- Department of Physiology, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Dong Gyu Lee
- Department of Biomedical Sciences, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan 31116, Korea.
| | - Je-Keun Rhee
- Cancer Research Institute, Catholic University of Korea, Seoul 06591, Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
- Department of Physiology, University of Ulsan School of Medicine, Asan Medical Center, Seoul 05505, Korea.
| |
Collapse
|
19
|
Nguyen DD, Chang S. Development of Novel Therapeutic Agents by Inhibition of Oncogenic MicroRNAs. Int J Mol Sci 2017; 19:E65. [PMID: 29280958 PMCID: PMC5796015 DOI: 10.3390/ijms19010065] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRs, miRNAs) are regulatory small noncoding RNAs, with their roles already confirmed to be important for post-transcriptional regulation of gene expression affecting cell physiology and disease development. Upregulation of a cancer-causing miRNA, known as oncogenic miRNA, has been found in many types of cancers and, therefore, represents a potential new class of targets for therapeutic inhibition. Several strategies have been developed in recent years to inhibit oncogenic miRNAs. Among them is a direct approach that targets mature oncogenic miRNA with an antisense sequence known as antimiR, which could be an oligonucleotide or miRNA sponge. In contrast, an indirect approach is to block the biogenesis of miRNA by genome editing using the CRISPR/Cas9 system or a small molecule inhibitor. The development of these inhibitors is straightforward but involves significant scientific and therapeutic challenges that need to be resolved. In this review, we summarize recent relevant studies on the development of miRNA inhibitors against cancer.
Collapse
Affiliation(s)
- Dinh-Duc Nguyen
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| |
Collapse
|
20
|
Zeller P, Gasser SM. The Importance of Satellite Sequence Repression for Genome Stability. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:15-24. [PMID: 29133300 DOI: 10.1101/sqb.2017.82.033662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Up to two-thirds of eukaryotic genomes consist of repetitive sequences, which include both transposable elements and tandemly arranged simple or satellite repeats. Whereas extensive progress has been made toward understanding the danger of and control over transposon expression, only recently has it been recognized that DNA damage can arise from satellite sequence transcription. Although the structural role of satellite repeats in kinetochore function and end protection has long been appreciated, it has now become clear that it is not only these functions that are compromised by elevated levels of transcription. RNA from simple repeat sequences can compromise replication fork stability and genome integrity, thus compromising germline viability. Here we summarize recent discoveries on how cells control the transcription of repeat sequence and the dangers that arise from their expression. We propose that the link between the DNA damage response and the transcriptional silencing machinery may help a cell or organism recognize foreign DNA insertions into an evolving genome.
Collapse
Affiliation(s)
- Peter Zeller
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
21
|
Toland AE, Andreassen PR. DNA repair-related functional assays for the classification of BRCA1 and BRCA2 variants: a critical review and needs assessment. J Med Genet 2017; 54:721-731. [PMID: 28866612 DOI: 10.1136/jmedgenet-2017-104707] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/04/2017] [Accepted: 06/27/2017] [Indexed: 01/02/2023]
Abstract
Mutation of BRCA1 and BRCA2 is the most common cause of inherited breast and ovarian cancer. Genetic screens to detect carriers of variants can aid in cancer prevention by identifying individuals with a greater cancer risk and can potentially be used to predict the responsiveness of tumours to therapy. Frequently, classification cannot be performed based on traditional approaches such as segregation analyses, including for many missense variants, which are therefore referred to as variants of uncertain significance (VUS). Functional assays provide an important alternative for classification of BRCA1 and BRCA2 VUS. As reviewed here, both of these tumour suppressors promote the maintenance of genome stability via homologous recombination. Thus, related assays may be particularly relevant to cancer risk. Progress in implementing functional assays to assess missense variants of BRCA1 and BRCA2 is considered here, along with current limitations and the path to more impactful assay systems. While functional assays have been developed to independently evaluate BRCA1 and BRCA2 VUS, high-throughput assays with sufficient sensitivity to characterise the large number of identified variants are lacking. Additionally, because of relatively low conservation of certain domains of BRCA1, and of BRCA2, between humans and rodents, heterologous expression in rodent cells may have limited reliability or capacity to assess variants present throughout either protein. Moving forward, it will be important to perform assays in human cell lines with relevance to particular tumour types, and to strengthen risk predictions based on multifactorial statistical analyses that also include available data on cosegregation and tumour pathology.
Collapse
Affiliation(s)
- Amanda Ewart Toland
- Department of Cancer Biology & Genetics and Division of Human Genetics, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Yang J, Wang N. Analysis of the molecular mechanism of osteosarcoma using a bioinformatics approach. Oncol Lett 2016; 12:3075-3080. [PMID: 27899966 PMCID: PMC5103902 DOI: 10.3892/ol.2016.5060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 11/11/2015] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to explore the underlying molecular mechanism related to the process and progression of osteosarcoma (OS). The differentially expressed genes (DEGs) were downloaded from the Gene Expression Omnibus database. The pathway and gene ontology (GO) enrichment analysis, as well as transcription factor, tumor-associated gene and tumor suppressor gene analyses were performed to investigate the functions of DEGs. Next, the protein-protein interaction (PPI) network was constructed and module analysis was further assessed by cluster analysis with the overlapping neighborhood expansion (Cluster ONE) cytoscape plug-in. A total of 359 upregulated and 614 downregulated DEGs were identified to be differentially expressed between OS samples and normal controls. Pathways significantly enriched by DEGs included the focal adhesion and chromosome maintenance pathways. Significant GO terms were cell adhesion, cell cycle and nucleic acid metabolic processes. The upregulated PPI network was constructed with 170 nodes and the downregulated PPI network was constructed with 332 nodes. Breast-ovarian cancer gene 1 (BRCA1), melanocyte-stimulating hormone 2 (MSH2), cyclin D1 (CCND1) and integrin α5 (ITGA5) were identified to be hub proteins in PPI. In conclusion, the dysregulated genes played key roles in the progression of OS. Cell adhesion is a significant biological process in OS development, and the genes BRCA1, MSH2, CCND1 and ITGA5 may be potential targets in the therapy of OS.
Collapse
Affiliation(s)
- Jianxun Yang
- Department of Traumatology Five, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Ning Wang
- Department of Children's Rehabilitation, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
23
|
Zhang W, Luo J, Chen F, Yang F, Song W, Zhu A, Guan X. BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner. Oncotarget 2016; 6:7608-18. [PMID: 25797244 PMCID: PMC4480703 DOI: 10.18632/oncotarget.3263] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 01/31/2015] [Indexed: 11/25/2022] Open
Abstract
BRCA1 plays a key role in the regulation of p53-dependent target gene transcription activation. Meanwhile, the p53 inducible gene 3 (PIG3) is a downstream target of p53 and is involved in p53-initiated apoptosis. However, little is known about whether BRCA1 can regulate PIG3-mediated apoptosis. Using a tissue microarray containing 149 breast cancer patient samples, we found that BRCA1 and PIG3 expression status were significantly positively correlated (r = 0.678, P < 0.001) and identified a significant positive correlation between high expression of BRCA1 and/or PIG3 and overall survival (OS). Moreover, we reveal that overexpression of BRCA1 significantly increased expression of PIG3 in cells with intact p53, whereas no increase in PIG3 was observed in p53-null MDA-MB-157 cells and p53-depleted HCT116p53−/− cells. Meanwhile, ectopic expression of BRCA1 could not lead to an increase expression level of prohibitin (PHB), which we have previously identified to induce PIG3-mediated apoptosis. Finally, ChIP analysis revealed that PHB can bind to the PIG3 promoter and activate PIG3 transcription independent of p53, although p53 presence did enhance this process. Taken together, our findings suggest that BRCA1 regulates PIG3-mediated apoptosis in a p53-dependent manner, and that PIG3 expression is associated with a better OS in breast cancer patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jiayan Luo
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Fengxia Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Wei Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou 510282, China
| | - Aiyu Zhu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou 510282, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.,Department of Medical Oncology, Jinling Hospital, School of Medicine, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
24
|
BRCA1 inhibits AR-mediated proliferation of breast cancer cells through the activation of SIRT1. Sci Rep 2016; 6:22034. [PMID: 26902145 PMCID: PMC4763204 DOI: 10.1038/srep22034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/04/2016] [Indexed: 12/25/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor protein that functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. The androgen receptor (AR) is expressed in more than 70% of breast cancers and has been implicated in breast cancer pathogenesis. However, little is known about the role of BRCA1 in AR-mediated cell proliferation in human breast cancer. Here, we report that a high expression of AR in breast cancer patients was associated with shorter overall survival (OS) using a tissue microarray with 149 non-metastatic breast cancer patient samples. We reveal that overexpression of BRCA1 significantly inhibited expression of AR through activation of SIRT1 in breast cancer cells. Meanwhile, SIRT1 induction or treatment with a SIRT1 agonist, resveratrol, inhibits AR-stimulated proliferation. Importantly, this mechanism is manifested in breast cancer patient samples and TCGA database, which showed that low SIRT1 gene expression in tumor tissues compared with normal adjacent tissues predicts poor prognosis in patients with breast cancer. Taken together, our findings suggest that BRCA1 attenuates AR-stimulated proliferation of breast cancer cells via SIRT1 mediated pathway.
Collapse
|
25
|
Sheikh A, Hussain SA, Ghori Q, Naeem N, Fazil A, Giri S, Sathian B, Mainali P, Al Tamimi DM. The spectrum of genetic mutations in breast cancer. Asian Pac J Cancer Prev 2016; 16:2177-85. [PMID: 25824734 DOI: 10.7314/apjcp.2015.16.6.2177] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the most common malignancy in women around the world. About one in 12 women in the West develop breast cancer at some point in life. It is estimated that 5%-10% of all breast cancer cases in women are linked to hereditary susceptibility due to mutations in autosomal dominant genes. The two key players associated with high breast cancer risk are mutations in BRCA 1 and BRCA 2. Another highly important mutation can occur in TP53 resulting in a triple negative breast cancer. However, the great majority of breast cancer cases are not related to a mutated gene of high penetrance, but to genes of low penetrance such as CHEK2, CDH1, NBS1, RAD50, BRIP1 and PALB2, which are frequently mutated in the general population. In this review, we discuss the entire spectrum of mutations which are associated with breast cancer.
Collapse
Affiliation(s)
- Asfandyar Sheikh
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hung MH, Wang CY, Chen YL, Chu PY, Hsiao YJ, Tai WT, Chao TT, Yu HC, Shiau CW, Chen KF. SET antagonist enhances the chemosensitivity of non-small cell lung cancer cells by reactivating protein phosphatase 2A. Oncotarget 2016; 7:638-55. [PMID: 26575017 PMCID: PMC4808023 DOI: 10.18632/oncotarget.6313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022] Open
Abstract
SET is known as a potent PP2A inhibitor, however, its oncogenic role including its tumorigenic potential and involvement in the development of chemoresistance in non-small cell lung cancer (NSCLC) has not yet been fully discussed. In present study, we investigated the oncogenic role of SET by SET-knockdown and showed that SET silencing impaired cell growth rate, colony formation and tumor sphere formation in A549 cells. Notably, silencing SET enhanced the pro-apoptotic effects of paclitaxel, while ectopic expression of SET diminished the sensitivity of NSCLC cells to paclitaxel. Since the SET protein was shown to affect chemosensitivity, we next examined whether combining a novel SET antagonist, EMQA, sensitized NSCLC cells to paclitaxel. Both the in vitro and in vivo experiments suggested that EMQA and paclitaxel combination treatment was synergistic. Importantly, we found that downregulating p-Akt by inhibiting SET-mediated protein phosphatase 2A (PP2A) inactivation determined the pro-apoptotic effects of EMQA and paclitaxel combination treatment. To dissect the critical site for EMQA functioning, we generated several truncated SET proteins. By analysis of the effects of EMQA on the binding affinities of different truncated SET proteins to PP2A-catalytic subunits, we revealed that the 227-277 amino-acid sequence is critical for EMQA-induced SET inhibition. Our findings demonstrate the critical role of SET in NSCLC, particularly in the development of chemoresistance. The synergistic effects of paclitaxel and the SET antagonist shown in current study encourage further validation of the clinical potential of this combination.
Collapse
Affiliation(s)
- Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
- Program in Molecular Medicine, School of Life Science, National Yang-Ming University, Taipei City, Taiwan
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | - Cheng-Yi Wang
- Medical Research Center, Cardinal Tien Hospital, Fu Jen Catholic University, New Taipei, Taiwan
| | - Yen-Lin Chen
- Department of Pathology, Cardinal Tien Hospital, Fu Jen Catholic University, New Taipei, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Yung-Jen Hsiao
- Department of Medical Research, National Taiwan University Hospital, Zhongzheng District, Taiwan
| | - Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Zhongzheng District, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Zhongzheng District, Taiwan
| | - Ting-Ting Chao
- Medical Research Center, Cardinal Tien Hospital, Fu Jen Catholic University, New Taipei, Taiwan
| | - Hui-Chuan Yu
- Department of Medical Research, National Taiwan University Hospital, Zhongzheng District, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei City, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Zhongzheng District, Taiwan
- National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Zhongzheng District, Taiwan
| |
Collapse
|
27
|
Savage KI, Harkin DP. BRCA1, a 'complex' protein involved in the maintenance of genomic stability. FEBS J 2014; 282:630-46. [PMID: 25400280 DOI: 10.1111/febs.13150] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
Abstract
BRCA1 is a major breast and ovarian cancer susceptibility gene, with mutations in this gene predisposing women to a very high risk of developing breast and ovarian tumours. BRCA1 primarily functions to maintain genomic stability via critical roles in DNA repair, cell cycle checkpoint control, transcriptional regulation, apoptosis and mRNA splicing. As a result, BRCA1 mutations often result in defective DNA repair, genomic instability and sensitivity to DNA damaging agents. BRCA1 carries out these different functions through its ability to interact, and form complexes with, a vast array of proteins involved in multiple cellular processes, all of which are considered to contribute to its function as a tumour suppressor. This review discusses and highlights recent research into the functions of BRCA1-related protein complexes and their roles in maintaining genomic stability and tumour suppression.
Collapse
Affiliation(s)
- Kienan I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK
| | | |
Collapse
|
28
|
Nafis S, Kalaiarasan P, Brojen Singh RK, Husain M, Bamezai RNK. Apoptosis regulatory protein-protein interaction demonstrates hierarchical scale-free fractal network. Brief Bioinform 2014; 16:675-99. [PMID: 25256288 DOI: 10.1093/bib/bbu036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/21/2014] [Indexed: 12/29/2022] Open
Abstract
Dysregulation or inhibition of apoptosis favors cancer and many other diseases. Understanding of the network interaction of the genes involved in apoptotic pathway, therefore, is essential, to look for targets of therapeutic intervention. Here we used the network theory methods, using experimentally validated 25 apoptosis regulatory proteins and identified important genes for apoptosis regulation, which demonstrated a hierarchical scale-free fractal protein-protein interaction network. TP53, BRCA1, UBIQ and CASP3 were recognized as a four key regulators. BRCA1 and UBIQ were also individually found to control highly clustered modules and play an important role in the stability of the overall network. The connection among the BRCA1, UBIQ and TP53 proteins was found to be important for regulation, which controlled their own respective communities and the overall network topology. The feedback loop regulation motif was identified among NPM1, BRCA1 and TP53, and these crucial motif topologies were also reflected in high frequency. The propagation of the perturbed signal from hubs was found to be active upto some distance, after which propagation started decreasing and TP53 was the most efficient signal propagator. From the functional enrichment analysis, most of the apoptosis regulatory genes associated with cardiovascular diseases and highly expressed in brain tissues were identified. Apart from TP53, BRCA1 was observed to regulate apoptosis by influencing motif, propagation of signals and module regulation, reflecting their biological significance. In future, biochemical investigation of the observed hub-interacting partners could provide further understanding about their role in the pathophysiology of cancer.
Collapse
|
29
|
Biunno I, Aceto G, Awadelkarim KD, Morgano A, Elhaj A, Eltayeb EA, Abuidris DO, Elwali NE, Spinelli C, De Blasio P, Rovida E, Mariani-Costantini R. BRCA1 point mutations in premenopausal breast cancer patients from Central Sudan. Fam Cancer 2014; 13:437-444. [PMID: 24729269 DOI: 10.1007/s10689-014-9717-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Premenopausal breast cancer (BC) is one of the most common cancers of women in rural Africa and part of the disease load may be related to hereditary predisposition, including mutations in the BRCA1 gene. However, the BRCA1 mutations associated with BC in Africa are scarcely characterized. We report here 33 BRCA1 point mutations, among which 2 novel missense variants, found in 59 Central Sudanese premenopausal BC patients. The high fractions of mutations with intercontinental and uniquely African distribution (17/33, 51.5 % and 14/33, 42.4 %, respectively) are in agreement with the high genetic diversity expected in an African population. Overall 24/33 variants (72.7 %) resulted neutral; 8/33 of unknown significance (24.3 %, including the 2 novel missense mutations); 1 (3.0 %) overtly deleterious. Notably, in silico studies predict that the novel C-terminal missense variant c.5090G>A (p.Cys1697Tyr) affects phosphopeptide recognition by the BRCA1 BRCT1 domain and may have a pathogenic impact. Genetic variation and frequency of unique or rare mutations of uncertain clinical relevance pose significant challenges to BRCA1 testing in Sudan, as it might happen in other low-resource rural African contexts.
Collapse
Affiliation(s)
- Ida Biunno
- Institute for Genetic and Biomedical Research, National Research Council, Via Fantoli 16/15, 20138, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Development and validation of a new algorithm for the reclassification of genetic variants identified in the BRCA1 and BRCA2 genes. Breast Cancer Res Treat 2014; 147:119-32. [PMID: 25085752 DOI: 10.1007/s10549-014-3065-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023]
Abstract
BRCA1 and BRCA2 sequencing analysis detects variants of uncertain clinical significance in approximately 2 % of patients undergoing clinical diagnostic testing in our laboratory. The reclassification of these variants into either a pathogenic or benign clinical interpretation is critical for improved patient management. We developed a statistical variant reclassification tool based on the premise that probands with disease-causing mutations are expected to have more severe personal and family histories than those having benign variants. The algorithm was validated using simulated variants based on approximately 145,000 probands, as well as 286 BRCA1 and 303 BRCA2 true variants. Positive and negative predictive values of ≥99 % were obtained for each gene. Although the history weighting algorithm was not designed to detect alleles of lower penetrance, analysis of the hypomorphic mutations c.5096G>A (p.Arg1699Gln; BRCA1) and c.7878G>C (p.Trp2626Cys; BRCA2) indicated that the history weighting algorithm is able to identify some lower penetrance alleles. The history weighting algorithm is a powerful tool that accurately assigns actionable clinical classifications to variants of uncertain clinical significance. While being developed for reclassification of BRCA1 and BRCA2 variants, the history weighting algorithm is expected to be applicable to other cancer- and non-cancer-related genes.
Collapse
|
31
|
BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development. PLoS One 2014; 9:e100068. [PMID: 24950059 PMCID: PMC4064996 DOI: 10.1371/journal.pone.0100068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/22/2014] [Indexed: 01/09/2023] Open
Abstract
The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous) BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.
Collapse
|
32
|
Carvalho RS, Abreu RBV, Velkova A, Marsillac S, Rodarte RS, Suarez-Kurtz G, Iversen ES, Monteiro ANA, Carvalho MA. Probing structure-function relationships in missense variants in the carboxy-terminal region of BRCA1. PLoS One 2014; 9:e97766. [PMID: 24845084 PMCID: PMC4028255 DOI: 10.1371/journal.pone.0097766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022] Open
Abstract
Germline inactivating variants in BRCA1 lead to a significantly increased risk of breast and ovarian cancers in carriers. While the functional effect of many variants can be inferred from the DNA sequence, determining the effect of missense variants present a significant challenge. A series of biochemical and cell biological assays have been successfully used to explore the impact of these variants on the function of BRCA1, which contribute to assessing their likelihood of pathogenicity. It has been determined that variants that co-localize with structural or functional motifs are more likely to disrupt the stability and function of BRCA1. Here we assess the functional impact of 37 variants chosen to probe the functional impact of variants in phosphorylation sites and in the BRCT domains. In addition, we perform a meta-analysis of 170 unique variants tested by the transcription activation assays in the carboxy-terminal domain of BRCA1 using a recently developed computation model to provide assessment for functional impact and their likelihood of pathogenicity.
Collapse
Affiliation(s)
- Renato S Carvalho
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America; Programa de Farmacologia, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Renata B V Abreu
- Programa de Farmacologia, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Aneliya Velkova
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Sylvia Marsillac
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | | | | | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, North Carolina, United States of America
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Marcelo A Carvalho
- Programa de Farmacologia, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Christou CM, Hadjisavvas A, Kyratzi M, Flouri C, Neophytou I, Anastasiadou V, Loizidou MA, Kyriacou K. The BRCA1 variant p.Ser36Tyr abrogates BRCA1 protein function and potentially confers a moderate risk of breast cancer. PLoS One 2014; 9:e93400. [PMID: 24695549 PMCID: PMC3973689 DOI: 10.1371/journal.pone.0093400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Abstract
The identification of variants of unknown clinical significance (VUS) in the BRCA1 gene complicates genetic counselling and causes additional anxiety to carriers. In silico approaches currently used for VUS pathogenicity assessment are predictive and often produce conflicting data. Furthermore, functional assays are either domain or function specific, thus they do not examine the entire spectrum of BRCA1 functions and interpretation of individual assay results can be misleading. PolyPhen algorithm predicted that the BRCA1 p.Ser36Tyr VUS identified in the Cypriot population was damaging, whereas Align-GVGD predicted that it was possibly of no significance. In addition the BRCA1 p.Ser36Tyr variant was found to be associated with increased risk (OR = 3.47, 95% CI 1.13-10.67, P = 0.02) in a single case-control series of 1174 cases and 1109 controls. We describe a cellular system for examining the function of exogenous full-length BRCA1 and for classifying VUS. We achieved strong protein expression of full-length BRCA1 in transiently transfected HEK293T cells. The p.Ser36Tyr VUS exhibited low protein expression similar to the known pathogenic variant p.Cys61Gly. Co-precipitation analysis further demonstrated that it has a reduced ability to interact with BARD1. Further, co-precipitation analysis of nuclear and cytosolic extracts as well as immunofluorescence studies showed that a high proportion of the p.Ser36Tyr variant is withheld in the cytoplasm contrary to wild type protein. In addition the ability of p.Ser36Tyr to co-localize with conjugated ubiquitin foci in the nuclei of S-phase synchronized cells following genotoxic stress with hydroxyurea is impaired at more pronounced levels than that of the p.Cys61Gly pathogenic variant. The p.Ser36Tyr variant demonstrates abrogated function, and based on epidemiological, genetic, and clinical data we conclude that the p.Ser36Tyr variant is probably associated with a moderate breast cancer risk.
Collapse
Affiliation(s)
- Charita M. Christou
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
| | - Maria Kyratzi
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
- The University of Cyprus, Department of Biological Sciences, Nicosia, Cyprus
| | - Christina Flouri
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
| | - Ioanna Neophytou
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
| | - Violetta Anastasiadou
- The Cyprus Institute of Neurology and Genetics, Department of Clinical Genetics, Nicosia, Cyprus
| | - Maria A. Loizidou
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- The Cyprus Institute of Neurology and Genetics, Department of Electron Microscopy/Molecular Pathology, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
34
|
Yi YW, Kang HJ, Bae I. BRCA1 and Oxidative Stress. Cancers (Basel) 2014; 6:771-95. [PMID: 24704793 PMCID: PMC4074803 DOI: 10.3390/cancers6020771] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 01/07/2023] Open
Abstract
The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1's many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Hyo Jin Kang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Insoo Bae
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
35
|
Gardini A, Baillat D, Cesaroni M, Shiekhattar R. Genome-wide analysis reveals a role for BRCA1 and PALB2 in transcriptional co-activation. EMBO J 2014; 33:890-905. [PMID: 24591564 DOI: 10.1002/embj.201385567] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Breast and ovarian cancer susceptibility genes BRCA1 and PALB2 have enigmatic roles in cellular growth and mammalian development. While these genes are essential for growth during early developmental programs, inactivation later in adulthood results in increased growth and formation of tumors, leading to their designation as tumor suppressors. We performed genome-wide analysis assessing their chromatin residence and gene expression responsiveness using high-throughput sequencing in breast epithelial cells. We found an intimate association between BRCA1 and PALB2 chromatin residence and genes displaying high transcriptional activity. Moreover, our experiments revealed a critical role for BRCA1 and, to a smaller degree, PALB2 in transcriptional responsiveness to NF-κB, a crucial mediator of growth and inflammatory response during development and cancer. Importantly, we also uncovered a vital role for BRCA1 and PALB2 in response to retinoic acid (RA), a growth inhibitory signal in breast cancer cells, which may constitute the basis for their tumor suppressor activity. Taken together, our results highlight an important role for these breast cancer proteins in the regulation of diverse growth regulatory pathways.
Collapse
|
36
|
Opportunities and hurdles in the treatment of BRCA1-related breast cancer. Oncogene 2013; 33:3753-63. [PMID: 23955079 DOI: 10.1038/onc.2013.329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/13/2013] [Accepted: 06/21/2013] [Indexed: 12/11/2022]
Abstract
BRCA1 functions as a classical tumor suppressor in breast and ovarian cancer. While the role of BRCA1 in homology-directed repair of DNA double-strand breaks contributes to its tumor suppressive activity, it also renders BRCA1-deficient cells highly sensitive to DNA-damaging agents. Although BRCA1 deficiency is therefore considered to be an attractive therapeutic target, re-activation of BRCA1 by secondary mutations has been shown to cause therapy resistance. In this review, we will assess the role of BRCA1 in both hereditary and sporadic breast cancer and discuss how different functionalities of the BRCA1 protein can contribute to its tumor suppressor function. In addition, we will discuss how this knowledge on BRCA1 function can help to overcome the hurdles encountered in the clinic and improve current treatment strategies for patients with BRCA1-related breast cancer.
Collapse
|
37
|
BRCA1 is a negative modulator of the PRC2 complex. EMBO J 2013; 32:1584-97. [PMID: 23624935 DOI: 10.1038/emboj.2013.95] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 04/03/2013] [Indexed: 01/07/2023] Open
Abstract
The Polycomb-repressive complex 2 (PRC2) is important for maintenance of stem cell pluripotency and suppression of cell differentiation by promoting histone H3 lysine 27 trimethylation (H3K27me3) and transcriptional repression of differentiation genes. Here we show that the tumour-suppressor protein BRCA1 interacts with the Polycomb protein EZH2 in mouse embryonic stem (ES) and human breast cancer cells. The BRCA1-binding region in EZH2 overlaps with the noncoding RNA (ncRNA)-binding domain, and BRCA1 expression inhibits the binding of EZH2 to the HOTAIR ncRNA. Decreased expression of BRCA1 causes genome-wide EZH2 re-targeting and elevates H3K27me3 levels at PRC2 target loci in both mouse ES and human breast cancer cells. BRCA1 deficiency blocks ES cell differentiation and enhances breast cancer migration and invasion in an EZH2-dependent manner. These results reveal that BRCA1 is a key negative modulator of PRC2 and that loss of BRCA1 inhibits ES cell differentiation and enhances an aggressive breast cancer phenotype by affecting PRC2 function.
Collapse
|
38
|
BRCA1 and Its Network of Interacting Partners. BIOLOGY 2013; 2:40-63. [PMID: 24832651 PMCID: PMC4009870 DOI: 10.3390/biology2010040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/26/2012] [Accepted: 12/20/2012] [Indexed: 01/28/2023]
Abstract
BRCA1 is a large multi-domain protein with a pivotal role in maintaining genome stability and cell cycle progression. Germline mutations in the BRCA1 gene confer an estimated lifetime risk of 60%–80% for breast cancer and 15%–60% for ovarian cancer. Many of the germline mutations associated with cancer development are concentrated in the amino terminal RING domain and the carboxyl terminal BRCT motifs of BRCA1, which are the most well-characterized regions of the protein. The function of BRCA1 in DNA repair, transcription and cell cycle control through the DNA damage response is orchestrated through its association with an impressive repertoire of protein complexes. The association of BRCA1 with ATM/ATR, CHK2 and Aurora A protein kinases regulates cell cycle progression, whilst its association with RAD51 has a direct impact on the repair of double strand DNA breaks (DSBs) by homologous recombination (HR). BRCA1 interactions with the MRN complex of proteins, with the BRCC complex of proteins that exhibit E3 ligase activity and with the phosphor proteins CtIP, BACH1 (BRIP1) and Abraxas (CCDC98) are also implicated in DNA repair mechanisms and cell cycle checkpoint control. BRCA1 through its association with specific proteins and multi-protein complexes is a sentinel of the normal cell cycle control and DNA repair.
Collapse
|
39
|
BRCA1--conductor of the breast stem cell orchestra: the role of BRCA1 in mammary gland development and identification of cell of origin of BRCA1 mutant breast cancer. Stem Cell Rev Rep 2012; 8:982-93. [PMID: 22426855 DOI: 10.1007/s12015-012-9354-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Breast cancer treatment has been increasingly successful over the last 20 years due in large part to targeted therapies directed against different subtypes. However, basal-like breast cancers still represent a considerable challenge to clinicians and scientists alike since the pathogenesis underlying the disease and the target cell for transformation of this subtype is still undetermined. The considerable similarities between basal-like and BRCA1 mutant breast cancers led to the hypothesis that these cancers arise from transformation of a basal cell within the normal breast epithelium through BRCA1 dysfunction. Recently, however, a number of studies have called this hypothesis into question. This review summarises the initial findings which implicated the basal cell as the cell of origin of BRCA1 related basal-like breast cancers, as well as the more recent data which identifies the luminal progenitor cells as the likely target of transformation. We compare a number of key studies in this area and identify the differences that could explain some of the contradictory findings. In addition, we highlight the role of BRCA1 in breast cell differentiation and lineage determination by reviewing recent findings in the field and our own observations suggesting a role for BRCA1 in stem cell regulation through activation of the p63 and Notch pathways. We hope that through an increased understanding of the BRCA1 role in breast differentiation and the identification of the cell(s) of origin we can improve treatment options for both BRCA1 mutant and basal-like breast cancer subgroups.
Collapse
|
40
|
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) is involved in several important cellular pathways, including DNA damage repair, chromatin remodeling and checkpoint activation. The BRCA1 tumor suppression function has been attributed to its role in homologous recombination damage repair. In this review, historical facts concerning BRCA1, together with recent research advances regarding our understanding of the BRCA1 interacting proteins that are involved in, homologous recombination (HR) double strand break (DBS) repair and how these interacting proteins maintain chromosomal integrity, are discussed. In addition, this review poses the questions as to what extent HR repair cannot be properly fulfilled when breast cancer related mutations in the BRCA1 gene occur and how the recent and excessive studied poly-ADP ribose polymerase (PARP) inhibiting therapy approach links with the proposed tumor suppression function of the different BRCA1 domains.
Collapse
Affiliation(s)
- Kevin W Caestecker
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | | |
Collapse
|
41
|
Abstract
BRCA1 is a key mediator of DNA repair pathways and participates in the maintenance of the genomic integrity of cells. The control of DNA damage repair mechanisms by BRCA1 is of great interest since molecular defects in this pathway may reflect a predictive value in terms of a cell’s sensitivity to DNA damaging agents or anticancer drugs. BRCA1 has been found to exhibit a hormone-dependent pattern of expression in breast cells. Wild-type BRCA1 is required for the inhibition of the growth of breast tumor cells in response to the pure steroidal ERα antagonist fulvestrant. Also a loss of BRCA1-mediated transcriptional activation of ERα expression results in increased resistance to ERα antagonists. Platinum-based drugs, poly(ADP-ribose) polymerase (PARP) inhibitors, and their combination are currently included in chemotherapy regimens for breast cancer. Preclinical and clinical studies in a BRCA1-defective setting have recently indicated a rationale for the use of these compounds against hereditary breast cancers. Initial findings indicate that neoadjuvant use of cisplatin results in high rates of complete pathological response in patients with breast cancer who have BRCA1 mutations. Cisplatin produces a better response in triple-negative breast cancer (TNBC) than in non-TNBC diseases in both the neoadjuvant and adjuvant settings. This implies that TNBC cells may harbor a dysfunctional BRCA1 repair pathway.
Collapse
|
42
|
Chang S, Sharan SK. The role of epigenetic transcriptional regulation in BRCA1-mediated tumor suppression. Transcription 2012; 4:24-8. [PMID: 23131665 DOI: 10.4161/trns.22600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutation in BRCA1 accounts for half of all familial breast cancer cases. Recent studies have shown its role in the epigenetic regulation of an oncogenic microRNA, revealing a novel mode of tumor suppression that is independent of its well-established role in DNA repair and cell cycle regulation.
Collapse
Affiliation(s)
- Suhwan Chang
- Dept. of Medicine, Graduate School, University of Ulsan College of Medicine, Asan Institute for Life Science, Songpa-gu, Seoul, Republic of Korea
| | | |
Collapse
|
43
|
Tarapore P, Hanashiro K, Fukasawa K. Analysis of centrosome localization of BRCA1 and its activity in suppressing centrosomal aster formation. Cell Cycle 2012; 11:2931-46. [PMID: 22833046 DOI: 10.4161/cc.21396] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BRCA1, a product of a familial breast and ovarian cancer susceptibility gene, localizes to centrosomes and physically interacts with γ-tubulin, a key centrosomal protein for microtubule nucleation and anchoring at centrosomes. Here, we performed a rigorous analysis of centrosome localization of BRCA1, and found that BRCA1 is specifically associated with mother centrioles in unduplicated centrosomes, and daughter centrioles acquire BRCA1 prior to initiation of duplication, and thus duplicated centrosomes are both bound by BRCA1. We further found that BRCA1 suppresses centrosomal aster formation. In addition, we identified a new domain of BRCA1 critical for γ-tubulin binding, which confers not only its localization to centrosomes, but also its activity to suppress centrosomal aster formation.
Collapse
Affiliation(s)
- Pheruza Tarapore
- Department of Environmental Studies, University of Cincinnati, Cincinnati, OH, USA
| | | | | |
Collapse
|
44
|
Millot GA, Carvalho MA, Caputo SM, Vreeswijk MPG, Brown MA, Webb M, Rouleau E, Neuhausen SL, Hansen TVO, Galli A, Brandão RD, Blok MJ, Velkova A, Couch FJ, Monteiro ANA. A guide for functional analysis of BRCA1 variants of uncertain significance. Hum Mutat 2012; 33:1526-37. [PMID: 22753008 DOI: 10.1002/humu.22150] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/29/2012] [Indexed: 12/12/2022]
Abstract
Germline mutations in the tumor suppressor gene BRCA1 confer an estimated lifetime risk of 56-80% for breast cancer and 15-60% for ovarian cancer. Since the mid 1990s when BRCA1 was identified, genetic testing has revealed over 1,500 unique germline variants. However, for a significant number of these variants, the effect on protein function is unknown making it difficult to infer the consequences on risks of breast and ovarian cancers. Thus, many individuals undergoing genetic testing for BRCA1 mutations receive test results reporting a variant of uncertain clinical significance (VUS), leading to issues in risk assessment, counseling, and preventive care. Here, we describe functional assays for BRCA1 to directly or indirectly assess the impact of a variant on protein conformation or function and how these results can be used to complement genetic data to classify a VUS as to its clinical significance. Importantly, these methods may provide a framework for genome-wide pathogenicity assignment.
Collapse
Affiliation(s)
- Gaël A Millot
- Institut Curie, CNRS, UMR 3244 Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang H, Photiou A, Grothey A, Stebbing J, Giamas G. The role of pseudokinases in cancer. Cell Signal 2012; 24:1173-84. [PMID: 22330072 DOI: 10.1016/j.cellsig.2012.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 01/27/2012] [Indexed: 01/12/2023]
Abstract
Kinases play a critical role in regulating many cellular functions including development, differentiation and proliferation. To date, over 518 proteins with kinase activity, comprising ~2-3% of total cellular proteins, have been identified from within the human kinome. Interestingly, approximately 10% of kinases are categorised as pseudokinases since they lack one or more conserved catalytic residues within their kinase domain and were originally thought to have no enzymatic activity. Recently, there has been strong evidence to suggest that some pseudokinsases can not only function as scaffold proteins, but may also possess kinase activity leading to modulation of cell signalling pathways. Altered activity of these pseudokinases can result in impaired cellular function, particularly in malignancies. In this review we are discussing recent evidence that apart from a scaffolding role, pseudokinases also orchestrate cellular processes as active kinases per se in signalling pathways of malignant cells.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cancer and Surgery, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK
| | | | | | | | | |
Collapse
|
46
|
Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. GADD45 proteins: central players in tumorigenesis. Curr Mol Med 2012; 12:634-51. [PMID: 22515981 PMCID: PMC3797964 DOI: 10.2174/156652412800619978] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/23/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022]
Abstract
The Growth Arrest and DNA Damage-inducible 45 (GADD45) proteins have been implicated in regulation of many cellular functions including DNA repair, cell cycle control, senescence and genotoxic stress. However, the pro-apoptotic activities have also positioned GADD45 as an essential player in oncogenesis. Emerging functional evidence implies that GADD45 proteins serve as tumor suppressors in response to diverse stimuli, connecting multiple cell signaling modules. Defects in the GADD45 pathway can be related to the initiation and progression of malignancies. Moreover, induction of GADD45 expression is an essential step for mediating anti-cancer activity of multiple chemotherapeutic drugs and the absence of GADD45 might abrogate their effects in cancer cells. In this review, we present a comprehensive discussion of the functions of GADD45 proteins, linking their regulation to effectors of cell cycle arrest, DNA repair and apoptosis. The ramifications regarding their roles as essential and central players in tumor growth suppression are also examined. We also extensively review recent literature to clarify how different chemotherapeutic drugs induce GADD45 gene expression and how its up-regulation and interaction with different molecular partners may benefit cancer chemotherapy and facilitate novel drug discovery.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- International Centre for Genetic Engineering and Biotechnology, and Medical Biochemistry Division, University of Cape Town, Cape Town, South Africa
| | - Jaíra Ferreira de Vasconcellos
- Centro Infantil Boldrini, Molecular Biology Laboratory, Campinas, Brazil
- State University of Campinas, Faculty of Medical Sciences, Department of Medical Genetics, Campinas, Brazil
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | - Towia A Libermann
- BIDMC Genomics and Proteomics Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology, and Medical Biochemistry Division, University of Cape Town, Cape Town, South Africa
- BIDMC Genomics and Proteomics Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Tanic M, Zajac M, Gómez-López G, Benítez J, Martínez-Delgado B. Integration of BRCA1-mediated miRNA and mRNA profiles reveals microRNA regulation of TRAF2 and NFκB pathway. Breast Cancer Res Treat 2011; 134:41-51. [DOI: 10.1007/s10549-011-1905-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/29/2011] [Indexed: 12/18/2022]
|
48
|
BRACking news on triple-negative/basal-like breast cancers: how BRCA1 deficiency may result in the development of a selective tumor subtype. Cancer Metastasis Rev 2011; 31:131-42. [DOI: 10.1007/s10555-011-9336-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Lee E, McKean-Cowdin R, Ma H, Spicer DV, Van Den Berg D, Bernstein L, Ursin G. Characteristics of triple-negative breast cancer in patients with a BRCA1 mutation: results from a population-based study of young women. J Clin Oncol 2011; 29:4373-80. [PMID: 22010008 DOI: 10.1200/jco.2010.33.6446] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Triple-negative breast cancers (TNBCs) are tumors with low or no expression of estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2. These tumors have a poor prognosis, remain a clinical challenge, and are more common among women with BRCA1 mutations. We tested whether there are distinguishing features of TNBC after BRCA1 mutation status has been taken into account. PATIENTS AND METHODS We sequenced BRCA1 and BRCA2 genes in a population-based sample of 1,469 patients with incident breast cancer age 20 to 49 years from Los Angeles County (California). Information on tumor receptor status was available for 1,167 women. Clinical, pathologic, and hormone-related lifestyle characteristics were compared across patient subgroups defined by BRCA1 mutation status and triple-negative receptor status. RESULTS Forty-eight percent of BRCA1 mutation carriers had TNBC compared with only 12% of noncarriers. Within BRCA1 mutation carriers, as well as within noncarriers, triple-negative receptor status was associated with younger age at diagnosis and higher tumor grade. Among women without a BRCA1 mutation, we observed that women with TNBC had higher premenopausal body mass index and earlier age at first full-term pregnancy than those with non-TNBC. Age at menarche and other reproductive factors were not associated with triple-negative status regardless of BRCA1 mutation status. Within BRCA1 mutation carriers, Ashkenazi Jewish women were about five times more likely to have TNBC than non-Ashkenazi Jewish women. CONCLUSION Our results suggest that among BRCA1 mutation carriers, as among noncarriers, there are unique characteristics associated with the triple-negative subtype. The findings in Ashkenazi Jewish BRCA1 mutation carriers should be confirmed.
Collapse
Affiliation(s)
- Eunjung Lee
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Kais Z, Chiba N, Ishioka C, Parvin JD. Functional differences among BRCA1 missense mutations in the control of centrosome duplication. Oncogene 2011; 31:799-804. [PMID: 21725363 DOI: 10.1038/onc.2011.271] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We analyzed the effects of 14 different missense mutations in the RING domain of BRCA1 on the function of the protein in the control of centrosome number in tissue culture cells. Whereas 2 of the 14 BRCA1 variant proteins were neutral in the centrosome duplication assay, missense mutations of zinc-coordinating residues (C24R, C27A, C39Y, H41F, C44F and C47G) and mutations encoding BRCA1 variants M18T and I42V resulted in BRCA1 proteins that caused centrosome amplification. BRCA1 variant proteins I21V, I31M, L52F and D67Y had an intermediate effect on centrosome duplication. In addition, one of the variants, L52F, caused a peculiar phenotype with amplified centrosomes but the centrioles remained paired. By comparison, other BRCA1 variants that caused centrosome amplification had clustering of supernumerary centrosomes with unpaired centrioles. This surprising phenotype suggests that the BRCA1 protein regulates two functions in the control of centrosome duplication: regulation of centrosome number and regulation of centriole pairing. The L52F is unusual as it is defective in only one of these processes. This study analyzes the function of BRCA1 missense mutations in the control of centrosome duplication, a critical step in the maintenance of genetic stability of mammary epithelial cells, and indicates a new function of BRCA1 in the control of centriole pairing.
Collapse
Affiliation(s)
- Z Kais
- Department of Biomedical Informatics and the Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|