1
|
Li J, Li Q, Wang F, Ding R, Shang Y, Hu X, Hu S. Analysis of the SlRAF-like B gene family in tomato and the molecular mechanism of SlRAF7 in regulating cold stress resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112475. [PMID: 40097049 DOI: 10.1016/j.plantsci.2025.112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
The SlRAF-like B gene family is crucial for the regulation of seed dormancy and response to osmotic stress. In this research, a bioinformatics approach was employed to identify a total of 18 members belonging to the SlRAF-like B gene family within the tomato genome. Phylogenetic analysis has categorized the identified SlRAF-like B genes into four distinct groups, revealing significant differences in conserved motifs and gene structure among the proteins within each cluster. Promoter sequence analysis revealed abundant stress, hormone, and light response elements, suggesting the involvement of SlRAF-like B genes in cold stress responses. RT-qPCR analysis showed that most SlRAF-like B genes are induced by cold stress. A knockout mutant of the SlRAF7 gene, belonging to the SlRAF-like B3 group, was generated and tested under normal and cold stress, demonstrating that SlRAF7 positively regulates cold resistance in tomato plants. Further analysis of antioxidant enzyme activities, expression of related genes, and key cold response genes (ICE1, CBFs, and COR genes) in different genotypes suggests that SlRAF7 may enhance cold resistance by modulating the antioxidant enzyme pathway and the CBF signaling pathway. This study provides initial insights into the physiological and molecular mechanisms that underlie cold stress tolerance in tomato, with a particular focus on the role of the SlRAF7 gene.
Collapse
Affiliation(s)
- Junxiao Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingpeng Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Fan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Ruoxi Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yixuan Shang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China.
| | - Songshen Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Gong YY, Wu CZ, Wu YS, Alfieri A, Xiang YC, Shi DX, Duan S, Zhang MF, Li XX, Sun YC, Chao J, Tester M, Shang Z, Forde BG, Liu LH. A Glutamate Receptor-Like Gene AtGLR2.5 With Its Unusual Splice Variant Has a Role in Mediating Glutamate-Elicited Changes in Arabidopsis Root Architecture. PLANT, CELL & ENVIRONMENT 2025; 48:3778-3792. [PMID: 39817416 DOI: 10.1111/pce.15387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/18/2025]
Abstract
The occurrence of external L-glutamate at the Arabidopsis root tip triggers major changes in root architecture, but the mechanism of -L-Glu sensing is unknown. Members of the family of GLUTAMATE RECEPTOR-LIKE (GLR) proteins are known to act as amino acid-gated Ca2+-permeable channels and to have signalling roles in diverse plant processes. To investigate the possible role of GLRs in the root architectural response to L-Glu, we screened a collection of mutants with T-DNA insertions in each of the 20 AtGLR genes. Reduced sensitivity of root growth to L-Glu was found in mutants of one gene, GLR2.5. Interestingly, GLR2.5 was found to apparently produce four transcript variants encoding hypothetical proteins of 169-720 amino acids. One of these transcripts, GLR2.5c, encodes a truncated GLR protein lacking both the conserved amino-terminal domain and part of the ligand-binding domain. When a glr2.5 mutant was transformed with a construct constitutively expressing GLR2.5c, both L-Glu sensitivity of root growth and L-Glu-elicited Ca2+ currents in root tip protoplasts were restored. These results, along with homology modelling of the truncated ligand-binding domain of GLR2.5c, suggest that GLR2.5c has a regulatory or scaffolding role in heteromeric GLR complex(es) that may involve triggering the root architectural response to L-Glu.
Collapse
Affiliation(s)
- Yuan-Yong Gong
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Chang-Zheng Wu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Yan-Sheng Wu
- College of Life Sciences, Hebei Normal University, Shijiazhuang, South Second Ring, China
| | - Andrea Alfieri
- Centro Grandi Strumenti, University of Pavia, Pavia, Italy
| | - Yu-Cheng Xiang
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Dong-Xue Shi
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Shuhui Duan
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Ming-Fa Zhang
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Xiao-Xu Li
- Tobacco Research, Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, Yuhua, China
| | - Yi-Chen Sun
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| | - Jin Chao
- Hunan Tobacco Research Institute (Changsha, Xiangxi), China National Tobacco Corporation Hunan Company, Changsha, Tianxin, China
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Zhonglin Shang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, South Second Ring, China
| | - Brian G Forde
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Lai-Hua Liu
- College of Resources and Environmental Sciences, Department of Plant Nutrition, China Agricultural University, Beijing, Haidian, China
| |
Collapse
|
3
|
Nasim Z, Karim N, Blilou I, Ahn JH. NMD-mediated posttranscriptional regulation fine-tunes the NLR-WRKY regulatory module to modulate bacterial defense response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112528. [PMID: 40294849 DOI: 10.1016/j.plantsci.2025.112528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic surveillance system that maintains transcriptome integrity by degrading aberrant RNA transcripts. NMD ensures proper growth and development by preventing autoimmunity through the direct regulation of nucleotide-binding, leucine-rich repeat (NLR) genes. Whether NMD directly regulates WRKY genes remains unclear, despite their upregulation in NMD-deficient plants, and potential feedback between NLRs and WRKYs is also poorly understood. In this study, we showed that NMD also directly regulates a subset of WRKY (WRKY15, 18, 25, 33, 46, 60, and 70) genes, particularly at lower temperatures (16°C). NMD signature-containing transcripts of WRKY46 and WRKY70, selected as representative NMD-regulated WRKY genes, showed increased half-lives in NMD-deficient mutants. Transcriptome analyses showed that these seven NMD-regulated WRKY genes are induced in response to bacterial infection. Potential homologues of these seven NMD-regulated WRKY genes in maize and rice showed similar induction in response to bacterial pathogen infection. Furthermore, these NMD-regulated WRKY genes are induced in plants overexpressing RESISTANT TO P. SYRINGAE 4 (RPS4) in a temperature-dependent manner. By using ChIP-seq and DAP-seq data of WRKY transcription factors, we showed that WRKYs potentially regulate a significant number of NLR genes by directly binding to the W-box in their promoter regions. Taken together, our findings revealed that in addition to the NLRs, the NMD machinery also regulates WRKY genes to keep the basal defense levels in check and the WRKY transcription factors directly regulate NLR genes to constitutes a positive feedback regulatory loop to optimize the plant response to invading pathogens.
Collapse
Affiliation(s)
- Zeeshan Nasim
- Department of Molecular Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Nouroz Karim
- Department of Molecular Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ikram Blilou
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ji Hoon Ahn
- Department of Molecular Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Gao Y, Qu Q, Liu N, Sun M, Liu X, Cao Z, Dong J. Genome identification of the LRR-RLK gene family in maize (Zea mays) and expression analysis in response to Fusarium verticillioides infection. BMC PLANT BIOLOGY 2025; 25:524. [PMID: 40275175 PMCID: PMC12023693 DOI: 10.1186/s12870-025-06495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Plant leucine-rich repeat receptor-like kinases (LRR-RLKs) are a ubiquitous class of proteins in plants. These receptors are primarily responsible for recognizing pathogen-associated molecular patterns (PAMPs) and are crucial for regulating plant growth, development, and immune responses. Fusarium verticillioides, a significant maize pathogen, causes diseases such as ear rot and stalk rot. However, the expression patterns of LRR-RLK in maize following F. verticillioides infection remain unclear. RESULTS A total of 205 maize LRR-RLK gene family members from 15 subfamilies were identified. The gene structures, physicochemical properties, and conserved motifs of these LRR-RLKs were thoroughly analyzed. Co-expression analysis of the LRR-RLK genes suggested that the gene family may have expanded through gene duplication, with relatively high co-expression observed in closely related species. To explore their expression patterns, we conducted comprehensive tissue expression profiling, revealing significant variation in expression levels across different tissues. Using transcriptome sequencing, we obtained the expression profiles of LRR-RLK genes at different time points after F. verticillioides infection in maize. The expression levels of these genes exhibited significant changes following inoculation. Notably, genes such as Zm00001d027645, Zm00001d032116, Zm00001d032244, Zm00001d030323, Zm00001d031427, Zm00001d030981, Zm00001d031201, Zm00001d032344, and Zm00001d032745 showed marked alterations, indicating their potential involvement in resistance to F. verticillioides infection. CONCLUSIONS In this study, we systematically identified members of the LRR-RLK gene family in maize and characterized the biological information of selected family members. Additionally, our data revealed that certain LRR-RLK family members in maize responded to F. verticillioides infection, with their expression levels being significantly up-regulated.
Collapse
Affiliation(s)
- Yiao Gao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Qing Qu
- Hebei North University, Zhangjiakou, 075000, China
| | - Ning Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Xinfang Liu
- Corn Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China.
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
5
|
Wang X, Tan Q, Bao X, Gong X, Zhao L, Chen J, Liu L, Li R. Transcriptomic Profiling Reveals Regulatory Pathways of Tomato in Resistance to Verticillium Wilt Triggered by VdR3e. PLANTS (BASEL, SWITZERLAND) 2025; 14:1243. [PMID: 40284131 PMCID: PMC12030594 DOI: 10.3390/plants14081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Tomatoes are important horticultural crops worldwide. Verticillium wilt is a disease caused by Verticillium dahliae that causes serious tomato yield losses. V. dahliae can be classified into three distinct races in tomatoes. We identified the specific VdR3e gene of V. dahliae race 3 and found that VdR3e triggered immune responses in the resistant tomato cultivar IVF6384. We confirmed that VdR3e triggers immune responses in the parents of IVF6384 plants and conducted transcriptome sequencing between male and female IVF6384 plants after VdR3e infiltration to analyze the potential regulatory network response to VdR3e. We found that both parents had a series of detoxification and stress resistance responses to VdR3e, but those of the male IVF6384 parent were concentrated in disease resistance-related signaling pathways. Moreover, several vital differentially expressed genes involved in functional annotation related to plant-pathogen interactions and plant hormone signaling stimulated immune responses in Nicotiana benthamiana. This study provides a new and comprehensive perspective on tomato resistance to Verticillium wilt.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
| | - Qian Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
| | - Xiyue Bao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
| | - Xinyue Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
| | - Lingmin Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Lei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (Q.T.); (X.B.); (X.G.); (L.Z.); (J.C.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
6
|
Zhao C, Liu X, Zhou A, Ji J, Wang Y, Zhuang M, Zhang Y, Yang L, Ma L, Chellappan BV, Artemyeva AM, Lv H. Transcriptome Analysis of Cabbage Near-Isogenic Lines Reveals the Involvement of the Plant Defensin Gene PDF1.2 in Fusarium Wilt Resistance. Int J Mol Sci 2025; 26:3770. [PMID: 40332410 PMCID: PMC12028332 DOI: 10.3390/ijms26083770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Fusarium wilt of cabbage (Brassica oleracea var. capitata), caused by Fusarium oxysporum f. sp. conglutinans (Foc), poses a significant threat to global cabbage production. Although resistance screening and the initial cloning of resistance genes in cabbage have been previously reported, the specific molecular mechanisms underlying cabbage resistance to Foc remain largely unknown. To elucidate the underlying mechanisms, we performed RNA sequencing analysis on a near-isogenic resistant line YR01_20 and a susceptible NIL line S01_20 by comparing both Foc-inoculated and mock-inoculated conditions. A total of 508.6 million sequencing raw reads (76.8 Gb data volume) were generated across all samples. Bioinformatics analysis of differentially expressed genes (DEGs) between S01_20 and YR01_20 revealed significant enrichment in plant hormone signaling and mitogen-activated protein kinase (MAPK) pathways. Notably, BolC06g030650.2J, encoding the plant defensin protein PDF1.2, was significantly upregulated in both pathways. Real-time quantitative PCR (RT-qPCR) analysis confirmed that PDF1.2 was significantly upregulated in the resistant line at 12 h post-inoculation and remained elevated for up to 144 h. Furthermore, transgenic cabbage overexpressing PDF1.2 exhibited significantly enhanced resistance to Foc. Taken together, these findings advance our understanding of the molecular mechanisms governing cabbage resistance to Fusarium wilt and identify PDF1.2 as a genetic target for breeding Foc-resistant cabbage cultivars through molecular approaches.
Collapse
Affiliation(s)
- Cunbao Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Xing Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Ailing Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Biju V. Chellappan
- Department of Biological Science, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia;
| | - Anna M. Artemyeva
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia;
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.Z.); (X.L.); (A.Z.); (J.J.); (Y.W.); (M.Z.); (Y.Z.); (L.Y.)
| |
Collapse
|
7
|
Ali A, Zhao XT, Lin JS, Zhao TT, Feng CL, Li L, Wu RJ, Huang QX, Liu HB, Wang JG. Genome-wide identification and unveiling the role of MAP kinase cascade genes involved in sugarcane response to abiotic stressors. BMC PLANT BIOLOGY 2025; 25:484. [PMID: 40240958 PMCID: PMC12001561 DOI: 10.1186/s12870-025-06490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The MAP Kinase cascade system is a conserved signaling mechanism essential for plant development, growth, and stress tolerance. Thus far, genes from the MAPK cascade have been identified in several plant species but remain uncharacterized in the polyploid Saccharum spp. Hybrid R570 genome. RESULTS This study identified 89 ScMAPK, 24 ScMAPKK, and 107 ScMAPKKK genes through genome-wide analysis. Phylogenetic classification revealed that four subgroups were present in each ScMAPK and ScMAPKK family, and three sub-families (ZIK-like, RAF-like, and MEKK-like) presented in the ScMAPKKK family. Conserved motif and gene structure analysis supported the evolutionary relationships of the three families inferred from the phylogenetic analysis. All of the ScMAPK, ScMAPKK and ScMAPKKK genes were mapped on four scaffolds (Scaffold_88/89/91/92) and nine chromosomes (1-8, 10). Collinearity and gene duplication analysis identified 169 pairs of allelic and non-allelic segmentally duplicated MAPK cascade genes, contributing to their expansion. Additionally, 13 putative 'ss-miRNAs' were predicted to target 87 MAPK cascade genes, with 'ssp-miR168a' alone regulating 45 genes. qRT-PCR analysis revealed differential gene expression under abiotic stressors. ScMAPK07, ScMAPK66, and ScRAF43 were down-regulated and acted as negative regulators. Conversely, ScMAPKK13, ScRAF10, and ScZIK18 were up-regulated at specific time points under drought, with ScZIK18 exhibiting strong defense. Under NaCl stress, most genes were down-regulated, except for slight increases in ScZIK18 and ScMAPKK13, suggesting a positive role in salt stress response. Under CaCl2 stress, five genes were significantly down-regulated, while ScRAF43 remained unchanged, reflecting their negative roles in stress adaptation and resource conservation. CONCLUSION This study provides insights into MAPK cascade gene evolution and function in sugarcane, highlighting distinct regulatory roles in abiotic stress responses. Interestingly, some genes acted as negative regulators, serving as a mechanism to balance stress responses and prevent overactivation. In contrast, others contributed to defense mechanisms, offering potential targets for stress resilience improvement. CLINICAL TRAIL NUMBER This study contains no clinical trials. Not applicable.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Xue-Ting Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Ji-Shan Lin
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Ting-Ting Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Cui-Lian Feng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Ling Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Rui-Jie Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Qi-Xing Huang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China
| | - Hong-Bo Liu
- National Key Laboratory for Tropical Crop Breeding, Sugarcane Research Institute, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Yunnan Academy of Agricultural Sciences, Kaiyuan, 661699, China.
| | - Jun-Gang Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Key Laboratory of Biology and Genetic Resources of Tropical Crops/Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Sanya Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
8
|
Gonçalves Dias M, Dharmasena T, Gonzalez-Ferrer C, Maika JE, Miguel VN, Dou R, Rodriguez Gallo MC, Bredow M, Siegel KR, Uhrig RG, Simon R, Monaghan J. Catalytically inactive subgroup VIII receptor-like cytoplasmic kinases regulate the immune-triggered oxidative burst in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1553-1568. [PMID: 39673241 PMCID: PMC11981898 DOI: 10.1093/jxb/erae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/29/2024] [Indexed: 12/16/2024]
Abstract
Protein kinases are key components of multiple cell signaling pathways. Several receptor-like cytoplasmic kinases (RLCKs) have demonstrated roles in immune and developmental signaling across various plant species, making them of interest in the study of phosphorylation-based signal relay. Here, we present our investigation of a subgroup of RLCKs in Arabidopsis thaliana. Specifically, we focus on subgroup VIII RLCKs: MAZ and its paralog CARK6, as well as CARK7 and its paralog CARK9. We found that both MAZ and CARK7 associate with the calcium-dependent protein kinase CPK28 in planta and, furthermore, that CPK28 phosphorylates both MAZ and CARK7 on multiple residues in areas that are known to be critical for protein kinase activation. Genetic analysis suggested redundant roles for MAZ and CARK6 as negative regulators of the immune-triggered oxidative burst. We provide evidence that supports homo- and heterodimerization between CARK7 and MAZ, which may be a general feature of this subgroup. Multiple biochemical experiments indicated that neither MAZ nor CARK7 demonstrate catalytic protein kinase activity in vitro. Interestingly, we found that a mutant variant of MAZ incapable of protein kinase activity can complement maz-1 mutants, suggesting non-catalytic roles of MAZ in planta. Overall, our study identifies subgroup VIII RLCKs as new players in Arabidopsis immune signaling and highlights the importance of non-catalytic functions of protein kinases.
Collapse
Affiliation(s)
| | | | | | - Jan Eric Maika
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | | | - Ruoqi Dou
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - Melissa Bredow
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | | |
Collapse
|
9
|
Chaowongdee S, Vannatim N, Malichan S, Kuncharoen N, Tongyoo P, Siriwan W. Roles of WRKY Transcription Factors in Response to Sri Lankan Cassava Mosaic Virus Infection in Susceptible and Tolerant Cassava Cultivars. PLANTS (BASEL, SWITZERLAND) 2025; 14:1159. [PMID: 40284047 PMCID: PMC12030686 DOI: 10.3390/plants14081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Cassava mosaic disease (CMD) is caused by viruses such as Sri Lankan cassava mosaic virus (SLCMV). It poses a significant threat to the cassava (Manihot esculenta) yield in Southeast Asia. Here, we investigated the expression of WRKY transcription factors (TFs) in SLCMV-infected cassava cultivars KU 50 (tolerant) and R 11 (susceptible) at 21, 32, and 67 days post-inoculation (dpi), representing the early, middle/recovery, and late infection stages, respectively. The 34 identified WRKYs were classified into the following six groups based on the functions of their homologs in the model plant Arabidopsis thaliana (AtWRKYs): plant defense; plant development; hormone signaling (abscisic, salicylic, and jasmonic acid); reactive oxygen species production; basal immune mechanisms; and other related hormones, metabolites, and abiotic stress responses. Regarding the protein interactions of the identified WRKYs, based on the interactions of their homologs (AtWRKYs), WRKYs increased reactive oxygen species production, leading to salicylic acid accumulation and systemic acquired resistance (SAR) against SLCMV. Additionally, some WRKYs were involved in defense-related mitogen-activated protein kinase signaling and abiotic stress responses. Furthermore, crosstalk among WRKYs reflected the robustly restricted viral multiplication in the tolerant cultivar, contributing to CMD recovery. This study highlights the crucial roles of WRKYs in transcriptional reprogramming, innate immunity, and responses to geminivirus infections in cassava, providing valuable insights to enhance disease resistance in cassava and, potentially, other crops.
Collapse
Affiliation(s)
- Somruthai Chaowongdee
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Nattachai Vannatim
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Nattakorn Kuncharoen
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| | - Pumipat Tongyoo
- Center of Excellence on Agricultural Biotechnology (AG-BIO/MHESI), Bangkok 10900, Thailand;
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand
| | - Wanwisa Siriwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; (S.C.); (N.V.); (S.M.); (N.K.)
| |
Collapse
|
10
|
Yong D, Yu Y, Zhao S, Cui S, Zhu S, Yang Z, Li Y, Zhang Q, Gao S, Ma J, Li A, Fu J, Ni J, Zhang Y, Li R. Mechanisms of biocontrol of gray mold in postharvest pear fruits using the termite symbiont Streptomyces griseus H3950. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109892. [PMID: 40239260 DOI: 10.1016/j.plaphy.2025.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Gray mold in pears, caused by Botrytis cinerea, leads to severe economic losses. We investigated the biocontrol of gray mold in postharvest pear fruits using the termite symbiont Streptomyces griseus H3950 and determined that S. griseus H3950 effectively controlled postharvest gray mold in pears. The control efficiency using a total fermentation broth culture or the cell culture (hyphae) of S. griseus H3950 was 78.38 % and 77.27 %, respectively, at 2 days post inoculation. Scanning electron microscopy indicated that S. griseus H3950 competed with B. cinerea for nutrition and space. Transcriptome analysis revealed that S. griseus H3950 could significantly induce the resistance of pear fruits to B. cinerea; the expression levels of seven defense-related genes (PR, WRKY22, WRKY29, CYP98A, POD, CHI, and GLU) of pears were highly increased in S. griseus H3950 treatment, with results verified by quantitative real-time polymerase chain reaction. Moreover, S. griseus H3950 treatment enhanced the lignin content of pear fruits. The results indicated that S. griseus H3950 exerted biocontrol against gray mold through competition and inducing resistance. Additionally, S. griseus H3950 was safe in a mouse model and could effectively colonize on pear fruits. Our findings suggest that S. griseus H3950 has great potential for controlling gray mold on postharvest fruits.
Collapse
Affiliation(s)
- Daojing Yong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Yingying Yu
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Shuai Zhao
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Shoudong Cui
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Shuai Zhu
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Zonglin Yang
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Yue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qijun Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shiqing Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Junchi Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Ruijuan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
11
|
Hamel LP, Poirier-Gravel F, Paré MÈ, Tardif R, Comeau MA, Lavoie PO, Langlois A, Goulet MC, Michaud D, D'Aoust MA. Molecular changes in agroinfiltrated leaves of Nicotiana benthamiana expressing suppressor of silencing P19 and coronavirus-like particles. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40185497 DOI: 10.1111/pbi.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
The production of coronavirus disease 2019 vaccines can be achieved by transient expression of the spike (S) protein of severe acute respiratory syndrome coronavirus 2 in agroinfiltrated leaves of Nicotiana benthamiana. Relying on bacterial vector Agrobacterium tumefaciens, this process is favoured by co-expression of viral silencing suppressor P19. Upon expression, the S protein enters the cell secretory pathway, before being trafficked to the plasma membrane where formation of coronavirus-like particles (CoVLPs) occurs. We previously characterized the effects of influenza virus hemagglutinin forming VLPs through similar processes. However, leaf samples were only collected after 6 days of expression, and it is unknown whether influenza VLPs (HA-VLPs) and CoVLPs induce similar responses. Here, time course sampling was used to profile responses of N. benthamiana leaf cells expressing P19 only, or P19 and the S protein. The latter triggered early but transient activation of the unfolded protein response and waves of transcription factor genes involved in immunity. Accordingly, defence genes were induced with different expression kinetics, including those promoting lignification, terpene biosynthesis, and oxidative stress. Cross-talk between stress hormone pathways also occurred, including repression of jasmonic acid biosynthesis genes after agroinfiltration, and dampening of salicylic acid responses upon S protein accumulation. Overall, HA-VLP- and CoVLP-induced responses broadly overlapped, suggesting nanoparticle production to have the most effects on plant immunity, regardless of the virus surface proteins expressed. Taking advantage of RNAseq inferences, we finally show the co-expression of Kunitz trypsin inhibitors to reduce CoVLP-induced defence and leaf symptoms, with no adverse effect on plant productivity.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Medicago Inc., Montréal, Québec, Canada
- Direction Générale de la Recherche, des Programmes et des Partenariats, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, Quebec, Québec, Canada
| | | | | | | | | | - Pierre-Olivier Lavoie
- Medicago Inc., Montréal, Québec, Canada
- Aramis Biotechnologies Inc., Quebec, Québec, Canada
| | - Andréane Langlois
- Centre de recherche et d'innovation sur les végétaux, Département de phytologie, Université Laval, Quebec, Québec, Canada
| | - Marie-Claire Goulet
- Centre de recherche et d'innovation sur les végétaux, Département de phytologie, Université Laval, Quebec, Québec, Canada
| | - Dominique Michaud
- Centre de recherche et d'innovation sur les végétaux, Département de phytologie, Université Laval, Quebec, Québec, Canada
| | - Marc-André D'Aoust
- Medicago Inc., Montréal, Québec, Canada
- Aramis Biotechnologies Inc., Quebec, Québec, Canada
| |
Collapse
|
12
|
Vela S, Wolf ESA, Zhou M, Davis A, Mou Z, Cuevas HE, Vermerris W. A Sorghum BAK1/ SERK4 Homolog Functions in Pathogen-Associated Molecular Patterns-Triggered Immunity and Cell Death in Response to Colletotrichum sublineola Infection. PHYTOPATHOLOGY 2025; 115:387-400. [PMID: 39761500 DOI: 10.1094/phyto-09-24-0283-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Sorghum bicolor is the fifth most important cereal crop and expected to gain prominence due to its versatility, low input requirements, and tolerance to hot and dry conditions. In warm and humid environments, the productivity of sorghum is severely limited by the hemibiotrophic fungal pathogen Colletotrichum sublineola, the causal agent of anthracnose. Cultivating anthracnose-resistant accessions is the most effective and environmentally benign way to safeguard yield. A previous genome-wide association study for anthracnose resistance in the Sorghum Association Panel uncovered single-nucleotide polymorphisms on chromosome 5 associated with resistance to anthracnose, including one located within the coding region of gene Sobic.005G182400. In this study, we investigated the molecular function of Sobic.005G182400 in response to C. sublineola infection. Conserved domain, phylogenetic, and structural analyses revealed that the protein encoded by Sobic.005G182400 shares significant structural similarity with the Arabidopsis BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1)/SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE4 (SERK4). Although sequence analysis of four sorghum accessions showed no substantial variation in the coding region, accession SC1330, which carries the resistance allele, exhibited significantly higher expression of Sobic.005G182400 during early infection (≤24 h). Co-expression network analysis identified that the module associated with Sobic.005G182400 was enriched in genes involved in endocytosis, autophagy, and vesicle transport. Gene regulatory network analysis further suggested that Sobic.005G182400 regulates genes required for BAK1/SERK4-mediated cell death via protein glycosylation. Together, these findings indicate that Sobic.005G182400 encodes a protein with similarity to Arabidopsis BAK1/SERK4 that enables pathogen-associated molecular patterns-triggered immunity and regulates cell death.
Collapse
Affiliation(s)
- Saddie Vela
- Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, U.S.A
| | - Emily S A Wolf
- Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, U.S.A
| | - Mingxi Zhou
- Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, U.S.A
| | - Alyssa Davis
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, U.S.A
| | - Zhonglin Mou
- Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, U.S.A
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, U.S.A
| | - Hugo E Cuevas
- U.S. Department of Agriculture, Agricultural Research Service, Tropical Agriculture Research Station, Mayagüez, PR, U.S.A
| | - Wilfred Vermerris
- Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, FL, U.S.A
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, U.S.A
- University of Florida Genetics Institute, Gainesville, FL, U.S.A
| |
Collapse
|
13
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
14
|
Gao Y, Zhou X, Huang H, Wang C, Xiao X, Wen J, Wu J, Zhou S, de Dios VR, Rodríguez LG, Yao Y, Liu J, Deng H. ORANGE proteins mediate adaptation to high light and resistance to Pseudomonas syringae in tomato by regulating chlorophylls and carotenoids accumulation. Int J Biol Macromol 2025; 306:141739. [PMID: 40049490 DOI: 10.1016/j.ijbiomac.2025.141739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Chlorophylls and carotenoids are crucial for photosynthesis and plant survival, with ORANGE (OR) protein being pivotal in pigment accumulation. Despite tomato being rich in carotenoids, the roles of OR proteins in tomato have been overlooked. Herein, we characterized two OR genes in tomato, SlOR and SlOR-like, which are highly expressed in stems, leaves, and flowers, with their proteins being localized to chloroplasts. Overexpression of SlOR in transgenic plants conferred enhanced growth and height, whereas co-silencing of SlOR and SlOR-like resulted in stunted growth, pale-green leaves due to diminished chlorophylls and carotenoids, and fewer thylakoid lamellae and layers. Under normal light, SlOR/SlOR-like-Ri transgenic plants exhibited compromised electron transport and photosynthetic rates; furthermore, high-light exposure exacerbated these effects, resulting in photooxidative stress, elevated reactive oxygen species (ROS) and reduced photosynthetic rates in SlOR/SlOR-like-Ri plants. Transcriptome analysis revealed that photosynthesis-related genes were up-regulated, while defense-related genes were significantly down-regulated in SlOR/SlOR-like-Ri lines relative to wild-type plants. Additionally, SlOR/SlOR-like-Ri plants also displayed enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000. Overall, our study highlights SlOR as a critical protein modulating the accumulation of chlorophylls and carotenoids in tomato, playing a crucial role in adaptation to high light conditions and pathogen resistance.
Collapse
Affiliation(s)
- Yongfeng Gao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xue Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Haitao Huang
- Mianyang Academy of Agricultural Sciences, 621023 Mianyang, China
| | - Cheng Wang
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Xiangxia Xiao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jing Wen
- Mianyang Academy of Agricultural Sciences, 621023 Mianyang, China
| | - Jiamin Wu
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Shan Zhou
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Víctor Resco de Dios
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Lucas Gutiérrez Rodríguez
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Yinan Yao
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Jikai Liu
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Heng Deng
- Engineering Research Center of Biomass Materials, Ministry of Education, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
15
|
Fu XZ, Wang X, Liu JJ, Chen YX, Wang AQ, Zhan J, Han ZQ, He LF, Xiao D. AhASRK1, a peanut dual-specificity kinase that activates the Ca 2+-ROS-MAPK signalling cascade to mediate programmed cell death induced by aluminium toxicity via ABA. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109538. [PMID: 39864296 DOI: 10.1016/j.plaphy.2025.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene. AhASRK1 was localized on the plasma membrane. A kinase assay of recombinant cytoplasmic domains of AhASRK1 revealed that this leucine-rich repeat-receptor-like protein kinase autophosphorylates both serine/threonine and tyrosine residues. The role of AhASRK1 in regulating Al-induced PCD was investigated in roots. Al treatment significantly inhibited root growth and promoted ROS production and cell death after AhASRK1 was overexpressed in Arabidopsis, whereas the knockdown of AhASRK1 in peanut increased Al tolerance. AhASRK1 overexpression resulted in increased accumulation of apical calcium ions (Ca2+) and increased MAPK signalling under Al treatment; however, the AhASRK1-knockdown peanut lines exhibited a decrease in the Ca2+ concentration under Al stress. Furthermore, inhibition of ABA biosynthesis mitigated PCD occurrence and ROS accumulation under Al stress, as did Al-induced Ca2+ and p MAPK signalling. These results suggest that AhASRK1 mediates the occurrence of PCD through the ABA pathway to mediate the accumulation of Ca2+ and the production of ROS, thereby activating MAPK signalling. Additionally, AhASRK1 overexpression promoted leaf senescence and induced the transcription of a multitude of ABA-related genes. This study provides new clues for improving the phytotoxicity of Al in acidic soils.
Collapse
Affiliation(s)
- Xue-Zhen Fu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Xin Wang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Jing-Jing Liu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Yu-Xi Chen
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Ai-Qin Wang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Jie Zhan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China
| | - Zhu-Qiang Han
- Cash Crops Research Institute, Guangxi Academy of Agricultural Science, Nanning, 530007, China
| | - Long-Fei He
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China.
| | - Dong Xiao
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China.
| |
Collapse
|
16
|
Movahedi A, Hwarari D, Dzinyela R, Ni S, Yang L. A close-up of regulatory networks and signaling pathways of MKK5 in biotic and abiotic stresses. Crit Rev Biotechnol 2025; 45:473-490. [PMID: 38797669 DOI: 10.1080/07388551.2024.2344584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
Mitogen-activated protein Kinase Kinase 5 (MKK5) is a central hub in the complex phosphorylation chain reaction of the Mitogen-activated protein kinases (MAPK) cascade, regulating plant responses to biotic and abiotic stresses. This review manuscript aims to provide a comprehensive analysis of the regulatory mechanism of the MKK5 involved in stress adaptation. This review will delve into the intricate post-transcriptional and post-translational modifications of the MKK5, discussing how they affect its expression, activity, and subcellular localization in response to stress signals. We also discuss the integration of the MKK5 into complex signaling pathways, orchestrating plant immunity against pathogens and its modulating role in regulating abiotic stresses, such as: drought, cold, heat, and salinity, through the phytohormonal signaling pathways. Furthermore, we highlight potential applications of the MKK5 for engineering stress-resilient crops and provide future perspectives that may pave the way for future studies. This review manuscript aims to provide valuable insights into the mechanisms underlying MKK5 regulation, bridge the gap from numerous previous findings, and offer a firm base in the knowledge of MKK5, its regulating roles, and its involvement in environmental stress regulation.
Collapse
Affiliation(s)
- Ali Movahedi
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
- College of Arts and Sciences, Arlington International University, Wilmington, DE, USA
| | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Raphael Dzinyela
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Siyi Ni
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
17
|
Li C, Wang K, Lei C, Zou Y, Yang S, Xiang F, Li M, Zheng Y. β-Aminobutyric acid-induced resistance in postharvest peach fruit involves interaction between the MAPK cascade and SNARE13 protein in the salicylic acid-dependent pathway. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1202-1229. [PMID: 39495671 DOI: 10.1093/jxb/erae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/01/2024] [Indexed: 11/06/2024]
Abstract
The inducer β-aminobutyric acid (BABA) participates in the immune response in various plants. However, the specific mitogen-activated protein kinase (MAPK) cascade involved in BABA-induced resistance (BABA-IR) has not yet been elucidated. Here, peach (Prunus persica) fruits treated with the BABA exhibited pattern-triggered immunity defense against Rhizopus stolonifer, accompanied by the generation of reactive oxygen species and activation of a MAPK cascade. Transcriptome sequencing suggested that a total of 15 MAPK kinase kinase (PpMAPKKK)/MAPK kinase (PpMAPKK)/PpMAPK genes were involved in BABA-IR in peach fruit. Further qRT-PCR analysis showed that the transcript profiles of PpMAPKKK3, PpMAPKK5, and PpMAPK1 were elevated. Subsequently, yeast two-hybrid, luciferase complementation imaging, pull-down, and in vitro phosphorylation assays were conducted to characterize the complete MAPK cascade (PpMAPKKK3-PpMAPKK5-PpMAPK1) involved in peach fruit. Moreover, the downstream events of MAPK1 include the involvement of SNARE13 and the corresponding NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-responsive defense. Single silencing of MAPKKK3, MAPKK5, or MAPK1 and double silencing of MAPKKK3 and MAPKK5 or MAPKK5 and MAPK1 resulted in enhanced susceptibility to the fungus R. stolonifer in mutants and attenuated salicylic acid (SA)-dependent defense gene expression. In contrast, the homologous or heterologous overexpression of PpSNARE13 in peach fruit or Arabidopsis led to an enhanced SA pool and elevated expression of pathogenesis related (PR) genes. Reciprocally, the ppsnare13cas9 mutants were generally compromised in the priming of SA-dependent resistance. Therefore, the MAPKKK3-MAPKK5-MAPK1 cascade contributed to pattern-triggered immunity signal transduction in BABA-elicited peach fruit, by combination with downstream events such as SNARE13, NPR1, and SA-dependent signaling.
Collapse
Affiliation(s)
- Chunhong Li
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
| | - Kaituo Wang
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Yanyu Zou
- Institute of Fruit Function and Disease Management, Department of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404000, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
| | - Sisi Yang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Fei Xiang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Meilin Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
- College of Food, Shenyang Agricultural University, Shenyang 110866 Liaoning, P.R. China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
| |
Collapse
|
18
|
Khan M, Hu D, Dai S, Li H, Peng Z, He S, Awais M, Du X, Geng X. Unraveling key genes and pathways involved in Verticillium wilt resistance by integrative GWAS and transcriptomic approaches in Upland cotton. Funct Integr Genomics 2025; 25:39. [PMID: 39955705 DOI: 10.1007/s10142-025-01539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Verticillium dahliae Kleb, the cause of Verticillium wilt, is a particularly destructive soil-borne vascular disease that affects cotton, resulting in serious decline in fiber quality and causing significant losses in cotton production worldwide. However, the progress in identification of wilt-resistance loci or genes in cotton has been limited, most probably due to the highly complex genetic nature of the trait. Nevertheless, the molecular mechanism behind the Verticillium wilt resistance remains poorly understood. In the present study, we investigated the phenotypic variations in Verticillium tolerance and conducted a genome wide association study (GWAS) among a natural population containing 383 accessions of upland cotton germplasm and performed transcriptomic analysis of cotton genotypes with differential responses to Verticillium wilt. GWAS detected 70 significant SNPs and 116 genes associated with resistance loci in two peak signals on D02 and D11 in E1. The transcriptome analysis identified a total of 2689 and 13289 differentially expressed genes (DEGs) among the Verticillium wilt-tolerant (J46) and wilt-susceptible (J11) genotypes, respectively. The DEGs were predominantly enriched in metabolism, plant hormone signal transduction, phenylpropanoid pathway, MAPK cascade pathway and plant-pathogen interaction pathway in GO and KEGG analyses. The identified DEGs were found to comprise several transcription factor (TF) gene families, primarily including AP2/ERF, ZF, WRKY, NAC and MYB, in addition to pentatricopeptide repeat (PPR) proteins and Resistance (R) genes. Finally, by integrating the two results, 34 candidate genes were found to overlap between GWAS and RNA-seq analyses, associated with Verticillium-wilt resistance, including WRKY, MYB, CYP and RGA. This work contributes to our knowledge of the molecular processes underlying cotton responses to Verticillium wilt, offering crucial insights for additional research into the genes and pathways implicated in these responses and paving the way for developing Verticillium wilt-resistant cotton varieties through accelerated breeding by providing a plethora of candidate genes.
Collapse
Affiliation(s)
- Majid Khan
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China
| | - Shuai Dai
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongge Li
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen Peng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Awais
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China.
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
19
|
Huang CF, Ma Y. Aluminum resistance in plants: A critical review focusing on STOP1. PLANT COMMUNICATIONS 2025; 6:101200. [PMID: 39628052 PMCID: PMC11897453 DOI: 10.1016/j.xplc.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 12/02/2024] [Indexed: 01/26/2025]
Abstract
Aluminum (Al) toxicity poses a significant challenge for plant production on acidic soils, which constitute approximately 30% of the world's ice-free land. To combat Al toxicity, plants have evolved both external and internal detoxification mechanisms. The zinc-finger transcription factor STOP1 (SENSITIVE TO PROTON RHIZOTOXICITY 1) plays a critical and conserved role in Al resistance by inducing genes involved in both external exclusion and internal detoxification mechanisms. Recent studies have uncovered multiple layers of post-transcriptional regulation of STOP1 and have elucidated mechanisms by which plants sense Al and activate signaling cascades that regulate STOP1 function. This review offers a comprehensive overview of the mechanisms through which STOP1 and its homologs confer Al resistance in plants, with a particular focus on Arabidopsis thaliana and rice. Additionally, we discuss recent advances and future perspectives in understanding the post-transcriptional regulation of STOP1, as well as the Al sensing and signaling pathways upstream of STOP1.
Collapse
Affiliation(s)
- Chao-Feng Huang
- Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingtang Ma
- Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Herrmann A, Sepuru KM, Bai P, Endo H, Nakagawa A, Kusano S, Ziadi A, Kato H, Sato A, Liu J, Shan L, Kimura S, Itami K, Uchida N, Hagihara S, Torii KU. Chemical genetics reveals cross-regulation of plant developmental signaling by the immune peptide-receptor pathway. SCIENCE ADVANCES 2025; 11:eads3718. [PMID: 39908379 PMCID: PMC11797554 DOI: 10.1126/sciadv.ads3718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025]
Abstract
Cells sense and integrate multiple signals to coordinate a response. A receptor-kinase signaling pathway for plant stomatal development shares components with the immunity pathway. The mechanism ensuring their signal specificities remains unclear. Using chemical genetics, here, we report the identification of a small molecule, kC9, that triggers excessive stomatal differentiation by inhibiting the canonical ERECTA pathway. kC9 binds to and inhibits the downstream mitogen-activated protein kinase MPK6, perturbing its substrate interaction. Notably, activation of immune signaling by a bacterial flagellin peptide nullified kC9's effects on stomatal development. This cross-regulation depends on the immune receptor FLS2 (FLAGELLIN SENSING 2) and occurs even in the absence of kC9 if the ERECTA family receptor population becomes suboptimal. Proliferating stomatal lineage cells are vulnerable to this immune signal penetration. Our findings suggest that the signal specificity between development and immunity can be ensured by mitogen-activated protein kinase homeostasis, reflecting the availability of upstream receptors, thereby providing an unanticipated view on signal specificity.
Collapse
Affiliation(s)
- Arvid Herrmann
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Krishna Mohan Sepuru
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Pengfei Bai
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Hitoshi Endo
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayami Nakagawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shuhei Kusano
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Asraa Ziadi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroe Kato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Seisuke Kimura
- Faculty of Life Sciences and Center for Plant Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
21
|
Zhang S, Ji Z, Jiao W, Shen C, Qin Y, Huang Y, Huang M, Kang S, Liu X, Li S, Mo Z, Yu Y, Jiang B, Tian Y, Wang L, Song Q, Wang S, Li S. Natural variation of OsWRKY23 drives difference in nitrate use efficiency between indica and japonica rice. Nat Commun 2025; 16:1420. [PMID: 39915505 PMCID: PMC11802876 DOI: 10.1038/s41467-025-56752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
Between the two major rice subspecies, indica varieties generally exhibit higher nitrate (NO3‒) uptake and nitrogen (N)-use efficiency (NUE) than japonica varieties. Introducing efficient NO3‒ utilization alleles from indica into japonica could improve NUE, and at the same time uncover unknown regulators of NO3‒ metabolism. Here, we identify OsWRKY23 as a key regulator of NO3‒ uptake and NUE differences between indica and japonica rice. The OsWRKY23indica allele exhibits reduced transcriptional activation of a negative regulator of auxin accumulation, DULL NITROGEN RESPONSE1 (DNR1). The resultant increase in auxin level improves NO3‒ uptake and assimilation, which ultimately enhances grain yield. Geographical and evolutionary analyses reveal overlapping distribution of OsWRKY23indica and DNR1indica, particularly in low-fertility soils, suggesting their involvement in the adaptation to low N conditions to improve NUE and grain yield. Incorporating the OsWRKY23-DNR1 module from indica rice represents a promising strategy to enhance japonica NUE, which is crucial for sustainable agriculture.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ji
- Department of Biology, University of Oxford, Oxford, UK
| | - Wu Jiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Chengbo Shen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yaojun Qin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yunzhi Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Menghan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shuming Kang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xuan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shunqi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zulong Mo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ying Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Bingyu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yanan Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Longfei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shaokui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
22
|
Greetatorn T, Boonchuen P, Piromyou P, Songwattana P, Wongdee J, Teamtisong K, Boonkerd N, Sato S, Teaumroong N, Tittabutr P. Differential responses of Bradyrhizobium sp. SUTN9-2 to plant extracts and implications for endophytic interactions within different host plants. Sci Rep 2025; 15:3154. [PMID: 39856180 PMCID: PMC11761474 DOI: 10.1038/s41598-025-87488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Bradyrhizobium sp. strain SUTN9-2 demonstrates cell enlargement, increased DNA content, and efficient nitrogen fixation in response to rice (Oryza sativa) extract. This response is attributed to the interaction between the plant's cationic antimicrobial peptides (CAMPs) and the Bradyrhizobium BacA-like transporter (BclA), similar to bacteroid in legume nodules. The present study reveals that SUTN9-2 can also establish functional endophytic interactions with chili (Capsicum annuum) and tomato (Solanum lycopersicum) plants. When exposed to extracts from chili and tomato, SUTN9-2 exhibits cell elongation, polyploidy, and reduced cell viability, with the effects being less pronounced for tomato extract. Transcriptomic and cytological analyses revealed that genes associated with CAMP resistance, nitrogen metabolism, nitrogen fixation, defense responses, and secretion systems were upregulated, while genes related to the cell cycle and certain CAMP-resistance mechanisms were downregulated, particularly in response to chili extract. This study suggests that SUTN9-2 likely evolves resistance mechanisms against CAMPs found in rice, chili, and tomato plants through mechanisms involving the protease-chaperone DegP, AcrAB-TolC multidrug efflux pumps, and polysaccharides. These mechanisms facilitate efflux, degradation, and the formation of protective barriers to resist CAMPs. Such adaptations enable SUTN9-2 to persist and colonize host plants despite antimicrobial pressures, influencing its viability, cell differentiation, and nitrogen fixation during endophytic interactions with various plant hosts.
Collapse
Affiliation(s)
- Teerana Greetatorn
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pongdet Piromyou
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Jenjira Wongdee
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kamonluck Teamtisong
- Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Shusei Sato
- Graduate School of Life Science, Tohoku University, Sendai, 980-8577, Japan
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
23
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
24
|
Luo X, Shi Y, Tan J, Long T, Song J, Liu Y. Physiological and transcriptomic analysis of the effect of overexpression of the NTPIP2;4 gene on drought tolerance in tobacco. BMC PLANT BIOLOGY 2025; 25:63. [PMID: 39815184 PMCID: PMC11736964 DOI: 10.1186/s12870-024-05896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/29/2024] [Indexed: 01/18/2025]
Abstract
Aquaporins are widely present in the plant kingdom and play important roles in plant response to abiotic adversity stresses such as water and temperature extremes. In this study, we investigated the regulatory role of NTPIP2;4 on drought tolerance in tobacco at physiological and transcriptional levels. In this experiment, we constructed an NtPIP2;4 overexpression vector and genetically transformed tobacco variety 'K326' to investigate the mechanism of NtPIP2;4 gene in regulating drought tolerance in tobacco at physiological and transcriptomic levels. Physiological analyses showed that overexpression plants showed low wilting under drought conditions compared to wild-type (WT), and NtPIP2;4 overexpression tobacco plants showed enhanced superoxide dismutase (SOD) and catalase (CAT) activities, lower levels of superoxide anion (O2-), malondialdehyde (MDA), and hydrogen peroxide (H2O2) than the control, and significantly higher proline (Pro) content than the control. The leaves of NtPIP2;4 overexpressing plants and wild-type controls after drought were subjected to transcriptome sequencing, and RNA-seq analysis showed that a total of 1752 differentially expressed genes (DEGs) were obtained under drought conditions, with 1005 DEGs of up-regulated and 747 DEGs of down-regulated differentially expressed genes. The DEGs were enriched mainly in the plant MAPK signaling pathway, the plant hormone signal transduction pathway, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism and plant-pathogen interaction pathways. We also investigated the drought pathway of MAPK pathway and the auxin pathway mechanism of plant hormone signal transduction pathway, and found that the transcript levels of the genes of the relevant pathways changed, and hypothesized that NtPIP2;4 might regulate the drought resistance of plants through the expression of the relevant genes induced by auxin. This study demonstrates that overexpression of NtPIP2;4 gene can enhance the drought resistance of tobacco plants, which will provide a basis for the research on the function of tobacco NtPIP2;4 gene and the creation of new germplasm resources.
Collapse
Affiliation(s)
- Xu Luo
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Yuanshuai Shi
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Jie Tan
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Tao Long
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Juntao Song
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Yang Liu
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
25
|
Wang X, Li L, Fan R, Yan Y, Zhou R. Genome‑wide identification of circular RNAs and MAPKs reveals the regulatory networks in response to green peach aphid infestation in peach (Prunus persica). Gene 2025; 933:148994. [PMID: 39395730 DOI: 10.1016/j.gene.2024.148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The green peach aphid (GPA), Myzus persicae (Sulzer), is a serious agricultural pest with a worldwide distribution and a vector of over 100 plant viruses. Various pathways, such as the mitogen-activated protein kinase (MAPK) cascades, play pivotal roles in signaling plant defense against pest attack, and circular RNAs (circRNAs) regulate the expression of mRNAs in response to pest attack. However, the mechanism underlying peach (Prunus persica) response to GPA attack remains unclear. The present study initially identified and characterized 316 circRNAs and 18 PpMAPKs from healthy and GPA-infested peach leaves by whole-transcriptome sequencing and predicted the differentially expressed circRNAs (DECs) after GPA infestation. PCR and Sanger sequencing confirmed the presence of six DECs in peach samples. Besides, RNA sequencing analysis detected 13 DECs, including 5 upregulated and 8 downregulated ones, in peach in response to the GPA attack. Gene ontology (GO) enrichment analysis indicated that specific DECs play crucial roles in the MAPK signaling pathway, and qRT-PCR revealed that GPA infestation altered the expression patterns of PpMAPKs. Finally, five circRNAs, three microRNA (miRNAs), and two MAPK target genes were identified to interact as a network and perform critical roles in modulating the MAPK pathway in the peach during GPA infestation.
Collapse
Affiliation(s)
- Xianyou Wang
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China.
| | - Li Li
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Rongyao Fan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Yujun Yan
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| | - Ruijin Zhou
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, 453003, PR China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, PR China
| |
Collapse
|
26
|
Hao Y, Zeng Z, Yuan M, Li H, Guo S, Yang Y, Jiang S, Hawara E, Li J, Zhang P, Wang J, Xin X, Ma W, Liu H. The blue-light receptor CRY1 serves as a switch to balance photosynthesis and plant defense. Cell Host Microbe 2025; 33:137-150.e6. [PMID: 39731915 DOI: 10.1016/j.chom.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/15/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024]
Abstract
Plant stomata open in response to blue light, allowing gas exchange and water transpiration. However, open stomata are potential entry points for pathogens. Whether plants can sense pathogens and mount defense responses upon stomatal opening and how blue-light cues are integrated to balance growth-defense trade-offs are poorly characterized. We show that the Arabidopsis blue-light photoreceptor CRYPTOCHROME 1 (CRY1) mediates various aspects of immunity, including pathogen-triggered stomatal closure as well as activation of plant immunity through a typical light-responsive protein LATE UPREGULATED IN RESPONSE TO HYALOPERONOSPORA PARASITICA (LURP1). LURP1 undergoes N-terminal palmitoylation in the presence of bacterial flagellin, prompting a change in subcellular localization from the cytoplasm to plasma membrane, where it enhances the activity of the receptor FLAGELLIN SENSING 2 (FLS2) to mediate plant defense. Collectively, these findings reveal that blue light regulates stomatal defense and highlight the dual functions of CRY1 in photosynthesis and immunity.
Collapse
Affiliation(s)
- Yuhan Hao
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; School of Life Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Zexian Zeng
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Minhang Yuan
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Hui Li
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Shisong Guo
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yu Yang
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; Shanghai College of Life Science, University of Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Shushu Jiang
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Eva Hawara
- Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jianxu Li
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, CAS, Shanghai 201602, China
| | - Peng Zhang
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Jiawei Wang
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Xiufang Xin
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| | - Hongtao Liu
- CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences, Shanghai 200031, People's Republic of China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China.
| |
Collapse
|
27
|
Orlovskis Z, Singh A, Kliot A, Huang W, Hogenhout SA. The phytoplasma SAP54 effector acts as a molecular matchmaker for leafhopper vectors by targeting plant MADS-box factor SVP. eLife 2025; 13:RP98992. [PMID: 39763298 PMCID: PMC11706604 DOI: 10.7554/elife.98992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Obligate parasites often trigger significant changes in their hosts to facilitate transmission to new hosts. The molecular mechanisms behind these extended phenotypes - where genetic information of one organism is manifested as traits in another - remain largely unclear. This study explores the role of the virulence protein SAP54, produced by parasitic phytoplasmas, in attracting leafhopper vectors. SAP54 is responsible for the induction of leaf-like flowers in phytoplasma-infected plants. However, we previously demonstrated that the insects were attracted to leaves and the leaf-like flowers were not required. Here, we made the surprising discovery that leaf exposure to leafhopper males is required for the attraction phenotype, suggesting a leaf response that distinguishes leafhopper sex in the presence of SAP54. In contrast, this phytoplasma effector alongside leafhopper females discourages further female colonization. We demonstrate that SAP54 effectively suppresses biotic stress response pathways in leaves exposed to the males. Critically, the host plant MADS-box transcription factor short vegetative phase (SVP) emerges as a key element in the female leafhopper preference for plants exposed to males, with SAP54 promoting the degradation of SVP. This preference extends to female colonization of male-exposed svp null mutant plants over those not exposed to males. Our research underscores the dual role of the phytoplasma effector SAP54 in host development alteration and vector attraction - integral to the phytoplasma life cycle. Importantly, we clarify how SAP54, by targeting SVP, heightens leaf vulnerability to leafhopper males, thus facilitating female attraction and subsequent plant colonization by the insects. SAP54 essentially acts as a molecular 'matchmaker', helping male leafhoppers more easily locate mates by degrading SVP-containing complexes in leaves. This study not only provides insights into the long reach of single parasite genes in extended phenotypes, but also opens avenues for understanding how transcription factors that regulate plant developmental processes intersect with and influence plant-insect interactions.
Collapse
Affiliation(s)
| | - Archana Singh
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Adi Kliot
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | - Weijie Huang
- John Innes Centre, Norwich Research ParkNorwichUnited Kingdom
| | | |
Collapse
|
28
|
Wang K, Li C, Cao S, Lei C, Ji N, Zou Y, Tan M, Wang J, Zheng Y, Gao H. VOZ-dependent priming of salicylic acid-dependent defense against Rhizopus stolonifer by β-aminobutyric acid requires the TCP protein TCP2 in peach fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17176. [PMID: 39621553 DOI: 10.1111/tpj.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Vascular plant one-zinc finger (VOZ) transcription factors (TFs) play crucial roles in plant immunity. Nevertheless, how VOZs modulate defense signaling in response to elicitor-induced resistance is not fully understood. Here, the defense elicitor β-aminobutyric acid (BABA) resulted in the visible suppression of Rhizopus rot disease of peach fruit caused by Rhizopus stolonifer. Defense priming by BABA was notably associated with increased levels of salicylic acid (SA) and SA-dependent gene expression. Data-independent acquisition proteomic analysis revealed that two VOZ proteins (PpVOZ1 and PpVOZ2) were substantially upregulated in BABA-induced resistance (BABA-IR). Furthermore, the interaction of PpVOZ1 and PpVOZ2 and their potential target of the TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP)-family protein PpTCP2 screened from protein-protein interaction networks was confirmed by yeast two-hybrid (Y2H), luciferase complementation imaging and glutathione S-transferase pull-down assays. Furthermore, subcellular localization, yeast one-hybrid, electrophoretic mobility shift assay and dual-luciferase reporter assays demonstrated that nuclear localization of both PpVOZ1 and PpVOZ2 was critical for their contribution to BABA-IR, as these proteins potentiated the PpTCP2-mediated transcriptional activation of isochorismate synthase genes (ICS1/2). The overexpression of both PpVOZ1 and PpVOZ2 could activate the transcription of SA-dependent genes and provide disease resistance in transgenic Arabidopsis. In contrast, the ppvoz1cas9 and ppvoz2cas9 loss-of-function mutations and the voz1cas9 voz2cas9 double mutation attenuated BABA-IR against R. stolonifer. Therefore, the three identified positive TFs, PpVOZ1, PpVOZ2, and PpTCP2, synergistically contribute to the BABA-activated priming of systemic acquired resistance in postharvest peach fruit by a VOZ-TCP-ICS regulatory module.
Collapse
Affiliation(s)
- Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, P.R. China
| | - Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, P.R. China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Yanyu Zou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Meilin Tan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Jinsong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Haiyan Gao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, P.R. China
| |
Collapse
|
29
|
Keppler A, Roulier M, Pfeilmeier S, Petti GC, Sintsova A, Maier BA, Bortfeld-Miller M, Sunagawa S, Zipfel C, Vorholt JA. Plant microbiota feedbacks through dose-responsive expression of general non-self response genes. NATURE PLANTS 2025; 11:74-89. [PMID: 39627368 PMCID: PMC11757152 DOI: 10.1038/s41477-024-01856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/22/2024] [Indexed: 01/25/2025]
Abstract
The ability of plants to perceive and react to biotic and abiotic stresses is critical for their health. We recently identified a core set of genes consistently induced by members of the leaf microbiota, termed general non-self response (GNSR) genes. Here we show that GNSR components conversely impact leaf microbiota composition. Specific strains that benefited from this altered assembly triggered strong plant responses, suggesting that the GNSR is a dynamic system that modulates colonization by certain strains. Examination of the GNSR to live and inactivated bacteria revealed that bacterial abundance, cellular composition and exposure time collectively determine the extent of the host response. We link the GNSR to pattern-triggered immunity, as diverse microbe- or danger-associated molecular patterns cause dynamic GNSR gene expression. Our findings suggest that the GNSR is the result of a dose-responsive perception and signalling system that feeds back to the leaf microbiota and contributes to the intricate balance of plant-microbiome interactions.
Collapse
Affiliation(s)
| | | | | | | | - Anna Sintsova
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
30
|
Hossain MM, Pérez-López E, Todd CD, Wei Y, Bonham-Smith PC. Plasmodiophora brassicae Effector PbPE23 Induces Necrotic Responses in Both Host and Nonhost Plants. PHYTOPATHOLOGY 2025; 115:66-76. [PMID: 39284156 DOI: 10.1094/phyto-02-24-0064-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Plasmodiophora brassicae is an obligate biotroph that causes clubroot disease in cruciferous plants, including canola and Arabidopsis. In contrast to most known bacterial, oomycete, and fungal pathogens that colonize at the host apoplastic space, the protist P. brassicae establishes an intracellular colonization within various types of root cells and secretes a plethora of effector proteins to distinct cellular compartments favorable for the survival and growth of the pathogen during pathogenesis. Identification and functional characterization of P. brassicae effectors has been hampered by the limited understanding of this unique pathosystem. Here, we report a P. brassicae effector, PbPE23, containing a serine/threonine kinase domain, that induces necrosis after heterologous expression by leaf infiltration in both host and nonhost plants. Although PbPE23 is an active kinase, the kinase activity itself is not required for triggering necrosis in plants. PbPE23 shows a nucleocytoplasmic localization in Nicotiana benthamiana, and its N-terminal 25TPDPAQKQ32 sequence, resembling the contiguous hydrophilic TPAP motif and Q-rich region in many necrosis and ethylene inducing peptide 1-like proteins from plant-associated microbes, is required for the induction of necrosis. Furthermore, transcript profiling of PbPE23 reveals its high expression at the transition stages from primary to secondary infection, suggesting its potential involvement in the development of clubroot disease.
Collapse
Affiliation(s)
- Md Musharaf Hossain
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Edel Pérez-López
- Department of Plant Sciences, Université Laval, Québec City, QB, G1V 0A6, Canada
| | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Peta C Bonham-Smith
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
31
|
Barakat O, Zhang F, Zeng M, Wang Y. Luciferase-mediated assay to detect the PAMP-triggered gene expression in transgenic Nicotiana benthamiana. PLANT SIGNALING & BEHAVIOR 2024; 19:2411918. [PMID: 39585200 PMCID: PMC11591477 DOI: 10.1080/15592324.2024.2411918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 11/26/2024]
Abstract
Luciferase is one of the bioluminescence-producing agents, which was widely used as a reporter enzyme for constructing bioassay systems to study gene expression with high accuracy and within a broad dynamic spectrum. Perception of pathogen associated molecular patterns (PAMPs) in plants often lead to significant transcriptional changes. The transcriptional changes of defense-related genes are often used as a marker to assay PAMP-triggered plant immune response. In this study, we showed that the marker gene CYP71D20 was rapidly activated in Nicotiana benthamiana upon treatment with the bacterial PAMP flg22 and the Phytophthora elicitin INF1. In addition, we generated transgenic N. benthamiana using the luciferase as a reporter gene to analyze CYP71D20 gene expression upon PAMP treatment. The transgenic line carrying the luciferase gene driven by CYP71D20 promoter was treated with the bacterial PAMP flg22 or Phytophthora elicitin INF1. Transcriptional activation of CYP71D20 was measured by monitoring the luciferase activity. The results showed that the LUC activity was increased after treatment with different PAMPs, indicating that the CYP71D20-promotor luciferase assay can be used to study the PAMP-triggered gene expression in N. benthamiana.
Collapse
Affiliation(s)
- Ola Barakat
- Plant Protection College, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Plant Protection Department, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Fushuang Zhang
- Plant Protection College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengzhu Zeng
- Plant Protection College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanchao Wang
- Plant Protection College, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Ma M, Wang P, Chen R, Bai M, He Z, Xiao D, Xu G, Wu H, Zhou JM, Dou D, Bi G, Liang X. The OXIDATIVE SIGNAL-INDUCIBLE1 kinase regulates plant immunity by linking microbial pattern-induced reactive oxygen species burst to MAP kinase activation. THE PLANT CELL 2024; 37:koae311. [PMID: 39566103 DOI: 10.1093/plcell/koae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Plant cell surface-localized pattern recognition receptors (PRRs) recognize microbial patterns and activate pattern-triggered immunity (PTI). Typical PTI responses include reactive oxygen species (ROS) burst controlled by the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RbohD) and activation of the MAP kinase (MAPK) cascade composed of MAPKKK3/5-MKK4/5-MPK3/6. However, the mechanisms through which PRRs regulate and coordinate these immune responses are not fully understood. Here, we showed that Arabidopsis thaliana OXIDATIVE SIGNAL-INDUCIBLE1 (OXI1), a kinase known to be activated by ROS, is involved in the LYK5-CERK1 receptor complex, which recognizes fungal cell wall-derived chitin. The oxi1 mutant exhibits enhanced susceptibility to various pathogens and reduced chitin-induced MAPK activation and ROS burst. We showed that chitin induces the phosphorylation of OXI1 in an RbohD-dependent manner. H2O2 and chitin treatment causes the oxidation of OXI1 at Cys104 and Cys205, which is essential for the kinase activity of OXI1. These oxidation sites are required for chitin-induced MAPK activation and disease resistance. Activated OXI1 directly phosphorylates MAPKKK5 to regulate MAPK activation. Additionally, OXI1 phosphorylates RbohD, suggesting that it may activate RbohD to promote ROS burst to further enhance the long-term MAPK activation. Together, our findings reveal a pathway linking PRR-mediated ROS production to MAPK activation through OXI1.
Collapse
Affiliation(s)
- Miaomiao Ma
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Pathology, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Pan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Rubin Chen
- Department of Plant Pathology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mei Bai
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyuan He
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dan Xiao
- Department of Plant Pathology, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyuan Xu
- Department of Plant Pathology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hong Wu
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Min Zhou
- Hainan Yazhouwan National Laboratory, Sanya, Hainan 572025, China
| | - Daolong Dou
- Department of Plant Pathology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guozhi Bi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangxiu Liang
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
33
|
Lu L, Fang J, Xia N, Zhang J, Diao Z, Wang X, Liu Y, Tang D, Li S. Phosphorylation of the transcription factor OsNAC29 by OsMAPK3 activates diterpenoid genes to promote rice immunity. THE PLANT CELL 2024; 37:koae320. [PMID: 39665688 DOI: 10.1093/plcell/koae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Well-conserved mitogen-activated protein kinase (MAPK) cascades are essential for orchestrating of a wide range of cellular processes in plants, including defense responses against pathogen attack. NAC transcription factors (TFs) play important roles in plant immunity, but their targets and how they are regulated remain largely unknown. Here, we identified the TF OsNAC29 as a key component of a MAPK signaling pathway involved in rice (Oryza sativa) disease resistance. OsNAC29 binds directly to CACGTG motifs in the promoters of OsTPS28 and OsCYP71Z2, which are crucial for the biosynthesis of the phytoalexin 5,10-diketo-casbene and consequently rice blast resistance. OsNAC29 positively regulates rice blast resistance by promoting the expression of of OsTPS28 and OsCYP71Z2, and the function of OsNAC29 is genetically dependent on OsCYP71Z2 and OsTPS28. Furthermore, OsNAC29 interacts with OsRACK1A and OsMAPK3/6 to form an immune complex; OsMAPK3 phosphorylates OsNAC29 at Thr304 to prevent its proteasome-mediated degradation and promote its function against rice blast fungus. Phosphorylation of OsNAC29 at Thr304 is induced upon Magnaporthe oryzae infection and chitin treatment. Our data demonstrate the positive role of the OsMAPK3-OsNAC29-OsTPS28/OsCYP71Z2 module in rice blast resistance, providing insights into the molecular regulatory network and fine-tuning of NAC TFs in rice immunity.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianbo Fang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Xia
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhijuan Diao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
34
|
Zhao M, Yi B, Liu X, Wang D, Song D, Sun E, Cui L, Liu J, Feng L. Comparative transcriptome analysis in two contrasting genotypes for Sclerotinia sclerotiorum resistance in sunflower. PLoS One 2024; 19:e0315458. [PMID: 39700207 DOI: 10.1371/journal.pone.0315458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Sclerotinia sclerotiorum as a necrotrophic fungus causes the devastating diseases in many important oilseed crops worldwide. The preferred strategy for controlling S. sclerotiorum is to develop resistant varieties, but the molecular mechanisms underlying S. sclerotiorum resistance remain poorly defined in sunflower (Helianthus annuus). Here, a comparative transcriptomic analysis was performed in leaves of two contrasting sunflower genotypes, disease susceptible (DS) B728 and disease resistant (DR) C6 after S. sclerotiorum inoculation. At 24 h post-inoculation, the DR genotype exhibited no visible growth of the hyphae as well as greater activity of superoxide dismutase activity (SOD), peroxidase (POD), catalase (CAT), glutathione-S-transferase (GST), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDAR) than DS genotype. A total of 10151 and 7439 differentially expressed genes (DEGs) were detected in DS and DR genotypes, respectively. Most of DEGs were enriched in cell wall organisation, protein kinase activity, hormone, transcription factor activities, redox homeostasis, immune response, and secondary metabolism. Differential expression of genes involved in expansins, pectate lyase activities, ethylene biosynthesis and signaling and antioxidant activity after S. sclerotiorum infection could potentially be responsible for the differential resistance among two genotypes. In summary, these finding provide additional insights into the potential molecular mechanisms of S. sclerotiorum's defense response and facilitate the breeding of Sclerotinia-resistant sunflower varieties.
Collapse
Affiliation(s)
- Mingzhu Zhao
- Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Bing Yi
- Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xiaohong Liu
- Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Dexing Wang
- Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Dianxiu Song
- Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Enyu Sun
- Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Liangji Cui
- Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jingang Liu
- Institute of Crop Research, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Liangshan Feng
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| |
Collapse
|
35
|
Godinho DP, Yanez RJR, Duque P. Pathogen-responsive alternative splicing in plant immunity. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00311-X. [PMID: 39701905 DOI: 10.1016/j.tplants.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Plant immunity involves a complex and finely tuned response to a wide variety of pathogens. Alternative splicing, a post-transcriptional mechanism that generates multiple transcripts from a single gene, enhances both the versatility and effectiveness of the plant immune system. Pathogen infection induces alternative splicing in numerous plant genes involved in the two primary layers of pathogen recognition: pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). However, the mechanisms underlying pathogen-responsive alternative splicing are just beginning to be understood. In this article, we review recent findings demonstrating that the interaction between pathogen elicitors and plant receptors modulates the phosphorylation status of splicing factors, altering their function, and that pathogen effectors target components of the host spliceosome, controlling the splicing of plant immunity-related genes.
Collapse
Affiliation(s)
- Diogo P Godinho
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| | - Romana J R Yanez
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Paula Duque
- GIMM - Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal.
| |
Collapse
|
36
|
Shi D, Zhao L, Zhang R, Song Q. Regulation of Plant Growth and Development by Melatonin. Life (Basel) 2024; 14:1606. [PMID: 39768314 PMCID: PMC11678759 DOI: 10.3390/life14121606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 01/11/2025] Open
Abstract
Melatonin is a naturally occurring chemical with pleiotropic effects in various species. In plants, melatonin is associated with a variety of plant physiological processes, including plant growth and development, stress responses, etc. Thus, melatonin may hold promise for improving crop yields and agricultural sustainability. This review describes the biosynthetic mode of melatonin and its properties and summarizes its functions in growth, development, and reproduction. In addition, the role of melatonin in plants facing various stressful environments is elaborated upon, and its relationship with other phytohormones is summarized. Through this review, we recognize the problems and challenges facing melatonin research and propose some feasible solutions.
Collapse
Affiliation(s)
- Dawei Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, 159 Long pan Road, Nanjing 210037, China
| | - Lejia Zhao
- College of Forestry, Nanjing Forestry University, 159 Long pan Road, Nanjing 210037, China; (L.Z.); (R.Z.)
| | - Ruijia Zhang
- College of Forestry, Nanjing Forestry University, 159 Long pan Road, Nanjing 210037, China; (L.Z.); (R.Z.)
| | - Qiaofeng Song
- Human Phenome Institute (HuPI), Fudan University, 825 Zhangheng Road, Pudong District, Shanghai 200100, China;
| |
Collapse
|
37
|
Liao P, Zeng T, Chen Y, Ding DD, Zhou CY, Zhou Y. Lemon zinc finger protein ClSUP induces accumulation of reactive oxygen species and inhibits citrus yellow vein-clearing virus infection via interactions with ClDOF3.4. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7300-7316. [PMID: 39185708 DOI: 10.1093/jxb/erae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/24/2024] [Indexed: 08/27/2024]
Abstract
Citrus yellow vein-clearing virus (Potexvirus citriflavivenae; CYVCV) is an increasing threat to citrus cultivation. Notably, the role of zinc finger proteins (ZFPs) in mediating viral resistance in citrus plants is unclear. In this study, we demonstrated that ZFPs ClSUP and ClDOF3.4 enhanced citrus defense responses against CYVCV in Eureka lemon (Citrus limon 'Eureka'). ClSUP interacted with the coat protein (CP) of CYVCV to reduce CP accumulation and inhibited its silencing suppressor function. Overexpression of CISUP triggered reactive oxygen species (ROS) and salicylic acid (SA) pathways, and enhanced resistance to CYVCV infection. In contrast, ClSUP silencing resulted in increased CP accumulation and down-regulated ROS and SA-related genes. ClDOF3.4 interacted with ClSUP to facilitate its interactions with CP. Furthermore, ClDOF3.4 synergistically regulated the accumulation of ROS and SA with ClSUP and accelerated down-regulation of CP accumulation. Transgenic plants co-expressing ClSUP and ClDOF3.4 significantly decreased the CYVCV. These findings provide a new reference for understanding the interaction mechanism between the host and CYVCV.
Collapse
Affiliation(s)
- Ping Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| | - Ting Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| | - Yuan Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| | - Dong-Dong Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| | - Chang-Yong Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| | - Yan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/ National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, P.R. China
| |
Collapse
|
38
|
Ding LN, Hu YH, Li T, Li M, Li YT, Wu YZ, Cao J, Tan XL. A GDSL motif-containing lipase modulates Sclerotinia sclerotiorum resistance in Brassica napus. PLANT PHYSIOLOGY 2024; 196:2973-2988. [PMID: 39321167 PMCID: PMC11638095 DOI: 10.1093/plphys/kiae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum (Lib.) De Bary is a devastating disease infecting hundreds of plant species. It also restricts the yield, quality, and safe production of rapeseed (Brassica napus) worldwide. However, the lack of resistance sources and genes to S. sclerotiorum has greatly restricted rapeseed SSR-resistance breeding. In this study, a previously identified GDSL motif-containing lipase gene, B. napus GDSL LIPASE-LIKE 1 (BnaC07.GLIP1), encoding a protein localized to the intercellular space, was characterized as functioning in plant immunity to S. sclerotiorum. The BnaC07.GLIP1 promoter is S. sclerotiorum-inducible and the expression of BnaC07.GLIP1 is substantially enhanced after S. sclerotiorum infection. Arabidopsis (Arabidopsis thaliana) heterologously expressing and rapeseed lines overexpressing BnaC07.GLIP1 showed enhanced resistance to S. sclerotiorum, whereas RNAi suppression and CRISPR/Cas9 knockout B. napus lines were hyper-susceptible to S. sclerotiorum. Moreover, BnaC07.GLIP1 affected the lipid composition and induced the production of phospholipid molecules, such as phosphatidylethanolamine, phosphatidylcholine, and phosphatidic acid, which were correlated with decreased levels of reactive oxygen species (ROS) and enhanced expression of defense-related genes. A B. napus bZIP44 transcription factor specifically binds the CGTCA motif of the BnaC07.GLIP1 promoter to positively regulate its expression. BnbZIP44 responded to S. sclerotiorum infection, and its heterologous expression inhibited ROS accumulation, thereby enhancing S. sclerotiorum resistance in Arabidopsis. Thus, BnaC07.GLIP1 functions downstream of BnbZIP44 and is involved in S. sclerotiorum resistance by modulating the production of phospholipid molecules and ROS homeostasis in B. napus, providing insights into the potential roles and functional mechanisms of BnaC07.GLIP1 in plant immunity and for improving rapeseed SSR disease-resistance breeding.
Collapse
Affiliation(s)
- Li-Na Ding
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ying-Hui Hu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Teng Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ming Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yue-Tao Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yuan-Zhen Wu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jun Cao
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
39
|
Ren N, Zhang G, Yang X, Chen J, Ni L, Jiang M. MAPKKK28 functions upstream of the MKK1-MPK1 cascade to regulate abscisic acid responses in rice. PLANT, CELL & ENVIRONMENT 2024; 47:5140-5157. [PMID: 39166350 DOI: 10.1111/pce.15095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
The mitogen-activated protein kinase (MAPK) cascade (MAPKKK-MAPKK-MAPK) plays a critical role in biotic and abiotic stress responses and abscisic acid (ABA) signalling. A previous study has shown that the ABA-activated MKK1-MPK1 cascade is essential in regulating ABA response and stress tolerance in rice. However, the specific MAPKKK upstream of the MKK1-MPK1 cascade in ABA signalling remains unknown. Here, we identified that MAPKKK28, a previously uncharacterized member of the rice MEKK family, is involved in regulating ABA responses, including seed germination, root growth, stomatal closure, and the tolerance to oxidative stress and osmotic stress. We found that MAPKKK28 directly interacts with and phosphorylates MKK1. Further analysis indicated that the activation of both MKK1 and MPK1 depends on MAPKKK28 in ABA signalling. Genetic analysis revealed that MAPKKK28 functions upstream of the MKK1-MPK1 cascade to positively regulate ABA responses and enhance tolerance to oxidative and osmotic stress. These results not only reveal a new complete MAPK cascade in plants but also uncover its importance in ABA signalling.
Collapse
Affiliation(s)
- Ning Ren
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gang Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Xiaokun Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lan Ni
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Gonçalves Dias M, Doss B, Rawat A, Siegel KR, Mahathanthrige T, Sklenar J, Rodriguez Gallo MC, Derbyshire P, Dharmasena T, Cameron E, Uhrig RG, Zipfel C, Menke FLH, Monaghan J. Subfamily C7 Raf-like kinases MRK1, RAF26, and RAF39 regulate immune homeostasis and stomatal opening in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 244:2278-2294. [PMID: 39449177 PMCID: PMC11579443 DOI: 10.1111/nph.20198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
The calcium-dependent protein kinase CPK28 regulates several stress pathways in multiple plant species. Here, we aimed to discover CPK28-associated proteins in Arabidopsis thaliana. We used affinity-based proteomics and identified several potential CPK28 binding partners, including the C7 Raf-like kinases MRK1, RAF26, and RAF39. We used biochemistry, genetics, and physiological assays to gain insight into their function. We define redundant roles for these kinases in stomatal opening, immune-triggered reactive oxygen species (ROS) production, and resistance to a bacterial pathogen. We report that CPK28 associates with and trans-phosphorylates RAF26 and RAF39, and that MRK1, RAF26, and RAF39 are active kinases that localize to endomembranes. Although Raf-like kinases share some features with mitogen-activated protein kinase kinase kinases (MKKKs), we found that MRK1, RAF26, and RAF39 are unable to trans-phosphorylate any of the 10 Arabidopsis mitogen-activated protein kinase kinases (MKKs). Overall, our study suggests that C7 Raf-like kinases associate with and are phosphorylated by CPK28, function redundantly in stomatal opening and immunity, and possess substrate specificities distinct from canonical MKKKs.
Collapse
Affiliation(s)
| | - Bassem Doss
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
| | - Anamika Rawat
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
| | | | | | - Jan Sklenar
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| | | | - Paul Derbyshire
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| | | | - Emma Cameron
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
| | - R. Glen Uhrig
- Department of Biological SciencesUniversity of AlbertaEdmontonABT6G 2E9Canada
| | - Cyril Zipfel
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
- Institute of Plant and Microbial Biology and Zurich‐Basel Plant Science CenterUniversity of ZurichZurich8008Switzerland
| | - Frank L. H. Menke
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| | - Jacqueline Monaghan
- Department of BiologyQueen's UniversityKingstonONK7L 3N6Canada
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
41
|
Noor A, Little CR. RNA-seq analysis reveals genes associated with Macrophomina phaseolina-induced host senescence in soybean. BMC Genomics 2024; 25:1129. [PMID: 39578728 PMCID: PMC11583662 DOI: 10.1186/s12864-024-11023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Charcoal rot of soybean is caused by the hemibiotrophic fungus Macrophomina phaseolina, a global crop destroyer and an important pathogen in the midwestern USA. The quantitative nature of host resistance and the complexity of the soybean-M. phaseolina interaction at the molecular level have hampered resistance breeding. A previous study showed that L-ascorbic acid (LAA) pre-treatment before M. phaseolina inoculation reduced charcoal rot lesion length in excised soybean stems. This study aimed to elucidate the genetic underpinnings of M. phaseolina-induced senescence and the mitigating effects of ascorbic acid on this physiological process within the same pathosystem. RESULTS RNA was sequenced from M. phaseolina-resistant and -susceptible soybean genotypes following M. phaseolina inoculation, LAA, and hydrogen peroxide (H2O2)-an oxidative stress inducer-application followed by inoculation. More genes were down-regulated in the resistant and susceptible genotypes than up-regulated when the M. phaseolina-inoculated treatments were compared to mock-inoculated control treatments. Gene ontology (GO) term and KEGG pathways analysis detected M. phaseolina-induced up-regulation of receptor-like kinase genes. In contrast, many genes related to antioxidants, defense, and hormonal pathways were down-regulated in both genotypes. LAA pre-treatment induced genes related to photosynthesis and reactive oxygen species responses in both genotypes. H2O2 pre-treatment following inoculation up-regulated many stress-response genes, while hormone signal transduction and photosynthesis-related genes were down-regulated in both genotypes. CONCLUSIONS Results revealed transcriptional variation and genes associated with M. phaseolina-induced senescence in soybean. Ascorbic acid induced many photosynthetic genes, suggesting a complex regulation of defense and immunity in the plant against the hemibiotroph. Soybean plants also exhibited enhanced stress responsiveness when treated with H2O2 followed by inoculation with M. phaseolina. This study will broaden more research avenues related to transcriptional regulation during the M. phaseolina-soybean interaction and the potential role of receptor-like kinases, oxidative stress-responsive genes, ethylene-mediated signaling and enhanced photosynthetic gene expression when mounting host resistance to this important soybean pathogen.
Collapse
Affiliation(s)
- Afsana Noor
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Christopher R Little
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
42
|
Huang Y, Yuan Y, Yang R, Gou X, Dai S, Zhou J, Guo J, Shen J, Lu Y, Liu Y, Cai Y. A large-scale screening identifies receptor-like kinases with common features in kinase domains that are potentially related to disease resistance in planta. FRONTIERS IN PLANT SCIENCE 2024; 15:1503773. [PMID: 39606670 PMCID: PMC11598347 DOI: 10.3389/fpls.2024.1503773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Introduction The plant genome encodes a plethora of proteins with structural similarity to animal receptor protein kinases, collectively known as receptor-like protein kinases (RLKs), which predominantly localize to the plasma membrane where they activate their kinase domains to convey extracellular signals to the interior of the cell, playing crucial roles in various signaling pathways. Despite the large number of members within the RLK family, to date, only a few have been identified as pattern-recognition receptors (PRRs), leaving many potential RLKs that could play roles in plant immunity undiscovered. Methods In this study, a recombinant strategy was initially employed to screen the kinase domains of 133 RLKs in the Arabidopsis genome to determine their involvement in the pathogen-triggered immunity (PTI) pathway. Subsequently, 6 potential immune-related recombinant RLKs (rRLKs) were selected for the creation of transgenic materials and underwent functional characterization analysis. Finally, a sequence analysis was conducted on the kinase domains of these 133 RLKs as well as the known immune RLK receptor kinase domains from other species. Results It was found that 24 rRLKs activated the PTI response in Arabidopsis fls2 mutant protoplasts following flg22 treatment. Consistently, when 6 of these rRLKs were individually expressed in fls2 background, they exhibited diverse PTI signal transduction capabilities via different pathways while all retained membrane localization. Intriguingly, sequence analysis revealed multiple conserved amino acid sites within kinase domains of these experimentally identified immune-related RLKs in Arabidopsis. Importantly, these patterns are also preserved in RLKs involved in PTI in other species. Discussion This study, on one hand, identifies common features that theoretically can enhance our understanding of immune-related RLKs and facilitate the discovery of novel immune-related RLKs in the future. On the other hand, it provides experimental evidence for the use of recombinant technique to develop diverse rRLKs for molecular breeding, thereby conferring high resistance to plants without compromising their normal growth and development.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yuan Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Rongqian Yang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Xiangjian Gou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Dai
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Jun Zhou
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Jinya Guo
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
43
|
Leuschen-Kohl R, Roberts R, Stevens DM, Zhang N, Buchanan S, Pilkey B, Coaker G, Iyer-Pascuzzi AS. Tomato roots exhibit distinct, development-specific responses to bacterial-derived peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621969. [PMID: 39574743 PMCID: PMC11580956 DOI: 10.1101/2024.11.04.621969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Plants possess cell-surface recognition receptors that detect molecular patterns from microbial invaders and initiate an immune response. Understanding the conservation of pattern-triggered immunity within different plant organs and across species is crucial to its sustainable and effective use in plant disease management but is currently unclear. We examined the activation and immune response patterns of three pattern recognition receptors (PRRs: Sl FLS2, Sl FLS3, and Sl CORE) in different developmental regions of roots and in leaves of multiple accessions of domesticated and wild tomato ( Solanum lycopersicum and S. pimpinellifolium ) using biochemical and genetic assays. Roots from different tomato accessions differed in the amplitude and dynamics of their immune response, but all exhibited developmental-specific PTI responses in which the root early differentiation zone was the most sensitive to molecular patterns. PRR signaling pathways also showed distinct but occasionally overlapping responses downstream of each immune receptor in tomato roots.These results reveal that each PRR initiates a unique PTI pathway and suggest that the specificity and complexity of tomato root immunity are tightly linked to the developmental stage, emphasizing the importance of spatial and temporal regulation in PTI.
Collapse
Affiliation(s)
- Rebecca Leuschen-Kohl
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Robyn Roberts
- Department of Agricultural Biology, Colorado State University, 200 W Lake St, Fort Collins, CO 80523, U. S. A
| | - Danielle M. Stevens
- Department of Plant Pathology, University of California, Davis, Davis CA 95616 USA
- Current Address: Plant and Microbial Biology, University of California, Berkeley, Berkeley CA 94720 USA
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- Current Address: Department of Biology, James Madison University, Harrisonburg, Virginia 22807, USA
| | - Silas Buchanan
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Brooke Pilkey
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis CA 95616 USA
| | - Anjali S. Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| |
Collapse
|
44
|
Giovannoni M, Scafati V, Rodrigues Pousada RA, Benedetti M, De Lorenzo G, Mattei B. The Vacuolar H +-ATPase subunit C is involved in oligogalacturonide (OG) internalization and OG-triggered immunity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109117. [PMID: 39293143 DOI: 10.1016/j.plaphy.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
In plants, the perception of cell wall fragments initiates signal transduction cascades that activate the immune response. Previous research on early protein dynamics induced by oligogalacturonides (OGs), pectin fragments acting as damage-associated molecular patterns (DAMPs), revealed significant phosphorylation changes in several proteins. Among them, the subunit C of the vacuolar H+-ATPase, known as DE-ETIOLATED 3 (DET3), was selected to elucidate its role in the OG-triggered immune response. The Arabidopsis det3 knockdown mutant exhibited defects in H2O2 accumulation, mitogen-activated protein kinases (MAPKs) activation, and induction of defense marker genes in response to OG treatment. Interestingly, the det3 mutant showed a higher basal resistance to the fungal pathogen Botrytis cinerea that, in turn, was completely reversed by the pre-treatment with OGs. Our results suggest a compromised ability of the det3 mutant to maintain a primed state over time, leading to a weaker defense response when the plant is later exposed to the fungal pathogen. Using fluorescently labelled OGs, we demonstrated that endocytosis of OGs was less efficient in the det3 mutant, implicating DET3 in the internalization process of OGs. This impairment aligns with the observed defect in the priming response in the det3 mutant, underscoring that proper internalization and signaling of OGs are crucial for initiating and maintaining a primed state in plant defense responses.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Valentina Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
45
|
Yin Z, Wei X, Cao Y, Dong Z, Long Y, Wan X. Regulatory balance between ear rot resistance and grain yield and their breeding applications in maize and other crops. J Adv Res 2024:S2090-1232(24)00479-X. [PMID: 39447642 DOI: 10.1016/j.jare.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Fungi are prevalent pathogens that cause substantial yield losses of major crops. Ear rot (ER), which is primarily induced by Fusarium or Aspergillus species, poses a significant challenge to maize production worldwide. ER resistance is regulated by several small effect quantitative trait loci (QTLs). To date, only a few ER-related genes have been identified that impede molecular breeding efforts to breed ER-resistant maize varieties. AIM OF REVIEW Our aim here is to explore the research progress and mine genic resources related to ER resistance, and to propose a regulatory model elucidating the ER-resistant mechanism in maize as well as a trade-off model illustrating how crops balance fungal resistance and grain yield. Key Scientific Concepts of Review: This review presents a comprehensive bibliometric analysis of the research history and current trends in the genetic and molecular regulation underlying ER resistance in maize. Moreover, we analyzed and discovered the genic resources by identifying 162 environmentally stable loci (ESLs) from various independent forward genetics studies as well as 1391 conservatively differentially expressed genes (DEGs) that respond to Fusarium or Aspergillus infection through multi-omics data analysis. Additionally, this review discusses the syntenies found among maize ER, wheat Fusariumhead blight (FHB), and rice Bakanaedisease (RBD) resistance-related loci, along with the significant overlap between fungal resistance loci and reported yield-related loci, thus providing valuable insights into the regulatory mechanisms underlying the trade-offs between yield and defense in crops.
Collapse
Affiliation(s)
- Zechao Yin
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
46
|
Malvino ML. Unraveling the dynamics of Xanthomonas' flagella: insights into host-pathogen interactions. PeerJ 2024; 12:e18204. [PMID: 39465145 PMCID: PMC11505878 DOI: 10.7717/peerj.18204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/10/2024] [Indexed: 10/29/2024] Open
Abstract
Understanding the intricate interplay between plants and bacteria is paramount for elucidating mechanisms of immunity and disease. This review synthesizes current knowledge on the role of flagella in bacterial motility and host recognition, shedding light on the molecular mechanisms underlying plant immunity and bacterial pathogenicity. We delve into the sophisticated signaling network of plants, highlighting the pivotal role of pattern recognition receptors (PRRs) in detecting conserved molecular patterns known as microbe-associated molecular patterns (MAMPs), with a particular focus on flagellin as a key MAMP. Additionally, we explore recent discoveries of solanaceous-specific receptors, such as FLAGELLIN SENSING 3 (FLS3), and their implications for plant defense responses. Furthermore, we examine the role of bacterial motility in host colonization and infection, emphasizing the multifaceted relationship between flagella-mediated chemotaxis and bacterial virulence. Through a comprehensive analysis of flagellin polymorphisms within the genus Xanthomonas, we elucidate their potential impact on host recognition and bacterial pathogenicity, offering insights into strategies for developing disease-resistant crops. This review is intended for professionals within the fields of crops sciences and microbiology.
Collapse
Affiliation(s)
- Maria L. Malvino
- Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
47
|
Greco M, Kouzounis D, Fuertes-Rabanal M, Gentile M, Agresti S, Schols HA, Mélida H, Lionetti V. Upcycling olive pomace into pectic elicitors for plant immunity and disease protection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109213. [PMID: 39442419 DOI: 10.1016/j.plaphy.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Olive oil production generates substantial quantities of pomace, which are often disposed of in soil, leading to adverse effects on agriculture and the environment. Furthermore, climate change exacerbates plant diseases and promotes the use of toxic phytochemicals in agriculture. However, olive mill wastes can have high potential as reusable and valuable bioresources. Using diluted ethanol, an environmentally friendly solvent, we extracted a fraction containing short and long oligogalacturonides, short arabino-oligosaccharides and polysaccharides. The obtained extract elicited key features of plant innate immunity in Arabidopsis seedlings, including the phosphorylation of mitogen-activated protein kinases MPK3 and MPK6 and the upregulation of defence genes such as CYP81F2, WRKY33, WRKY53, and FRK1. Notably, pretreatment of adult Arabidopsis and tomato plants with the olive pomace extract primed defence responses and enhanced their resistance to the phytopathogens Botrytis cinerea and Pseudomonas syringae. Our results highlight the opportunity to upcycle the two-phase olive pomace collected at the late stage of olive oil campaign, in low-cost and sustainable glycan elicitors, contributing to reducing the use of chemically synthesized pesticides.
Collapse
Affiliation(s)
- Marco Greco
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain; Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | | | - Savino Agresti
- Agrolio s.r.l., S.P. 231 KM 55+120, 70031, Andria, Puglia, Italy
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain; Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy; CIABC, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
48
|
Lu L, Zhang J, Zheng X, Xia N, Diao Z, Wang X, Chen Z, Tang D, Li S. OsMPK12 positively regulates rice blast resistance via OsEDC4-mediated transcriptional regulation of immune-related genes. PLANT, CELL & ENVIRONMENT 2024; 47:3712-3731. [PMID: 38770581 DOI: 10.1111/pce.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Mitogen-activated protein kinase (MAPK) signalling cascades are functionally important signalling modules in eukaryotes. Transcriptome reprogramming of immune-related genes is a key process in plant immunity. Emerging evidence shows that plant MAPK cascade is associated with processing (P)-body components and contributes to transcriptome reprogramming of immune-related genes. However, it remains largely unknown how this process is regulated. Here, we show that OsMPK12, which is induced by Magnaporthe oryzae infection, positively regulates rice blast resistance. Further analysis revealed that OsMPK12 directly interacts with enhancer of mRNA decapping protein 4 (OsEDC4), a P-body-located protein, and recruits OsEDC4 to where OsMPK12 is enriched. Importantly, OsEDC4 directly interacts with two decapping complex members OsDCP1 and OsDCP2, indicating that OsEDC4 is a subunit of the mRNA decapping complex. Additionally, we found that OsEDC4 positively regulates rice blast resistance by regulating expression of immune-related genes and maintaining proper mRNA levels of some negatively-regulated genes. And OsMPK12 and OsEDC4 are also involved in rice growth and development regulation. Taken together, our data demonstrate that OsMPK12 positively regulates rice blast resistance via OsEDC4-mediated mRNA decay of immune-related genes, providing new insight into not only the new role of the MAPK signalling cascade, but also posttranscriptional regulation of immune-related genes.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingxing Zheng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Xia
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhijuan Diao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiwei Chen
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
49
|
Ahmad Z, Ramakrishnan M, Wang C, Rehman S, Shahzad A, Wei Q. Unravelling the role of WRKY transcription factors in leaf senescence: Genetic and molecular insights. J Adv Res 2024:S2090-1232(24)00428-4. [PMID: 39362333 DOI: 10.1016/j.jare.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Leaf senescence (LS), the final phase in leaf development, is an important and precisely regulated process crucial for plant well-being and the redistribution of nutrients. It is intricately controlled by various regulatory factors, including WRKY transcription factors (TFs). WRKYs are one of the most significant plant TF families, and several of them are differentially regulated and important during LS. Recent research has enhanced our understanding of the structural and functional characteristics of WRKY TFs, providing insights into their regulatory roles. AIM OF REVIEW This review aims to elucidate the genetic and molecular mechanisms underlying the intricate regulatory networks associated with LS by investigating the role of WRKY TFs. We seek to highlight the importance of WRKY-mediated signaling pathways in understanding LS, plant evolution, and response to varying environmental conditions. KEY SCIENTIFIC CONCEPTS OF REVIEW WRKY TFs exhibit specific DNA-binding activity at the N-terminus and dynamic interactions of the intrinsically disordered domain at the C-terminus with various proteins. These WRKY TFs not only control the activity of other WRKYs, but also interact with either WRKYs or other TFs, thereby fine- tuning the expression of target genes. By unraveling the complex interactions and regulatory mechanisms of WRKY TFs, this review broadens our knowledge of the genetic and molecular basis of LS. Understanding WRKY-mediated signalling pathways provides crucial insights into specific aspects of plant development, such as stress-induced senescence, and offers potential strategies for improving crop resilience to environmental stresses like drought and pathogen attacks. By targeting these pathways, it may be possible to enhance specific productivity traits, such as increased yield stability under adverse conditions, thereby contributing to more reliable agricultural outputs.
Collapse
Affiliation(s)
- Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Chunyue Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Shamsur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Anwar Shahzad
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
50
|
Gupta S, Kaur R, Upadhyay A, Chauhan A, Tripathi V. Unveiling the secrets of abiotic stress tolerance in plants through molecular and hormonal insights. 3 Biotech 2024; 14:252. [PMID: 39345964 PMCID: PMC11427653 DOI: 10.1007/s13205-024-04083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Phytohormones are signaling substances that control essential elements of growth, development, and reactions to environmental stress. Drought, salt, heat, cold, and floods are a few examples of abiotic factors that have a significant impact on plant development and survival. Complex sensing, signaling, and stress response systems are needed for adaptation and tolerance to such pressures. Abscisic acid (ABA) is a key phytohormone that regulates stress responses. It interacts with the jasmonic acid (JA) and salicylic acid (SA) signaling pathways to direct resources toward reducing the impacts of abiotic stressors rather than fighting against pathogens. Under exposure to nanoparticles, the plant growth hormones also function as molecules that regulate stress and are known to be involved in a variety of signaling cascades. Reactive oxygen species (ROS) are detected in excess while under stress, and nanoparticles can control their formation. Understanding the way these many signaling pathways interact in plants will tremendously help breeders create food crops that can survive in deteriorating environmental circumstances brought on by climate change and that can sustain or even improve crop production. Recent studies have demonstrated that phytohormones, such as the traditional auxins, cytokinins, ethylene, and gibberellins, as well as more recent members like brassinosteroids, jasmonates, and strigolactones, may prove to be significant metabolic engineering targets for creating crop plants that are resistant to abiotic stress. In this review, we address recent developments in current understanding regarding the way various plant hormones regulate plant responses to abiotic stress and highlight instances of hormonal communication between plants during abiotic stress signaling. We also discuss new insights into plant gene and growth regulation mechanisms during stress, phytohormone engineering, nanotechnological crosstalk of phytohormones, and Plant Growth-Promoting Rhizobacteria's Regulatory Powers (PGPR) via the involvement of phytohormones.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Anshu Upadhyay
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Arjun Chauhan
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh India
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002 Uttarakhand India
| |
Collapse
|