1
|
Finn BP, Dattani MT. The molecular basis of hypoprolactinaemia. Rev Endocr Metab Disord 2024; 25:967-983. [PMID: 39417960 DOI: 10.1007/s11154-024-09906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Hypoprolactinaemia is an endocrinopathy which is typically encountered as part of a combined pituitary hormone deficiency picture. The vast majority of genetic causes identified to date have been in the context of congenital hypopituitarism with multiple co-existent endocrinopathies. This is primarily with its closest hormonal relation, namely growth hormone. Acquired hypoprolactinaemia is generally rare in paediatric patients, and usually occurs together with other hormonal deficiencies. Congenital hypopituitarism occurs with an incidence of 1:4,000-10,000 cases and mutations in the following transcription factors account for the majority of documented genetic causes: PROP-1, POU1F1, LHX3/4 as well as documented case reports for a smaller subset of transcription factors and other molecules implicated in lactotroph development and prolactin secretion. Isolated prolactin deficiency has been described in a number of sporadic case reports in the literature, but no cases of mutations in the gene have been described to date. A range of genetic polymorphisms affecting multiple components of the prolactin signalling pathway have been identified in the literature, ranging from RNA spliceosome mutations (RNPC3) to loss of function mutations in IGSF-1. As paediatricians gain a greater understanding of the long-term ramifications of hypoprolactinaemia in terms of metabolic syndrome, type 2 diabetes mellitus and impaired fertility, the expectation is that clinicians will measure prolactin more frequently over time. Ultimately, we will encounter further reports of hypoprolactinaemia-related clinical presentations with further genetic mutations, in turn leading to a greater insight into the molecular basis of hypoprolactinaemia in terms of signalling pathways and downstream mediators. In the interim, the greatest untapped reserve of genetic causes remains within the phenotypic spectrum of congenital hypopituitarism.
Collapse
Affiliation(s)
- Bryan Padraig Finn
- Department of Paediatric Endocrinology, Great Ormond Street Children's Hospital, London, UK.
| | - Mehul T Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Children's Hospital, London, UK
- Genetics and Genomic Medicine Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
2
|
Kjellgren Å, Lundgren E, Golovleva I, Kriström B, Werner M. Hearing impairment and vestibular function in patients with a pathogenic splice variant in the LHX3 gene. BMC Med Genomics 2024; 17:270. [PMID: 39548529 PMCID: PMC11568590 DOI: 10.1186/s12920-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND LHX3 is a gene encoding a LIM-homeodomain transcription factor important for the fetal development of several organs, such as the pituitary gland, spinal motor neurons and the inner ear. Pathogenic and likely pathogenic variants in the LHX3 gene are infrequent and result in a rare syndrome known as combined pituitary hormone deficiency-3, CPHD3. METHODS We have studied hearing and vestibular functions in a group of eight individuals, aged 8-36 years, all of whom were homozygous for a specific variant in the LHX3 gene at chromosome 9q34. We reexamined the results of consecutive hearing tests from newborn until April 2024. RESULTS Our data showed that all the tested patients had progressive sensorineural hearing deficiency ranging from moderately severe to complete loss. We have performed vestibular testing in six patients and, for the first time, demonstrated that a mutation in the LHX3 gene not only affects hearing, but is also associated with vestibular impairment. CONCLUSION The human pathogenic variant c.455-2A > G in the LHX3 gene on chromosome 9q34, which present as a founder mutation in the population in northern Sweden, is responsible for phenotypes associated with progressive hearing loss and balance impairment. These findings prove that the LHX3 gene is crucial for the function of both the cochlear and vestibular organs.
Collapse
Affiliation(s)
- Åsa Kjellgren
- Department of Clinical Sciences, Otorhinolaryngology, University of Umeå, Umeå, Sweden
| | - Elenor Lundgren
- Department of Clinical Sciences, Otorhinolaryngology, University of Umeå, Umeå, Sweden
| | - Irina Golovleva
- Department of Medical Biosciences, Medical and Clinical Genetics, University of Umeå, Umeå, Sweden
| | - Berit Kriström
- Department of Clinical Sciences, Pediatrics, University of Umeå, Umeå, Sweden
| | - Mimmi Werner
- Department of Clinical Sciences, Otorhinolaryngology, University of Umeå, Umeå, Sweden.
| |
Collapse
|
3
|
Branch MC, Weber M, Li MY, Flora P, Ezhkova E. Overview of chromatin regulatory processes during surface ectodermal development and homeostasis. Dev Biol 2024; 515:30-45. [PMID: 38971398 PMCID: PMC11317222 DOI: 10.1016/j.ydbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The ectoderm is the outermost of the three germ layers of the early embryo that arise during gastrulation. Once the germ layers are established, the complex interplay of cellular proliferation, differentiation, and migration results in organogenesis. The ectoderm is the progenitor of both the surface ectoderm and the neural ectoderm. Notably, the surface ectoderm develops into the epidermis and its associated appendages, nails, external exocrine glands, olfactory epithelium, and the anterior pituitary. Specification, development, and homeostasis of these organs demand a tightly orchestrated gene expression program that is often dictated by epigenetic regulation. In this review, we discuss the recent discoveries that have highlighted the importance of chromatin regulatory mechanisms mediated by transcription factors, histone and DNA modifications that aid in the development of surface ectodermal organs and maintain their homeostasis post-development.
Collapse
Affiliation(s)
- Meagan C Branch
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madison Weber
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng-Yen Li
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Dang W, Gao D, Lyu G, Irwin DM, Shang S, Chen J, Zhang J, Zhang S, Wang Z. A Nonsynonymous Substitution of Lhx3 Leads to Changes in Body Size in Dogs and Mice. Genes (Basel) 2024; 15:739. [PMID: 38927675 PMCID: PMC11202965 DOI: 10.3390/genes15060739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Lhx3 is a LIM-homeodomain transcription factor that affects body size in mammals by regulating the secretion of pituitary hormones. Akita, Shiba Inu, and Mame Shiba Inu dogs are Japanese native dog breeds that have different body sizes. To determine whether Lhx3 plays a role in the differing body sizes of these three dog breeds, we sequenced the Lhx3 gene in the three breeds, which led to the identification of an SNP in codon 280 (S280N) associated with body size. The allele frequency at this SNP differed significantly between the large Akita and the two kinds of smaller Shiba dogs. To validate the function of this SNP on body size, we introduced this change into the Lhx3 gene of mice. Homozygous mutant mice (S279N+/+) were found to have significantly increased body lengths and weights compared to heterozygous mutant (S279N+/-) and wild-type (S279N-/-) mice several weeks after weaning. These results demonstrate that a nonsynonymous substitution in Lhx3 plays an important role in regulating body size in mammals.
Collapse
Affiliation(s)
- Wanyi Dang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Dali Gao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Guangqi Lyu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Songyang Shang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Junnan Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Junpeng Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
5
|
Poma AM, Proietti A, Macerola E, Bonuccelli D, Conti M, Salvetti A, Dolo V, Chillà A, Basolo A, Santini F, Toniolo A, Basolo F. Suppression of Pituitary Hormone Genes in Subjects Who Died From COVID-19 Independently of Virus Detection in the Gland. J Clin Endocrinol Metab 2022; 107:2243-2253. [PMID: 35567590 PMCID: PMC9129148 DOI: 10.1210/clinem/dgac312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 01/08/2023]
Abstract
CONTEXT Involvement of the pituitary gland in SARS-CoV-2 infection has been clinically suggested by pituitary hormone deficiency in severe COVID-19 cases, by altered serum adrenocorticotropic hormone (ACTH) levels in hospitalized patients, and by cases of pituitary apoplexy. However, the direct viral infection of the gland has not been investigated. OBJECTIVE To evaluate whether the SARS-CoV-2 genome and antigens could be present in pituitary glands of lethal cases of COVID-19, and to assess possible changes in the expression of immune-related and pituitary-specific genes. METHODS SARS-CoV-2 genome and antigens were searched in the pituitary gland of 23 patients who died from COVID-19 and, as controls, in 12 subjects who died from trauma or sudden cardiac death. Real-time reverse transcription polymerase chain reaction (PCR), in situ hybridization, immunohistochemistry, and transmission electron microscopy were utilized. Levels of mRNA transcripts of immune-related and pituitary-specific genes were measured by the nCounter assay. RESULTS The SARS-CoV-2 genome and antigens were detected in 14/23 (61%) pituitary glands of the COVID-19 group, not in controls. In SARS-CoV-2-positive pituitaries, the viral genome was consistently detected by PCR in the adeno- and the neurohypophysis. Immunohistochemistry, in situ hybridization, and transmission electron microscopy confirmed the presence of SARS-CoV-2 in the pituitary. Activation of type I interferon signaling and enhanced levels of neutrophil and cytotoxic cell scores were found in virus-positive glands. mRNA transcripts of pituitary hormones and pituitary developmental/regulatory genes were suppressed in all COVID-19 cases irrespective of virus positivity. CONCLUSION Our study supports the tropism of SARS-CoV-2 for human pituitary and encourages exploration of pituitary dysfunction after COVID-19.
Collapse
Affiliation(s)
- Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Agnese Proietti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Elisabetta Macerola
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Diana Bonuccelli
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Marco Conti
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - Alessandra Salvetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Chillà
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessio Basolo
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| | | | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
- Corresponding author: Fulvio Basolo, MD, PhD, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi, 10, 56126 Pisa, Italy,
| |
Collapse
|
6
|
Hage C, Gan HW, Ibba A, Patti G, Dattani M, Loche S, Maghnie M, Salvatori R. Advances in differential diagnosis and management of growth hormone deficiency in children. Nat Rev Endocrinol 2021; 17:608-624. [PMID: 34417587 DOI: 10.1038/s41574-021-00539-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Growth hormone (GH) deficiency (GHD) in children is defined as impaired production of GH by the pituitary gland that results in growth failure. This disease might be congenital or acquired, and occurs in isolation or in the setting of multiple pituitary hormone deficiency. Isolated GHD has an estimated prevalence of 1 patient per 4000-10,000 live births and can be due to multiple causes, some of which are yet to be determined. Establishing the correct diagnosis remains key in children with short stature, as initiating treatment with recombinant human GH can help them attain their genetically determined adult height. During the past two decades, our understanding of the benefits of continuing GH therapy throughout the transition period from childhood to adulthood has increased. Improvements in transitional care will help alleviate the consequent physical and psychological problems that can arise from adult GHD, although the consequences of a lack of hormone replacement are less severe in adults than in children. In this Review, we discuss the differential diagnosis in children with GHD, including details of clinical presentation, neuroimaging and genetic testing. Furthermore, we highlight advances and issues in the management of GHD, including details of transitional care.
Collapse
Affiliation(s)
- Camille Hage
- Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hoong-Wei Gan
- Genetics & Genomic Medicine Research and Teaching Department, University College London Great Ormond Street Hospital Institute of Child Health, London, UK
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Anastasia Ibba
- Paediatric Endocrine Unit, Paediatric Hospital Microcitemico "A. Cao", AO Brotzu, Cagliari, Italy
| | - Giuseppa Patti
- Department of Paediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Mehul Dattani
- Genetics & Genomic Medicine Research and Teaching Department, University College London Great Ormond Street Hospital Institute of Child Health, London, UK
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sandro Loche
- Paediatric Endocrine Unit, Paediatric Hospital Microcitemico "A. Cao", AO Brotzu, Cagliari, Italy
| | - Mohamad Maghnie
- Department of Paediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Roberto Salvatori
- Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Louden ED, Poch A, Kim HG, Ben-Mahmoud A, Kim SH, Layman LC. Genetics of hypogonadotropic Hypogonadism-Human and mouse genes, inheritance, oligogenicity, and genetic counseling. Mol Cell Endocrinol 2021; 534:111334. [PMID: 34062169 DOI: 10.1016/j.mce.2021.111334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Hypogonadotropic hypogonadism, which may be normosmic (nHH) or anosmic/hyposmic, known as Kallmann syndrome (KS), is due to gonadotropin-releasing hormone deficiency, which results in absent puberty and infertility. Investigation of the genetic basis of nHH/KS over the past 35 years has yielded a substantial increase in our understanding, as variants in 44 genes in OMIM account for ~50% of cases. The first genes for KS (ANOS1) and nHH (GNRHR) were followed by the discovery that FGFR1 variants may cause either nHH or KS. Associated anomalies include midline facial defects, neurologic deficits, cardiac anomalies, and renal agenesis, among others. Mouse models for all but one gene (ANOS1) generally support findings in humans. About half of the known genes implicated in nHH/KS are inherited as autosomal dominant and half are autosomal recessive, whereas only 7% are X-linked recessive. Digenic and oligogenic inheritance has been reported in 2-20% of patients, most commonly with variants in genes that may result in either nHH or KS inherited in an autosomal dominant fashion. In vitro analyses have only been conducted for both gene variants in eight cases and for one gene variant in 20 cases. Rigorous confirmation that two gene variants in the same individual cause the nHH/KS phenotype is lacking for most. Clinical diagnosis is probably best accomplished by targeted next generation sequencing of the known candidate genes with confirmation by Sanger sequencing. Elucidation of the genetic basis of nHH/KS has resulted in an enhanced understanding of this disorder, as well as normal puberty, which makes genetic diagnosis clinically relevant.
Collapse
Affiliation(s)
- Erica D Louden
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Alexandra Poch
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
8
|
Kyöstilä K, Niskanen JE, Arumilli M, Donner J, Hytönen MK, Lohi H. Intronic variant in POU1F1 associated with canine pituitary dwarfism. Hum Genet 2021; 140:1553-1562. [PMID: 33550451 PMCID: PMC8519942 DOI: 10.1007/s00439-021-02259-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 01/20/2023]
Abstract
The anterior pituitary gland secretes several endocrine hormones, essential for growth, reproduction and other basic physiological functions. Abnormal development or function of the pituitary gland leads to isolated or combined pituitary hormone deficiency (CPHD). At least 30 genes have been associated with human CPHD, including many transcription factors, such as POU1F1. CPHD occurs spontaneously also in mice and dogs. Two affected breeds have been reported in dogs: German Shepherds with a splice defect in the LHX3 gene and Karelian Bear Dogs (KBD) with an unknown genetic cause. We obtained samples from five KBDs presenting dwarfism and abnormal coats. A combined analysis of genome-wide association and next-generation sequencing mapped the disease to a region in chromosome 31 and identified a homozygous intronic variant in the fourth exon of the POU1F1 gene in the affected dogs. The identified variant, c.605-3C>A, resided in the splice region and was predicted to affect splicing. The variant's screening in three new prospective cases, related breeds, and ~ 8000 dogs from 207 breeds indicated complete segregation in KBDs with a carrier frequency of 8%, and high breed-specificity as carriers were found at a low frequency only in Lapponian Herders, a related breed. Our study establishes a novel canine model for CPHD with a candidate POU1F1 defect.
Collapse
Affiliation(s)
- Kaisa Kyöstilä
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Julia E Niskanen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Jonas Donner
- Genoscoper Laboratories Ltd (Wisdom Health), Helsinki, Finland
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland. .,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland. .,Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
9
|
Bosch i Ara L, Katugampola H, Dattani MT. Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front Pediatr 2021; 8:600962. [PMID: 33634051 PMCID: PMC7902025 DOI: 10.3389/fped.2020.600962] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction: Congenital hypopituitarism (CH) is characterized by a deficiency of one or more pituitary hormones. The pituitary gland is a central regulator of growth, metabolism, and reproduction. The anterior pituitary produces and secretes growth hormone (GH), adrenocorticotropic hormone, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, and prolactin. The posterior pituitary hormone secretes antidiuretic hormone and oxytocin. Epidemiology: The incidence is 1 in 4,000-1 in 10,000. The majority of CH cases are sporadic; however, a small number of familial cases have been identified. In the latter, a molecular basis has frequently been identified. Between 80-90% of CH cases remain unsolved in terms of molecular genetics. Pathogenesis: Several transcription factors and signaling molecules are involved in the development of the pituitary gland. Mutations in any of these genes may result in CH including HESX1, PROP1, POU1F1, LHX3, LHX4, SOX2, SOX3, OTX2, PAX6, FGFR1, GLI2, and FGF8. Over the last 5 years, several novel genes have been identified in association with CH, but it is likely that many genes remain to be identified, as the majority of patients with CH do not have an identified mutation. Clinical manifestations: Genotype-phenotype correlations are difficult to establish. There is a high phenotypic variability associated with different genetic mutations. The clinical spectrum includes severe midline developmental disorders, hypopituitarism (in isolation or combined with other congenital abnormalities), and isolated hormone deficiencies. Diagnosis and treatment: Key investigations include MRI and baseline and dynamic pituitary function tests. However, dynamic tests of GH secretion cannot be performed in the neonatal period, and a diagnosis of GH deficiency may be based on auxology, MRI findings, and low growth factor concentrations. Once a hormone deficit is confirmed, hormone replacement should be started. If onset is acute with hypoglycaemia, cortisol deficiency should be excluded, and if identified this should be rapidly treated, as should TSH deficiency. This review aims to give an overview of CH including management of this complex condition.
Collapse
Affiliation(s)
- Laura Bosch i Ara
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Harshini Katugampola
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Mehul T. Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children, London, United Kingdom
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
10
|
Gregory LC, Dattani MT. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J Clin Endocrinol Metab 2020; 105:5614788. [PMID: 31702014 DOI: 10.1210/clinem/dgz184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
CONTEXT Congenital hypopituitarism (CH) is characterized by the presence of deficiencies in one or more of the 6 anterior pituitary (AP) hormones secreted from the 5 different specialized cell types of the AP. During human embryogenesis, hypothalamo-pituitary (HP) development is controlled by a complex spatio-temporal genetic cascade of transcription factors and signaling molecules within the hypothalamus and Rathke's pouch, the primordium of the AP. EVIDENCE ACQUISITION This mini-review discusses the genes and pathways involved in HP development and how mutations of these give rise to CH. This may present in the neonatal period or later on in childhood and may be associated with craniofacial midline structural abnormalities such as cleft lip/palate, visual impairment due to eye abnormalities such as optic nerve hypoplasia (ONH) and microphthalmia or anophthalmia, or midline forebrain neuroradiological defects including agenesis of the septum pellucidum or corpus callosum or the more severe holoprosencephaly. EVIDENCE SYNTHESIS Mutations give rise to an array of highly variable disorders ranging in severity. There are many known causative genes in HP developmental pathways that are routinely screened in CH patients; however, over the last 5 years this list has rapidly increased due to the identification of variants in new genes and pathways of interest by next-generation sequencing. CONCLUSION The majority of patients with these disorders do not have an identified molecular basis, often making management challenging. This mini-review aims to guide clinicians in making a genetic diagnosis based on patient phenotype, which in turn may impact on clinical management.
Collapse
Affiliation(s)
- Louise Cheryl Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Mehul Tulsidas Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
11
|
Abstract
The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo-optic dysplasia. Over the past decade, the acceleration of next-generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo-pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR-Cas9 as the method for gene editing is replacing previous laborious and time-consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389-413, 2020.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Louise C Gregory
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| | - Mehul T Dattani
- Genetics and Genomic Medicine Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK
| |
Collapse
|
12
|
Wang CZ, Guo LL, Guo QH, Mu YM. NBPF9 Gene May Be Involved in Congenital Hypopituitarism: A Whole-Genome Study of a Boy with Pituitary Stalk Interruption Syndrome and His Family. Int J Endocrinol 2020; 2020:5401738. [PMID: 32733554 PMCID: PMC7383300 DOI: 10.1155/2020/5401738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare congenital defect manifesting as various degrees of anterior pituitary hormone deficiency. Scattered familial cases have been found, revealing some genetic variants. However, most of the previous research studies involved an affected sibling, and the gene spectra of the patients' entire family have rarely been reported. We conducted a study of a family consisting of a PSIS patient with his unaffected sibling and healthy parents of Han Chinese background using whole-genome sequencing. Bioinformatic analysis was carried out, and mutations related to PSIS, single-nucleotide variants (SNVs), insertion-deletion (InDELs), and structural variations (SVs) in all the four samples were filtered. After Sanger sequencing, we confirmed the variants obtained and selected three candidate genes for functional verification. The gene variations in this boy with PSIS and his lineal relatives are reported herein; de novo sequencing revealed that the NBPF9 gene may be involved in the pathogenesis of PSIS.
Collapse
Affiliation(s)
- Cheng-Zhi Wang
- Department of Endocrinology, The First Medical Center of PLA General Hospital, Beijing 100853, China
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ling-Ling Guo
- Department of Endocrinology, The First Medical Center of PLA General Hospital, Beijing 100853, China
- Department of Endocrinology, Beijing Electric Teaching Hospital of Capital Medical University, Beijing, 100073, China
| | - Qing-Hua Guo
- Department of Endocrinology, The First Medical Center of PLA General Hospital, Beijing 100853, China
- Department of Endocrinology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan 572000, China
| | - Yi-Ming Mu
- Department of Endocrinology, The First Medical Center of PLA General Hospital, Beijing 100853, China
| |
Collapse
|
13
|
Guerri G, Maniscalchi T, Barati S, Dhuli K, Busetto GM, Del Giudice F, De Berardinis E, De Antoni L, Miertus J, Bertelli M. Syndromic infertility. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:75-82. [PMID: 31577259 PMCID: PMC7233644 DOI: 10.23750/abm.v90i10-s.8764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/29/2022]
Abstract
Infertility due to genetic mutations that cause other defects, besides infertility, is defined as syndromic. Here we describe three of these disorders for which we perform genetic tests. 1) Hypopituitarism is an endocrine syndrome characterized by reduced or absent secretion of one or more anterior pituitary hormones with consequent dysfunction of the corresponding peripheral glands. Deficiencies in all the hormones is defined as pan-hypopituitarism, lack of two or more hormones is called partial hypopituitarism, whereas absence of a single hormone is defined as selective hypopituitarism. Pan-hypopituitarism is the rarest condition, whereas the other two are more frequent. Several forms exist: congenital, acquired, organic and functional. 2) The correct functioning of the hypothalamic-pituitary-gonadal axis is fundamental for sexual differentiation and development during fetal life and puberty and for normal gonad function. Alteration of the hypothalamic-pituitary system can determine a condition called hypogonadotropic hypogonadism, characterized by normal/low serum levels of the hormones FSH and LH. 3) Primary ciliary dyskinesia is frequently associated with infertility in males because it impairs sperm motility (asthenozoospermia). Primary ciliary dyskinesia is a group of genetically and phenotypically heterogeneous disorders that show morpho-structural alterations of the cilia. Adult women with primary ciliary dyskinesia can be subfertile and have an increased probability of extra-uterine pregnancies. This is due to delayed transport of the oocyte through the uterine tubes. (www.actabiomedica.it)
Collapse
|
14
|
Parivesh A, Barseghyan H, Délot E, Vilain E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr Top Dev Biol 2019; 134:317-375. [PMID: 30999980 PMCID: PMC7382024 DOI: 10.1016/bs.ctdb.2019.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity. Owing to the complexity of conditions grouped under DSD, genome-wide scanning methods are better suited for identifying disease causing gene variant(s) and providing a clinical diagnosis. Here, we review a number of established genomic tools (karyotyping, chromosomal microarrays and exome sequencing) used in clinic for DSD diagnosis, as well as emerging genomic technologies such as whole-genome (short-read) sequencing, long-read sequencing, and optical mapping used for novel DSD gene discovery. These, together with gene expression and epigenetic studies can potentiate the clinical diagnosis of DSD diagnostic rates and enhance the outcomes for patients and families.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
15
|
Jullien N, Romanet P, Philippon M, Quentien MH, Beck-Peccoz P, Bergada I, Odent S, Reynaud R, Barlier A, Saveanu A, Brue T, Castinetti F. Heterozygous LHX3 mutations may lead to a mild phenotype of combined pituitary hormone deficiency. Eur J Hum Genet 2018; 27:216-225. [PMID: 30262920 DOI: 10.1038/s41431-018-0264-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 07/03/2018] [Accepted: 08/09/2018] [Indexed: 12/31/2022] Open
Abstract
LHX3 is an LIM domain transcription factor involved in the early steps of pituitary ontogenesis. We report here functional studies of three allelic variants, including the first heterozygous variant of LHX3 NM_178138.5(LHX3):c.587T>C (p.(Leu196Pro)) that may be responsible for a milder phenotype of hypopituitarism. Our functional studies showed that NM_178138.5(LHX3):c.587T>C (p.(Leu196Pro)) was not able to activate target promoters in vitro, as it did not bind DNA, and likely affected LHX3 function via a mechanism of haplo-insufficiency. Our study demonstrates the possibility that patients with a heterozygous variant of LHX3 may have pituitary deficiencies, with a milder phenotype than patients with homozygous variants. It is thus of vital to propose an optimal follow-up of such patients, who, until now, were considered as not being at risk of presenting pituitary deficiency. The second variant NM_178138.5(LHX3):c.622C>G (p.(Arg208Gly)), present in a homozygous state, displayed decreased transactivating ability without loss of binding capacity in vitro, concordant with in silico analysis; it should thus be considered to affect LHX3 function. In contrast, the NM_178138.5(LHX3):c.929G>C (p.(Arg310Pro)) variant, in a heterozygous state, also predicted as deleterious in silico, proved functionally active in vitro, and should thus still be classified as a variant of unknown significance. Our study emphasizes the need for functional studies due to the limits of software-based predictions of new variants, and the possible association of a pituitary phenotype to heterozygous LHX3 variants.
Collapse
Affiliation(s)
| | - Pauline Romanet
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital de la Conception, Laboratory of Molecular Biology, Marseille, France
| | - Mélanie Philippon
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital de la Conception, Department of Endocrinology, Marseille, France
| | | | - Paolo Beck-Peccoz
- Institute of Endocrine Sciences, Ospedale Maggiore IRCCS, University of Milan, Milan, Italy
| | - Ignacio Bergada
- Centro de Investigaciones Endocrinologicas (CEDIE) « Dr. César Bergada » Division de Endocrinologia, Hospital de Ninos Ricardo Guttierrez, Buenos Aires, Argentina
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de référence "Maladies Rares" CLAD-Ouest, université de Rennes 1, CNRS UMR6290, Hôpital SUD, Rennes, France
| | - Rachel Reynaud
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital la Timone Enfants, Department of Pediatrics, Marseille, France
| | - Anne Barlier
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital de la Conception, Laboratory of Molecular Biology, Marseille, France
| | - Alexandru Saveanu
- Aix Marseille Univ, INSERM, MMG, UMR1251 Faculté de Médecine, Marseille, France
| | - Thierry Brue
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital de la Conception, Department of Endocrinology, Marseille, France
| | - Frederic Castinetti
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital de la Conception, Department of Endocrinology, Marseille, France.
| |
Collapse
|
16
|
Xiao D, Jin K, Xiang M. Necessity and Sufficiency of Ldb1 in the Generation, Differentiation and Maintenance of Non-photoreceptor Cell Types During Retinal Development. Front Mol Neurosci 2018; 11:271. [PMID: 30127719 PMCID: PMC6087769 DOI: 10.3389/fnmol.2018.00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022] Open
Abstract
During mammalian retinal development, the multipotent progenitors differentiate into all classes of retinal cells under the delicate control of transcriptional factors. The deficiency of a transcription cofactor, the LIM-domain binding protein Ldb1, has been shown to cause proliferation and developmental defects in multiple tissues including cardiovascular, hematopoietic, and nervous systems; however, it remains unclear whether and how it regulates retinal development. By expression profiling, RNA in situ hybridization and immunostaining, here we show that Ldb1 is expressed in the progenitors during early retinal development, but later its expression gradually shifts to non-photoreceptor cell types including bipolar, amacrine, horizontal, ganglion, and Müller glial cells. Retina-specific ablation of Ldb1 in mice resulted in microphthalmia, optic nerve hypoplasia, retinal thinning and detachment, and profound vision impairment as determined by electroretinography. In the mutant retina, there was precocious differentiation of amacrine and horizontal cells, indicating a requirement of Ldb1 in maintaining the retinal progenitor pool. Additionally, all non-photoreceptor cell types were greatly reduced which appeared to be caused by a generation defect and/or retinal degeneration via excessive cell apoptosis. Furthermore, we showed that misexpressed Ldb1 was sufficient to promote the generation of bipolar, amacrine, horizontal, ganglion, and Müller glial cells at the expense of photoreceptors. Together, these results demonstrate that Ldb1 is not only necessary but also sufficient for the development and/or maintenance of non-photoreceptor cell types, and implicate that the pleiotropic functions of Ldb1 during retinal development are context-dependent and determined by its interaction with diverse LIM-HD (LIM-homeodomain) and LMO (LIM domain-only) binding protein partners.
Collapse
Affiliation(s)
- Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Abstract
Human growth is a very complex phenomenon influenced by genetic, hormonal, nutritional and environmental factors, from fetal life to puberty. Although the GH-IGF axis has a central role with specific actions on growth, numerous genes are involved in the control of stature. Genome-wide association studies have identified >600 variants associated with human height, still explaining only a small fraction of phenotypic variation. Since short stature in childhood is a common reason for referral, pediatric endocrinologists must be aware of the multifactorial and polygenic contributions to height. Multiple disorders characterized by growth failure of prenatal and/or postnatal onset due to single gene defects have been described. Their early diagnosis, facilitated by advances in genomic technologies, is of upmost importance for their clinical management and to provide genetic counseling. Here we review the current clinical and genetic information regarding different syndromes and hormone abnormalities with proportionate short stature as the main feature, and provide an update of the approach for diagnosis and management.
Collapse
Affiliation(s)
- Jesús Argente
- Full Professor of Pediatrics & Pediatric Endocrinology, Director, Department of Pediatrics, Universidad Autónoma de Madrid, Spain, Chairman, Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain, Centro de Investigación Biomédica en Red de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain, IMDEA Food Institute,CEIUAM+CSIC, Madrid, Spain.
| | - Luis A Pérez-Jurado
- Full Professor of Genetics. Genetics Unit, Universitat Pompeu Fabra, Barcelona, Spain, Hospital del Mar Research Institute (IMIM), Barcelona, Spain, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain, SA Clinical Genetics, Women's and Children's Hospital, North Adelaide, SA, Australia, Clinical Professor, University of Adelaide, SA, Australia
| |
Collapse
|
18
|
Abstract
Growth hormone (GH) research and its clinical application for the treatment of growth disorders span more than a century. During the first half of the 20th century, clinical observations and anatomical and biochemical studies formed the basis of the understanding of the structure of GH and its various metabolic effects in animals. The following period (1958-1985), during which pituitary-derived human GH was used, generated a wealth of information on the regulation and physiological role of GH - in conjunction with insulin-like growth factors (IGFs) - and its use in children with GH deficiency (GHD). The following era (1985 to present) of molecular genetics, recombinant technology and the generation of genetically modified biological systems has expanded our understanding of the regulation and role of the GH-IGF axis. Today, recombinant human GH is used for the treatment of GHD and various conditions of non-GHD short stature and catabolic states; however, safety concerns still accompany this therapeutic approach. In the future, new therapeutics based on various components of the GH-IGF axis might be developed to further improve the treatment of such disorders. In this Review, we describe the history of GH research and clinical use with a particular focus on disorders in childhood.
Collapse
Affiliation(s)
- Michael B Ranke
- Department of Pediatric Endocrinology, University Children's Hospital, Tübingen, Germany
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
19
|
Giri D, Vignola ML, Gualtieri A, Scagliotti V, McNamara P, Peak M, Didi M, Gaston-Massuet C, Senniappan S. Novel FOXA2 mutation causes Hyperinsulinism, Hypopituitarism with Craniofacial and Endoderm-derived organ abnormalities. Hum Mol Genet 2018; 26:4315-4326. [PMID: 28973288 DOI: 10.1093/hmg/ddx318] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022] Open
Abstract
Congenital hypopituitarism (CH) is characterized by the deficiency of one or more pituitary hormones and can present alone or in association with complex disorders. Congenital hyperinsulinism (CHI) is a disorder of unregulated insulin secretion despite hypoglycaemia that can occur in isolation or as part of a wider syndrome. Molecular diagnosis is unknown in many cases of CH and CHI. The underlying genetic etiology causing the complex phenotype of CH and CHI is unknown. In this study, we identified a de novo heterozygous mutation in the developmental transcription factor, forkhead box A2, FOXA2 (c.505T>C, p.S169P) in a child with CHI and CH with craniofacial dysmorphic features, choroidal coloboma and endoderm-derived organ malformations in liver, lung and gastrointestinal tract by whole exome sequencing. The mutation is at a highly conserved residue within the DNA binding domain. We demonstrated strong expression of Foxa2 mRNA in the developing hypothalamus, pituitary, pancreas, lungs and oesophagus of mouse embryos using in situ hybridization. Expression profiling on human embryos by immunohistochemistry showed strong expression of hFOXA2 in the neural tube, third ventricle, diencephalon and pancreas. Transient transfection of HEK293T cells with Wt (Wild type) hFOXA2 or mutant hFOXA2 showed an impairment in transcriptional reporter activity by the mutant hFOXA2. Further analyses using western blot assays showed that the FOXA2 p.(S169P) variant is pathogenic resulting in lower expression levels when compared with Wt hFOXA2. Our results show, for the first time, the causative role of FOXA2 in a complex congenital syndrome with hypopituitarism, hyperinsulinism and endoderm-derived organ abnormalities.
Collapse
Affiliation(s)
- Dinesh Giri
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK.,Department of Women and Children's Health, Institute in the Park, University of Liverpool, Liverpool L12 2AP, UK
| | - Maria Lillina Vignola
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Paul McNamara
- Department of Women and Children's Health, Institute in the Park, University of Liverpool, Liverpool L12?2AP, UK
| | - Matthew Peak
- NIHR Alder Hey Clinical Research Facility for Experimental Medicine, Alder Hey Children's NHS Foundation Trust, Liverpool, L12 2AP, UK
| | - Mohammed Didi
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts & the London School of Medicine, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK.,Department of Women and Children's Health, Institute in the Park, University of Liverpool, Liverpool L12 2AP, UK
| |
Collapse
|
20
|
Madeira JL, Nishi MY, Nakaguma M, Benedetti AF, Biscotto IP, Fernandes T, Pequeno T, Figueiredo T, Franca MM, Correa FA, Otto AP, Abrão M, Miras MB, Santos S, Jorge AA, Costalonga EF, Mendonca BB, Arnhold IJ, Carvalho LR. Molecular analysis of brazilian patients with combined pituitary hormone deficiency and orthotopic posterior pituitary lobe reveals eight different PROP1 alterations with three novel mutations. Clin Endocrinol (Oxf) 2017; 87:725-732. [PMID: 28734020 DOI: 10.1111/cen.13430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Mutations in PROP1, HESX1 and LHX3 are associated with combined pituitary hormone deficiency (CPHD) and orthotopic posterior pituitary lobe (OPP). OBJECTIVE To identify mutations in PROP1, HESX1 and LHX3 in a large cohort of patients with CPHD and OPP (35 Brazilian, two Argentinian). DESIGN AND METHODS We studied 23 index patients with CPHD and OPP (six familial and 17 sporadic) as well as 14 relatives. PROP1 was sequenced by the Sanger method in all except one sporadic case studied using a candidate gene panel. Multiplex ligation-dependent probe amplification (MLPA) was applied to one familial case in whom PROP1 failed to amplify by PCR. In the 13 patients without PROP1 mutations, HESX1 and LHX3 were sequenced by the Sanger method. RESULTS We identified PROP1 mutations in 10 index cases. Three mutations were novel: one affecting the initiation codon (c.1A>G) and two affecting splicing sites, c.109+1G>A and c.342+1G>C. The known mutations, c.150delA (p.Arg53Aspfs*112), c.218G>A (p.Arg73His), c.263T>C (p.Phe88Ser) and c.301_302delAG (p.Leu102Cysfs*8), were also detected. MLPA confirmed complete PROP1 deletion in one family. We did not identify HESX1 and LHX3 mutations by Sanger. CONCLUSION PROP1 mutations are a prevalent cause of congenital CPHD with OPP, and therefore, PROP1 sequencing must be the first step of molecular investigation in patients with CPHD and OPP, especially in populations with a high frequency of PROP1 mutations. In the absence of mutations, massively parallel sequencing is a promising approach. The high prevalence and diversity of PROP1 mutations is associated with the ethnic background of this cohort.
Collapse
Affiliation(s)
- Joao Lo Madeira
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Marilena Nakaguma
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Anna F Benedetti
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Isabela Peixoto Biscotto
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Thamiris Fernandes
- Departamento de Clínica Médica da Faculdade de Medicina da Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Thiago Pequeno
- Núcleo de Estudos em Genética e Educação, Universidade Estadual da Paraíba, Campina Grande, Paraíba, Brazil
| | - Thalita Figueiredo
- Núcleo de Estudos em Genética e Educação, Universidade Estadual da Paraíba, Campina Grande, Paraíba, Brazil
| | - Marcela M Franca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Fernanda A Correa
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Aline P Otto
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Milena Abrão
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Mirta B Miras
- Servicio de Endocrinología Hospital de Niños de la Santísima Trinidad Córdoba, Córdoba, Argentina
| | - Silvana Santos
- Núcleo de Estudos em Genética e Educação, Universidade Estadual da Paraíba, Campina Grande, Paraíba, Brazil
| | - Alexander Al Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Unidade de Endocrinologia-Genética - LIM/25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Everlayny F Costalonga
- Departamento de Clínica Médica da Faculdade de Medicina da Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ivo Jp Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Luciani R Carvalho
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| |
Collapse
|
21
|
Abstract
Central hypothyroidism is a rare and heterogeneous disorder that is characterized by a defect in thyroid hormone secretion in an otherwise normal thyroid gland due to insufficient stimulation by TSH. The disease results from the abnormal function of the pituitary gland, the hypothalamus, or both. Moreover, central hypothyroidism can be isolated or combined with other pituitary hormone deficiencies, which are mostly acquired and are rarely congenital. The clinical manifestations of central hypothyroidism are usually milder than those observed in primary hypothyroidism. Obtaining a positive diagnosis for central hypothyroidism can be difficult from both a clinical and a biochemical perspective. The diagnosis of central hypothyroidism is based on low circulating levels of free T4 in the presence of low to normal TSH concentrations. The correct diagnosis of both acquired (also termed sporadic) and congenital (also termed genetic) central hypothyroidism can be hindered by methodological interference in free T4 or TSH measurements; routine utilization of total T4 or T3 measurements; concurrent systemic illness that is characterized by low levels of free T4 and normal TSH concentrations; the use of the sole TSH-reflex strategy, which is the measurement of the sole level of TSH, without free T4, if levels of TSH are in the normal range; and the diagnosis of congenital hypothyroidism based on TSH analysis without the concomitant measurement of serum levels of T4. In this Review, we discuss current knowledge of the causes of central hypothyroidism, emphasizing possible pitfalls in the diagnosis and treatment of this disorder.
Collapse
Affiliation(s)
| | - Giulia Rodari
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Endocrinology and Metabolic Diseases Unit, Via Francesco Sforza 35, Milan 20122, Italy
| | - Claudia Giavoli
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Endocrinology and Metabolic Diseases Unit, Via Francesco Sforza 35, Milan 20122, Italy
| | - Andrea Lania
- Department of Biomedical Sciences, Humanitas University and Endocrinology Unit, Humanitas Research Hospital, Via Manzoni 56, Rozzano 20086, Italy
| |
Collapse
|
22
|
Chen P, Piaggi P, Traurig M, Bogardus C, Knowler WC, Baier LJ, Hanson RL. Differential methylation of genes in individuals exposed to maternal diabetes in utero. Diabetologia 2017; 60:645-655. [PMID: 28127622 PMCID: PMC7194355 DOI: 10.1007/s00125-016-4203-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Individuals exposed to maternal diabetes in utero are more likely to develop metabolic and cardiovascular diseases later in life. This may be partially attributable to epigenetic regulation of gene expression. We performed an epigenome-wide association study to examine whether differential DNA methylation, a major source of epigenetic regulation, can be observed in offspring of mothers with type 2 diabetes during the pregnancy (OMD) compared with offspring of mothers with no diabetes during the pregnancy (OMND). METHODS DNA methylation was measured in peripheral blood using the Illumina HumanMethylation450K BeadChip. A total of 423,311 CpG sites were analysed in 388 Pima Indian individuals, mean age at examination was 13.0 years, 187 of whom were OMD and 201 were OMND. Differences in methylation between OMD and OMND were assessed. RESULTS Forty-eight differentially methylated CpG sites (with an empirical false discovery rate ≤0.05), mapping to 29 genes and ten intergenic regions, were identified. The gene with the strongest evidence was LHX3, in which six CpG sites were hypermethylated in OMD compared with OMND (p ≤ 1.1 × 10-5). Similarly, a CpG near PRDM16 was hypermethylated in OMD (1.1% higher, p = 5.6 × 10-7), where hypermethylation also predicted future diabetes risk (HR 2.12 per SD methylation increase, p = 9.7 × 10-5). Hypermethylation near AK3 and hypomethylation at PCDHGA4 and STC1 were associated with exposure to diabetes in utero (AK3: 2.5% higher, p = 7.8 × 10-6; PCDHGA4: 2.8% lower, p = 3.0 × 10-5; STC1: 2.9% lower, p = 1.6 × 10-5) and decreased insulin secretory function among offspring with normal glucose tolerance (AK3: 0.088 SD lower per SD of methylation increase, p = 0.02; PCDHGA4: 0.08 lower SD per SD of methylation decrease, p = 0.03; STC1: 0.072 SD lower per SD of methylation decrease, p = 0.05). Seventeen CpG sites were also associated with BMI (p ≤ 0.05). Pathway analysis of the genes with at least one differentially methylated CpG (p < 0.005) showed enrichment for three relevant biological pathways. CONCLUSIONS/INTERPRETATION Intrauterine exposure to diabetes can affect methylation at multiple genomic sites. Methylation status at some of these sites can impair insulin secretion, increase body weight and increase risk of type 2 diabetes.
Collapse
Affiliation(s)
- Peng Chen
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 E. Indian School Rd, Phoenix, AZ, 85014, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 E. Indian School Rd, Phoenix, AZ, 85014, USA
| | - Michael Traurig
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 E. Indian School Rd, Phoenix, AZ, 85014, USA
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 E. Indian School Rd, Phoenix, AZ, 85014, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 E. Indian School Rd, Phoenix, AZ, 85014, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 E. Indian School Rd, Phoenix, AZ, 85014, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 1550 E. Indian School Rd, Phoenix, AZ, 85014, USA.
| |
Collapse
|
23
|
Ramzan K, Bin-Abbas B, Al-Jomaa L, Allam R, Al-Owain M, Imtiaz F. Two novel LHX3 mutations in patients with combined pituitary hormone deficiency including cervical rigidity and sensorineural hearing loss. BMC Endocr Disord 2017; 17:17. [PMID: 28302169 PMCID: PMC5356396 DOI: 10.1186/s12902-017-0164-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/22/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Congenital combined pituitary hormone deficiency (CPHD) is a rare heterogeneous group of conditions. CPHD-type 3 (CPHD3; MIM# 221750) is caused by recessive mutations in LHX3, a LIM-homeodomain transcription factor gene. The isoforms of LHX3 are critical for pituitary gland formation and specification of the anterior pituitary hormone-secreting cell types. They also play distinct roles in the development of neuroendocrine and auditory systems. CASE PRESENTATION Here, we summarize the clinical, endocrinological, radiological and molecular features of three patients from two unrelated families. Clinical evaluation revealed severe CPHD coupled with cervical vertebral malformations (rigid neck, scoliosis), mild developmental delay and moderate sensorineural hearing loss (SNHL). The patients were diagnosed with CPHD3 based on the array of hormone deficiencies and other associated syndromic symptoms, suggestive of targeted LHX3 gene sequencing. A novel missense mutation c.437G > T (p. Cys146Phe) and a novel nonsense mutation c.466C > T (p. Arg156Ter), both in homozygous forms, were found. The altered Cys146 resides in the LIM2 domain of the encoded protein and is a phylogenetically conserved residue, which mediates LHX3 transcription factor binding with a zinc cation. The p. Arg156Ter is predicted to result in a severely truncated protein, lacking the DNA binding homeodomain. CONCLUSIONS Considering genotype/phenotype correlation, we suggest that the presence of SNHL and limited neck rotation should be considered in the differential diagnosis of CPHD3 to facilitate molecular diagnosis. This report describes the first LHX3 mutations from Saudi patients and highlights the importance of combining molecular diagnosis with the clinical findings. In addition, it also expands the knowledge of LHX3-related CPHD3 phenotype and the allelic spectrum for this gene.
Collapse
Affiliation(s)
- Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211 Saudi Arabia
| | - Bassam Bin-Abbas
- Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lolwa Al-Jomaa
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211 Saudi Arabia
| | - Rabab Allam
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211 Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Faiqa Imtiaz
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O.Box 3354, Riyadh, 11211 Saudi Arabia
| |
Collapse
|
24
|
Cohen E, Maghnie M, Collot N, Leger J, Dastot F, Polak M, Rose S, Touraine P, Duquesnoy P, Tauber M, Copin B, Bertrand AM, Brioude F, Larizza D, Edouard T, González Briceño L, Netchine I, Oliver-Petit I, Sobrier ML, Amselem S, Legendre M. Contribution of LHX4 Mutations to Pituitary Deficits in a Cohort of 417 Unrelated Patients. J Clin Endocrinol Metab 2017; 102:290-301. [PMID: 27820671 DOI: 10.1210/jc.2016-3158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT LHX4 encodes a LIM-homeodomain transcription factor that is implicated in early pituitary development. In humans, only 13 heterozygous LHX4 mutations have been associated with congenital hypopituitarism. OBJECTIVE The aims of this study were to evaluate the prevalence of LHX4 mutations in patients with hypopituitarism, to define the associated phenotypes, and to characterize the functional impact of the identified variants and the respective role of the 2 LIM domains of LHX4. DESIGN AND PATIENTS We screened 417 unrelated patients with isolated growth hormone deficiency or combined pituitary hormone deficiency associated with ectopic posterior pituitary and/or sella turcica anomalies for LHX4 mutations (Sanger sequencing). In vitro studies were performed to assess the functional consequences of the identified variants. RESULTS We identified 7 heterozygous variations, including p.(Tyr131*), p.(Arg48Thrfs*104), c.606+1G>T, p.Arg65Val, p.Thr163Pro, p.Arg221Gln, and p.Arg235Gln), that were associated with variable expressivity; 5 of the 7 were also associated with incomplete penetrance. The p.(Tyr131*), p.(Arg48Thrfs*104), p.Ala65Val, p.Thr163Pro, and p.Arg221Gln LHX4 variants are unable to transactivate the POU1F1 and GH promoters. As suggested by transactivation, subcellular localization, and protein-protein interaction studies, p.Arg235Gln is probably a rare polymorphism. Coimmunoprecipitation studies identified LHX3 as a potential protein partner of LHX4. As revealed by functional studies of LIM-defective recombinant LHX4 proteins, the LIM1 and LIM2 domains are not redundant. CONCLUSION This study, performed in the largest cohort of patients screened so far for LHX4 mutations, describes 6 disease-causing mutations that are responsible for congenital hypopituitarism. LHX4 mutations were found to be associated with variable expressivity, and most of them with incomplete penetrance; their contribution to pituitary deficits that are associated with an ectopic posterior pituitary and/or a sella turcica defect is ∼1.4% in the 417 probands tested.
Collapse
Affiliation(s)
- Enzo Cohen
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Unité Mixte de Recherche S933, F-75012, Paris, France
- INSERM, Unité Mixte de Recherche S933, F-75012, Paris, France
| | - Mohamad Maghnie
- Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico G. Gaslini, University of Genoa, I-16147, Genoa, Italy
| | - Nathalie Collot
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| | - Juliane Leger
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service d'Endocrinologie Pédiatrique, F-75019, Paris, France
| | - Florence Dastot
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| | - Michel Polak
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Service d'Endocrinologie Pédiatrique, F-75015, Paris, France
| | - Sophie Rose
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| | - Philippe Touraine
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Service d'Endocrinologie Pédiatrique, F-75013, Paris, France
| | | | - Maïté Tauber
- Centre Hospitalier Universitaire de Toulouse, Hôpital des Enfants, Service d'Endocrinologie et Génétique, F-70000, Toulouse, France
| | - Bruno Copin
- INSERM, Unité Mixte de Recherche S933, F-75012, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| | - Anne-Marie Bertrand
- Centre Hospitalier Universitaire de Besançon, Service de Pédiatrie Endocrinologie, F-25000, Besançon, France
| | - Frederic Brioude
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, F-75012, Paris, France
| | - Daniela Larizza
- Pediatric Endocrinology Unit, Department of Maternal and Children's Health, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo Pavia and Department of Internal Medicine, University of Pavia, I-27100, Pavia, Italy
| | - Thomas Edouard
- Centre Hospitalier Universitaire de Toulouse, Hôpital des Enfants, Service d'Endocrinologie et Génétique, F-70000, Toulouse, France
| | - Laura González Briceño
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, Service d'Endocrinologie Pédiatrique, F-75015, Paris, France
| | - Irène Netchine
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Explorations Fonctionnelles Endocriniennes, F-75012, Paris, France
| | - Isabelle Oliver-Petit
- Centre Hospitalier Universitaire de Toulouse, Hôpital des Enfants, Service d'Endocrinologie et Génétique, F-70000, Toulouse, France
| | | | - Serge Amselem
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Unité Mixte de Recherche S933, F-75012, Paris, France
- INSERM, Unité Mixte de Recherche S933, F-75012, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| | - Marie Legendre
- INSERM, Unité Mixte de Recherche S933, F-75012, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Service de Génétique et d'Embryologie Médicales, F-75012, Paris, France
| |
Collapse
|
25
|
Di Iorgi N, Morana G, Allegri AEM, Napoli F, Gastaldi R, Calcagno A, Patti G, Loche S, Maghnie M. Classical and non-classical causes of GH deficiency in the paediatric age. Best Pract Res Clin Endocrinol Metab 2016; 30:705-736. [PMID: 27974186 DOI: 10.1016/j.beem.2016.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Growth hormone deficiency (GHD) may result from a failure of hypothalamic GHRH production or release, from congenital disorders of pituitary development, or from central nervous system insults including tumors, surgery, trauma, radiation or infiltration from inflammatory diseases. Idiopathic, isolated GHD is the most common sporadic form of hypopituitarism. GHD may also occur in combination with other pituitary hormone deficiencies, and is often referred to as hypopituitarism, combined pituitary hormone deficiency (CPHD), multiple pituitary hormone deficiency (MPHD) or panhypopituitarism. Children without any identifiable cause of their GHD are commonly labeled as having idiopathic hypopituitarism. MRI imaging is the technique of choice in the diagnosis of children with hypopituitarism. Marked differences in MRI pituitary gland morphology suggest different etiologies of GHD and different prognoses. Pituitary stalk agenesis and ectopic posterior pituitary (EPP) are specific markers of permanent GHD, and patients with these MRI findings show a different clinical and endocrine outcome compared to those with normal pituitary anatomy or hypoplastic pituitary alone. Furthermore, the classic triad of ectopic posterior pituitary gland, pituitary stalk hypoplasia/agenesis, and anterior pituitary gland hypoplasia is generally associated with permanent GHD. T2 DRIVE images aid in the identification of pituitary stalk without the use of contrast medium administration. Future developments in imaging techniques will undoubtedly reveal additional insights. Mutations in a number of genes encoding transcription factors - such as HESX1, SOX2, SOX3, LHX3, LHX4, PROP1, POU1F1, PITX, GLI3, GLI2, OTX2, ARNT2, IGSF1, FGF8, FGFR1, PROKR2, PROK2, CHD7, WDR11, NFKB2, PAX6, TCF7L1, IFT72, GPR161 and CDON - have been associated with pituitary dysfunction and abnormal pituitary gland development; the correlation of genetic mutations to endocrine and MRI phenotypes has improved our knowledge of pituitary development and management of patients with hypopituitarism, both in terms of possible genetic counseling, and of early diagnosis of evolving anterior pituitary hormone deficiencies.
Collapse
Affiliation(s)
- Natascia Di Iorgi
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Giovanni Morana
- Neuroradiology Unit, Istituto Giannina Gaslini, Genova, Italy
| | - Anna Elsa Maria Allegri
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Flavia Napoli
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Roberto Gastaldi
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Annalisa Calcagno
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Giuseppa Patti
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy
| | - Sandro Loche
- SSD Endocrinologia Pediatrica, Ospedale Pediatrico Microcitemico "A. Cao", Cagliari, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, Istituto Giannina Gaslini, University of Genova, Genova, Italy; Department of Endocrine Unit, Istituto Giannina Gaslini, University of Genova, Genova, Italy.
| |
Collapse
|
26
|
Fang Q, George AS, Brinkmeier ML, Mortensen AH, Gergics P, Cheung LYM, Daly AZ, Ajmal A, Pérez Millán MI, Ozel AB, Kitzman JO, Mills RE, Li JZ, Camper SA. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocr Rev 2016; 37:636-675. [PMID: 27828722 PMCID: PMC5155665 DOI: 10.1210/er.2016-1101] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023]
Abstract
The genetic basis for combined pituitary hormone deficiency (CPHD) is complex, involving 30 genes in a variety of syndromic and nonsyndromic presentations. Molecular diagnosis of this disorder is valuable for predicting disease progression, avoiding unnecessary surgery, and family planning. We expect that the application of high throughput sequencing will uncover additional contributing genes and eventually become a valuable tool for molecular diagnosis. For example, in the last 3 years, six new genes have been implicated in CPHD using whole-exome sequencing. In this review, we present a historical perspective on gene discovery for CPHD and predict approaches that may facilitate future gene identification projects conducted by clinicians and basic scientists. Guidelines for systematic reporting of genetic variants and assigning causality are emerging. We apply these guidelines retrospectively to reports of the genetic basis of CPHD and summarize modes of inheritance and penetrance for each of the known genes. In recent years, there have been great improvements in databases of genetic information for diverse populations. Some issues remain that make molecular diagnosis challenging in some cases. These include the inherent genetic complexity of this disorder, technical challenges like uneven coverage, differing results from variant calling and interpretation pipelines, the number of tolerated genetic alterations, and imperfect methods for predicting pathogenicity. We discuss approaches for future research in the genetics of CPHD.
Collapse
Affiliation(s)
- Qing Fang
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Akima S George
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michelle L Brinkmeier
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda H Mortensen
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Peter Gergics
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Leonard Y M Cheung
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Alexandre Z Daly
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Adnan Ajmal
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - María Ines Pérez Millán
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - A Bilge Ozel
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jacob O Kitzman
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Ryan E Mills
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Jun Z Li
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| | - Sally A Camper
- Department of Human Genetics (Q.F., A.S.G., M.L.B., A.H.M., P.G., L.Y.M.C., A.Z.D., M.I.P.M., A.B.O., J.O.K., R.E.M., J.Z.L., S.A.C.), Graduate Program in Bioinformatics (A.S.G.), Endocrine Division, Department of Internal Medicine (A.A.), and Department of Computational Medicine and Bioinformatics (J.O.K., R.E.M., J.Z.L.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
27
|
Abstract
Research over the last 20 years has led to the elucidation of the genetic aetiologies of Isolated Growth Hormone Deficiency (IGHD) and Combined Pituitary Hormone Deficiency (CPHD). The pituitary plays a central role in growth regulation, coordinating the multitude of central and peripheral signals to maintain the body's internal balance. Naturally occurring mutation in humans and in mice have demonstrated a role for several factors in the aetiology of IGHD/CPHD. Mutations in the GH1 and GHRHR genes shed light on the phenotype and pathogenesis of IGHD whereas mutations in transcription factors such as HESX1, PROP1, POU1F1, LHX3, LHX4, GLI2 and SOX3 contributed to the understanding of CPHD. Depending upon the expression patterns of these molecules, the phenotype may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Although numerous monogenic causes of growth disorders have been identified, most of the patients with IGHD/CPHD remain with an explained aetiology as shown by the relatively low mutation detection rate. The introduction of novel diagnostic approaches is now leading to the disclosure of novel genetic causes in disorders characterized by pituitary hormone defects.
Collapse
Affiliation(s)
- Mara Giordano
- Department of Health Sciences, Laboratory of Human Genetics, University of Eastern Piedmont, Novara, Italy.
| |
Collapse
|
28
|
Argente J. Challenges in the Management of Short Stature. Horm Res Paediatr 2016; 85:2-10. [PMID: 26649429 DOI: 10.1159/000442350] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
Human growth, from fetal life to adolescence, is dynamic and a good marker of health. Growth is a complex process influenced by genetic, hormonal, nutritional and environmental factors, both pre- and postnatally. To date, no international agreement regarding normal height has been established. Auxological parameters are fundamental to investigate potential short stature (SS), either with a known diagnosis, e.g. disproportionate or proportionate, prenatal and/or postnatal onset, or an unknown diagnosis, i.e. idiopathic SS. The incidence/prevalence of SS is difficult to establish. The measurement of choice in children aged <2 years is length, while in those >2 years of age it is height. A number of monogenic diseases that lead to proportionate SS due to either isolated growth hormone deficiency, multiple pituitary hormone deficiency, growth hormone insensitivity, primary acid-labile subunit deficiency, primary IGF-1 deficiency, IGF-1 resistance, primary IGF-2 deficiency or primary protease deficiency have been discovered in the last 30 years. In addition, the Nosology and Classification of Genetic Skeletal Disorders revised in 2015 includes 436 conditions, with a number of genes of 364. A practical algorithm for the evaluation of SS as well as therapeutic options are discussed.
Collapse
Affiliation(s)
- Jesús Argente
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, and CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Haim-Pinhas H, Kauli R, Lilos P, Laron Z. Growth, development, puberty and adult height of patients with congenital multiple pituitary hormone deficiencies. Growth Horm IGF Res 2016; 27:46-52. [PMID: 26947989 DOI: 10.1016/j.ghir.2016.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/21/2016] [Accepted: 01/30/2016] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Congenital MPHD is a rare condition caused by mutations in pituitary transcription factors genes: PROP1, POU1F1 (PIT1), HESX1, LHX3, LHX4. DESIGN We evaluated in a retrospective study the effects on growth and development in 29 patients with congenital MPHD (cMPHD), during hGH replacement therapy alone and combined with sex hormones. Twenty nine patients with cMPHD were included and diagnosed, treated and followed in our clinic from diagnosis to adult age. Measurements on growth and development were taken by the same medical team. RESULTS Mean birth weight of 21/29 neonates was 3126 ± 536 g. Mean birth length of 7/29 neonates was 48.7 ± 2 cm. Neuromotor development was normal or slightly delayed. Mean age at referral was 9.5 ± 7 years (m), 6.7 ± 3.5 years (f) (p=0.17). Height (SDS) before treatment was -2.8 ± 1.0 (m), -2.8 ± 1.0 (f) (p=0.99). Mean age at initiation of hGH treatment was 9.9 ± 6.7 years (m), 10.3 ± 4.2 years (f) (p=0.85). Mean age at initiation of sex hormone treatment was 17.0 ± 3.5 years (m), 17.1 ± 2.3 years (f) (p=0.88). Penile and testicular sizes were below normal before and after treatment. Head circumference (SD) was -1.9 ± 0.9 before and -0.6 ± 1.8 at end of treatment (p<0.001). Adult height (SDS) reached -1.1 ± 0.6 (p<0.001) for both males and females. CONCLUSION Despite the multiple pituitary hormone deficiencies including hGH, children with congenital MPHD present with a better auxological development than children with congenital IGHD or congenital IGF-1 deficiency. These findings may be due to irregular and incomplete hormone deficiencies increasing with progressive age and late initiation of puberty.
Collapse
Affiliation(s)
- Hadar Haim-Pinhas
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Tel Aviv University, Israel
| | - Rivka Kauli
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Tel Aviv University, Israel
| | - Pearl Lilos
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Tel Aviv University, Israel
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Tel Aviv University, Israel.
| |
Collapse
|
30
|
Schoenmakers N, Alatzoglou KS, Chatterjee VK, Dattani MT. Recent advances in central congenital hypothyroidism. J Endocrinol 2015; 227:R51-71. [PMID: 26416826 PMCID: PMC4629398 DOI: 10.1530/joe-15-0341] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 09/17/2015] [Accepted: 09/28/2015] [Indexed: 01/23/2023]
Abstract
Central congenital hypothyroidism (CCH) may occur in isolation, or more frequently in combination with additional pituitary hormone deficits with or without associated extrapituitary abnormalities. Although uncommon, it may be more prevalent than previously thought, affecting up to 1:16 000 neonates in the Netherlands. Since TSH is not elevated, CCH will evade diagnosis in primary, TSH-based, CH screening programs and delayed detection may result in neurodevelopmental delay due to untreated neonatal hypothyroidism. Alternatively, coexisting growth hormones or ACTH deficiency may pose additional risks, such as life threatening hypoglycaemia. Genetic ascertainment is possible in a minority of cases and reveals mutations in genes controlling the TSH biosynthetic pathway (TSHB, TRHR, IGSF1) in isolated TSH deficiency, or early (HESX1, LHX3, LHX4, SOX3, OTX2) or late (PROP1, POU1F1) pituitary transcription factors in combined hormone deficits. Since TSH cannot be used as an indicator of euthyroidism, adequacy of treatment can be difficult to monitor due to a paucity of alternative biomarkers. This review will summarize the normal physiology of pituitary development and the hypothalamic-pituitary-thyroid axis, then describe known genetic causes of isolated central hypothyroidism and combined pituitary hormone deficits associated with TSH deficiency. Difficulties in diagnosis and management of these conditions will then be discussed.
Collapse
Affiliation(s)
- Nadia Schoenmakers
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Kyriaki S Alatzoglou
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - V Krishna Chatterjee
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| | - Mehul T Dattani
- University of Cambridge Metabolic Research LaboratoriesWellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, Level 4, PO Box 289, Hills Road, Cambridge CB2 0QQ, UKDevelopmental Endocrinology Research GroupSection of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, UK
| |
Collapse
|
31
|
Critical Roles of the LIM Domains of Lhx3 in Recruiting Coactivators to the Motor Neuron-Specifying Isl1-Lhx3 Complex. Mol Cell Biol 2015; 35:3579-89. [PMID: 26260513 DOI: 10.1128/mcb.00335-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022] Open
Abstract
During spinal cord development, the LIM domains of the LIM homeodomain factor Lhx3 bind to either the LIM cofactor nuclear LIM interactor (NLI) or another LIM homeodomain factor, Isl1, assembling the tetrameric V2 interneuron-specifying Lhx3 complex (2NLI:2Lhx3) or the hexameric motor neuron-specifying Isl1-Lhx3 complex (2NLI:2Isl1:2Lhx3). However, the detailed molecular basis by which the Lhx3-LIM domains contribute to motor neuron specification still remains poorly understood. Here, we show that the Lhx3-LIM domains are essential for recruiting transcriptional coactivators to the Isl1-Lhx3 complex. Using a yeast genetic screening system, we identify Lhx3 point mutants that bind to NLI but not Isl1. Accordingly, these mutants fail to assemble the Isl1-Lhx3 complex. However, their interaction with coactivators is relatively intact, and they are fully functional in the Lhx3 complex and V2 interneuron specification. Interestingly, when these Lhx3 mutants are directly fused to Isl1, their transcriptional activity in the Isl1-Lhx3 complex is restored. We further show that this restoration reflects an unexpected role of the Lhx3-LIM domains, likely together with Isl1, to form an interaction interface for coactivators. Our results suggest that the Lhx3-LIM domains play critical roles in transactivation of the Isl1-Lhx3 complex by not only directing the assembly of the Isl1-Lhx3 complex but also recruiting coactivators to the complex.
Collapse
|
32
|
Murray PG, Higham CE, Clayton PE. 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-GH axis: the past 60 years. J Endocrinol 2015; 226:T123-40. [PMID: 26040485 DOI: 10.1530/joe-15-0120] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 12/19/2022]
Abstract
At the time of the publication of Geoffrey Harris's monograph on 'Neural control of the pituitary gland' 60 years ago, the pituitary was recognised to produce a growth factor, and extracts administered to children with hypopituitarism could accelerate growth. Since then our understanding of the neuroendocrinology of the GH axis has included identification of the key central components of the GH axis: GH-releasing hormone and somatostatin (SST) in the 1970s and 1980s and ghrelin in the 1990s. Characterisation of the physiological control of the axis was significantly advanced by frequent blood sampling studies in the 1980s and 1990s; the pulsatile pattern of GH secretion and the factors that influenced the frequency and amplitude of the pulses have been defined. Over the same time, spontaneously occurring and targeted mutations in the GH axis in rodents combined with the recognition of genetic causes of familial hypopituitarism demonstrated the key factors controlling pituitary development. As the understanding of the control of GH secretion advanced, developments of treatments for GH axis disorders have evolved. Administration of pituitary-derived human GH was followed by the introduction of recombinant human GH in the 1980s, and, more recently, by long-acting GH preparations. For GH excess disorders, dopamine agonists were used first followed by SST analogues, and in 2005 the GH receptor blocker pegvisomant was introduced. This review will cover the evolution of these discoveries and build a picture of our current understanding of the hypothalamo-GH axis.
Collapse
Affiliation(s)
- P G Murray
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| | - C E Higham
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| | - P E Clayton
- Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK Centre for Paediatrics and Child HealthInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UKDepartment of Paediatric EndocrinologyRoyal Manchester Children's Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UKDepartment of EndocrinologyThe Christie Hospital NHS Foundation Trust, Manchester, M20 4BX, UKCentre for Endocrinology and DiabetesInstitute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, M13 9WL, UK
| |
Collapse
|
33
|
Abstract
CONTEXT Secondary amenorrhea--the absence of menses for three consecutive cycles--affects approximately 3-4% of reproductive age women, and infertility--the failure to conceive after 12 months of regular intercourse--affects approximately 6-10%. Neuroendocrine causes of amenorrhea and infertility, including functional hypothalamic amenorrhea and hyperprolactinemia, constitute a majority of these cases. OBJECTIVE In this review, we discuss the physiologic, pathologic, and iatrogenic causes of amenorrhea and infertility arising from perturbations in the hypothalamic-pituitary-adrenal axis, including potential genetic causes. We focus extensively on the hormonal mechanisms involved in disrupting the hypothalamic-pituitary-ovarian axis. CONCLUSIONS A thorough understanding of the neuroendocrine causes of amenorrhea and infertility is critical for properly assessing patients presenting with these complaints. Prompt evaluation and treatment are essential to prevent loss of bone mass due to hypoestrogenemia and/or to achieve the time-sensitive treatment goal of conception.
Collapse
Affiliation(s)
- Lindsay T Fourman
- Department of Medicine (L.T.F., P.K.F.) and Neuroendocrine Unit (P.K.F.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | | |
Collapse
|
34
|
Huang YZ, Jing YJ, Sun YJ, Lan XY, Zhang CL, Song EL, Chen H. Exploring genotype-phenotype relationships of the LHX3 gene on growth traits in beef cattle. Gene 2015; 561:219-24. [PMID: 25688878 DOI: 10.1016/j.gene.2015.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/06/2015] [Accepted: 02/12/2015] [Indexed: 11/17/2022]
Abstract
The LIM-homeobox gene 3 (LHX3) plays an essential role in pituitary gland and nervous system development. Sequence variants (SVs) in coding and non-coding regions of LHX3 gene have an impact on LHX3 transcription and growth traits in cattle. Previously, we have identified 3 single nucleotide polymorphisms (SNPs: 1-3) in all exons and intron 2 regions of the LHX3 gene in cattle. Here, 7 novel SNPs (SNPs: 4-10) were identified by DNA sequencing and polymerase chain reaction single-stranded conformational polymorphism (PCR-SSCP) methods. In the present study, a total of 10 SNPs were assessed linkage disequilibrium (LD) in 802 cows representing four main cattle breeds from China (Nanyang, Qinchuan, Jiaxian, and Chinese Holstein). The assessment results demonstrated that 17 haplotypes and 18 diplotypes were revealed in these cattle populations. Moreover, association analysis indicated that the genotypes of SNPs 1-6 are associated with the body weight at 6, 12 and 18months of age in Nanyang cattle (P<0.01 or P<0.05), whereas no significant association was found between the 18 diplotypes and growth traits. Our results provide evidence that some SNPs in LHX3 gene may be associated with body weight at certain age, and LHX3 gene may be used as candidate gene for marker-assisted selection (MAS) in beef cattle breeding.
Collapse
Affiliation(s)
- Yong-Zhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| | - Yong-Jie Jing
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yu-Jia Sun
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Chun-Lei Zhang
- Institute of Cellular and Molecular Biology, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - En-Liang Song
- Institute of Animal Husbandry and Veterinary, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
35
|
Voorbij AMWY, Meij BP, van Bruggen LWL, Grinwis GCM, Stassen QEM, Kooistra HS. Atlanto-axial malformation and instability in dogs with pituitary dwarfism due to an LHX3 mutation. J Vet Intern Med 2015; 29:207-13. [PMID: 25586673 PMCID: PMC4858104 DOI: 10.1111/jvim.12523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/13/2014] [Accepted: 11/13/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Canine pituitary dwarfism or combined pituitary hormone deficiency (CPHD) in shepherd dogs is associated with an LHX3 mutation and can lead to a wide range of clinical manifestations. Some dogs with CPHD have neurological signs that are localized to the cervical spine. In human CPHD, caused by an LHX3 mutation, anatomical abnormalities in the atlanto-axial (C1-C2) joint have been described. OBJECTIVES To evaluate the presence of atlanto-axial malformations in dogs with pituitary dwarfism associated with an LHX3 mutation and to investigate the degree of similarity between the atlanto-axial anomalies found in canine and human CPHD patients with an LHX3 mutation. ANIMALS Three client-owned Czechoslovakian wolfdogs and 1 client-owned German shepherd dog, previously diagnosed with pituitary dwarfism caused by an LHX3 mutation, with neurological signs indicating a cervical spinal disorder. METHODS Radiography, computed tomography, and magnetic resonance imaging of the cranial neck and skull, necropsy, and histology. RESULTS Diagnostic imaging identified abnormal positioning of the dens axis and incomplete ossification of the suture lines between the ossification centers of the atlas with concurrent atlanto-axial instability and dynamic compression of the spinal cord by the dens axis. The malformations and aberrant motion at C1-C2 were confirmed at necropsy and histology. CONCLUSIONS AND CLINICAL IMPORTANCE The atlanto-axial abnormalities of the dwarf dogs resemble those encountered in human CPHD patients with an LHX3 mutation. These findings suggest an association between the LHX3 mutation in dogs with CPHD and atlanto-axial malformations. Consequently, pituitary dwarfs should be monitored closely for neurological signs.
Collapse
Affiliation(s)
- A M W Y Voorbij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Castinetti F, Reynaud R, Quentien MH, Jullien N, Marquant E, Rochette C, Herman JP, Saveanu A, Barlier A, Enjalbert A, Brue T. Combined pituitary hormone deficiency: current and future status. J Endocrinol Invest 2015; 38:1-12. [PMID: 25200994 DOI: 10.1007/s40618-014-0141-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/17/2014] [Indexed: 12/20/2022]
Abstract
Over the last two decades, the understanding of the mechanisms involved in pituitary ontogenesis has largely increased. Since the first description of POU1F1 human mutations responsible for a well-defined phenotype without extra-pituitary malformation, several other genetic defects of transcription factors have been reported with variable degrees of phenotype-genotype correlations. However, to date, despite the identification of an increased number of genetic causes of isolated or multiple pituitary deficiencies, the etiology of most (80-90 %) congenital cases of hypopituitarism remains unsolved. Identifying new etiologies is of importance as a post-natal diagnosis to better diagnose and treat the patients (delayed pituitary deficiencies, differential diagnosis of a pituitary mass on MRI, etc.), and as a prenatal diagnosis to decrease the risk of early death (undiagnosed corticotroph deficiency for instance). The aim of this review is to summarize the main etiologies and phenotypes of combined pituitary hormone deficiencies, associated or not with extra-pituitary anomalies, and to suggest how the identification of such etiologies could be improved in the near future.
Collapse
Affiliation(s)
- F Castinetti
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France.
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France.
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France.
| | - R Reynaud
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Enfants, Service de Pédiatrie multidisciplinaire, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - M-H Quentien
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - N Jullien
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
| | - E Marquant
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Enfants, Service de Pédiatrie multidisciplinaire, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - C Rochette
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - J-P Herman
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
| | - A Saveanu
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- APHM, Hôpital de la Conception, Laboratoire de Biologie Moléculaire, 13005, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - A Barlier
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- APHM, Hôpital de la Conception, Laboratoire de Biologie Moléculaire, 13005, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - A Enjalbert
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital de la Conception, Laboratoire de Biologie Moléculaire, 13005, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| | - T Brue
- Aix-Marseille Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille CRN2M UMR 7286, cedex 15, 13344, Marseille, France
- APHM, Hôpital Timone Adultes, Service d'Endocrinologie, Diabète et Maladies Métaboliques, cedex 5, 13385, Marseille, France
- Centre de Référence des Maladies Rares d'Origine Hypophysaire DEFHY, cedex 15, 13385, Marseille, France
| |
Collapse
|
37
|
Liu H, Liu W, Zhu B, Xu Q, Ni X, Yu J. Lhx3 is required to maintain cancer cell development of high-grade oligodendroglioma. Mol Cell Biochem 2014; 399:1-5. [PMID: 25399296 DOI: 10.1007/s11010-014-2209-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/30/2014] [Indexed: 11/24/2022]
Abstract
The LHX genes play a substantial role in an amount of adorning processes. Potential roles of LHXs have been accepted and approved in an assortment of neoplastic tissues as bump suppressors or promoters depending on bump cachet and types. The aim of this abstraction was to investigate the action role of LHXs in the animal High-grade Oligodendroglioma (HG-OT). The gene announcement changes of LHXs in HG-OT tissues compared with non-cancerous colorectal tissues were detected using application real-time quantitative about-face transcriptase-polymerase alternation acknowledgment (QRT-PCR) assay and immunohistochemistry. And we articulate the gene LHX3 that was decidedly up-regulated in HG-OT by QRT-PCR assay and immunohistochemistry. Furthermore, it was obvious that LHX3 responds to blight corpuscle admeasurement in vitro and LHX3 announcement activated with animated β-catenin levels in HG-OT and β-catenin action was appropriate for LHX3's oncogenic effects. Mechanistically, LHX3 facilitates TCF4 to bind to β-catenin and facilitates LHX3/TCF4/β-catenin circuitous and trans-active it's after ambition gene. LHX3 mutations that agitate the LHX3-β-catenin alternation partially anticipate its action in bump cells. All in all, LHX3 is a frequently activated bump apostle that actuates Wnt/β-catenin signaling in blight beef of HG-OT.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of Neurosurgery, Huashan Hospital Baoshan Branch, Fudan University, 1999 West Changjiang Road, Shanghai, 200431, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
38
|
Jin JM, Yang WX. Molecular regulation of hypothalamus-pituitary-gonads axis in males. Gene 2014; 551:15-25. [PMID: 25168889 DOI: 10.1016/j.gene.2014.08.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
The hypothalamic-pituitary-gonadal axis (HPG) plays vital roles in reproduction and steroid hormone production in both sexes. The focus of this review is upon gene structures, receptor structures and the signaling pathways of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The hormones' functions in reproduction as well as consequences resulting from mutations are also summarized. Specific characteristics of hormones such as the pulsatile secretions of GnRH are also covered. The different regulators of the HPG axis are introduced including kisspeptin, activin, inhibin, follistatin, androgens and estrogen. This review includes not only their basic information, but also their unique function in the HPG axis. Here we view the HPG axis as a whole, so relations between ligands and receptors are well described crossing different levels of the HPG axis. Hormone interactions and transformations are also considered. The major information of this article is depicted in three figures summarizing the current discoveries on the HPG axis. This article systematically introduces the basic knowledge of the HPG axis and provides information of the current advances relating to reproductive hormones.
Collapse
Affiliation(s)
- Jia-Min Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
39
|
Malik RE, Rhodes SJ. The role of DNA methylation in regulation of the murine Lhx3 gene. Gene 2013; 534:272-81. [PMID: 24183897 DOI: 10.1016/j.gene.2013.10.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/09/2013] [Accepted: 10/23/2013] [Indexed: 12/20/2022]
Abstract
LHX3 is a LIM-homeodomain transcription factor with critical roles in pituitary and nervous system development. Mutations in the LHX3 gene are associated with pediatric diseases featuring severe hormone deficiencies, hearing loss, developmental delay, and other symptoms. The mechanisms that govern LHX3/Lhx3 transcription are poorly understood. In this study, we examined the role of DNA methylation in the expression status of the mouse Lhx3 gene. Pituitary cells that do not normally express Lhx3 (Pit-1/0 cells) were treated with 5-aza-2'-deoxycytidine, a demethylating reagent. This treatment leads to activation of Lhx3 gene expression suggesting that methylation contributes to Lhx3 regulation. Treatment of Pit-1/0 pituitary cells with a combination of a demethylating reagent and a histone deacetylase inhibitor led to rapid activation of Lhx3 expression, suggesting possible crosstalk between DNA methylation and histone modification processes. To assess DNA methylation levels, treated and untreated Pit-1/0 genomic DNAs were subjected to bisulfite conversion and sequencing. Treated Pit-1/0 cells had decreased methylation at specific sites in the Lhx3 locus compared to untreated cells. Chromatin immunoprecipitation assays demonstrated interactions between the MeCp2 methyl binding protein and Lhx3 promoter regions in the Pit-1/0 cell line. Overall, this study demonstrates that DNA methylation patterns of the Lhx3 gene are associated with its expression status.
Collapse
Affiliation(s)
- Raleigh E Malik
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Simon J Rhodes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biology, Indiana University-Purdue University Indianapolis, IN, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
40
|
Park S, Mullen RD, Rhodes SJ. Cell-specific actions of a human LHX3 gene enhancer during pituitary and spinal cord development. Mol Endocrinol 2013; 27:2013-27. [PMID: 24100213 DOI: 10.1210/me.2013-1161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The LIM class of homeodomain protein 3 (LHX3) transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie complex pediatric syndromes featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. Here we characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in α-glycoprotein subunit -expressing cells secreting the TSHβ, LHβ, or FSHβ hormones and expressing the GATA2 and steroidogenic factor 1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module active in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression. Furthermore, these studies revealed significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice also provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system.
Collapse
Affiliation(s)
- Soyoung Park
- PhD, Department of Biology, Indiana University-Purdue University Indianapolis, LD222, 402 North Blackford Street, Indianapolis, IN 46202-5120.
| | | | | |
Collapse
|
41
|
Neonatal presentation of chromosome 9q33.2-q34.3 duplication. Gene 2013; 527:541-4. [PMID: 23831513 DOI: 10.1016/j.gene.2013.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 11/20/2022]
Abstract
Partial terminal duplication of chromosome 9 is a rare anomaly that is known to be associated with specific dysmorphic features. While having common characteristics, these patients also have inconsistent phenotypic features. These inconsistent features may be attributed to the length and the region of the duplicated segment of chromosome 9. We discuss a case of an infant with similar physical features to those previously reported including dysmorphology of the craniofacial region, hands and feet. However we also describe findings of malrotation and renal anomalies. Microarray demonstrated duplication of 9q33.2-q34.3 with normal parental karyotyping. This is the first reported case of duplication of this specific region of chromosome 9q and the phenotypic presentation represents a new constellation of clinical findings.
Collapse
|
42
|
Hunter CS, Malik RE, Witzmann FA, Rhodes SJ. LHX3 interacts with inhibitor of histone acetyltransferase complex subunits LANP and TAF-1β to modulate pituitary gene regulation. PLoS One 2013; 8:e68898. [PMID: 23861948 PMCID: PMC3701669 DOI: 10.1371/journal.pone.0068898] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/07/2013] [Indexed: 01/19/2023] Open
Abstract
LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.
Collapse
Affiliation(s)
- Chad S. Hunter
- Department of Biology, Indiana University-Purdue University Indianapolis, Indiana, United States of America
| | - Raleigh E. Malik
- Department of Biochemistry and Molecular Biology, Indiana School of Medicine, Indianapolis, Indiana, United States of America
| | - Frank A. Witzmann
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Simon J. Rhodes
- Department of Biology, Indiana University-Purdue University Indianapolis, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
43
|
Gorbenko del Blanco D, de Graaff LCG, Visser TJ, Hokken-Koelega ACS. Single-nucleotide variants in two Hedgehog genes, SHH and HHIP, as genetic cause of combined pituitary hormone deficiency. Clin Endocrinol (Oxf) 2013; 78:415-23. [PMID: 22897141 DOI: 10.1111/cen.12000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/01/2012] [Accepted: 07/27/2012] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Combined pituitary hormone deficiency (CPHD) is characterized by deficiencies of two or more anterior pituitary hormones. Its genetic cause is unknown in the majority of cases. The Hedgehog (Hh) signalling pathway has been implicated in disorders associated with pituitary development. Mutations in Sonic Hedgehog (SHH) have been described in patients with holoprosencephaly (with or without pituitary involvement). Hedgehog interacting protein (HHIP) has been associated with variations in adult height in genome wide association studies. We investigated whether mutations in these two genes of the Hh pathway, SHH and HHIP, could result in 'idiopathic' CPHD. DESIGN/PATIENTS We directly sequenced the coding regions and exon - intron boundaries of SHH and HHIP in 93 CPHD patients of the Dutch HYPOPIT study in whom mutations in the classical CPHD genes PROP1, POU1F1, HESX1, LHX3 and LHX4 had been ruled out. We compared the expression of Hh genes in Hep3B transfected cells between wild-type proteins and mutants. RESULTS We identified three single-nucleotide variants (p.Ala226Thr, c.1078C>T and c.*8G>T) in SHH. The function of the latter was severely affected in our in vitro assay. In HHIP, we detected a new activating variant c.-1G>C, which increases HHIP's inhibiting function on the Hh pathway. CONCLUSIONS Our results suggest involvement of the Hedgehog pathway in CPHD. We suggest that both SHH and HHIP are investigated as a second screening in CPHD, after mutations in the classical CPHD genes have been ruled out.
Collapse
|
44
|
Porcu E, Medici M, Pistis G, Volpato CB, Wilson SG, Cappola AR, Bos SD, Deelen J, den Heijer M, Freathy RM, Lahti J, Liu C, Lopez LM, Nolte IM, O'Connell JR, Tanaka T, Trompet S, Arnold A, Bandinelli S, Beekman M, Böhringer S, Brown SJ, Buckley BM, Camaschella C, de Craen AJM, Davies G, de Visser MCH, Ford I, Forsen T, Frayling TM, Fugazzola L, Gögele M, Hattersley AT, Hermus AR, Hofman A, Houwing-Duistermaat JJ, Jensen RA, Kajantie E, Kloppenburg M, Lim EM, Masciullo C, Mariotti S, Minelli C, Mitchell BD, Nagaraja R, Netea-Maier RT, Palotie A, Persani L, Piras MG, Psaty BM, Räikkönen K, Richards JB, Rivadeneira F, Sala C, Sabra MM, Sattar N, Shields BM, Soranzo N, Starr JM, Stott DJ, Sweep FCGJ, Usala G, van der Klauw MM, van Heemst D, van Mullem A, H.Vermeulen S, Visser WE, Walsh JP, Westendorp RGJ, Widen E, Zhai G, Cucca F, Deary IJ, Eriksson JG, Ferrucci L, Fox CS, Jukema JW, Kiemeney LA, Pramstaller PP, Schlessinger D, Shuldiner AR, Slagboom EP, Uitterlinden AG, Vaidya B, Visser TJ, Wolffenbuttel BHR, Meulenbelt I, Rotter JI, Spector TD, Hicks AA, Toniolo D, Sanna S, Peeters RP, Naitza S. A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS Genet 2013; 9:e1003266. [PMID: 23408906 PMCID: PMC3567175 DOI: 10.1371/journal.pgen.1003266] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/12/2012] [Indexed: 12/15/2022] Open
Abstract
Thyroid hormone is essential for normal metabolism and development, and overt abnormalities in thyroid function lead to common endocrine disorders affecting approximately 10% of individuals over their life span. In addition, even mild alterations in thyroid function are associated with weight changes, atrial fibrillation, osteoporosis, and psychiatric disorders. To identify novel variants underlying thyroid function, we performed a large meta-analysis of genome-wide association studies for serum levels of the highly heritable thyroid function markers TSH and FT4, in up to 26,420 and 17,520 euthyroid subjects, respectively. Here we report 26 independent associations, including several novel loci for TSH (PDE10A, VEGFA, IGFBP5, NFIA, SOX9, PRDM11, FGF7, INSR, ABO, MIR1179, NRG1, MBIP, ITPK1, SASH1, GLIS3) and FT4 (LHX3, FOXE1, AADAT, NETO1/FBXO15, LPCAT2/CAPNS2). Notably, only limited overlap was detected between TSH and FT4 associated signals, in spite of the feedback regulation of their circulating levels by the hypothalamic-pituitary-thyroid axis. Five of the reported loci (PDE8B, PDE10A, MAF/LOC440389, NETO1/FBXO15, and LPCAT2/CAPNS2) show strong gender-specific differences, which offer clues for the known sexual dimorphism in thyroid function and related pathologies. Importantly, the TSH-associated loci contribute not only to variation within the normal range, but also to TSH values outside the reference range, suggesting that they may be involved in thyroid dysfunction. Overall, our findings explain, respectively, 5.64% and 2.30% of total TSH and FT4 trait variance, and they improve the current knowledge of the regulation of hypothalamic-pituitary-thyroid axis function and the consequences of genetic variation for hypo- or hyperthyroidism. Levels of thyroid hormones are tightly regulated by TSH produced in the pituitary, and even mild alterations in their concentrations are strong indicators of thyroid pathologies, which are very common worldwide. To identify common genetic variants associated with the highly heritable markers of thyroid function, TSH and FT4, we conducted a meta-analysis of genome-wide association studies in 26,420 and 17,520 individuals, respectively, of European ancestry with normal thyroid function. Our analysis identified 26 independent genetic variants regulating these traits, several of which are new, and confirmed previously detected polymorphisms affecting TSH (within the PDE8B gene and near CAPZB, MAF/LOC440389, and NR3C2) and FT4 (within DIO1) levels. Gender-specific differences in the genetic effects of several variants for TSH and FT4 levels were identified at several loci, which offer clues to understand the known sexual dimorphism in thyroid function and pathology. Of particular clinical interest, we show that TSH-associated loci contribute not only to normal variation, but also to TSH values outside reference range, suggesting that they may be involved in thyroid dysfunction. Overall, our findings add to the developing landscape of the regulation of thyroid homeostasis and the consequences of genetic variation for thyroid related diseases.
Collapse
Affiliation(s)
- Eleonora Porcu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Marco Medici
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Giorgio Pistis
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
- Università degli Studi di Trieste, Trieste, Italy
| | - Claudia B. Volpato
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Scott G. Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Anne R. Cappola
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Steffan D. Bos
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Joris Deelen
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Martin den Heijer
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Internal Medicine, Free University Medical Center, Amsterdam, The Netherlands
| | - Rachel M. Freathy
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Chunyu Liu
- Center for Population Studies, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
| | - Lorna M. Lopez
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ilja M. Nolte
- Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeffrey R. O'Connell
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
| | - Toshiko Tanaka
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alice Arnold
- Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Marian Beekman
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Stefan Böhringer
- Leiden University Medical Center, Medical Statistics and Bioinformatics, Leiden, The Netherlands
| | - Suzanne J. Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Brendan M. Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
- Vita e Salute University, San Raffaele Scientific Institute, Milano, Italy
| | - Anton J. M. de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gail Davies
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Marieke C. H. de Visser
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, United Kingdom
| | - Tom Forsen
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
- Vaasa Health Care Centre, Diabetes Unit, Vaasa, Finland
| | - Timothy M. Frayling
- Genetics of Complex Traits, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Laura Fugazzola
- Endocrine Unit, Fondazione Ca' Granda Policlinico and Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Martin Gögele
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Andrew T. Hattersley
- Peninsula NIHR Clinical Research Facility, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Ad R. Hermus
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)–sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | | | - Richard A. Jensen
- Cardiovascular Health Research Unit and Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Eero Kajantie
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Margreet Kloppenburg
- Department of Clinical Epidemiology and Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ee M. Lim
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Pathwest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Corrado Masciullo
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
| | - Stefano Mariotti
- Dipartimento di Scienze Mediche, Università di Cagliari, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Cosetta Minelli
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
| | - Ramaiah Nagaraja
- Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Romana T. Netea-Maier
- Department of Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Aarno Palotie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
- Division of Endocrinology and Metabolic Diseases, IRCCS Ospedale San Luca, Milan, Italy
| | - Maria G. Piras
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - J. Brent Richards
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Department of Medicine, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Departments of Human Genetics, Epidemiology, and Biostatistics, Jewish General Hospital, Lady Davis Institute, McGill University, Montréal, Québec
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)–sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
| | - Mona M. Sabra
- Memorial Sloan Kettering Cancer Center, Medicine-Endocrinology, New York, New York, United States of America
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, United Kingdom
| | - Beverley M. Shields
- Peninsula NIHR Clinical Research Facility, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | - Nicole Soranzo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Stott
- Academic Section of Geriatric Medicine, Faculty of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Fred C. G. J. Sweep
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Gianluca Usala
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Melanie M. van der Klauw
- LifeLines Cohort Study, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diana van Heemst
- Leiden University Medical Center, Gerontology and Geriatrics, Leiden, The Netherlands
| | - Alies van Mullem
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Sita H.Vermeulen
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - W. Edward Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - John P. Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Rudi G. J. Westendorp
- Leiden University Medical Center, Gerontology and Geriatrics, Leiden, The Netherlands
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Guangju Zhai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Johan G. Eriksson
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
- Folkhalsan Research Centre, Helsinki, Finland
- Vasa Central Hospital, Vasa, Finland
| | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Caroline S. Fox
- Division of Intramural Research, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, United States of America
- Division of Endocrinology, Hypertension, and Metabolism, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Urology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter P. Pramstaller
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
- Department of Neurology, General Central Hospital, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Alan R. Shuldiner
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
- Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, United States of America
| | - Eline P. Slagboom
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Genomics Initiative (NGI)–sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands
| | - Bijay Vaidya
- Diabetes, Endocrinology and Vascular Health Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Theo J. Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Bruce H. R. Wolffenbuttel
- LifeLines Cohort Study, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ingrid Meulenbelt
- Leiden University Medical Center, Molecular Epidemiology, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Jerome I. Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Andrew A. Hicks
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of the University of Lübeck, Lübeck, Germany)
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Research Institute, Milano, Italy
- Institute of Molecular Genetics–CNR, Pavia, Italy
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- * E-mail: (S Sanna); (RP Peeters); (S Naitza)
| | - Robin P. Peeters
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- * E-mail: (S Sanna); (RP Peeters); (S Naitza)
| | - Silvia Naitza
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- * E-mail: (S Sanna); (RP Peeters); (S Naitza)
| |
Collapse
|
45
|
Prince KL, Colvin SC, Park S, Lai X, Witzmann FA, Rhodes SJ. Developmental analysis and influence of genetic background on the Lhx3 W227ter mouse model of combined pituitary hormone deficiency disease. Endocrinology 2013; 154:738-48. [PMID: 23288907 PMCID: PMC3548188 DOI: 10.1210/en.2012-1790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Combined pituitary hormone deficiency (CPHD) diseases result in severe outcomes for patients including short stature, developmental delays, and reproductive deficiencies. Little is known about their etiology, especially the developmental profiles and the influences of genetic background on disease progression. Animal models for CPHD provide valuable tools to investigate disease mechanisms and inform diagnostic and treatment protocols. Here we examined hormone production during pituitary development and the influence of genetic background on phenotypic severity in the Lhx3(W227ter/W227ter) mouse model. Lhx3(W227ter/W227ter) embryos have deficiencies of ACTH, α-glycoprotein subunit, GH, PRL, TSHβ, and LHβ during prenatal development. Furthermore, mutant mice have significant reduction in the critical pituitary transcriptional activator-1 (PIT1). Through breeding, the Lhx3(W227ter/W227ter) genotype was placed onto the 129/Sv and C57BL/6 backgrounds. Intriguingly, the genetic background significantly affected viability: whereas Lhx3(W227ter/W227ter) animals were found in the expected frequencies in C57BL/6, homozygous animals were not viable in the 129/Sv genetic environment. The hormone marker and PIT1 reductions observed in Lhx3(W227ter/W227ter) mice on a mixed background were also seen in the separate strains but in some cases were more severe in 129/Sv. To further characterize the molecular changes in diseased mice, we conducted a quantitative proteomic analysis of pituitary proteins. This showed significantly lower levels of PRL, pro-opiomelanocortin (ACTH), and α-glycoprotein subunit proteins in Lhx3(W227ter/W227ter) mice. Together, these data show that hormone deficiency disease is apparent in early prenatal stages in this CPHD model system. Furthermore, as is noted in human disease, genetic background significantly impacts the phenotypic outcome of these monogenic endocrine diseases.
Collapse
Affiliation(s)
- Kelly L Prince
- Departments of Cellular and Integrative Physiology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
46
|
Bhati M, Lee C, Gadd MS, Jeffries CM, Kwan A, Whitten AE, Trewhella J, Mackay JP, Matthews JM. Solution structure of the LIM-homeodomain transcription factor complex Lhx3/Ldb1 and the effects of a pituitary mutation on key Lhx3 interactions. PLoS One 2012; 7:e40719. [PMID: 22848397 PMCID: PMC3405102 DOI: 10.1371/journal.pone.0040719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/12/2012] [Indexed: 01/01/2023] Open
Abstract
Lhx3 is a LIM-homeodomain (LIM-HD) transcription factor that regulates neural cell subtype specification and pituitary development in vertebrates, and mutations in this protein cause combined pituitary hormone deficiency syndrome (CPHDS). The recently published structures of Lhx3 in complex with each of two key protein partners, Isl1 and Ldb1, provide an opportunity to understand the effect of mutations and posttranslational modifications on key protein-protein interactions. Here, we use small-angle X-ray scattering of an Ldb1-Lhx3 complex to confirm that in solution the protein is well represented by our previously determined NMR structure as an ensemble of conformers each comprising two well-defined halves (each made up of LIM domain from Lhx3 and the corresponding binding motif in Ldb1) with some flexibility between the two halves. NMR analysis of an Lhx3 mutant that causes CPHDS, Lhx3(Y114C), shows that the mutation does not alter the zinc-ligation properties of Lhx3, but appears to cause a structural rearrangement of the hydrophobic core of the LIM2 domain of Lhx3 that destabilises the domain and/or reduces the affinity of Lhx3 for both Ldb1 and Isl1. Thus the mutation would affect the formation of Lhx3-containing transcription factor complexes, particularly in the pituitary gland where these complexes are required for the production of multiple pituitary cell types and hormones.
Collapse
Affiliation(s)
- Mugdha Bhati
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Lee
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Morgan S. Gadd
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Cy M. Jeffries
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Ann Kwan
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew E. Whitten
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Jill Trewhella
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Jacqueline M. Matthews
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
47
|
The diversification of the LIM superclass at the base of the metazoa increased subcellular complexity and promoted multicellular specialization. PLoS One 2012; 7:e33261. [PMID: 22438907 PMCID: PMC3305314 DOI: 10.1371/journal.pone.0033261] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/07/2012] [Indexed: 01/15/2023] Open
Abstract
Background Throughout evolution, the LIM domain has been deployed in many different domain configurations, which has led to the formation of a large and distinct group of proteins. LIM proteins are involved in relaying stimuli received at the cell surface to the nucleus in order to regulate cell structure, motility, and division. Despite their fundamental roles in cellular processes and human disease, little is known about the evolution of the LIM superclass. Results We have identified and characterized all known LIM domain-containing proteins in six metazoans and three non-metazoans. In addition, we performed a phylogenetic analysis on all LIM domains and, in the process, have identified a number of novel non-LIM domains and motifs in each of these proteins. Based on these results, we have formalized a classification system for LIM proteins, provided reasonable timing for class and family origin events; and identified lineage-specific loss events. Our analysis is the first detailed description of the full set of LIM proteins from the non-bilaterian species examined in this study. Conclusion Six of the 14 LIM classes originated in the stem lineage of the Metazoa. The expansion of the LIM superclass at the base of the Metazoa undoubtedly contributed to the increase in subcellular complexity required for the transition from a unicellular to multicellular lifestyle and, as such, was a critically important event in the history of animal multicellularity.
Collapse
|
48
|
Sobrier ML, Brachet C, Vié-Luton MP, Perez C, Copin B, Legendre M, Heinrichs C, Amselem S. Symptomatic heterozygotes and prenatal diagnoses in a nonconsanguineous family with syndromic combined pituitary hormone deficiency resulting from two novel LHX3 mutations. J Clin Endocrinol Metab 2012; 97:E503-9. [PMID: 22238406 DOI: 10.1210/jc.2011-2095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Only 11 mutations have been reported in the transcription factor LHX3, known to be important for the development of the pituitary and motor neurons. All patients were homozygous, with various syndromic forms of combined pituitary hormone deficiency (CPHD), hampering to allocate, in these consanguineous patients, the respective contribution of LHX3 and additional genes to each symptom. OBJECTIVE The aim of the study was to report the family history and the molecular basis of a nonconsanguineous patient with syndromic CPHD. PATIENT The patient, who presented at birth with respiratory distress, had a syndromic CPHD, including severe scoliosis, and normal intelligence. His father and paternal grandmother displayed limited head rotation. RESULTS Two new LHX3 defects were identified. The paternally inherited c.252-3C>G mutation, which disrupts an acceptor splice site, would lead to severely truncated proteins containing a single LIM domain, resembling LIM-only proteins. Coexpression studies revealed the dominant-negative effect of this LIM-only protein over the wild-type LHX3. The maternally inherited p.Cys118Tyr mutation results in partial loss of transcriptional activity and synergy with POU1F1. Given the severity of the patient's phenotype, two prenatal diagnoses were performed: the first led to pregnancy interruption, the second to the birth of a healthy boy. CONCLUSIONS This study of the first nonconsanguineous patient with LHX3 mutations demonstrates the pleiotropic roles of LHX3 during development and its full involvement in the complex disease phenotype. Isolated limitation of head rotation may exist in heterozygous carriers and would result from a dominant-negative effect. These data allowed the first prenatal diagnoses of this severe condition to be performed.
Collapse
Affiliation(s)
- Marie-Laure Sobrier
- Institut National de la Santé et de la Recherche Médicale Unité 933, Université Pierre et Marie Curie-Paris 6, Hôpital Armand Trousseau, 26 avenue du Docteur Arnold Netter, 75571 Paris, Cedex 12 France.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The term "congenital hypogonadotropic hypogonadism" (CHH) refers to a group of disorders featuring complete or partial pubertal failure due to insufficient secretion of the pituitary gonadotropins LH and FSH. Many boys (or their parents) will seek medical consultation because of partial or absent virilization after 14 yr of age. Small testes are very frequent, but height is generally normal. Laboratory diagnosis of hypogonadotropic hypogonadism is relatively simple, with very low circulating total testosterone and low to low-normal gonadotropin and inhibin B levels. This hormone profile rules out a primary testicular disorder. Before diagnosing CHH, however, it is necessary to rule out a pituitary tumor or pituitary infiltration by imaging studies, juvenile hemochromatosis, and a systemic disorder that, by undermining nutritional status, could affect gonadotropin secretion and pubertal development. Anterior pituitary function must be thoroughly investigated to rule out a more complex endocrine disorder with multiple hormone deficiencies and thus to conclude that the hypogonadotropic hypogonadism is isolated. The most likely differential diagnosis before age 18 yr is constitutional delay of puberty. Apart from non-Kallmann syndromic forms, which are often diagnosed during childhood, the two main forms of CHH seen by endocrinologists are Kallmann syndrome, in which CHH is associated with impaired sense of smell, and isolated CHH with normal olfaction. Anosmia can be easily diagnosed by questioning the patient, whereas olfactometry is necessary to determine reliably whether olfaction is normal or partially defective. This step is important before embarking on a search for genetic mutations, which will also be useful for genetic counseling. The choice of a particular hormone replacement therapy protocol aimed at virilizing the patient will depend on age at diagnosis and local practices.
Collapse
Affiliation(s)
- Jacques Young
- Université Paris-Sud, Faculté de Médecine Paris-Sud, Unité Mixte de Recherche-S693, Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre, France.
| |
Collapse
|
50
|
Turton JP, Strom M, Langham S, Dattani MT, Le Tissier P. Two novel mutations in the POU1F1 gene generate null alleles through different mechanisms leading to combined pituitary hormone deficiency. Clin Endocrinol (Oxf) 2012; 76:387-93. [PMID: 22010633 DOI: 10.1111/j.1365-2265.2011.04236.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mutations in the POU1F1 gene severely affect the development and function of the anterior pituitary gland and lead to combined pituitary hormone deficiency (CPHD). OBJECTIVE The clinical and genetic analysis of a patient presenting with CPHD and functional characterization of identified mutations. PATIENT We describe a male patient with extreme short stature, learning difficulties, anterior pituitary hypoplasia, secondary hypothyroidism and undetectable prolactin, growth hormone (GH) and insulin-like growth factor 1 (IGF1), with normal random cortisol. DESIGN The POU1F1 coding region was amplified by PCR and sequenced; the functional consequence of the mutations was analysed by cell transfection and in vitro assays. RESULTS Genetic analysis revealed compound heterozygosity for two novel putative loss of function mutations in POU1F1: a transition at position +3 of intron 1 [IVS1+3nt(A>G)] and a point mutation in exon 6 resulting in a substitution of arginine by tryptophan (R265W). Functional analysis revealed that IVS1+3nt(A>G) results in a reduction in the correctly spliced POU1F1 mRNA, which could be corrected by mutations of the +4, +5 and +6 nucleotides. Analysis of POU1F1(R265W) revealed complete loss of function resulting from severely reduced protein stability. CONCLUSIONS Combined pituitary hormone deficiency in this patient is caused by loss of POU1F1 function by two novel mechanisms, namely aberrant splicing (IVS1+3nt (A>G) and protein instability (R265W). Identification of the genetic basis of CPHD enabled the cessation of hydrocortisone therapy without the need for further assessment for evolving endocrinopathy.
Collapse
Affiliation(s)
- J P Turton
- Division of Molecular Neuroendocrinology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|