1
|
Itkin T, Houghton S, Schreiner R, Lin Y, Badwe CR, Voisin V, Murison A, Seyedhassantehrani N, Kaufmann KB, Garcia-Prat L, Booth GT, Geng F, Liu Y, Gomez-Salinero JM, Shieh JH, Redmond D, Xiang JZ, Josefowicz SZ, Trapnell C, Pietras EM, Spencer JA, Levine R, Xiao W, Zangi L, Hadland B, Dick JE, Xie SZ, Rafii S. Transcriptional activation of regenerative hematopoiesis via microenvironmental sensing. Nat Immunol 2025; 26:378-390. [PMID: 40000903 DOI: 10.1038/s41590-025-02087-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/13/2025] [Indexed: 02/27/2025]
Abstract
Transition between activation and quiescence states in hematopoietic stem and progenitor cells (HSPCs) is tightly governed by cell-intrinsic means and microenvironmental co-adaptation. Although this balance is fundamental for lifelong hematopoiesis and immunity, the underlying molecular mechanisms remain poorly defined. Multimodal analysis divulging differential transcriptional activity between distinct HSPC states indicates the presence of Fli-1 transcription factor binding motif in activated hematopoietic stem cells. We reveal that Fli-1 activity is essential during regenerative hematopoiesis in mice. Fli-1 directs activation programs while priming cellular sensory and output machineries, enabling HSPCs co-adoptability with a stimulated vascular niche through propagation of niche-derived angiocrine Notch1 signaling. Constitutively induced Notch1 signaling is sufficient to recuperate functional hematopoietic stem cells impairments in the absence of Fli-1, without leukemic transformation. Applying FLI-1 transient modified-mRNA transduction into latent adult human mobilized HSPCs, enables their niche-mediated expansion and superior engraftment capacities. Thus, decryption of stem cell activation programs offers valuable insights for immunological regenerative medicine.
Collapse
Affiliation(s)
- Tomer Itkin
- Sagol Center for Regenerative Medicine, Department of Pathology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Neufeld and Tamman Cardiovascular Research Institute, Tel Aviv University, Cardiothoracic and Vessels Center, Sheba Medical Center, Ramat Gan, Israel.
| | - Sean Houghton
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan Schreiner
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yang Lin
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Chaitanya R Badwe
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Veronique Voisin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Negar Seyedhassantehrani
- NSF-CREST Center for Cellular and Biomolecular Machines, Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - Kerstin B Kaufmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura Garcia-Prat
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gregory T Booth
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Fuqiang Geng
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ying Liu
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jesus M Gomez-Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jae-Hung Shieh
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenny Z Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Steven Z Josefowicz
- Immunology and Microbial Pathogenesis Program, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joel A Spencer
- NSF-CREST Center for Cellular and Biomolecular Machines, Department of Bioengineering, University of California, Merced, Merced, CA, USA
- Health Science Research Institute, University of California, Merced, Merced, CA, USA
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brandon Hadland
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Pediatric Hematology/Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Cabrera-Serrano AJ, Sánchez-Maldonado JM, González-Olmedo C, Carretero-Fernández M, Díaz-Beltrán L, Gutiérrez-Bautista JF, García-Verdejo FJ, Gálvez-Montosa F, López-López JA, García-Martín P, Pérez EM, Sánchez-Rovira P, Reyes-Zurita FJ, Sainz J. Crosstalk Between Autophagy and Oxidative Stress in Hematological Malignancies: Mechanisms, Implications, and Therapeutic Potential. Antioxidants (Basel) 2025; 14:264. [PMID: 40227235 PMCID: PMC11939785 DOI: 10.3390/antiox14030264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Autophagy is a fundamental cellular process that maintains homeostasis by degrading damaged components and regulating stress responses. It plays a crucial role in cancer biology, including tumor progression, metastasis, and therapeutic resistance. Oxidative stress, similarly, is key to maintaining cellular balance by regulating oxidants and antioxidants, with its disruption leading to molecular damage. The interplay between autophagy and oxidative stress is particularly significant, as reactive oxygen species (ROS) act as both inducers and by-products of autophagy. While autophagy can function as a tumor suppressor in early cancer stages, it often shifts to a pro-tumorigenic role in advanced disease, aiding cancer cell survival under adverse conditions such as hypoxia and nutrient deprivation. This dual role is mediated by several signaling pathways, including PI3K/AKT/mTOR, AMPK, and HIF-1α, which coordinate the balance between autophagic activity and ROS production. In this review, we explore the mechanisms by which autophagy and oxidative stress interact across different hematological malignancies. We discuss how oxidative stress triggers autophagy, creating a feedback loop that promotes tumor survival, and how autophagic dysregulation leads to increased ROS accumulation, exacerbating tumorigenesis. We also examine the therapeutic implications of targeting the autophagy-oxidative stress axis in cancer. Current strategies involve modulating autophagy through specific inhibitors, enhancing ROS levels with pro-oxidant compounds, and combining these approaches with conventional therapies to overcome drug resistance. Understanding the complex relationship between autophagy and oxidative stress provides critical insights into novel therapeutic strategies aimed at improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Carmen González-Olmedo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - María Carretero-Fernández
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
| | - Leticia Díaz-Beltrán
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Juan Francisco Gutiérrez-Bautista
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Servicio de Análisis Clínicos e Inmunología, University Hospital Virgen de las Nieves, 18014 Granada, Spain
- Department of Biochemistry, Molecular Biology and Immunology III, University of Granada, 18016 Granada, Spain
| | - Francisco José García-Verdejo
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Gálvez-Montosa
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - José Antonio López-López
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Paloma García-Martín
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Eva María Pérez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Campus de la Salud Hospital, PTS, 18016 Granada, Spain
| | - Pedro Sánchez-Rovira
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Medical Oncology Unit, University Hospital of Jaén, 23007 Jaén, Spain
| | - Fernando Jesús Reyes-Zurita
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain; (A.J.C.-S.); (J.M.S.-M.); (C.G.-O.); (M.C.-F.); (L.D.-B.); (J.F.G.-B.); (F.J.G.-V.); (F.G.-M.); (J.A.L.-L.); (E.M.P.); (P.S.-R.)
- Instituto de Investigación Biosanitaria IBs.Granada, 18012 Granada, Spain;
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18012 Granada, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
3
|
Deng J, Tan Y, Xu Z, Wang H. Advances in hematopoietic stem cells ex vivo expansion associated with bone marrow niche. Ann Hematol 2024; 103:5035-5057. [PMID: 38684510 DOI: 10.1007/s00277-024-05773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hematopoietic stem cells (HSCs) are an ideal source for the treatment of many hematological diseases and malignancies, as well as diseases of other systems, because of their two important features, self-renewal and multipotential differentiation, which have the ability to rebuild the blood system and immune system of the body. However, so far, the insufficient number of available HSCs, whether from bone marrow (BM), mobilized peripheral blood or umbilical cord blood, is still the main restricting factor for the clinical application. Therefore, strategies to expand HSCs numbers and maintain HSCs functions through ex vivo culture are urgently required. In this review, we outline the basic biology characteristics of HSCs, and focus on the regulatory factors in BM niche affecting the functions of HSCs. Then, we introduce several representative strategies used for HSCs from these three sources ex vivo expansion associated with BM niche. These findings have deepened our understanding of the mechanisms by which HSCs balance self-renewal and differentiation and provided a theoretical basis for the efficient clinical HSCs expansion.
Collapse
Affiliation(s)
- Ju Deng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- The Key Laboratory of Molecular Diagnosis and Treatment of Hematological Disease of Shanxi Province, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Woo SY, Shim WS, Lee H, Baryawno N, Song P, Kim BS, Yoon S, Oh SO, Lee D. 27-Hydroxycholesterol Negatively Affects the Function of Bone Marrow Endothelial Cells in the Bone Marrow. Int J Mol Sci 2024; 25:10517. [PMID: 39408846 PMCID: PMC11477443 DOI: 10.3390/ijms251910517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Hematopoietic stem cells (HSCs) reside in specific microenvironments that facilitate their regulation through both internal mechanisms and external cues. Bone marrow endothelial cells (BMECs), which are found in one of these microenvironments, play a vital role in controlling the self-renewal and differentiation of HSCs during hematological stress. We previously showed that 27-hydroxycholesterol (27HC) administration of exogenous 27HC negatively affected the population of HSCs and progenitor cells by increasing the reactive oxygen species levels in the bone marrow. However, the effect of 27HC on BMECs is unclear. To determine the function of 27HC in BMECs, we employed magnetic-activated cell sorting to isolate CD31+ BMECs and CD31- cells. We demonstrated the effect of 27HC on CD31+ BMECs and HSCs. Treatment with exogenous 27HC led to a decrease in the number of BMECs and reduced the expression of adhesion molecules that are crucial for maintaining HSCs. Our results demonstrate that BMECs are sensitively affected by 27HC and are crucial for HSC survival.
Collapse
Affiliation(s)
- Soo-Yeon Woo
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.-Y.W.); (W.-S.S.); (H.L.); (P.S.)
| | - Wan-Seog Shim
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.-Y.W.); (W.-S.S.); (H.L.); (P.S.)
| | - Hyejin Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.-Y.W.); (W.-S.S.); (H.L.); (P.S.)
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Parkyong Song
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.-Y.W.); (W.-S.S.); (H.L.); (P.S.)
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.-Y.W.); (W.-S.S.); (H.L.); (P.S.)
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
5
|
Kwon M, Kim BS, Yoon S, Oh SO, Lee D. Hematopoietic Stem Cells and Their Niche in Bone Marrow. Int J Mol Sci 2024; 25:6837. [PMID: 38999948 PMCID: PMC11241602 DOI: 10.3390/ijms25136837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Extensive research has explored the functional correlation between stem cells and progenitor cells, particularly in blood. Hematopoietic stem cells (HSCs) can self-renew and regenerate tissues within the bone marrow, while stromal cells regulate tissue function. Recent studies have validated the role of mammalian stem cells within specific environments, providing initial empirical proof of this functional phenomenon. The interaction between bone and blood has always been vital to the function of the human body. It was initially proposed that during evolution, mammalian stem cells formed a complex relationship with the surrounding microenvironment, known as the niche. Researchers are currently debating the significance of molecular-level data to identify individual stromal cell types due to incomplete stromal cell mapping. Obtaining these data can help determine the specific activities of HSCs in bone marrow. This review summarizes key topics from previous studies on HSCs and their environment, discussing current and developing concepts related to HSCs and their niche in the bone marrow.
Collapse
Affiliation(s)
- Munju Kwon
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
6
|
Sakurai M, Ishitsuka K, Becker HJ, Yamazaki S. Ex vivo expansion of human hematopoietic stem cells and clinical applications. Cancer Sci 2024; 115:698-705. [PMID: 38221718 PMCID: PMC10921004 DOI: 10.1111/cas.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare population of cells found in the bone marrow that play a critical role in lifelong hematopoiesis and the reconstitution of the hematopoietic system after hematopoietic stem cell transplantation. Hematopoietic stem cell transplantation remains the only curative treatment for patients with refractory hematologic disorders, and umbilical cord blood (CB) serves as an alternative stem cell source due to its several advantageous characteristics, including human leukocyte antigen flexibility and reduced donor burden. However, CB also has the disadvantage of containing a small number of cells, resulting in limited donor selection and a longer time for engraftment. Therefore, the development of techniques to expand HSCs ex vivo, particularly umbilical CB, is a goal in hematology. While various combinations of cytokines were once the mainstream approach, these protocols had limited expansion rates and did not lead to clinical application. However, in recent years, the development of a technique in which small molecules are added to cytokines has enabled the stable, long-term ex vivo expansion of human HSCs. Clinical trials of expanded umbilical CB using these techniques have been undertaken and have confirmed their efficacy and safety. In addition, we have successfully developed a recombinant-cytokine-free and albumin-free culture system for the long-term expansion of human HSCs. This approach could offer the potential for more selective expansion of human HSCs compared to previous protocols. This review discusses ex vivo culture protocols for expanding human HSCs and presents the results of clinical trials using these techniques, along with future perspectives.
Collapse
Affiliation(s)
- Masatoshi Sakurai
- Division of Hematology, Department of MedicineKeio University School of MedicineTokyoJapan
| | - Kantaro Ishitsuka
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Hans Jiro Becker
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
| | - Satoshi Yamazaki
- Laboratory for Stem Cell Therapy, Faculty of MedicineTsukuba UniversityTsukubaJapan
- Division of Cell Regulation, Center of Experimental Medicine and Systems Biology, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
7
|
Zhan Q, Wang J, Zhang H, Zhang L. E3 ubiquitin ligase on the biological properties of hematopoietic stem cell. J Mol Med (Berl) 2023; 101:543-556. [PMID: 37081103 PMCID: PMC10163092 DOI: 10.1007/s00109-023-02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Hematopoietic stem cells are a group of heterogeneity cells with the potential to differentiate into various types of mature blood cells. Their basic biological properties include quiescence, self-renewal, multilineage differentiation, and homing ability, with the homing of exogenous hematopoietic stem cells after transplantation becoming a new focus, while the first three properties share some similarity in mechanism due to connectivity. In various complex mechanisms, the role of E3 ubiquitin ligases in hematopoietic homeostasis and malignant transformation is receiving increasing attention. As a unique part, E3 ubiquitin ligases play an important role in physiological regulation mechanism of posttranslational modification. In this review, we focus on the recent progress of the crucial role of E3 ubiquitin ligases that target specific proteins for ubiquitination to regulate biological properties of hematopoietic stem cells. Additionally, this paper deals with E3 ubiquitin ligases that affect the biological properties through aging and summarizes the relevant applications of targeting E3 ligases in hematopoietic malignancies. We present some ideas on the clinical application of E3 ubiquitin ligase to regulate hematopoietic stem cells and also believe that it is meaningful to study the upstream signal of these E3 ubiquitin ligases because hematopoietic stem cell dysfunction is caused by deficiency of some E3 ligases.
Collapse
Affiliation(s)
- Qianru Zhan
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Jing Wang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
8
|
Itkin T, Houghton S, Schreiner R, Lin Y, Badwe CR, Voisin V, Murison A, Seyedhassantehrani N, Kaufmann KB, Garcia-Prat L, Booth GT, Geng F, Liu Y, Gomez-Salinero JM, Shieh JH, Redmond D, Xiang JZ, Josefowicz SZ, Trapnell C, Spencer JA, Zangi L, Hadland B, Dick JE, Xie SZ, Rafii S. Transcriptional Activation of Regenerative Hematopoiesis via Vascular Niche Sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534417. [PMID: 37034724 PMCID: PMC10081204 DOI: 10.1101/2023.03.27.534417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Transition between activation and quiescence programs in hematopoietic stem and progenitor cells (HSC/HSPCs) is perceived to be governed intrinsically and by microenvironmental co-adaptation. However, HSC programs dictating both transition and adaptability, remain poorly defined. Single cell multiome analysis divulging differential transcriptional activity between distinct HSPC states, indicated for the exclusive absence of Fli-1 motif from quiescent HSCs. We reveal that Fli-1 activity is essential for HSCs during regenerative hematopoiesis. Fli-1 directs activation programs while manipulating cellular sensory and output machineries, enabling HSPCs co-adoptability with a stimulated vascular niche. During regenerative conditions, Fli-1 presets and enables propagation of niche-derived Notch1 signaling. Constitutively induced Notch1 signaling is sufficient to recuperate functional HSC impairments in the absence of Fli-1. Applying FLI-1 modified-mRNA transduction into lethargic adult human mobilized HSPCs, enables their vigorous niche-mediated expansion along with superior engraftment capacities. Thus, decryption of stem cell activation programs offers valuable insights for immune regenerative medicine.
Collapse
|
9
|
Swati K, Agrawal K, Raj S, Kumar R, Prakash A, Kumar D. Molecular mechanism(s) of regulations of cancer stem cell in brain cancer propagation. Med Res Rev 2022; 43:441-463. [PMID: 36205299 DOI: 10.1002/med.21930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/01/2022] [Accepted: 09/11/2022] [Indexed: 11/12/2022]
Abstract
Brain tumors are most often diagnosed with solid neoplasms and are the primary reason for cancer-related deaths in both children and adults worldwide. With recent developments in the progression of novel targeted chemotherapies, the prognosis of malignant glioma remains dismal. However, the high recurrence rate and high mortality rate remain unresolved and are closely linked to the biological features of cancer stem cells (CSCs). Research on tumor biology has reached a new age with more understanding of CSC features. CSCs, a subpopulation of whole tumor cells, are now regarded as candidate therapeutic targets. Therefore, in the diagnosis and treatment of tumors, recognizing the biological properties of CSCs is of considerable significance. Here, we have discussed the concept of CSCs and their significant role in brain cancer growth and propagation. We have also discussed personalized therapeutic development and immunotherapies for brain cancer by specifically targeting CSCs.
Collapse
Affiliation(s)
- Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Kirti Agrawal
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Sibi Raj
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Rajeev Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
10
|
Abstract
Hematopoietic stem cell (HSC) regeneration is the remarkable process by which extremely rare, normally inactive cells of the bone marrow can replace an entire organ if called to do so by injury or harnessed by transplantation. HSC research is arguably the first quantitative single-cell science and the foundation of adult stem cell biology. Bone marrow transplant is the oldest and most refined technique of regenerative medicine. Here we review the intertwined history of the discovery of HSCs and bone marrow transplant, the molecular and cellular mechanisms of HSC self-renewal, and the use of HSCs and their derivatives for cell therapy.
Collapse
Affiliation(s)
- Mitch Biermann
- Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - Tannishtha Reya
- Department of Medicine, University of California San Diego, La Jolla, California 92093
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
11
|
Yu M, Zhou M, Li J, Zong R, Yan Y, Kong L, Zhu Q, Li C. Notch-activated mesenchymal stromal/stem cells enhance the protective effect against acetaminophen-induced acute liver injury by activating AMPK/SIRT1 pathway. Stem Cell Res Ther 2022; 13:318. [PMID: 35842731 PMCID: PMC9288678 DOI: 10.1186/s13287-022-02999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background Notch signaling plays important roles in regulating innate immunity. However, little is known about the role of Notch in mesenchymal stromal/stem cell (MSC)-mediated immunomodulation during liver inflammatory response. Methods Notch activation in human umbilical cord-derived MSCs was performed by a tissue culture plate coated with Notch ligand, recombinant human Jagged1 (JAG1). Mice were given intravenous injection of Notch-activated MSCs after acetaminophen (APAP)-induced acute liver injury. Liver tissues were collected and analyzed by histology and immunohistochemistry. Results MSC administration reduced APAP-induced hepatocellular damage, as manifested by decreased serum ALT levels, intrahepatic macrophage/neutrophil infiltration, hepatocellular apoptosis and proinflammatory mediators. The anti-inflammatory activity and therapeutic effects of MSCs were greatly enhanced by Notch activation via its ligand JAG1. However, Notch2 disruption in MSCs markedly diminished the protective effect of MSCs against APAP-induced acute liver injury, even in the presence of JAG1 pretreatment. Strikingly, Notch-activated MSCs promoted AMP-activated protein kinase (AMPKα) phosphorylation, increased the sirtuins 1 (SIRT1) deacetylase expression, but downregulated spliced X-box-binding protein 1 (XBP1s) expression and consequently reduced NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation. Furthermore, SIRT1 disruption or XBP1s overexpression in macrophages exacerbated APAP-triggered liver inflammation and augmented NLRP3/caspase-1 activity in MSC-administrated mice. Mechanistic studies further demonstrated that JAG1-pretreated MSCs activated Notch2/COX2/PGE2 signaling, which in turn induced macrophage AMPK/SIRT1 activation, leading to XBP1s deacetylation and inhibition of NLRP3 activity. Conclusions Activation of Notch2 is required for the ability of MSCs to reduce the severity of APAP-induced liver damage in mice. Our findings underscore a novel molecular insights into MSCs-mediated immunomodulation by activating Notch2/COX2/AMPK/SIRT1 pathway and thus provide a new strategy for the treatment of liver inflammatory diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02999-6.
Collapse
Affiliation(s)
- Mengxue Yu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiahui Li
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.,Department of Anatomy and Histology Embryology, Jinzhou Medical University, Jinzhou, China
| | - Ruobin Zong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yufei Yan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liangyi Kong
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qiang Zhu
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Changyong Li
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
12
|
Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials 2022; 286:121568. [DOI: 10.1016/j.biomaterials.2022.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
|
13
|
Matteini F, Mulaw MA, Florian MC. Aging of the Hematopoietic Stem Cell Niche: New Tools to Answer an Old Question. Front Immunol 2021; 12:738204. [PMID: 34858399 PMCID: PMC8631970 DOI: 10.3389/fimmu.2021.738204] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
The hematopoietic stem cell (HSC) niche is a specialized microenvironment, where a complex and dynamic network of interactions across multiple cell types regulates HSC function. During the last years, it became progressively clearer that changes in the HSC niche are responsible for specific alterations of HSC behavior. The aging of the bone marrow (BM) microenvironment has been shown to critically contribute to the decline in HSC function over time. Interestingly, while upon aging some niche structures within the BM are degenerated and negatively affect HSC functionality, other niche cells and specific signals are preserved and essential to retaining HSC function and regenerative capacity. These new findings on the role of the aging BM niche critically depend on the implementation of new technical tools, developed thanks to transdisciplinary approaches, which bring together different scientific fields. For example, the development of specific mouse models in addition to coculture systems, new 3D-imaging tools, ossicles, and ex-vivo BM mimicking systems is highlighting the importance of new technologies to unravel the complexity of the BM niche on aging. Of note, an exponential impact in the understanding of this biological system has been recently brought by single-cell sequencing techniques, spatial transcriptomics, and implementation of artificial intelligence and deep learning approaches to data analysis and integration. This review focuses on how the aging of the BM niche affects HSCs and on the new tools to investigate the specific alterations occurring in the BM upon aging. All these new advances in the understanding of the BM niche and its regulatory function on HSCs have the potential to lead to novel therapeutical approaches to preserve HSC function upon aging and disease.
Collapse
Affiliation(s)
- Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], Barcelona, Spain
| | - Medhanie A. Mulaw
- Institute for Molecular Medicine and Internal Medicine I, Ulm University and University Hospital Ulm, Ulm, Germany
| | - M. Carolina Florian
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
14
|
Fregona V, Bayet M, Gerby B. Oncogene-Induced Reprogramming in Acute Lymphoblastic Leukemia: Towards Targeted Therapy of Leukemia-Initiating Cells. Cancers (Basel) 2021; 13:cancers13215511. [PMID: 34771671 PMCID: PMC8582707 DOI: 10.3390/cancers13215511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Acute lymphoblastic leukemia is a heterogeneous disease characterized by a diversity of genetic alterations, following a sophisticated and controversial organization. In this review, we present and discuss the concepts exploring the cellular, molecular and functional heterogeneity of leukemic cells. We also review the emerging evidence indicating that cell plasticity and oncogene-induced reprogramming should be considered at the biological and clinical levels as critical mechanisms for identifying and targeting leukemia-initiating cells. Abstract Our understanding of the hierarchical structure of acute leukemia has yet to be fully translated into therapeutic approaches. Indeed, chemotherapy still has to take into account the possibility that leukemia-initiating cells may have a distinct chemosensitivity profile compared to the bulk of the tumor, and therefore are spared by the current treatment, causing the relapse of the disease. Therefore, the identification of the cell-of-origin of leukemia remains a longstanding question and an exciting challenge in cancer research of the last few decades. With a particular focus on acute lymphoblastic leukemia, we present in this review the previous and current concepts exploring the phenotypic, genetic and functional heterogeneity in patients. We also discuss the benefits of using engineered mouse models to explore the early steps of leukemia development and to identify the biological mechanisms driving the emergence of leukemia-initiating cells. Finally, we describe the major prospects for the discovery of new therapeutic strategies that specifically target their aberrant stem cell-like functions.
Collapse
|
15
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
16
|
Wu G, Cheng Zhang C. Membrane protein CAR promotes hematopoietic regeneration upon stress. Haematologica 2021; 106:2180-2190. [PMID: 32586901 PMCID: PMC8327706 DOI: 10.3324/haematol.2019.243998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022] Open
Abstract
Adult hematopoietic stem cells (HSC) are quiescent most of the time, and how HSC switch from quiescence to proliferation following hematopoietic stress is unclear. Here we demonstrate that upon stress the coxsackievirus and adenovirus receptor CAR (also known as CXADR) is upregulated in HSC and critical for HSC entry into the cell cycle. Wild-type HSC were detected with more rapid repopulation ability than the CAR knockout counterparts. After fluorouracil treatment, CAR knockout HSC had lower levels of Notch1 expression and elevated protein level of Numb, a Notch antagonist. The Notch signaling inhibitor DAPT, dominant negative form of MAML (a transcriptional coactivator of Notch), or dominant negative mutant of LNX2 (an E3 ligase that acts on Numb and binds to CAR), all were capable of abrogating the function of CAR in HSC. We conclude that CAR activates Notch1 signaling by downregulating Numb protein expression to facilitate entry of quiescent HSC into the cell cycle during regeneration.
Collapse
Affiliation(s)
- Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Ng HL, Quail E, Cruickshank MN, Ulgiati D. To Be, or Notch to Be: Mediating Cell Fate from Embryogenesis to Lymphopoiesis. Biomolecules 2021; 11:biom11060849. [PMID: 34200313 PMCID: PMC8227657 DOI: 10.3390/biom11060849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Notch signaling forms an evolutionarily conserved juxtacrine pathway crucial for cellular development. Initially identified in Drosophila wing morphogenesis, Notch signaling has since been demonstrated to play pivotal roles in governing mammalian cellular development in a large variety of cell types. Indeed, abolishing Notch constituents in mouse models result in embryonic lethality, demonstrating that Notch signaling is critical for development and differentiation. In this review, we focus on the crucial role of Notch signaling in governing embryogenesis and differentiation of multiple progenitor cell types. Using hematopoiesis as a diverse cellular model, we highlight the role of Notch in regulating the cell fate of common lymphoid progenitors. Additionally, the influence of Notch through microenvironment interplay with lymphoid cells and how dysregulation influences disease processes is explored. Furthermore, bi-directional and lateral Notch signaling between ligand expressing source cells and target cells are investigated, indicating potentially novel therapeutic options for treatment of Notch-mediated diseases. Finally, we discuss the role of cis-inhibition in regulating Notch signaling in mammalian development.
Collapse
Affiliation(s)
- Han Leng Ng
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Elizabeth Quail
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark N. Cruickshank
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- Correspondence: ; Tel.: +61-8-6457-1076
| |
Collapse
|
18
|
Panagopoulos D, Karydakis P, Giakoumettis D, Themistocleous M. The 100 most cited papers about medulloblastomas. INTERDISCIPLINARY NEUROSURGERY 2021; 23:100855. [DOI: 10.1016/j.inat.2020.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Sarkar A, Saha S, Paul A, Maji A, Roy P, Maity TK. Understanding stem cells and its pivotal role in regenerative medicine. Life Sci 2021; 273:119270. [PMID: 33640402 DOI: 10.1016/j.lfs.2021.119270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
Stem cells (SCs) are clonogenic cells that develop into the specialized cells which later responsible for making up various types of tissue in the human body. SCs are not only the appropriate source of information for cell division, molecular and cellular processes, and tissue homeostasis but also one of the major putative biological aids to diagnose and cure various degenerative diseases. This study emphasises on various research outputs that occurred in the past two decades. This will give brief information on classification, differentiation, detection, and various isolation techniques of SCs. Here, the various signalling pathways which includes WNT, Sonic hedgehog, Notch, BMI1 and C-met pathways and how does it effect on the regeneration of various classes of SCs and factors that regulates the potency of the SCs are also been discussed. We also focused on the application of SCs in the area of regenerative medicine along with the cellular markers that are useful as salient diagnostic or curative tools or in both, by the process of reprogramming, which includes diabetes, cancer, cardiovascular disorders and neurological disorders. The biomarkers that are mentioned in various literatures and experiments include PDX1, FOXA2, HNF6, and NKX6-1 (for diabetes); CD33, CD24, CD133 (for cancer); c-Kit, SCA-1, Wilm's tumor 1 (for cardiovascular disorders); and OCT4, SOX2, c-MYC, EN1, DAT and VMAT2 (for neurological disorders). In this review, we come to know the advancements and scopes of potential SC-based therapies, its diverse applications in clinical fields that can be helpful in the near future.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Puspita Roy
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700032, India.
| |
Collapse
|
20
|
Wu L, Li X, Lin Q, Chowdhury F, Mazumder MH, Du W. FANCD2 and HES1 suppress inflammation-induced PPARɣ to prevent haematopoietic stem cell exhaustion. Br J Haematol 2021; 192:652-663. [PMID: 33222180 PMCID: PMC7856217 DOI: 10.1111/bjh.17230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
The Fanconi anaemia protein FANCD2 suppresses PPARƔ to maintain haematopoietic stem cell's (HSC) function; however, the underlying mechanism is not known. Here we show that FANCD2 acts in concert with the Notch target HES1 to suppress inflammation-induced PPARƔ in HSC maintenance. Loss of HES1 exacerbates FANCD2-KO HSC defects. However, deletion of HES1 does not cause more severe inflammation-mediated HSC defects in FANCD2-KO mice, indicating that both FANCD2 and HES1 are required for limiting detrimental effects of inflammation on HSCs. Further analysis shows that both FANCD2 and HES1 are required for transcriptional repression of inflammation-activated PPARg promoter. Inflammation orchestrates an overlapping transcriptional programme in HSPCs deficient for FANCD2 and HES1, featuring upregulation of genes in fatty acid oxidation (FAO) and oxidative phosphorylation. Loss of FANCD2 or HES1 augments both basal and inflammation-primed FAO. Targeted inhibition of PPARƔ or the mitochondrial carnitine palmitoyltransferase-1 (CPT1) reduces FAO and ameliorates HSC defects in inflammation-primed HSPCs deleted for FANCD2 or HES1 or both. Finally, depletion of PPARg or CPT1 restores quiescence in these mutant HSCs under inflammatory stress. Our results suggest that this novel FANCD2/HES1/PPARƔ axis may constitute a key component of immunometabolic regulation, connecting inflammation, cellular metabolism and HSC function.
Collapse
Affiliation(s)
- Limei Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Xue Li
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Fabliha Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Md H. Mazumder
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University
- Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University Cancer Institute, Morgantown, WV
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Lakhan R, Rathinam CV. Deficiency of Rbpj Leads to Defective Stress-Induced Hematopoietic Stem Cell Functions and Hif Mediated Activation of Non-canonical Notch Signaling Pathways. Front Cell Dev Biol 2021; 8:622190. [PMID: 33569384 PMCID: PMC7868433 DOI: 10.3389/fcell.2020.622190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Deregulated notch signaling has been associated with human pathobiology. However, functions of notch pathways in hematopoiesis remain incompletely understood. Here, we ablated canonical notch pathways, through genetic deletion of Rbpj, in hematopoietic stem cells (HSCs). Our data identified that loss of canonical notch results in normal adult HSC pool, at steady state conditions. However, HSC maintenance and functions in response to radiation-, chemotherapy-, and cytokine- induced stress were compromised in the absence of canonical notch. Rbpj deficient HSCs exhibit decreased proliferation rates and elevated expression of p57Kip2. Surprisingly, loss of Rbpj resulted in upregulation of key notch target genes and augmented binding of Hes1 to p57 and Gata2 promoters. Further molecular analyses identified an increase in notch activity, elevated expression and nuclear translocation of Hif proteins, and augmented binding of Hif1α to Hes1 promoter in the absence of Rbpj. These studies, for the first time, identify a previously unknown role for non-canonical notch signaling and establish a functional link between Hif and Notch pathways in hematopoiesis.
Collapse
Affiliation(s)
- Ram Lakhan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chozha V Rathinam
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Stem Cell and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Takam Kamga P, Bazzoni R, Dal Collo G, Cassaro A, Tanasi I, Russignan A, Tecchio C, Krampera M. The Role of Notch and Wnt Signaling in MSC Communication in Normal and Leukemic Bone Marrow Niche. Front Cell Dev Biol 2021; 8:599276. [PMID: 33490067 PMCID: PMC7820188 DOI: 10.3389/fcell.2020.599276] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Notch and Wnt signaling are highly conserved intercellular communication pathways involved in developmental processes, such as hematopoiesis. Even though data from literature support a role for these two pathways in both physiological hematopoiesis and leukemia, there are still many controversies concerning the nature of their contribution. Early studies, strengthened by findings from T-cell acute lymphoblastic leukemia (T-ALL), have focused their investigation on the mutations in genes encoding for components of the pathways, with limited results except for B-cell chronic lymphocytic leukemia (CLL); in because in other leukemia the two pathways could be hyper-expressed without genetic abnormalities. As normal and malignant hematopoiesis require close and complex interactions between hematopoietic cells and specialized bone marrow (BM) niche cells, recent studies have focused on the role of Notch and Wnt signaling in the context of normal crosstalk between hematopoietic/leukemia cells and stromal components. Amongst the latter, mesenchymal stromal/stem cells (MSCs) play a pivotal role as multipotent non-hematopoietic cells capable of giving rise to most of the BM niche stromal cells, including fibroblasts, adipocytes, and osteocytes. Indeed, MSCs express and secrete a broad pattern of bioactive molecules, including Notch and Wnt molecules, that support all the phases of the hematopoiesis, including self-renewal, proliferation and differentiation. Herein, we provide an overview on recent advances on the contribution of MSC-derived Notch and Wnt signaling to hematopoiesis and leukemia development.
Collapse
Affiliation(s)
- Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Adriana Cassaro
- Hematology Unit, Department of Oncology, Niguarda Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Anna Russignan
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Cristina Tecchio
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
23
|
de Roo JJ, Staal FJ. Cell Signaling Pathway Reporters in Adult Hematopoietic Stem Cells. Cells 2020; 9:E2264. [PMID: 33050292 PMCID: PMC7599984 DOI: 10.3390/cells9102264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/28/2022] Open
Abstract
Hematopoietic stem cells (HSCs) develop at several anatomical locations and are thought to undergo different niche regulatory cues originating from highly conserved cell signaling pathways, such as Wnt, Notch, TGF-β family, and Hedgehog signaling. Most insight into these pathways has been obtained by reporter models and loss- or gain of function experiments, yet results differ in many cases according to the approach. In this review, we discuss existing murine reporter models regarding these pathways, considering the genetic constructs and reporter proteins in the context of HSC studies; yet these models are relevant for all other stem cell systems. Lastly, we describe a multi-reporter model to properly study and understand the cross-pathway interaction and how reporter models are highly valuable tools to understand complex signaling dynamics in stem cells.
Collapse
Affiliation(s)
| | - Frank. J.T. Staal
- Department of Immunology, L3-Q, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
24
|
Abstract
: Hematopoietic stem cells (HSCs) are a unique population of cells with the remarkable ability to replenish themselves through self-renewal and to give rise to differentiated cell lineages. Though having been discovered more than 50 years ago, and having been widely used in bone marrow transplantation to treat blood disorders including leukemia, expansion of HSCs remains an unmet task, thus affecting its more effective usage in clinical practice. PURPOSE OF REVIEW The purpose of this review article is to summarize past efforts in ex-vivo HSC expansion and to compare recent advances in expanding murine and human HSCs by targeting the N-methyladenosine (mA) pathway. RECENT FINDINGS Unlike past many efforts that mainly target single or limited pathways and often lead to lineage bias or expansion of progenitor cells or limited long-term HSCs (LT-HSCs), the blocking the degradation of mA pathway has an advantage of stabilizing hundreds of key factors required for maintaining HSCs, thus resulting in expansion of functional LT-HSCs. SUMMARY The new approach of targeting the mA pathway has a promising application in clinical HSC-based transplantation.
Collapse
|
25
|
Thippu Jayaprakash K, Michael A. Notch Inhibition: a Promising Strategy to Improve Radiosensitivity and Curability of Radiotherapy. Clin Oncol (R Coll Radiol) 2020; 33:e44-e49. [PMID: 32680694 DOI: 10.1016/j.clon.2020.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- K Thippu Jayaprakash
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Cancer Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Oncology, The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, UK.
| | - A Michael
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Department of Oncology, St Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK
| |
Collapse
|
26
|
Kulkarni R, Kale V. Physiological Cues Involved in the Regulation of Adhesion Mechanisms in Hematopoietic Stem Cell Fate Decision. Front Cell Dev Biol 2020; 8:611. [PMID: 32754597 PMCID: PMC7366553 DOI: 10.3389/fcell.2020.00611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) could have several fates in the body; viz. self-renewal, differentiation, migration, quiescence, and apoptosis. These fate decisions play a crucial role in maintaining homeostasis and critically depend on the interaction of the HSCs with their micro-environmental constituents. However, the physiological cues promoting these interactions in vivo have not been identified to a great extent. Intense research using various in vitro and in vivo models is going on in various laboratories to understand the mechanisms involved in these interactions, as understanding of these mechanistic would greatly help in improving clinical transplantations. However, though these elegant studies have identified the molecular interactions involved in the process, harnessing these interactions to the recipients' benefit would ultimately depend on manipulation of environmental cues initiating them in vivo: hence, these need to be identified at the earliest. HSCs reside in the bone marrow, which is a very complex tissue comprising of various types of stromal cells along with their secreted cytokines, extra-cellular matrix (ECM) molecules and extra-cellular vesicles (EVs). These components control the HSC fate decision through direct cell-cell interactions - mediated via various types of adhesion molecules -, cell-ECM interactions - mediated mostly via integrins -, or through soluble mediators like cytokines and EVs. This could be a very dynamic process involving multiple transient interactions acting concurrently or sequentially, and the adhesion molecules involved in various fate determining situations could be different. If the switch mechanisms governing these dynamic states in vivo are identified, they could be harnessed for the development of novel therapeutics. Here, in addition to reviewing the adhesion molecules involved in the regulation of HSCs, we also touch upon recent advances in our understanding of the physiological cues known to initiate specific adhesive interactions of HSCs with the marrow stromal cells or ECM molecules and EVs secreted by them.
Collapse
Affiliation(s)
- Rohan Kulkarni
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, India
| |
Collapse
|
27
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Blanco-Obregon D, Katz MJ, Durrieu L, Gándara L, Wappner P. Context-specific functions of Notch in Drosophila blood cell progenitors. Dev Biol 2020; 462:101-115. [PMID: 32243888 DOI: 10.1016/j.ydbio.2020.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/10/2023]
Abstract
Drosophila Larval hematopoiesis takes place at the lymph gland, where myeloid-like progenitors differentiate into Plasmatocytes and Crystal Cells, under regulation of conserved signaling pathways. It has been established that the Notch pathway plays a specific role in Crystal Cell differentiation and maintenance. In mammalian hematopoiesis, the Notch pathway has been proposed to fulfill broader functions, including Hematopoietic Stem Cell maintenance and cell fate decision in progenitors. In this work we describe different roles that Notch plays in the lymph gland. We show that Notch, activated by its ligand Serrate, expressed at the Posterior Signaling Center, is required to restrain Core Progenitor differentiation. We define a novel population of blood cell progenitors that we name Distal Progenitors, where Notch, activated by Serrate expressed in Lineage Specifying Cells at the Medullary Zone/Cortical Zone boundary, regulates a binary decision between Plasmatocyte and Crystal Cell fates. Thus, Notch plays context-specific functions in different blood cell progenitor populations of the Drosophila lymph gland.
Collapse
Affiliation(s)
- D Blanco-Obregon
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | - M J Katz
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - L Durrieu
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
| | - L Gándara
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - P Wappner
- Instituto Leloir, CONICET, Patricias Argentinas 435, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, 1428, Argentina.
| |
Collapse
|
29
|
Ma Z, Xu J, Wu L, Wang J, Lin Q, Chowdhury FA, Mazumder MHH, Hu G, Li X, Du W. Hes1 deficiency causes hematopoietic stem cell exhaustion. Stem Cells 2020; 38:756-768. [PMID: 32129527 PMCID: PMC7260087 DOI: 10.1002/stem.3169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
The transcriptional repressor Hairy Enhancer of Split 1 (HES1) plays an essential role in the development of many organs by promoting the maintenance of stem/progenitor cells, controlling the reversibility of cellular quiescence, and regulating both cell fate decisions. Deletion of Hes1 in mice results in severe defects in multiple organs and is lethal in late embryogenesis. Here we have investigated the role of HES1 in hematopoiesis using a hematopoietic lineage‐specific Hes1 knockout mouse model. We found that while Hes1 is dispensable for steady‐state hematopoiesis, Hes1‐deficient hematopoietic stem cells (HSCs) undergo exhaustion under replicative stress. Loss of Hes1 upregulates the expression of genes involved in PPARγ signaling and fatty acid metabolism pathways, and augments fatty acid oxidation (FAO) in Hes1f/fVav1Cre HSCs and progenitors. Functionally, PPARγ targeting or FAO inhibition ameliorates the repopulating defects of Hes1f/fVav1Cre HSCs through improving quiescence in HSCs. Lastly, transcriptome analysis reveals that disruption of Hes1 in hematopoietic lineage alters expression of genes critical to HSC function, PPARγ signaling, and fatty acid metabolism. Together, our findings identify a novel role of HES1 in regulating stress hematopoiesis and provide mechanistic insight into the function of HES1 in HSC maintenance.
Collapse
Affiliation(s)
- Zhilin Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Jian Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Limei Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Junjie Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Fabliha A Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Md Habibul H Mazumder
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA.,Bioinformatics Core, West Virginia University, Morgantown, West Virginia, USA
| | - Xue Li
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, People's Republic of China
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| |
Collapse
|
30
|
Al-Sharea A, Lee MKS, Purton LE, Hawkins ED, Murphy AJ. The haematopoietic stem cell niche: a new player in cardiovascular disease? Cardiovasc Res 2020; 115:277-291. [PMID: 30590405 DOI: 10.1093/cvr/cvy308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Haematopoiesis, the process of blood production, can be altered during the initiation or progression of many diseases. Cardiovascular disease (CVD) has been shown to be heavily influenced by changes to the haematopoietic system, including the types and abundance of immune cells produced. It is now well established that innate immune cells are increased in people with CVD, and the mechanisms contributing to this can be vastly different depending on the risk factors or comorbidities present. Many of these changes begin at the level of the haematopoietic stem and progenitor cells (HSPCs) that reside in the bone marrow (BM). In general, the HSPCs and downstream myeloid progenitors are expanded via increased proliferation in the setting of atherosclerotic CVD. However, HSPCs can also be encouraged to leave the BM and colonise extramedullary sites (i.e. the spleen). Within the BM, HSPCs reside in specialized microenvironments, often referred to as a niche. To date in depth studies assessing the damage or dysregulation that occurs in the BM niche in varying CVDs are scarce. In this review, we provide a general overview of the complex components and interactions within the BM niche and how they influence the function of HSPCs. Additionally, we discuss the main findings regarding changes in the HSPC niche that influence the progression of CVD. We hypothesize that understanding the influence of the BM niche in CVD will aid in delineating new pathways for therapeutic interventions.
Collapse
Affiliation(s)
- Annas Al-Sharea
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | - Man Kit Sam Lee
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | | | - Edwin D Hawkins
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
31
|
Bahmad HF, Poppiti RJ. Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets. J Clin Pathol 2020; 73:243-249. [PMID: 32034059 DOI: 10.1136/jclinpath-2019-206246] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is the most common malignant primary intracranial neoplasm diagnosed in childhood. Although numerous efforts have been made during the past few years to exploit novel targeted therapies for this aggressive neoplasm, there still exist substantial hitches hindering successful management of MB. Lately, progress in cancer biology has shown evidence that a subpopulation of cells within the tumour, namely cancer stem cells (CSCs), are thought to be responsible for the resistance to most chemotherapeutic agents and radiation therapy, accounting for cancer recurrence. Hence, it is crucial to identify the molecular signatures and genetic aberrations that characterise those CSCs and develop therapies that specifically target them. In this review, we aim to give an overview of the main genetic and molecular cues that depict MB-CSCs and provide a synopsis of the novel therapeutic approaches that specifically target this population of cells to attain enhanced antitumorous effects and therefore overcome resistance to therapy.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Robert J Poppiti
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA .,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
32
|
Albakri M, Tashkandi H, Zhou L. A Review of Advances in Hematopoietic Stem Cell Mobilization and the Potential Role of Notch2 Blockade. Cell Transplant 2020; 29:963689720947146. [PMID: 32749152 PMCID: PMC7563033 DOI: 10.1177/0963689720947146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation can be a potential cure for hematological malignancies and some nonhematologic diseases. Hematopoietic stem and progenitor cells (HSPCs) collected from peripheral blood after mobilization are the primary source to provide HSC transplantation. In most of the cases, mobilization by the cytokine granulocyte colony-stimulating factor with chemotherapy, and in some settings, with the CXC chemokine receptor type 4 antagonist plerixafor, can achieve high yield of hematopoietic progenitor cells (HPCs). However, adequate mobilization is not always successful in a significant portion of donors. Research is going on to find new agents or strategies to increase HSC mobilization. Here, we briefly review the history of HSC transplantation, current mobilization regimens, some of the novel agents that are under investigation for clinical practice, and our recent findings from animal studies regarding Notch and ligand interaction as potential targets for HSPC mobilization.
Collapse
Affiliation(s)
- Marwah Albakri
- Department of Pathology, Case Western Reserve University, Cleveland,
OH, USA
| | - Hammad Tashkandi
- Department of Pathology, University of Pittsburgh Medical Center,
PA, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland,
OH, USA
| |
Collapse
|
33
|
Coller HA. The paradox of metabolism in quiescent stem cells. FEBS Lett 2019; 593:2817-2839. [PMID: 31531979 DOI: 10.1002/1873-3468.13608] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
The shift between a proliferating and a nonproliferating state is associated with significant changes in metabolic needs. Proliferating cells tend to have higher metabolic rates, and their metabolic profiles facilitate biosynthesis, as compared to those of nondividing cells of the same sort. Recent studies have elucidated specific molecules that control metabolic changes while cells shift between proliferation and quiescence. Embryonic stem cells, which are rapidly proliferating, tend to have metabolic patterns that are similar to those of nonstem cells in a proliferative state. Moreover, although adult stem cells tend to be quiescent, their metabolic profiles have been reported in multiple organs to more closely resemble those of proliferating than those of nondividing cells in some respects. The findings raise questions about whether there are metabolic profiles that are required for stemness, and whether these profiles relate to the metabolic properties that may be required for quiescence. Here, we review the literature on how metabolism changes upon commitment to proliferation and compare the proliferating and nonproliferating metabolic states of differentiated cells and embryonic and adult stem cells.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.,Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
34
|
Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. Front Genet 2019; 10:711. [PMID: 31552081 PMCID: PMC6736567 DOI: 10.3389/fgene.2019.00711] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Constitutive activation of the Hedgehog (Hh) signaling pathway is associated with increased risk of developing several malignancies. The biological and pathogenic importance of Hh signaling emphasizes the need to control its action tightly, both physiologically and therapeutically. Evidence of crosstalk between Hh and other signaling pathways is reported in many tumor types. Here, we provide an overview of the current knowledge about the communication between Hh and major signaling pathways, such as Notch, Wnt, and transforming growth factor β (TGF-β), which play critical roles in both embryonic and adult life. When these pathways are unbalanced, impaired crosstalk contributes to disease development. It is reported that more than one of these pathways are active in different type of tumors, at the same time. Therefore, starting from a plethora of stimuli that activate multiple signaling pathways, we describe the signals that preferentially converge on the Hh signaling cascade that influence its activity. Moreover, we highlight several connection points between Hh and Notch, Wnt, or TGF-β pathways, showing a reciprocal synergism that contributes to tumorigenesis, supporting a more malignant behavior by tumor cells, such as in leukemia and brain tumors. Understanding the importance of these molecular interlinking networks will provide a rational basis for combined anticancer drug development.
Collapse
Affiliation(s)
- Maria Pelullo
- Center of Life Nano Science Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Sabrina Zema
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
35
|
Lloyd-Lewis B, Mourikis P, Fre S. Notch signalling: sensor and instructor of the microenvironment to coordinate cell fate and organ morphogenesis. Curr Opin Cell Biol 2019; 61:16-23. [PMID: 31323467 DOI: 10.1016/j.ceb.2019.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
During development, stem cells give rise to specialised cell types in a tightly regulated, spatiotemporal manner to drive the formation of complex three-dimensional tissues. While mechanistic insights into the gene regulatory pathways that guide cell fate choices are emerging, how morphogenetic changes are coordinated with cell fate specification remains a fundamental question in organogenesis and adult tissue homeostasis. The requirement of cell contacts for Notch signalling makes it a central pathway capable of linking dynamic cellular rearrangements during tissue morphogenesis with stem cell function. Here, we highlight recent studies that support a critical role for the Notch pathway in translating microenvironmental cues into cell fate decisions, guiding the development of diverse organ systems.
Collapse
Affiliation(s)
- Bethan Lloyd-Lewis
- Institut Curie, PSL Research University, Inserm, CNRS, Paris, France; Sorbonne University, UPMC University of Paris VI, Paris, France
| | - Philippos Mourikis
- Université Paris Est Créteil, IMRB U955-E10, Inserm, CNRS, Créteil, France
| | - Silvia Fre
- Institut Curie, PSL Research University, Inserm, CNRS, Paris, France; Sorbonne University, UPMC University of Paris VI, Paris, France.
| |
Collapse
|
36
|
Putti M, Stassen OMJA, Schotman MJG, Sahlgren CM, Dankers PYW. Influence of the Assembly State on the Functionality of a Supramolecular Jagged1-Mimicking Peptide Additive. ACS OMEGA 2019; 4:8178-8187. [PMID: 31172036 PMCID: PMC6545632 DOI: 10.1021/acsomega.9b00869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 05/05/2023]
Abstract
Expanding the bioactivation toolbox of supramolecular materials is of utmost relevance for their broad applicability in regenerative medicines. This study explores the functionality of a peptide mimic of the Notch ligand Jagged1 in a supramolecular system that is based on hydrogen bonding ureido-pyrimidinone (UPy) units. The functionality of the peptide is studied when formulated as an additive in a supramolecular solid material and as a self-assembled system in solution. UPy conjugation of the DSLJAG1 peptide sequence allows for the supramolecular functionalization of UPy-modified polycaprolactone, an elastomeric material, with UPy-DSLJAG1. Surface presentation of the UPy-DSLJAG1 peptide was confirmed by atomic force microscopy and X-ray photoelectron spectroscopy analyses, but no enhancement of Notch activity was detected in cells presenting Notch1 and Notch3 receptors. Nevertheless, a significant increase in Notch-signaling activity was observed when DSLJAG1 peptides were administered in the soluble form, indicating that the activity of DSLJAG1 is preserved after UPy functionalization but not after immobilization on a supramolecular solid material. Interestingly, an enhanced activity in solution of the UPy conjugate was detected compared with the unconjugated DSLJAG1 peptide, suggesting that the self-assembly of supramolecular aggregates in solution ameliorates the functionality of the molecules in a biological context.
Collapse
Affiliation(s)
- Matilde Putti
- Institute
for Complex Molecular Systems, Laboratory for Chemical Biology, and Laboratory for
Cell and Tissue Engineering, Eindhoven University
of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Oscar M. J. A. Stassen
- Institute
for Complex Molecular Systems, Laboratory for Chemical Biology, and Laboratory for
Cell and Tissue Engineering, Eindhoven University
of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Maaike J. G. Schotman
- Institute
for Complex Molecular Systems, Laboratory for Chemical Biology, and Laboratory for
Cell and Tissue Engineering, Eindhoven University
of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Cecilia M. Sahlgren
- Institute
for Complex Molecular Systems, Laboratory for Chemical Biology, and Laboratory for
Cell and Tissue Engineering, Eindhoven University
of Technology, Eindhoven 5612 AZ, The Netherlands
- Faculty
for Science and Engineering, Biosciences, Åbo Akademi University, Turku 20500, Finland
- Turku
Centre for Biotechnology, University of
Turku and Åbo Akademi University, Turku 20500, Finland
| | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems, Laboratory for Chemical Biology, and Laboratory for
Cell and Tissue Engineering, Eindhoven University
of Technology, Eindhoven 5612 AZ, The Netherlands
| |
Collapse
|
37
|
Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. Int J Mol Sci 2019; 20:ijms20051195. [PMID: 30857245 PMCID: PMC6429522 DOI: 10.3390/ijms20051195] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
The key hallmark of stem cells is their ability to self-renew while keeping a differentiation potential. Intrinsic and extrinsic cell factors may contribute to a decline in these stem cell properties, and this is of the most importance when culturing them. One of these factors is oxygen concentration, which has been closely linked to the maintenance of stemness. The widely used environmental 21% O2 concentration represents a hyperoxic non-physiological condition, which can impair stem cell behaviour by many mechanisms. The goal of this review is to understand these mechanisms underlying the oxygen signalling pathways and their negatively-associated consequences. This may provide a rationale for culturing stem cells under physiological oxygen concentration for stem cell therapy success, in the field of tissue engineering and regenerative medicine.
Collapse
|
38
|
Gurska LM, Ames K, Gritsman K. Signaling Pathways in Leukemic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:1-39. [PMID: 31338813 PMCID: PMC7249489 DOI: 10.1007/978-981-13-7342-8_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) utilize many of the same signaling pathways for their maintenance and survival. In this review, we will focus on several signaling pathways whose roles have been extensively studied in both HSCs and LSCs. Our main focus will be on the PI3K/AKT/mTOR pathway and several of its regulators and downstream effectors. We will also discuss several other signaling pathways of particular importance in LSCs, including the WNT/β-catenin pathway, the NOTCH pathway, and the TGFβ pathway. For each of these pathways, we will emphasize differences in how these pathways operate in LSCs, compared to their function in HSCs, to highlight opportunities for the specific therapeutic targeting of LSCs. We will also highlight areas of crosstalk between multiple signaling pathways that may affect LSC function.
Collapse
Affiliation(s)
- Lindsay M Gurska
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kristina Ames
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kira Gritsman
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
- Department of Medical Oncology, Montefiore Hospital, Bronx, New York, USA.
| |
Collapse
|
39
|
Singh A, Yadav CB, Tabassum N, Bajpeyee AK, Verma V. Stem cell niche: Dynamic neighbor of stem cells. Eur J Cell Biol 2018; 98:65-73. [PMID: 30563738 DOI: 10.1016/j.ejcb.2018.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Stem cell niche is a specialized and dynamic microenvironment around the stem cells which plays a critical role in maintaining the stemness properties of stem cells. Over the years, advancement in the research activity has revealed the various important aspects of stem cell niche including cell-cell interaction, cell-extracellular matrix interaction, a large number of soluble signaling factors and various biochemical and biophysical cues (such as oxygen tension, flow, and shear and pore size). Stem cells have the potential to be a powerful tool in regenerative medicine due to their self-renewal property and immense differentiation potential. Recent progresses in in vitro culture conditions of embryonic stem cells, adult stem cells and induced pluripotent stem cells have enabled the researchers to investigate and understand the role of the microenvironment in stem cell properties. The engineered artificial stem cell niche has led to a better execution of stem cells in regenerative medicine. Here we elucidate the key components of stem cell niche and their role in niche engineering and stem cell therapeutics.
Collapse
Affiliation(s)
- Anshuman Singh
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - C B Yadav
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - N Tabassum
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - A K Bajpeyee
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India
| | - V Verma
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, India.
| |
Collapse
|
40
|
Demmerath EM, Bohler S, Kunze M, Erlacher M. In vitro and in vivo evaluation of possible pro-survival activities of PGE2, EGF, TPO and FLT3L on human hematopoiesis. Haematologica 2018; 104:669-677. [PMID: 30442724 PMCID: PMC6442978 DOI: 10.3324/haematol.2018.191569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
Myelosuppression is a major and frequently dose-limiting side effect of anticancer therapy and is responsible for most treatment-related morbidity and mortality. In addition, repeated cycles of DNA damage and cell death of hematopoietic stem and progenitor cells, followed by compensatory proliferation and selection pressure, lead to genomic instability and pave the way for therapy-related myelodysplastic syndromes and secondary acute myeloid leukemia. Protection of hematopoietic stem and progenitor cells from chemo- and radiotherapy in patients with solid tumors would reduce both immediate complications and long-term sequelae. Epidermal growth factor (EGF) and prostaglandin E2 (PGE2) were reported to prevent chemo- or radiotherapy-induced myelosuppression in mice. We tested both molecules for potentially protective effects on human CD34+ cells in vitro and established a xenograft mouse model to analyze stress resistance and regeneration of human hematopoiesis in vivo. EGF was neither able to protect human stem and progenitor cells in vitro nor to promote hematopoietic regeneration following sublethal irradiation in vivo. PGE2 significantly reduced in vitro apoptotic susceptibility of human CD34+ cells to taxol and etoposide. This could, however, be ascribed to reduced proliferation rather than to a change in apoptosis signaling and BCL-2 protein regulation. Accordingly, 16,16-dimethyl-PGE2 (dmPGE2) did not accelerate regeneration of the human hematopoietic system in vivo. Repeated treatment of sublethally irradiated xenograft mice with known antiapoptotic substances, such as human FLT3L and thrombopoietin (TPO), which suppress transcription of the proapoptotic BCL-2 proteins BIM and BMF, also only marginally promoted human hematopoietic regeneration in vivo.
Collapse
Affiliation(s)
- Eva-Maria Demmerath
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg
| | - Sheila Bohler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg.,Faculty of Biology, University of Freiburg
| | - Mirjam Kunze
- Department of Obstetrics and Gynecology, University Medical Center of Freiburg
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg .,German Cancer Consortium (DKTK), Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
Li Z, Qian P, Shao W, Shi H, He XC, Gogol M, Yu Z, Wang Y, Qi M, Zhu Y, Perry JM, Zhang K, Tao F, Zhou K, Hu D, Han Y, Zhao C, Alexander R, Xu H, Chen S, Peak A, Hall K, Peterson M, Perera A, Haug JS, Parmely T, Li H, Shen B, Zeitlinger J, He C, Li L. Suppression of m 6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res 2018; 28:904-917. [PMID: 30065315 DOI: 10.1038/s41422-018-0072-0] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 01/13/2023] Open
Abstract
Transplantation of hematopoietic stem cells (HSCs) from human umbilical cord blood (hUCB) holds great promise for treating a broad spectrum of hematological disorders including cancer. However, the limited number of HSCs in a single hUCB unit restricts its widespread use. Although extensive efforts have led to multiple methods for ex vivo expansion of human HSCs by targeting single molecules or pathways, it remains unknown whether it is possible to simultaneously manipulate the large number of targets essential for stem cell self-renewal. Recent studies indicate that N6-methyladenosine (m6A) modulates the expression of a group of mRNAs critical for stem cell-fate determination by influencing their stability. Among several m6A readers, YTHDF2 is recognized as promoting targeted mRNA decay. However, the physiological functions of YTHDF2 in adult stem cells are unknown. Here we show that following the conditional knockout (KO) of mouse Ythdf2 the numbers of functional HSC were increased without skewing lineage differentiation or leading to hematopoietic malignancies. Furthermore, knockdown (KD) of human YTHDF2 led to more than a 10-fold increase in the ex vivo expansion of hUCB HSCs, a fivefold increase in colony-forming units (CFUs), and more than an eightfold increase in functional hUCB HSCs in the secondary serial of a limiting dilution transplantation assay. Mapping of m6A in RNAs from mouse hematopoietic stem and progenitor cells (HSPCs) as well as from hUCB HSCs revealed its enrichment in mRNAs encoding transcription factors critical for stem cell self-renewal. These m6A-marked mRNAs were recognized by Ythdf2 and underwent decay. In Ythdf2 KO HSPCs and YTHDF2 KD hUCB HSCs, these mRNAs were stabilized, facilitating HSC expansion. Knocking down one of YTHDF2's key targets, Tal1 mRNA, partially rescued the phenotype. Our study provides the first demonstration of the function of YTHDF2 in adult stem cell maintenance and identifies its important role in regulating HSC ex vivo expansion by regulating the stability of multiple mRNAs critical for HSC self-renewal, thus identifying potential for future clinical applications.
Collapse
Affiliation(s)
- Zhenrui Li
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Pengxu Qian
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Institute of Hematology, Zhejiang University, Hangzhou, 310058, China
| | - Wanqing Shao
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Hailing Shi
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Meijie Qi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Yunfei Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - John M Perry
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Kai Zhang
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Fang Tao
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Kun Zhou
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Deqing Hu
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.,Tianjin Medical University School of Basic Medicine, Tian Jin, 300070, China
| | - Yingli Han
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Chongbei Zhao
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Hanzhang Xu
- Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Kathyrn Hall
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Michael Peterson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Jeffrey S Haug
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Tari Parmely
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.,Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
42
|
Venkatesh V, Nataraj R, Thangaraj GS, Karthikeyan M, Gnanasekaran A, Kaginelli SB, Kuppanna G, Kallappa CG, Basalingappa KM. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig 2018; 5:5. [PMID: 29682512 DOI: 10.21037/sci.2018.02.02] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. CSCs have been increasingly identified in blood cancer, prostate, ovarian, lung, melanoma, pancreatic, colon, brain and many more malignancies. CSCs have slow growth rate and are resistant to chemotherapy and radiotherapy that lead to the failure of traditional current therapy. Eradicating the CSCs and recurrence, is promising aspect for the cure of cancer. The CSCs like any other stem cells activate the signal transduction pathways that involve the development and tissue homeostasis, which include Notch signaling pathway. The new treatment targets these pathway that control stem-cell replication, survival and differentiation that are under development. Notch inhibitors either single or in combination with chemotherapy drugs have been developed to treat cancer and its recurrence. This approach of targeting signaling pathway of CSCs represents a promising future direction for the therapeutic strategy to cure cancer.
Collapse
Affiliation(s)
- Vandana Venkatesh
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Raghu Nataraj
- Division of Molecular Biology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Gopenath S Thangaraj
- Division of Biotechnology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Murugesan Karthikeyan
- Senior Lecturer, Department of Microbiology, Faculty of Medicine, Quest International University Perak, Malaysia
| | - Ashok Gnanasekaran
- Senior Lecturer, Department of Microbiology, Faculty of Medicine, Quest International University Perak, Malaysia
| | - Shanmukhappa B Kaginelli
- Division of Medical Physics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Gobianand Kuppanna
- Department of Microbiology, Vivekanandha College of Arts and Sciences for Women, Elayampalayam, Tiruchengode. Tamil Nadu, India
| | | | - Kanthesh M Basalingappa
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| |
Collapse
|
43
|
Lipps C, Klein F, Wahlicht T, Seiffert V, Butueva M, Zauers J, Truschel T, Luckner M, Köster M, MacLeod R, Pezoldt J, Hühn J, Yuan Q, Müller PP, Kempf H, Zweigerdt R, Dittrich-Breiholz O, Pufe T, Beckmann R, Drescher W, Riancho J, Sañudo C, Korff T, Opalka B, Rebmann V, Göthert JR, Alves PM, Ott M, Schucht R, Hauser H, Wirth D, May T. Expansion of functional personalized cells with specific transgene combinations. Nat Commun 2018. [PMID: 29520052 PMCID: PMC5843645 DOI: 10.1038/s41467-018-03408-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fundamental research and drug development for personalized medicine necessitates cell cultures from defined genetic backgrounds. However, providing sufficient numbers of authentic cells from individuals poses a challenge. Here, we present a new strategy for rapid cell expansion that overcomes current limitations. Using a small gene library, we expanded primary cells from different tissues, donors, and species. Cell-type-specific regimens that allow the reproducible creation of cell lines were identified. In depth characterization of a series of endothelial and hepatocytic cell lines confirmed phenotypic stability and functionality. Applying this technology enables rapid, efficient, and reliable production of unlimited numbers of personalized cells. As such, these cell systems support mechanistic studies, epidemiological research, and tailored drug development. Personalised medicine requires cell cultures from defined genetic backgrounds, but providing sufficient numbers of cells is a challenge. Here the authors develop gene cocktails to expand primary cells from a variety of different tissues and species, and show that expanded endothelial and hepatic cells retain properties of the differentiated phenotype.
Collapse
Affiliation(s)
- Christoph Lipps
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.,Experimental Cardiology, Justus-Liebig University Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Franziska Klein
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Tom Wahlicht
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Virginia Seiffert
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Milada Butueva
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | | | | | - Martin Luckner
- InSCREENeX GmbH, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Mario Köster
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Roderick MacLeod
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Jörn Pezoldt
- Experimental Immunology, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Jochen Hühn
- Experimental Immunology, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Translational Research Group Cell and Gene Therapy, Twincore - Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Peter Paul Müller
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, MHH, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, MHH, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074, Aachen, Germany
| | - Rainer Beckmann
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074, Aachen, Germany
| | - Wolf Drescher
- Department of Orthopaedics, Aachen University Hospital, RWTH Aachen University, Aachen, 52074, Germany.,Department of Orthopedic Surgery of the Lower Limb and Arthroplasty, Rummelsberg Hospital, Schwarzenbruck, 90592, Germany
| | - Jose Riancho
- Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, 39008, Santander, Spain
| | - Carolina Sañudo
- Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, IDIVAL, 39008, Santander, Spain
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, RG Blood Vessel Remodeling, University Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Bertram Opalka
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstr. 179, 45147, Essen, Germany
| | - Joachim R Göthert
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnologica, Universidade Nova de Lisboa, Oeiras, 2781-901, Portugal
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Translational Research Group Cell and Gene Therapy, Twincore - Centre for Experimental and Clinical Infection Research GmbH, Feodor-Lynen-Str. 7, 30625, Hannover, Germany
| | - Roland Schucht
- InSCREENeX GmbH, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Hansjörg Hauser
- Department of Gene Regulation and Differentiation, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany. .,Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| |
Collapse
|
44
|
Liu L, Yang L, Yan W, Zhai J, Pizzo DP, Chu P, Chin AR, Shen M, Dong C, Ruan X, Ren X, Somlo G, Wang SE. Chemotherapy Induces Breast Cancer Stemness in Association with Dysregulated Monocytosis. Clin Cancer Res 2018; 24:2370-2382. [PMID: 29500278 DOI: 10.1158/1078-0432.ccr-17-2545] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/20/2017] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
Purpose: Preoperative or neoadjuvant therapy (NT) is increasingly used in patients with locally advanced or inflammatory breast cancer to allow optimal surgery and aim for pathologic response. However, many breast cancers are resistant or relapse after treatment. Here, we investigated conjunctive chemotherapy-triggered events occurring systemically and locally, potentially promoting a cancer stem-like cell (CSC) phenotype and contributing to tumor relapse.Experimental Design: We started by comparing the effect of paired pre- and post-NT patient sera on the CSC properties of breast cancer cells. Using cell lines, patient-derived xenograft models, and primary tumors, we investigated the regulation of CSCs and tumor progression by chemotherapy-induced factors.Results: In human patients and mice, we detected a therapy-induced CSC-stimulatory activity in serum, which was attributed to therapy-associated monocytosis leading to systemic elevation of monocyte chemoattractant proteins (MCP). The post-NT hematopoietic regeneration in the bone marrow highlighted both altered monocyte-macrophage differentiation and biased commitment of stimulated hematopoietic stem cells toward monocytosis. Chemotherapeutic agents also induce monocyte expression of MCPs through a JNK-dependent mechanism. Genetic and pharmacologic inhibitions of the MCP-CCR2 pathway blocked chemotherapy's adverse effect on CSCs. Levels of nuclear Notch and ALDH1 were significantly elevated in primary breast cancers following NT, whereas higher levels of CCR2 in pre-NT tumors were associated with a poor response to NT.Conclusions: Our data establish a mechanism of chemotherapy-induced cancer stemness by linking the cellular events in the bone marrow and tumors, and suggest pharmacologic inhibition of CCR2 as a potential cotreatment during conventional chemotherapy in neoadjuvant and adjuvant settings. Clin Cancer Res; 24(10); 2370-82. ©2018 AACR.
Collapse
Affiliation(s)
- Liang Liu
- Department of Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lin Yang
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wei Yan
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Jing Zhai
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Donald P Pizzo
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Peiguo Chu
- Department of Pathology, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Andrew R Chin
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Meng Shen
- Department of Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chuan Dong
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - George Somlo
- Department of Medical Oncology, City of Hope National Medical Center and Comprehensive Cancer Center, Duarte, California
| | - Shizhen Emily Wang
- Department of Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
- Department of Pathology, University of California, San Diego, La Jolla, California
| |
Collapse
|
45
|
Notch signaling: its roles and therapeutic potential in hematological malignancies. Oncotarget 2018; 7:29804-23. [PMID: 26934331 PMCID: PMC5045435 DOI: 10.18632/oncotarget.7772] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/11/2016] [Indexed: 01/07/2023] Open
Abstract
Notch is a highly conserved signaling system that allows neighboring cells to communicate, thereby controlling their differentiation, proliferation and apoptosis, with the outcome of its activation being highly dependent on signal strength and cell type. As such, there is growing evidence that disturbances in physiological Notch signaling contribute to cancer development and growth through various mechanisms. Notch was first reported to contribute to tumorigenesis in the early 90s, through identification of the involvement of the Notch1 gene in the chromosomal translocation t(7;9)(q34;q34.3), found in a small subset of T-cell acute lymphoblastic leukemia. Since then, Notch mutations and aberrant Notch signaling have been reported in numerous other precursor and mature hematological malignancies, of both myeloid and lymphoid origin, as well as many epithelial tumor types. Of note, Notch has been reported to have both oncogenic and tumor suppressor roles, dependent on the cancer cell type. In this review, we will first give a general description of the Notch signaling pathway, and its physiologic role in hematopoiesis. Next, we will review the role of aberrant Notch signaling in several hematological malignancies. Finally, we will discuss current and potential future therapeutic approaches targeting this pathway.
Collapse
|
46
|
Rossmann MP, Orkin SH, Chute JP. Hematopoietic Stem Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Epigenetic and microenvironmental alterations in bone marrow associated with ROS in experimental aplastic anemia. Eur J Cell Biol 2018; 97:32-43. [DOI: 10.1016/j.ejcb.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/04/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
|
48
|
Kollek M, Voigt G, Molnar C, Murad F, Bertele D, Krombholz CF, Bohler S, Labi V, Schiller S, Kunze M, Geley S, Niemeyer CM, Garcia-Saez A, Erlacher M. Transient apoptosis inhibition in donor stem cells improves hematopoietic stem cell transplantation. J Exp Med 2017; 214:2967-2983. [PMID: 28882984 PMCID: PMC5626392 DOI: 10.1084/jem.20161721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 02/01/2023] Open
Abstract
During hematopoietic stem cell transplantation, a substantial number of donor cells are lost because of apoptotic cell death. Transplantation-associated apoptosis is mediated mainly by the proapoptotic BCL-2 family proteins BIM and BMF, and their proapoptotic function is conserved between mouse and human stem and progenitor cells. Permanent inhibition of apoptosis in donor cells caused by the loss of these BH3-only proteins improves transplantation outcome, but recipients might be exposed to increased risk of lymphomagenesis or autoimmunity. Here, we address whether transient inhibition of apoptosis can serve as a safe but efficient alternative to improve the outcome of stem cell transplantation. We show that transient apoptosis inhibition by short-term overexpression of prosurvival BCL-XL, known to block BIM and BMF, is not only sufficient to increase the viability of hematopoietic stem and progenitor cells during engraftment but also improves transplantation outcome without signs of adverse pathologies. Hence, this strategy represents a promising and novel therapeutic approach, particularly under conditions of limited donor stem cell availability.
Collapse
Affiliation(s)
- Matthias Kollek
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Gesina Voigt
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Molnar
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Fabronia Murad
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Daniela Bertele
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Felix Krombholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sheila Bohler
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schiller
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Mirjam Kunze
- Department of Obstetrics and Gynecology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ana Garcia-Saez
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
49
|
Agarwal S, Agarwal H, Zaware N. Pyrimido[4,5-b]indole derivatives and use thereof in the expansion of hematopoietic stem cells US2015011543 (a1): a patent evaluation. Expert Opin Ther Pat 2017; 27:1177-1181. [PMID: 28753410 DOI: 10.1080/13543776.2017.1360281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION There is an unmet need of strategies for ex-vivo expansion of hematopoetic stem cells (HSCs) without loss of their primitive nature or stemness. We evaluate here a patent that attempts to address this need via key small molecules 1 and 40 that possess a pyrimido[4,5-b]indole core. Areas covered: (i) Discussion on literature reports of diverse strategies for ex-vivo expansion of stem cells. (ii) Synthetic scheme to 1, and general synthetic schemes for compounds 1-55 reported in the patent application. (iii) Analysis of the in vitro biological data for 1 and 40. Highlight here is: 1 and 40 when used in combination with StemReginin1 (SR1), an established aryl hydrocarbon receptor antagonist known for ex-vivo HSC expansion, demonstrate better HSC expansion relative to SR1 alone. (iv) Analysis of the in vivo biological data for 1 and 40. Expert opinion: Compelling evidence on the molecular mechanism of action of 1 and 40 is not provided making it difficult to optimize this series. It is suggested here that combining these molecules with homing molecules will possibly improve overall engraftment time and hematopoietic recovery. The numerous literature reports and biological data indicates that these pyrimido[4,5-b]indole derivatives are promising candidates for the development of potential therapies for hematopoietic ailments.
Collapse
Affiliation(s)
- Stuti Agarwal
- a Center for Drug Evaluation and Research , Division of Biotechnology Research and Review IV , Silver Spring , MD , USA
| | - Hitesh Agarwal
- b Pharmaceutical Sciences, School of Pharmacy , South University , Columbia , SC , USA
| | - Nilesh Zaware
- c Department of Pharmacological , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
50
|
Wang W, Yu S, Myers J, Wang Y, Xin WW, Albakri M, Xin AW, Li M, Huang AY, Xin W, Siebel CW, Lazarus HM, Zhou L. Notch2 blockade enhances hematopoietic stem cell mobilization and homing. Haematologica 2017; 102:1785-1795. [PMID: 28729299 PMCID: PMC5622863 DOI: 10.3324/haematol.2017.168674] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Despite use of newer approaches, some patients being considered for autologous hematopoietic cell transplantation (HCT) may only mobilize limited numbers of hematopoietic progenitor cells (HPCs) into blood, precluding use of the procedure, or being placed at increased risk of complications due to slow hematopoietic reconstitution. Developing more efficacious HPC mobilization regimens and strategies may enhance the mobilization process and improve patient outcome. Although Notch signaling is not essential for homeostasis of adult hematopoietic stem cells (HSCs), Notch-ligand adhesive interaction maintains HSC quiescence and niche retention. Using Notch receptor blocking antibodies, we report that Notch2 blockade, but not Notch1 blockade, sensitizes hematopoietic stem cells and progenitors (HSPCs) to mobilization stimuli and leads to enhanced egress from marrow to the periphery. Notch2 blockade leads to transient myeloid progenitor expansion without affecting HSC homeostasis and self-renewal. We show that transient Notch2 blockade or Notch2-loss in mice lacking Notch2 receptor lead to decreased CXCR4 expression by HSC but increased cell cycling with CXCR4 transcription being directly regulated by the Notch transcriptional protein RBPJ. In addition, we found that Notch2-blocked or Notch2-deficient marrow HSPCs show an increased homing to the marrow, while mobilized Notch2-blocked, but not Notch2-deficient stem cells and progenitors, displayed a competitive repopulating advantage and enhanced hematopoietic reconstitution. These findings suggest that blocking Notch2 combined with the current clinical regimen may further enhance HPC mobilization and improve engraftment during HCT.
Collapse
Affiliation(s)
- Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jay Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - William W Xin
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Marwah Albakri
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Ming Li
- Biostatistics and Bioinformatics Core Facility, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alex Y Huang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA .,Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Christian W Siebel
- Department of Molecular Biology Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|