1
|
Zhang Y, Sui Z, Zhang Z, Wang C, Li X, Xing F. Analysis of the Imprinting Status and Expression of the MAGEL2 Gene During Initiation at Puberty in the Dolang Sheep. DNA Cell Biol 2023; 42:689-696. [PMID: 37843913 DOI: 10.1089/dna.2023.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Genomic imprinting refers to the expression of parent-specific genes in diploid mammalian cells. MAGEL2 gene is a maternally imprinted gene that has been identified in mice and humans and is associated with the onset of puberty. The purpose of this study was to investigate its imprinting status and its relationship with the onset of puberty in Dolang sheep. The sequence of 3734 bp cDNA of MAGEL2 in Dolang sheep was obtained by cloning and sequencing, encoding 1173 amino acids. The results of the nucleotide and amino acid similarity analysis showed that it was highly conserved among different mammalian species. The MAGEL2 gene was expressed monoallelically in the tissues of adult and neonatal umbilical cords, and the expressed allele was paternally inherited. Real Time quantitative PCR (RT-qPCR) results showed that the MAGEL2 gene was highly expressed in the hypothalamus and pituitary gland, increased significantly from prepuberty to puberty, and decreased significantly after puberty. This study suggests that MAGEL2 is a paternally expressed and maternally imprinted gene in Dolang sheep, which may be involved in the initiation of puberty in Dolang sheep. This study provides a theoretical basis for further research on the mechanism of the imprinted gene MAGEL2 regulating the onset of puberty in sheep, and provides a new idea for the future research on the mechanism of onset of puberty in sheep.
Collapse
Affiliation(s)
- Yongjie Zhang
- College of Animal Science and Technology, Tarim University, Xinjiang Production and Construction Corps, Alar, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, China
| | - Zhiyuan Sui
- College of Animal Science and Technology, Tarim University, Xinjiang Production and Construction Corps, Alar, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, China
| | - Zhishuai Zhang
- College of Animal Science and Technology, Tarim University, Xinjiang Production and Construction Corps, Alar, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, China
| | - Chenguang Wang
- College of Animal Science and Technology, Tarim University, Xinjiang Production and Construction Corps, Alar, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, China
| | - Xiaojun Li
- College of Animal Science and Technology, Tarim University, Xinjiang Production and Construction Corps, Alar, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, China
| | - Feng Xing
- College of Animal Science and Technology, Tarim University, Xinjiang Production and Construction Corps, Alar, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, China
| |
Collapse
|
2
|
Hoyos Sanchez MC, Bayat T, Gee RRF, Fon Tacer K. Hormonal Imbalances in Prader-Willi and Schaaf-Yang Syndromes Imply the Evolution of Specific Regulation of Hypothalamic Neuroendocrine Function in Mammals. Int J Mol Sci 2023; 24:13109. [PMID: 37685915 PMCID: PMC10487939 DOI: 10.3390/ijms241713109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The hypothalamus regulates fundamental aspects of physiological homeostasis and behavior, including stress response, reproduction, growth, sleep, and feeding, several of which are affected in patients with Prader-Willi (PWS) and Schaaf-Yang syndrome (SYS). PWS is caused by paternal deletion, maternal uniparental disomy, or imprinting defects that lead to loss of expression of a maternally imprinted region of chromosome 15 encompassing non-coding RNAs and five protein-coding genes; SYS patients have a mutation in one of them, MAGEL2. Throughout life, PWS and SYS patients suffer from musculoskeletal deficiencies, intellectual disabilities, and hormonal abnormalities, which lead to compulsive behaviors like hyperphagia and temper outbursts. Management of PWS and SYS is mostly symptomatic and cures for these debilitating disorders do not exist, highlighting a clear, unmet medical need. Research over several decades into the molecular and cellular roles of PWS genes has uncovered that several impinge on the neuroendocrine system. In this review, we will discuss the expression and molecular functions of PWS genes, connecting them with hormonal imbalances in patients and animal models. Besides the observed hormonal imbalances, we will describe the recent findings about how the loss of individual genes, particularly MAGEL2, affects the molecular mechanisms of hormone secretion. These results suggest that MAGEL2 evolved as a mammalian-specific regulator of hypothalamic neuroendocrine function.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Tara Bayat
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| |
Collapse
|
3
|
Ruiz de la Cruz M, de la Cruz Montoya AH, Rojas Jiménez EA, Martínez Gregorio H, Díaz Velásquez CE, Paredes de la Vega J, de la Cruz Hernández-Hernández F, Vaca Paniagua F. Cis-Acting Factors Causing Secondary Epimutations: Impact on the Risk for Cancer and Other Diseases. Cancers (Basel) 2021; 13:cancers13194807. [PMID: 34638292 PMCID: PMC8508567 DOI: 10.3390/cancers13194807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022] Open
Abstract
Epigenetics affects gene expression and contributes to disease development by alterations known as epimutations. Hypermethylation that results in transcriptional silencing of tumor suppressor genes has been described in patients with hereditary cancers and without pathogenic variants in the coding region of cancer susceptibility genes. Although somatic promoter hypermethylation of these genes can occur in later stages of the carcinogenic process, constitutional methylation can be a crucial event during the first steps of tumorigenesis, accelerating tumor development. Primary epimutations originate independently of changes in the DNA sequence, while secondary epimutations are a consequence of a mutation in a cis or trans-acting factor. Secondary epimutations have a genetic basis in cis of the promoter regions of genes involved in familial cancers. This highlights epimutations as a novel carcinogenic mechanism whose contribution to human diseases is underestimated by the scarcity of the variants described. In this review, we provide an overview of secondary epimutations and present evidence of their impact on cancer. We propose the necessity for genetic screening of loci associated with secondary epimutations in familial cancer as part of prevention programs to improve molecular diagnosis, secondary prevention, and reduce the mortality of these diseases.
Collapse
Affiliation(s)
- Miguel Ruiz de la Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | | | - Ernesto Arturo Rojas Jiménez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Héctor Martínez Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
| | - Jimena Paredes de la Vega
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
| | - Fidel de la Cruz Hernández-Hernández
- Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, C.P. Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Felipe Vaca Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla 54090, Mexico; (M.R.d.l.C.); (E.A.R.J.); (H.M.G.); (C.E.D.V.); (J.P.d.l.V.)
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla 54090, Mexico;
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
- Correspondence: ; Tel.: +52-55-5623-1333 (ext. 39788)
| |
Collapse
|
4
|
Li J, Chen W, Li D, Gu S, Liu X, Dong Y, Jin L, Zhang C, Li S. Conservation of Imprinting and Methylation of MKRN3, MAGEL2 and NDN Genes in Cattle. Animals (Basel) 2021; 11:1985. [PMID: 34359112 PMCID: PMC8300276 DOI: 10.3390/ani11071985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 01/02/2023] Open
Abstract
Genomic imprinting is the epigenetic mechanism of transcriptional regulation that involves differential DNA methylation modification. Comparative analysis of imprinted genes between species can help us to investigate the biological significance and regulatory mechanisms of genomic imprinting. MKRN3, MAGEL2 and NDN are three maternally imprinted genes identified in the human PWS/AS imprinted locus. This study aimed to assess the allelic expression of MKRN3, MAGEL2 and NDN and to examine the differentially methylated regions (DMRs) of bovine PWS/AS imprinted domains. An expressed single-nucleotide polymorphism (SNP)-based approach was used to investigate the allelic expression of MKRN3, MAGEL2 and NDN genes in bovine adult tissues and placenta. Consistent with the expression in humans and mice, we found that the MKRN3, MAGEL2 and NDN genes exhibit monoallelic expression in bovine somatic tissues and the paternal allele expressed in the bovine placenta. Three DMRs, PWS-IC, MKRN3 and NDN DMR, were identified in the bovine PWS/AS imprinted region by analysis of the DNA methylation status in bovine tissues using the bisulfite sequencing method and were located in the promoter and exon 1 of the SNRPN gene, NDN promoter and 5' untranslated region (5'UTR) of MKRN3 gene, respectively. The PWS-IC DMR is a primary DMR inherited from the male or female gamete, but NDN and MKRN3 DMR are secondary DMRs that occurred after fertilization by examining the methylation status in gametes.
Collapse
Affiliation(s)
- Junliang Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Weina Chen
- Department of Traditional Chinese Medicine, Hebei University, Baoding 071000, China;
| | - Dongjie Li
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050081, China;
| | - Shukai Gu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Xiaoqian Liu
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Yanqiu Dong
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Lanjie Jin
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Cui Zhang
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| | - Shijie Li
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China; (J.L.); (S.G.); (X.L.); (Y.D.); (L.J.)
| |
Collapse
|
5
|
Abstract
Abstract
Genomic imprinting ensures the parent-specific expression of either the maternal or the paternal allele, by different epigenetic processes (DNA methylation and histone modifications) that confer parent-specific marks (imprints) in the paternal and maternal germline, respectively. Most protein-coding imprinted genes are involved in embryonic growth, development, and behavior. They are usually organized in genomic domains that are regulated by differentially methylated regions (DMRs). Genomic imprints are erased in the primordial germ cells and then reset in a gene-specific manner according to the sex of the germline. The imprinted genes regulate and interact with other genes, consistent with the existence of an imprinted gene network. Defects of genomic imprinting result in syndromal imprinting disorders. To date a dozen congenital imprinting disorders are known. Usually, a given imprinting disorder can be caused by different types of defects, including point mutations, deletions/duplications, uniparental disomy, and epimutations. Causative trans-acting factors in imprinting disorders, including ZFP57 and the subcortical maternal complex (SCMC), have the potential to affect multiple DMRs across the genome, resulting in a multi-locus imprinting disturbance. There is evidence that mutations in components of the SCMC can confer an increased risk for imprinting disorders.
Collapse
Affiliation(s)
- Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine , University Medical Centre Johannes Gutenberg University Mainz , Obere Zahlbacher Str. 63 , Mainz , Germany
| | - Thomas Haaf
- Institute of Human Genetics , Julius Maximilians University , Würzburg , Germany
| |
Collapse
|
6
|
Liu G, Jiang YM, Liu YC, Han LL, Feng H. A novel DNA methylation motif identified in Bacillus pumilus BA06 and possible roles in the regulation of gene expression. Appl Microbiol Biotechnol 2020; 104:3445-3457. [PMID: 32088759 DOI: 10.1007/s00253-020-10475-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 01/26/2023]
Abstract
Single-molecule real-time (SMRT) sequencing can be used to identify a wide variety of chemical modifications of the genome, such as methylation. Here, we applied this approach to identify N6-methyl-adenine (m6A) and N4-methyl-cytosine (m4C) modification in the genome of Bacillus pumilus BA06. A typical methylation recognition motif of the type I restriction-modification system (R-M), 5'-TCm6AN8TTGG-3'/3'-AGTN8m6AACC-5', was identified. We confirmed that this motif was a new type I methylation site using REBASE analysis and that it was recognized by a type I R-M system, Bpu6ORFCP, according to methylation sensitivity assays in vivo and vitro. Furthermore, we found that deletion of the R-M system Bpu6ORFCP induced transcriptional changes in many genes and led to increased gene expression in pathways related to ABC transporters, sulfur metabolism, ribosomes, cysteine and methionine metabolism and starch and sucrose metabolism, suggesting that the R-M system in B. pumilus BA06 has other significant biological functions beyond protecting the B. pumilus BA06 genome from foreign DNA.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Yang-Mei Jiang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Yong-Cheng Liu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Lin-Li Han
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Hong Feng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Germain ND, Levine ES, Chamberlain SJ. IPSC Models of Chromosome 15Q Imprinting Disorders: From Disease Modeling to Therapeutic Strategies. ADVANCES IN NEUROBIOLOGY 2020; 25:55-77. [PMID: 32578144 DOI: 10.1007/978-3-030-45493-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The chromosome 15q11-q13 region of the human genome is regulated by genomic imprinting, an epigenetic phenomenon in which genes are expressed exclusively from one parental allele. Several genes within the 15q11-q13 region are expressed exclusively from the paternally inherited chromosome 15. At least one gene UBE3A, shows exclusive expression of the maternal allele, but this allele-specific expression is restricted to neurons. The appropriate regulation of imprinted gene expression across chromosome 15q11-q13 has important implications for human disease. Three different neurodevelopmental disorders result from aberrant expression of imprinted genes in this region: Prader-Willi syndrome (PWS), Angelman syndrome (AS), and 15q duplication syndrome.
Collapse
Affiliation(s)
- Noelle D Germain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
8
|
Affiliation(s)
- Sharvari S. Deshpande
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (ICMR), Parel, Mumbai, India
| | - Nafisa H. Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (ICMR), Parel, Mumbai, India
| |
Collapse
|
9
|
Hartin SN, Hossain WA, Weisensel N, Butler MG. Three siblings with Prader-Willi syndrome caused by imprinting center microdeletions and review. Am J Med Genet A 2018; 176:886-895. [PMID: 29437285 PMCID: PMC6688622 DOI: 10.1002/ajmg.a.38627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Prader-Willi syndrome (PWS) is a complex genetic imprinting disorder characterized by childhood obesity, short stature, hypogonadism/hypogenitalism, hypotonia, cognitive impairment, and behavioral problems. Usually PWS occurs sporadically due to the loss of paternally expressed genes on chromosome 15 with the majority of individuals having the 15q11-q13 region deleted. Examples of familial PWS have been reported but rarely. To date 13 families have been reported with more than one child with PWS and without a 15q11-q13 deletion secondary to a chromosome 15 translocation, inversion, or uniparental maternal disomy 15. Ten of those 13 families were shown to carry microdeletions in the PWS imprinting center. The microdeletions were found to be of paternal origin in nine of the ten cases in which family studies were carried out. Using a variety of techniques, the microdeletions were identified in regions within the complex SNRPN gene locus encompassing the PWS imprinting center. Here, we report the clinical and genetic findings in three adult siblings with PWS caused by a microdeletion in the chromosome 15 imprinting center inherited from an unaffected father that controls the activity of genes in the 15q11-q13 region and summarize the 13 reported cases in the literature.
Collapse
Affiliation(s)
- Samantha N. Hartin
- Departments of Psychiatry and Behavioral Sciences and
Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Waheeda A. Hossain
- Departments of Psychiatry and Behavioral Sciences and
Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Merlin G. Butler
- Departments of Psychiatry and Behavioral Sciences and
Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
10
|
Duranthon V, Chavatte-Palmer P. Long term effects of ART: What do animals tell us? Mol Reprod Dev 2018; 85:348-368. [DOI: 10.1002/mrd.22970] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/09/2018] [Indexed: 01/01/2023]
|
11
|
Velker BAM, Denomme MM, Krafty RT, Mann MRW. Maintenance of Mest imprinted methylation in blastocyst-stage mouse embryos is less stable than other imprinted loci following superovulation or embryo culture. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx015. [PMID: 29492315 PMCID: PMC5804554 DOI: 10.1093/eep/dvx015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/07/2017] [Accepted: 07/19/2017] [Indexed: 06/08/2023]
Abstract
Assisted reproductive technologies are fertility treatments used by subfertile couples to conceive their biological child. Although generally considered safe, these pregnancies have been linked to genomic imprinting disorders, including Beckwith-Wiedemann and Silver-Russell Syndromes. Silver-Russell Syndrome is a growth disorder characterized by pre- and post-natal growth retardation. The Mest imprinted domain is one candidate region on chromosome 7 implicated in Silver-Russell Syndrome. We have previously shown that maintenance of imprinted methylation was disrupted by superovulation or embryo culture during pre-implantation mouse development. For superovulation, this disruption did not originate in oogenesis as a methylation acquisition defect. However, in comparison to other genes, Mest exhibits late methylation acquisition kinetics, possibly making Mest more vulnerable to perturbation by environmental insult. In this study, we present a comprehensive evaluation of the effects of superovulation and in vitro culture on genomic imprinting at the Mest gene. Superovulation resulted in disruption of imprinted methylation at the maternal Mest allele in blastocysts with an equal frequency of embryos having methylation errors following low or high hormone treatment. This disruption was not due to a failure of imprinted methylation acquisition at Mest in oocytes. For cultured embryos, both the Fast and Slow culture groups experienced a significant loss of maternal Mest methylation compared to in vivo-derived controls. This loss of methylation was independent of development rates in culture. These results indicate that Mest is more susceptible to imprinted methylation maintenance errors compared to other imprinted genes.
Collapse
Affiliation(s)
- Brenna A. M. Velker
- Department of Obstetrics & Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
| | - Michelle M. Denomme
- Department of Obstetrics & Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
- Fertility Laboratories Of Colorado, 10290 Ridgegate Circle, Lonetree, CO 80124 USA
| | - Robert T. Krafty
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mellissa R. W. Mann
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Banik A, Kandilya D, Ramya S, Stünkel W, Chong YS, Dheen ST. Maternal Factors that Induce Epigenetic Changes Contribute to Neurological Disorders in Offspring. Genes (Basel) 2017; 8:E150. [PMID: 28538662 PMCID: PMC5485514 DOI: 10.3390/genes8060150] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is well established that the regulation of epigenetic factors, including chromatic reorganization, histone modifications, DNA methylation, and miRNA regulation, is critical for the normal development and functioning of the human brain. There are a number of maternal factors influencing epigenetic pathways such as lifestyle, including diet, alcohol consumption, and smoking, as well as age and infections (viral or bacterial). Genetic and metabolic alterations such as obesity, gestational diabetes mellitus (GDM), and thyroidism alter epigenetic mechanisms, thereby contributing to neurodevelopmental disorders (NDs) such as embryonic neural tube defects (NTDs), autism, Down's syndrome, Rett syndrome, and later onset of neuropsychological deficits. This review comprehensively describes the recent findings in the epigenetic landscape contributing to altered molecular profiles resulting in NDs. Furthermore, we will discuss potential avenues for future research to identify diagnostic markers and therapeutic epi-drugs to reverse these abnormalities in the brain as epigenetic marks are plastic and reversible in nature.
Collapse
Affiliation(s)
- Avijit Banik
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Deepika Kandilya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Seshadri Ramya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Walter Stünkel
- Singapore Institute of Clinical Sciences, A*STAR, Singapore 117609, Singapore.
| | - Yap Seng Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
13
|
Wang Y, Liu H, Sun Z. Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol Rev Camb Philos Soc 2017; 92:2084-2111. [PMID: 28220606 DOI: 10.1111/brv.12322] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 12/12/2022]
Abstract
Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non-genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non-DNA sequence-based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment-induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non-coding RNAs, are also summarized. We particularly focus on evidence that parental environment-induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex-specific effects. The thought-provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome-wide level and single-cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental environment-induced epigenetic marks across generations. Considering their diverse epigenetic architectures, the conservation and prevalence of the mechanisms underlying epigenetic inheritance in non-mammals require further investigation in mammals. Interpretation of the consequences arising from epigenetic inheritance on organisms and a better understanding of the underlying mechanisms will provide insight into how gene-environment interactions shape developmental processes and physiological functions, which in turn may have wide-ranging implications for human health, and understanding biological adaptation and evolution.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Huijie Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
14
|
Stage-Specific Demethylation in Primordial Germ Cells Safeguards against Precocious Differentiation. Dev Cell 2016; 39:75-86. [PMID: 27618282 DOI: 10.1016/j.devcel.2016.07.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/22/2016] [Accepted: 07/25/2016] [Indexed: 11/20/2022]
Abstract
Remodeling DNA methylation in mammalian genomes can be global, as seen in preimplantation embryos and primordial germ cells (PGCs), or locus specific, which can regulate neighboring gene expression. In PGCs, global and locus-specific DNA demethylation occur in sequential stages, with an initial global decrease in methylated cytosines (stage I) followed by a Tet methylcytosine dioxygenase (Tet)-dependent decrease in methylated cytosines that act at imprinting control regions (ICRs) and meiotic genes (stage II). The purpose of the two-stage mechanism is unclear. Here we show that Dnmt1 preserves DNA methylation through stage I at ICRs and meiotic gene promoters and is required for the pericentromeric enrichment of 5hmC. We discovered that the functional consequence of abrogating two-stage DNA demethylation in PGCs was precocious germline differentiation leading to hypogonadism and infertility. Therefore, bypassing stage-specific DNA demethylation has significant consequences for progenitor germ cell differentiation and the ability to transmit DNA from parent to offspring.
Collapse
|
15
|
Hoeijmakers L, Kempe H, Verschure PJ. Epigenetic imprinting during assisted reproductive technologies: The effect of temporal and cumulative fluctuations in methionine cycling on the DNA methylation state. Mol Reprod Dev 2016; 83:94-107. [PMID: 26660493 DOI: 10.1002/mrd.22605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Lianne Hoeijmakers
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| | - Hermannus Kempe
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| | - Pernette J. Verschure
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
16
|
Massah S, Beischlag TV, Prefontaine GG. Epigenetic events regulating monoallelic gene expression. Crit Rev Biochem Mol Biol 2015; 50:337-58. [PMID: 26155735 DOI: 10.3109/10409238.2015.1064350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammals, generally it is assumed that the genes inherited from each parent are expressed to similar levels. However, it is now apparent that in non-sex chromosomes, 6-10% of genes are selected for monoallelic expression. Monoallelic expression or allelic exclusion is established either in an imprinted (parent-of-origin) or a stochastic manner. The stochastic model explains random selection while the imprinted model describes parent-of-origin specific selection of alleles for expression. Allelic exclusion occurs during X chromosome inactivation, parent-of-origin expression of imprinted genes and stochastic monoallelic expression of cell surface molecules, clustered protocadherin (PCDH) genes. Mis-regulation or loss of allelic exclusion contributes to developmental diseases. Epigenetic mechanisms are fundamental players that determine this type of expression despite a homogenous genetic background. DNA methylation and histone modifications are two mediators of the epigenetic phenomena. The majority of DNA methylation is found on cytosines of the CpG dinucleotide in mammals. Several covalent modifications of histones change the electrostatic forces between DNA and histones modifying gene expression. Long-range chromatin interactions organize chromatin into transcriptionally permissive and prohibitive regions leading to simultaneous regulation of gene expression and repression. Non-coding RNAs (ncRNAs) are also players in regulating gene expression. Together, these epigenetic mechanisms fine-tune gene expression levels essential for normal development and survival. In this review, first we discuss what is known about monoallelic gene expression. Then, we focus on the molecular mechanisms that regulate expression of three monoallelically expressed gene classes: the X-linked genes, selected imprinted genes and PCDH genes.
Collapse
Affiliation(s)
- Shabnam Massah
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | - Timothy V Beischlag
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | | |
Collapse
|
17
|
Calvopina JH, Cook H, Vincent JJ, Nee K, Clark AT. The Aorta-Gonad-Mesonephros Organ Culture Recapitulates 5hmC Reorganization and Replication-Dependent and Independent Loss of DNA Methylation in the Germline. Stem Cells Dev 2015; 24:1536-45. [PMID: 25749005 DOI: 10.1089/scd.2014.0410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Removal of cytosine methylation from the genome is critical for reprogramming and transdifferentiation and plays a central role in our understanding of the fundamental principles of embryo lineage development. One of the major models for studying cytosine demethylation is the mammalian germ line during the primordial germ cell (PGC) stage of embryo development. It is now understood that oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is required to remove cytosine methylation in a locus-specific manner in PGCs; however, the mechanisms downstream of 5hmC are controversial and hypothesized to involve either active demethylation or replication-coupled loss. In the current study, we used the aorta-gonad-mesonephros (AGM) organ culture model to show that this model recapitulates germ line reprogramming, including 5hmC reorganization and loss of cytosine methylation from Snrpn and H19 imprinting control centers (ICCs). To directly address the hypothesis that cell proliferation is required for cytosine demethylation, we blocked PI3-kinase-dependent PGC proliferation and show that this leads to a G1 and G2/M cell cycle arrest in PGCs, together with retained levels of cytosine methylation at the Snrpn ICC, but not at the H19 ICC. Taken together, the AGM organ culture model is an important tool to evaluate mechanisms of locus-specific demethylation and the role of PI3-kinase-dependent PGC proliferation in the locus-specific removal of cytosine methylation from the genome.
Collapse
Affiliation(s)
- Joseph Hargan Calvopina
- 1 Department of Molecular Cell and Developmental Biology, University of California Los Angeles , Los Angeles, California
| | - Helene Cook
- 1 Department of Molecular Cell and Developmental Biology, University of California Los Angeles , Los Angeles, California
| | - John J Vincent
- 1 Department of Molecular Cell and Developmental Biology, University of California Los Angeles , Los Angeles, California
| | - Kevin Nee
- 1 Department of Molecular Cell and Developmental Biology, University of California Los Angeles , Los Angeles, California
| | - Amander T Clark
- 1 Department of Molecular Cell and Developmental Biology, University of California Los Angeles , Los Angeles, California.,2 Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles , Los Angeles, California.,3 Jonsson Comprehensive Cancer Center, University of California Los Angeles , Los Angeles, California.,4 Molecular Biology Institute, University of California Los Angeles , Los Angeles, California
| |
Collapse
|
18
|
Cheong CY, Chng K, Ng S, Chew SB, Chan L, Ferguson-Smith AC. Germline and somatic imprinting in the nonhuman primate highlights species differences in oocyte methylation. Genome Res 2015; 25:611-23. [PMID: 25862382 PMCID: PMC4417110 DOI: 10.1101/gr.183301.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
Genomic imprinting is an epigenetic mechanism resulting in parental allele-specific gene expression. Defects in normal imprinting are found in cancer, assisted reproductive technologies, and several human syndromes. In mouse models, germline-derived DNA methylation is shown to regulate imprinting. Though imprinting is largely conserved between mammals, species- and tissue-specific domains of imprinted expression exist. Using the cynomolgus macaque (Macaca fascicularis) to assess primate-specific imprinting, we present a comprehensive view of tissue-specific imprinted expression and DNA methylation at established imprinted gene clusters. For example, like mouse and unlike human, macaque IGF2R is consistently imprinted, and the PLAGL1, INPP5F transcript variant 2, and PEG3 imprinting control regions are not methylated in the macaque germline but acquire this post-fertilization. Methylome data from human early embryos appear to support this finding. These suggest fundamental differences in imprinting control mechanisms between primate species and rodents at some imprinted domains, with implications for our understanding of the epigenetic programming process in humans and its influence on disease.
Collapse
Affiliation(s)
- Clara Y Cheong
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Keefe Chng
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Shilen Ng
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Siew Boom Chew
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Louiza Chan
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Anne C Ferguson-Smith
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
19
|
Abstract
Morphological selection techniques of gametes and embryos are of current interest to clinical practice in ART. Although intracytoplasmic morphologically selected sperm injection (IMSI), time lapse imaging morphometry (TLIM) or quantification of chromosome numbers (PGS) are potentially useful in research, they have not been shown to be of statistically predictive value and, thus, have only limited clinical usefulness. We make the point that morphological markers alone cannot predict the success of the early embryo, which depends on the correct orchestration of a myriad of physiological and biochemical activation events that progress independently of the maternal or zygotic genome. Since previous attempts to identify metabolic markers for embryo quality have failed and there is no evidence that the intrinsic nature of gametes and embryos can be improved in the laboratory, embryologists can only minimize environmental or operator induced damage while these cells are manipulated ex vivo.
Collapse
|
20
|
Brant JO, Riva A, Resnick JL, Yang TP. Influence of the Prader-Willi syndrome imprinting center on the DNA methylation landscape in the mouse brain. Epigenetics 2014; 9:1540-56. [PMID: 25482058 PMCID: PMC4623435 DOI: 10.4161/15592294.2014.969667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/23/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
Reduced representation bisulfite sequencing (RRBS) was used to analyze DNA methylation patterns across the mouse brain genome in mice carrying a deletion of the Prader-Willi syndrome imprinting center (PWS-IC) on either the maternally- or paternally-inherited chromosome. Within the ~3.7 Mb imprinted Angelman/Prader-Willi syndrome (AS/PWS) domain, 254 CpG sites were interrogated for changes in methylation due to PWS-IC deletion. Paternally-inherited deletion of the PWS-IC increased methylation levels ~2-fold at each CpG site (compared to wild-type controls) at differentially methylated regions (DMRs) associated with 5' CpG island promoters of paternally-expressed genes; these methylation changes extended, to a variable degree, into the adjacent CpG island shores. Maternal PWS-IC deletion yielded little or no changes in methylation at these DMRs, and methylation of CpG sites outside of promoter DMRs also was unchanged upon maternal or paternal PWS-IC deletion. Using stringent ascertainment criteria, ~750,000 additional CpG sites were also interrogated across the entire mouse genome. This analysis identified 26 loci outside of the imprinted AS/PWS domain showing altered DNA methylation levels of ≥25% upon PWS-IC deletion. Curiously, altered methylation at 9 of these loci was a consequence of maternal PWS-IC deletion (maternal PWS-IC deletion by itself is not known to be associated with a phenotype in either humans or mice), and 10 of these loci exhibited the same changes in methylation irrespective of the parental origin of the PWS-IC deletion. These results suggest that the PWS-IC may affect DNA methylation at these loci by directly interacting with them, or may affect methylation at these loci through indirect downstream effects due to PWS-IC deletion. They further suggest the PWS-IC may have a previously uncharacterized function outside of the imprinted AS/PWS domain.
Collapse
Key Words
- AS, Angelman Syndrome
- AS-IC, Angelman Syndrome Imprinting Center
- AS-SRO, Angelman Syndrome Shortest Region of deletion Overlap
- BGS, Sodium Bisulfite Genomic Sequencing
- BISSCA, Bisulfite Sequencing Comparative Analysis
- CGI, CpG Island
- DH, DNase I Hypersensitive
- DMR, Differentially Methylated Region
- DNA methylation
- EtOH, Ethanol
- GO, gene ontology
- IC, Imprinting Center
- ICR, Imprinting Control Region
- IPA, Ingenuity Pathway Analysis ®
- PWS, Prader-Willi Syndrome
- PWS-IC, Prader-Willi Syndrome Imprinting Center
- PWS-SRO, Prader-Willi Syndrome Shortest Region of deletion Overlap
- RRBS, Reduced Representation Bisulfite Sequencing
- SDS, Sodium Dodecyl Sulfate
- SLIM, Sliding Linear Model
- TBE, Tris/Borate/EDTA
- Tris, Trisaminomethane
- UTR, untranslated region
- angelman syndrome
- genomic imprinting
- imprinting center
- lncRNA, long non-coding RNA
- mat, maternally-inherited allele
- pat, paternally-inherited allele
- prader-Willi syndrome
- reduced representation bisulfite sequencing
Collapse
Affiliation(s)
- Jason O Brant
- Department of Biochemistry and Molecular Biology; University of Florida; Gainesville, FL USA
- Center for Epigenetics; University of Florida; Gainesville, FL USA
| | - Alberto Riva
- Department of Molecular Genetics and Microbiology; University of Florida; Gainesville, FL USA
- Genetics Institute; University of Florida; Gainesville, FL USA
| | - James L Resnick
- Department of Molecular Genetics and Microbiology; University of Florida; Gainesville, FL USA
- Center for Epigenetics; University of Florida; Gainesville, FL USA
- Genetics Institute; University of Florida; Gainesville, FL USA
| | - Thomas P Yang
- Department of Biochemistry and Molecular Biology; University of Florida; Gainesville, FL USA
- Center for Epigenetics; University of Florida; Gainesville, FL USA
- Genetics Institute; University of Florida; Gainesville, FL USA
| |
Collapse
|
21
|
Abstract
BACKGROUND The advances in the world of IVF during the last decades have been rapid and impressive and culture media play a major role in this success. Until the 1980s fertility centers made their media in house. Nowadays, there are numerous commercially available culture media that contain various components including nutrients, vitamins and growth factors. This review goes through the past, present and future of IVF culture media and explores their composition and quality assessment. METHODS A computerized search was performed in PubMed regarding IVF culture media including results from 1929 until March 2014. Information was gathered from the websites of companies who market culture media, advertising material, instructions for use and certificates of analysis. The regulation regarding IVF media mainly in the European Union (EU) but also in non-European countries was explored. RESULTS The keyword 'IVF culture media' gave 923 results in PubMed and 'embryo culture media' 12 068 results dating from 1912 until March 2014, depicting the increased scientific activity in this field. The commercialization of IVF culture media has increased the standards bringing a great variety of options into clinical practice. However, it has led to reduced transparency and comparisons of brand names that do not facilitate the scientific dialogue. Furthermore, there is some evidence suggesting that suboptimal culture conditions could cause long-term reprogramming in the embryo as the periconception period is particularly susceptible to epigenetic alterations. IVF media are now classified as class III medical devices and only CE (Conformité Européene)-marked media should be used in the EU. CONCLUSION The CE marking of IVF culture media is a significant development in the field. However, the quality and efficiency of culture media should be monitored closely. Well-designed randomized controlled trials, large epidemiological studies and full transparency should be the next steps. Reliable, standardized models assessing multiple end-points and post-implantation development should replace the mouse embryo assay. Structured long-term follow-up of children conceived by assisted reproduction technologies and traceability are of paramount importance.
Collapse
Affiliation(s)
- Elpiniki Chronopoulou
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Joyce C Harper
- UCL Centre for PG and D, Institute for Women's Health, University College London, London, UK The Centre for Reproductive and Genetic Health, UCLH, London, UK
| |
Collapse
|
22
|
The specification of imprints in mammals. Heredity (Edinb) 2014; 113:176-83. [PMID: 24939713 PMCID: PMC4105455 DOI: 10.1038/hdy.2014.54] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 02/01/2023] Open
Abstract
At the heart of genomic imprinting in mammals are imprinting control regions (ICRs), which are the discrete genetic elements that confer imprinted monoallelic expression to several genes in imprinted gene clusters. A characteristic of the known ICRs is that they acquire different epigenetic states, exemplified by differences in DNA methylation, in the sperm and egg, and these imprint marks remain on the sperm- and oocyte-derived alleles into the next generation as a lifelong memory of parental origin. Although there has been much focus on gametic marking of ICRs as the point of imprint specification, recent mechanistic studies and genome-wide DNA methylation profiling do not support the existence of a specific imprinting machinery in germ cells. Rather, ICRs are part of more widespread methylation events that occur during gametogenesis. Instead, a decisive component in the specification of imprints is the choice of which sites of gamete-derived methylation to maintain in the zygote and preimplantation embryo at a time when much of the remainder of the genome is being demethylated. Among the factors involved in this selection, the zinc-finger protein Zfp57 can be regarded as an imprint-specific, sequence-specific DNA binding factor responsible for maintaining methylation at most ICRs. The recent insights into the balance of gametic and zygotic contributions to imprint specification should help understand mechanistic opportunities and constraints on the evolution of imprinting in mammals.
Collapse
|
23
|
Lu CL, Wang TR, Yan LY, Xia X, Zhu XH, Li R, Zhao HC, Yan J, Yin TL, Jin HY, Zhang Y, Zhang WX, Feng HL, Qiao J. Gonadotropin-mediated dynamic alterations during bovine oocyte maturation in vitro. Biol Reprod 2014; 91:44. [PMID: 24943039 DOI: 10.1095/biolreprod.114.117945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Gonadotropins have been widely used in human-assisted reproduction and animal science for the past four decades. However, the effects of gonadotropins on oocyte maturation at the molecular and biochemical levels are poorly understood. To determine the effects of gonadotropins (recombinant follicle stimulating hormone and urinary human menopausal gonadotropin) on oocyte maturation, we used the bovine oocyte in vitro maturation model. First, we studied the effects of increasing gonadotropin concentrations on nuclear maturation and mitochondrial function in oocytes. Gonadotropins at concentrations of 0.075 and 0.75 IU/ml improved nuclear maturation and increased inner mitochondrial membrane potential and ATP levels; however, there were no beneficial effects at concentrations of 7.5 and 75 IU/ml. Second, we studied the effects of increasing gonadotropin concentrations on the status of methylation in matured (MII) oocytes. Aberrant methylation and demethylation of H19, SNRPN, and PEG3 genes were observed in MII oocytes at all concentrations except 0.075 IU/ml. The expression of genes that function in spindle formation, cell cycle control, and methylation was also downregulated by high gonadotropin concentrations. In conclusion, we established the optimal gonadotropin concentration (i.e., 0.075 IU/ml) to be used for bovine oocyte in vitro maturation studies. These results may provide a guide for clinical stimulation protocols and help to reduce the risks associated with gonadotropin administration during in vitro fertilization treatment.
Collapse
Affiliation(s)
- Cui-Ling Lu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Tian-Ren Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Li-Ying Yan
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Xi Xia
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Xiao-Hui Zhu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Rong Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Hong-Cui Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Jie Yan
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Tai-Lang Yin
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Hong-Yan Jin
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Wen-Xin Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Huai-Liang Feng
- Department of Obstetrics and Gynecology, New York Hospital Queens-affiliated Weill Medical College of Cornell University, New York, New York
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| |
Collapse
|
24
|
Urrego R, Rodriguez-Osorio N, Niemann H. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle. Epigenetics 2014; 9:803-15. [PMID: 24709985 DOI: 10.4161/epi.28711] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of Assisted Reproductive Technologies (ARTs) in modern cattle breeding is an important tool for improving the production of dairy and beef cattle. A frequently employed ART in the cattle industry is in vitro production of embryos. However, bovine in vitro produced embryos differ greatly from their in vivo produced counterparts in many facets, including developmental competence. The lower developmental capacity of these embryos could be due to the stress to which the gametes and/or embryos are exposed during in vitro embryo production, specifically ovarian hormonal stimulation, follicular aspiration, oocyte in vitro maturation in hormone supplemented medium, sperm handling, gamete cryopreservation, and culture of embryos. The negative effects of some ARTs on embryo development could, at least partially, be explained by disruption of the physiological epigenetic profile of the gametes and/or embryos. Here, we review the current literature with regard to the putative link between ARTs used in bovine reproduction and epigenetic disorders and changes in the expression profile of embryonic genes. Information on the relationship between reproductive biotechnologies and epigenetic disorders and aberrant gene expression in bovine embryos is limited and novel approaches are needed to explore ways in which ARTs can be improved to avoid epigenetic disorders.
Collapse
Affiliation(s)
- Rodrigo Urrego
- Grupo CENTAURO; Universidad de Antioquia; Medellín, Colombia; Facultad de Medicina Veterinaria y Zootecnia; Grupo INCA-CES; Universidad CES; Medellín, Colombia
| | | | - Heiner Niemann
- Institute of Farm Animal Genetics; Friedrich-Loeffler-Institut (FLI); Mariensee, Germany
| |
Collapse
|
25
|
Cruvinel E, Budinetz T, Germain N, Chamberlain S, Lalande M, Martins-Taylor K. Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Hum Mol Genet 2014; 23:4674-85. [PMID: 24760766 DOI: 10.1093/hmg/ddu187] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Prader-Willi syndrome (PWS), a disorder of genomic imprinting, is characterized by neonatal hypotonia, hypogonadism, small hands and feet, hyperphagia and obesity in adulthood. PWS results from the loss of paternal copies of the cluster of SNORD116 C/D box snoRNAs and their host transcript, 116HG, on human chromosome 15q11-q13. We have investigated the mechanism of repression of the maternal SNORD116 cluster and 116HG. Here, we report that the zinc-finger protein ZNF274, in association with the histone H3 lysine 9 (H3K9) methyltransferase SETDB1, is part of a complex that binds to the silent maternal but not the active paternal alleles. Knockdown of SETDB1 in PWS-specific induced pluripotent cells (iPSCs) causes a decrease in the accumulation of H3K9 trimethylation (H3K9me3) at 116HG and corresponding accumulation of the active chromatin mark histone H3 lysine 4 dimethylation (H3K4me2). We also show that upon knockdown of SETDB1 in PWS-specific iPSCs, expression of maternally silenced 116HG RNA is partially restored. SETDB1 knockdown in PWS iPSCs also disrupts DNA methylation at the PWS-IC where a decrease in 5-methylcytosine is observed in association with a concomitant increase in 5-hydroxymethylcytosine. This observation suggests that the ZNF274/SETDB1 complex bound to the SNORD116 cluster may protect the PWS-IC from DNA demethylation during early development. Our findings reveal novel epigenetic mechanisms that function to repress the maternal 15q11-q13 region.
Collapse
Affiliation(s)
- Estela Cruvinel
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA Human Genome and Stem Cell Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Tara Budinetz
- Center for Advanced Reproductive Services, Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, USA
| | - Noelle Germain
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| | - Stormy Chamberlain
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| | - Marc Lalande
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| | - Kristen Martins-Taylor
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT, USA
| |
Collapse
|
26
|
Court F, Tayama C, Romanelli V, Martin-Trujillo A, Iglesias-Platas I, Okamura K, Sugahara N, Simón C, Moore H, Harness JV, Keirstead H, Sanchez-Mut JV, Kaneki E, Lapunzina P, Soejima H, Wake N, Esteller M, Ogata T, Hata K, Nakabayashi K, Monk D. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res 2014; 24:554-69. [PMID: 24402520 PMCID: PMC3975056 DOI: 10.1101/gr.164913.113] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/26/2013] [Indexed: 12/16/2022]
Abstract
Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.
Collapse
Affiliation(s)
- Franck Court
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Chiharu Tayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Valeria Romanelli
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Alex Martin-Trujillo
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Isabel Iglesias-Platas
- Servicio de Neonatología, Hospital Sant Joan de Déu, Fundació Sant Joan de Déu, 08950 Barcelona, Spain
| | - Kohji Okamura
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Naoko Sugahara
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Carlos Simón
- Fundación IVI-Instituto Universitario IVI-Universidad de Valencia, INCLIVA, 46980 Paterna, Valencia, Spain
| | - Harry Moore
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Julie V. Harness
- Reeve-Irvine Research Centre, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Hans Keirstead
- Reeve-Irvine Research Centre, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Jose Vicente Sanchez-Mut
- Cancer Epigenetics Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Eisuke Kaneki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular, CIBERER, IDIPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, 28046 Madrid, Spain
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Norio Wake
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| |
Collapse
|
27
|
Autuoro JM, Pirnie SP, Carmichael GG. Long noncoding RNAs in imprinting and X chromosome inactivation. Biomolecules 2014; 4:76-100. [PMID: 24970206 PMCID: PMC4030979 DOI: 10.3390/biom4010076] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 12/11/2022] Open
Abstract
The field of long noncoding RNA (lncRNA) research has been rapidly advancing in recent years. Technological advancements and deep-sequencing of the transcriptome have facilitated the identification of numerous new lncRNAs, many with unusual properties, however, the function of most of these molecules is still largely unknown. Some evidence suggests that several of these lncRNAs may regulate their own transcription in cis, and that of nearby genes, by recruiting remodeling factors to local chromatin. Notably, lncRNAs are known to exist at many imprinted gene clusters. Genomic imprinting is a complex and highly regulated process resulting in the monoallelic silencing of certain genes, based on the parent-of-origin of the allele. It is thought that lncRNAs may regulate many imprinted loci, however, the mechanism by which they exert such influence is poorly understood. This review will discuss what is known about the lncRNAs of major imprinted loci, and the roles they play in the regulation of imprinting.
Collapse
Affiliation(s)
- Joseph M Autuoro
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA.
| | - Stephan P Pirnie
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA.
| | - Gordon G Carmichael
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
28
|
Das R, Lee YK, Strogantsev R, Jin S, Lim YC, Ng PY, Lin XM, Chng K, Yeo GSH, Ferguson-Smith AC, Ding C. DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation. BMC Genomics 2013; 14:685. [PMID: 24094292 PMCID: PMC3829101 DOI: 10.1186/1471-2164-14-685] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetically regulated process wherein genes are expressed in a parent-of-origin specific manner. Many imprinted genes were initially identified in mice; some of these were subsequently shown not to be imprinted in humans. Such discrepancy reflects developmental, morphological and physiological differences between mouse and human tissues. This is particularly relevant for the placenta. Study of genomic imprinting thus needs to be carried out in a species and developmental stage-specific manner. We describe here a new strategy to study allele-specific DNA methylation in the human placenta for the discovery of novel imprinted genes. RESULTS Using this methodology, we confirmed 16 differentially methylated regions (DMRs) associated with known imprinted genes. We chose 28 genomic regions for further testing and identified two imprinted genes (DNMT1 and AIM1). Both genes showed maternal allele-specific methylation and paternal allele-specific transcription. Imprinted expression for AIM1 was conserved in the cynomolgus macaque placenta, but not in other macaque tissues or in the mouse. CONCLUSIONS Our study indicates that while there are many genomic regions with allele-specific methylation in tissues like the placenta, only a small sub-set of them are associated with allele-specific transcription, suggesting alternative functions for such genomic regions. Nonetheless, novel tissue-specific imprinted genes remain to be discovered in humans. Their identification may help us better understand embryonic and fetal development.
Collapse
Affiliation(s)
- Radhika Das
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yew Kok Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ruslan Strogantsev
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Shengnan Jin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yen Ching Lim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Poh Yong Ng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xueqin Michelle Lin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Keefe Chng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - George SH Yeo
- Department of Maternal Fetal Medicine, K.K. Women’s and Children’s Hospital, Singapore, Singapore
| | - Anne C Ferguson-Smith
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Chunming Ding
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
29
|
Chen PY, Ganguly A, Rubbi L, Orozco LD, Morselli M, Ashraf D, Jaroszewicz A, Feng S, Jacobsen SE, Nakano A, Devaskar SU, Pellegrini M. Intrauterine calorie restriction affects placental DNA methylation and gene expression. Physiol Genomics 2013; 45:565-76. [PMID: 23695884 DOI: 10.1152/physiolgenomics.00034.2013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Maternal nutrient restriction causes the development of adult onset chronic diseases in the intrauterine growth restricted (IUGR) fetus. Investigations in mice have shown that either protein or calorie restriction during pregnancy leads to glucose intolerance, increased fat mass, and hypercholesterolemia in adult male offspring. Some of these phenotypes are shown to persist in successive generations. The molecular mechanisms underlying IUGR remain unclear. The placenta is a critical organ for mediating changes in the environment and the development of embryos. To shed light on molecular mechanisms that might affect placental responses to differing environments we examined placentas from mice that had been exposed to different diets. We measured gene expression and whole genome DNA methylation in both male and female placentas of mice exposed to either caloric restriction or ad libitum diets. We observed several differentially expressed pathways associated with IUGR phenotypes and, most importantly, a significant decrease in the overall methylation between these groups as well as sex-specific effects that are more pronounced in males. In addition, a set of significantly differentially methylated genes that are enriched for known imprinted genes were identified, suggesting that imprinted loci may be particularly susceptible to diet effects. Lastly, we identified several differentially methylated microRNAs that target genes associated with immunological, metabolic, gastrointestinal, cardiovascular, and neurological chronic diseases, as well as genes responsible for transplacental nutrient transfer and fetal development.
Collapse
Affiliation(s)
- Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Recommendations for the investigation of animal models of Prader-Willi syndrome. Mamm Genome 2013; 24:165-78. [PMID: 23609791 DOI: 10.1007/s00335-013-9454-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/11/2013] [Indexed: 12/28/2022]
Abstract
Prader-Willi syndrome (PWS) occurs in about 1 in 15,000 individuals and is a contiguous gene disorder causing developmental disability, hyperphagia usually with obesity, and behavioral problems, including an increased incidence of psychiatric illness. The genomic imprinting that regulates allele-specific expression of PWS candidate genes, the fact that multiple genes are typically inactivated, and the presence of many genes that produce functional RNAs rather than proteins has complicated the identification of the underlying genetic pathophysiology of PWS. Over 30 genetically modified mouse strains that have been developed and characterized have been instrumental in elucidating the genetic and epigenetic mechanisms for the regulation of PWS genes and in discovering their physiological functions. In 2011, a PWS Animal Models Working Group (AMWG) was established to generate discussions and facilitate exchange of ideas regarding the best use of PWS animal models. Here, we summarize the goals of the AMWG, describe current animal models of PWS, and make recommendations for strategies to maximize the utility of animal models and for the development and use of new animal models of PWS.
Collapse
|
31
|
Regulatory elements associated with paternally-expressed genes in the imprinted murine Angelman/Prader-Willi syndrome domain. PLoS One 2013; 8:e52390. [PMID: 23390487 PMCID: PMC3563663 DOI: 10.1371/journal.pone.0052390] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
The Angelman/Prader-Willi syndrome (AS/PWS) domain contains at least 8 imprinted genes regulated by a bipartite imprinting center (IC) associated with the SNRPN gene. One component of the IC, the PWS-IC, governs the paternal epigenotype and expression of paternal genes. The mechanisms by which imprinting and expression of paternal genes within the AS/PWS domain – such as MKRN3 and NDN – are regulated by the PWS-IC are unclear. The syntenic region in the mouse is organized and imprinted similarly to the human domain with the murine PWS-IC defined by a 6 kb interval within the Snrpn locus that includes the promoter. To identify regulatory elements that may mediate PWS-IC function, we mapped the location and allele-specificity of DNase I hypersensitive (DH) sites within the PWS-IC in brain cells, then identified transcription factor binding sites within a subset of these DH sites. Six major paternal-specific DH sites were detected in the Snrpn gene, five of which map within the 6 kb PWS-IC. We postulate these five DH sites represent functional components of the murine PWS-IC. Analysis of transcription factor binding within multiple DH sites detected nuclear respiratory factors (NRF's) and YY1 specifically on the paternal allele. NRF's and YY1 were also detected in the paternal promoter region of the murine Mrkn3 and Ndn genes. These results suggest that NRF's and YY1 may facilitate PWS-IC function and coordinately regulate expression of paternal genes. The presence of NRF's also suggests a link between transcriptional regulation within the AS/PWS domain and regulation of respiration. 3C analyses indicated Mkrn3 lies in close proximity to the PWS-IC on the paternal chromosome, evidence that the PWS-IC functions by allele-specific interaction with its distal target genes. This could occur by allele-specific co-localization of the PWS-IC and its target genes to transcription factories containing NRF's and YY1.
Collapse
|
32
|
El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril 2013; 99:632-41. [PMID: 23357453 DOI: 10.1016/j.fertnstert.2012.12.044] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 01/01/2023]
Abstract
Although assisted reproductive technology (ART) has become a routine practice for human infertility treatment, the etiology of the increased risks for perinatal problems in ART-conceived children is still poorly understood. Data from mouse experiments and the in vitro production of livestock provide strong evidence that imprint establishment in late oocyte stages and reprogramming of the two germline genomes for somatic development after fertilization are vulnerable to environmental cues. In vitro culture and maturation of oocytes, superovulation, and embryo culture all represent artificial intrusions upon the natural development, which can be expected to influence the epigenome of the resultant offspring. However, in this context it is difficult to define the normal range of epigenetic variation in humans from conception throughout life. With the notable exception of a few highly penetrant imprinting mutations, the phenotypic consequences of any observed epigenetic differences between ART and non-ART groups remain largely unclear. The periconceptional period is not only critical for embryonal, placental, and fetal development, as well as the outcome at birth, but suboptimal in vitro culture conditions may also lead to persistent changes in the epigenome influencing disease susceptibilities later in life. The epigenome appears to be most plastic in the late stages of oocyte and the early stages of embryo development; this plasticity steadily decreases during prenatal and postnatal life. Therefore, when considering the safety of human ART from an epigenetic point of view, our main concern should not be whether or not a few rare imprinting disorders are increased, but rather we must be aware of a functional link between interference with epigenetic reprogramming in very early development and adult disease.
Collapse
Affiliation(s)
- Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | | |
Collapse
|
33
|
Anckaert E, De Rycke M, Smitz J. Culture of oocytes and risk of imprinting defects. Hum Reprod Update 2012; 19:52-66. [DOI: 10.1093/humupd/dms042] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Daugela L, Nüsgen N, Walier M, Oldenburg J, Schwaab R, El-Maarri O. Measurements of DNA methylation at seven loci in various tissues of CD1 mice. PLoS One 2012; 7:e44585. [PMID: 22970256 PMCID: PMC3436786 DOI: 10.1371/journal.pone.0044585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/09/2012] [Indexed: 12/18/2022] Open
Abstract
In humans, considerable variation in methylation at single loci and repetitive elements in various cells and tissues is observed. Recently, several inter- and intra-tissue correlations for DNA methylation have been reported. To investigate the extent and reproducibility of such correlations, we investigated inter- and intra-tissue methylation correlations among seven different loci in 9 different tissues in a population of 100 healthy seven-week-old CD1 outbred mice. We used a highly quantitative approach to measure methylation levels to high accuracy at two single loci in the alpha-actin and myosine light chain promoters, at three differentially methylated regions of the Peg3, Snrpn and Lit1 genes associated with imprinted loci, and at two repetitive elements in the Line-1 and IAP-LTR genes in the various tissues. In this population of mice, methylation at several loci was sex-associated and intra-tissue correlations among the studied loci were observed for brain and spleen. Inter-tissue correlations were rarely observed. To investigate method-dependent experimental variability, we re-analyzed the same spleen and tongue samples using SIRPH and pyrosequencing methods and reconfirmed intra-tissue correlations for spleen and sex-associated correlations for DNA methylation for tongue. When we repeated DNA methylation measurements for a second mouse population raised under similar conditions three months later, we did not detect sex-associated or intra-tissues correlations. Additional studies that examine large numbers of loci may be required to further understand the factors that influence stability of DNA methylation.
Collapse
Affiliation(s)
- Laurynas Daugela
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Nicole Nüsgen
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Maja Walier
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University of Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Rainer Schwaab
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
35
|
Abstract
Assisted reproductive technologies (ART) offer revolutionary infertility treatments for millions of childless couples around the world. Currently, ART accounts for 1 to 3% of annual births in industrialized countries and continues to expand rapidly. Except for an increased incidence of premature births, these technologies are considered safe. However, new evidence published during the past decade has suggested an increased incidence of imprinting disorders in children conceived by ART. Specifically, an increased risk was reported for Beckwith-Wiedemann syndrome (BWS), Angelman syndrome (AS), Silver-Russell syndrome, and retinoblastoma. In contrast, some studies have found no association between ART and BWS, AS, Prader-Willi syndrome, transient neonatal diabetes mellitus, and retinoblastoma. The variability in ART protocols and the rarity of imprinting disorders complicate determining the causative relationship between ART and an increased incidence of imprinting disorders. Nevertheless, compelling experimental data from animal studies also suggest a link between increased imprinting disorders and ART. Further comprehensive, appropriately powered studies are needed to better address the magnitude of the risk for ART-associated imprinting disorders. Large longitudinal studies are particularly critical to evaluate long-term effects of ART not only during the perinatal period but also into adulthood. An important consideration is to determine if the implicated association between ART and imprinting disorders is actually related to the procedures or to infertility itself.
Collapse
Affiliation(s)
- Ali Eroglu
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | |
Collapse
|
36
|
Mechanisms of activation of the paternally expressed genes by the Prader-Willi imprinting center in the Prader-Willi/Angelman syndromes domains. Proc Natl Acad Sci U S A 2012; 109:7403-8. [PMID: 22529396 DOI: 10.1073/pnas.1116661109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Prader-Willi syndrome/Angelman syndrome (PWS/AS) imprinted domain is regulated by a bipartite imprinting control center (IC) composed of a sequence around the SNRPN promoter (PWS-IC) and a 880-bp sequence located 35 kb upstream (AS-IC). The AS-IC imprint is established during gametogenesis and confers repression upon PWS-IC on the maternal allele. Mutation at PWS-IC on the paternal allele leads to gene silencing across the entire PWS/AS domain. This silencing implies that PWS-IC functions on the paternal allele as a bidirectional activator. Here we examine the mechanism by which PWS-IC activates the paternally expressed genes (PEGs) using transgenes that include the PWS-IC sequence in the presence or absence of AS-IC and NDN, an upstream PEG, as an experimental model. We demonstrate that PWS-IC is in fact an activator of NDN. This activation requires an unmethylated PWS-IC in the gametes and during early embryogenesis. PWS-IC is dispensable later in development. Interestingly, a similar activation of a nonimprinted gene (APOA1) was observed, implying that PWS-IC is a universal activator. To decipher the mechanism by which PWS-IC confers activation of remote genes, we performed methylated DNA immunoprecipitation (MeDIP) array analysis on lymphoblast cell lines that revealed dispersed, rather than continued differential methylation. However, chromatin conformation capture (3c) experiments revealed a physical interaction between PWS-IC and the PEGs, suggesting that activation of PEGs may require their proximity to PWS-IC.
Collapse
|
37
|
Abstract
DNA methylation mediates imprinted gene expression by passing an epigenomic state across generations and differentially marking specific regulatory regions on maternal and paternal alleles. Imprinting has been tied to the evolution of the placenta in mammals and defects of imprinting have been associated with human diseases. Although recent advances in genome sequencing have revolutionized the study of DNA methylation, existing methylome data remain largely untapped in the study of imprinting. We present a statistical model to describe allele-specific methylation (ASM) in data from high-throughput short-read bisulfite sequencing. Simulation results indicate technical specifications of existing methylome data, such as read length and coverage, are sufficient for full-genome ASM profiling based on our model. We used our model to analyze methylomes for a diverse set of human cell types, including cultured and uncultured differentiated cells, embryonic stem cells and induced pluripotent stem cells. Regions of ASM identified most consistently across methylomes are tightly connected with known imprinted genes and precisely delineate the boundaries of several known imprinting control regions. Predicted regions of ASM common to multiple cell types frequently mark noncoding RNA promoters and represent promising starting points for targeted validation. More generally, our model provides the analytical complement to cutting-edge experimental technologies for surveying ASM in specific cell types and across species.
Collapse
|
38
|
R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 2012; 45:814-25. [PMID: 22387027 DOI: 10.1016/j.molcel.2012.01.017] [Citation(s) in RCA: 624] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/08/2011] [Accepted: 01/10/2012] [Indexed: 12/31/2022]
Abstract
CpG islands (CGIs) function as promoters for approximately 60% of human genes. Most of these elements remain protected from CpG methylation, a prevalent epigenetic modification associated with transcriptional silencing. Here, we report that methylation-resistant CGI promoters are characterized by significant strand asymmetry in the distribution of guanines and cytosines (GC skew) immediately downstream from their transcription start sites. Using innovative genomics methodologies, we show that transcription through regions of GC skew leads to the formation of long R loop structures. Furthermore, we show that GC skew and R loop formation potential is correlated with and predictive of the unmethylated state of CGIs. Finally, we provide evidence that R loop formation protects from DNMT3B1, the primary de novo DNA methyltransferase in early development. Altogether, these results suggest that protection from DNA methylation is a built-in characteristic of the DNA sequence of CGI promoters that is revealed by the cotranscriptional formation of R loop structures.
Collapse
|
39
|
van Montfoort APA, Hanssen LLP, de Sutter P, Viville S, Geraedts JPM, de Boer P. Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update 2012; 18:171-97. [PMID: 22267841 PMCID: PMC3282574 DOI: 10.1093/humupd/dmr047] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The subject of epigenetic risk of assisted reproduction treatment (ART), initiated by reports on an increase of children with the Beckwith–Wiedemann imprinting disorder, is very topical. Hence, there is a growing literature, including mouse studies. METHODS In order to gain information on transgenerational epigenetic inheritance and epigenetic effects induced by ART, literature databases were searched for papers on this topic using relevant keywords. RESULTS At the level of genomic imprinting involving CpG methylation, ART-induced epigenetic defects are convincingly observed in mice, especially for placenta, and seem more frequent than in humans. Data generally provide a warning as to the use of ovulation induction and in vitro culture. In human sperm from compromised spermatogenesis, sequence-specific DNA hypomethylation is observed repeatedly. Transmittance of sperm and oocyte DNA methylation defects is possible but, as deduced from the limited data available, largely prevented by selection of gametes for ART and/or non-viability of the resulting embryos. Some evidence indicates that subfertility itself is a risk factor for imprinting diseases. As in mouse, physiological effects from ART are observed in humans. In the human, indications for a broader target for changes in CpG methylation than imprinted DNA sequences alone have been found. In the mouse, a broader range of CpG sequences has not yet been studied. Also, a multigeneration study of systematic ART on epigenetic parameters is lacking. CONCLUSIONS The field of epigenetic inheritance within the lifespan of an individual and between generations (via mitosis and meiosis, respectively) is growing, driven by the expansion of chromatin research. ART can induce epigenetic variation that might be transmitted to the next generation.
Collapse
Affiliation(s)
- A P A van Montfoort
- Department of Obstetrics & Gynaecology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Wu PY, Zhang Z, Wang JM, Guo WW, Xiao N, He Q, Wang YP, Fan YM. Germline promoter hypermethylation of tumor suppressor genes in gastric cancer. World J Gastroenterol 2012; 18:70-8. [PMID: 22228973 PMCID: PMC3251808 DOI: 10.3748/wjg.v18.i1.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/11/2011] [Accepted: 07/18/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore germline hypermethylation of the tumor suppressor genes MLH1, CDH1 and P16INK4a in suspected cases of hereditary gastric cancer (GC).
METHODS: A group of 140 Chinese GC patients in whom the primary cancer had developed before the age of 60 or who had a familial history of cancer were screened for germline hypermethylation of the MLH1, CDH1 and P16INK4a tumor suppressor genes. Genomic DNA was extracted from peripheral blood leukocytes and modified by sodium bisulfite. The treated DNA was then subjected to bisulfite DNA sequencing for a specific region of the MLH1 promoter. The methylation status of CDH1 or P16INK4a was assayed using methylation-specific PCR. Clonal bisulfite allelic sequencing in positive samples was performed to obtain a comprehensive analysis of the CpG island methylation status of these promoter regions.
RESULTS: Methylation of the MLH1 gene promoter was detected in the peripheral blood DNA of only 1/140 (0.7%) of the GC patient group. However, this methylation pattern was mosaic rather than the allelic pattern which has previously been reported for MLH1 in hereditary non-polyposis colorectal cancer (HNPCC) patients. We found that 10% of the MLH1 alleles in the peripheral blood DNA of this patient were methylated, consistent with 20% of cells having one methylated allele. No germline promoter methylation of the CDH1 or P16INK4a genes was detected.
CONCLUSION: Mosaic germline epimutation of the MLH1 gene is present in suspected hereditary GC patients in China but at a very low level. Germline epimutation of the CDH1 or P16INK4a gene is not a frequent event.
Collapse
|
41
|
Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv Nutr 2012; 3:21-38. [PMID: 22332098 PMCID: PMC3262611 DOI: 10.3945/an.111.000992] [Citation(s) in RCA: 625] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is an epigenetic modification critical to normal genome regulation and development. The vitamin folate is a key source of the one carbon group used to methylate DNA. Because normal mammalian development is dependent on DNA methylation, there is enormous interest in assessing the potential for changes in folate intake to modulate DNA methylation both as a biomarker for folate status and as a mechanistic link to developmental disorders and chronic diseases including cancer. This review highlights the role of DNA methylation in normal genome function, how it can be altered, and the evidence of the role of folate/folic acid in these processes.
Collapse
Affiliation(s)
- Krista S Crider
- Division of Birth Defects and Developmental Disabilities, National Center on Birth Defects and Developmental Disabilities, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
42
|
Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod 2011; 26:2558-69. [PMID: 21685136 PMCID: PMC3157626 DOI: 10.1093/humrep/der192] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/28/2011] [Accepted: 04/21/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The sperm chromatin of fertile men retains a small number of nucleosomes that are enriched at developmental gene promoters and imprinted gene loci. This unique chromatin packaging at certain gene promoters provides these genomic loci the ability to convey instructive epigenetic information to the zygote, potentially expanding the role and significance of the sperm epigenome in embryogenesis. We hypothesize that changes in chromatin packaging may be associated with poor reproductive outcome. METHODS Seven patients with reproductive dysfunction were recruited: three had unexplained poor embryogenesis during IVF and four were diagnosed with male infertility and previously shown to have altered protamination. Genome-wide analysis of the location of histones and histone modifications was analyzed by isolation and purification of DNA bound to histones and protamines. The histone-bound fraction of DNA was analyzed using high-throughput sequencing, both initially and following chromatin immunoprecipitation. The protamine-bound fraction was hybridized to agilent arrays. DNA methylation was examined using bisulfite sequencing. RESULTS Unlike fertile men, five of seven infertile men had non-programmatic (randomly distributed) histone retention genome-wide. Interestingly, in contrast to the total histone pool, the localization of H3 Lysine 4 methylation (H3K4me) or H3 Lysine 27 methylation (H3K27me) was highly similar in the gametes of infertile men compared with fertile men. However, there was a reduction in the amount of H3K4me or H3K27me retained at developmental transcription factors and certain imprinted genes. Finally, the methylation status of candidate developmental promoters and imprinted loci were altered in a subset of the infertile men. CONCLUSIONS This initial genome-wide analysis of epigenetic markings in the sperm of infertile men demonstrates differences in composition and epigenetic markings compared with fertile men, especially at certain imprinted and developmental loci. Although no single locus displays a complete change in chromatin packaging or DNA modification, the data suggest that moderate changes throughout the genome exist and may have a cumulative detrimental effect on fecundity.
Collapse
Affiliation(s)
- Saher Sue Hammoud
- Department of Oncological Sciences, Howard Hughes Medical Institute, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Circle of hope, 4th floor, Rm# 4350, Salt Lake City, UT, USA
- Department of Surgery, Obstetrics and Gynecology,IVF and Andrology Laboratories, Salt Lake City, UT, USA
- Department of Physiology,University of Utah School of Medicine, Salt Lake City, UT, USA
| | - David A. Nix
- Research Informatics and Bioinformatics Core Facility, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ahmad O. Hammoud
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, 675 Arapeen dr. (suite 205), Salt Lake City, UT, USA
| | - Mark Gibson
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, 675 Arapeen dr. (suite 205), Salt Lake City, UT, USA
| | - Bradley R. Cairns
- Department of Oncological Sciences, Howard Hughes Medical Institute, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Circle of hope, 4th floor, Rm# 4350, Salt Lake City, UT, USA
| | - Douglas T. Carrell
- Department of Surgery, Obstetrics and Gynecology,IVF and Andrology Laboratories, Salt Lake City, UT, USA
- Department of Physiology,University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, 675 Arapeen dr. (suite 205), Salt Lake City, UT, USA
| |
Collapse
|
43
|
Embryonic imprinting perturbations do not originate from superovulation-induced defects in DNA methylation acquisition. Fertil Steril 2011; 96:734-738.e2. [DOI: 10.1016/j.fertnstert.2011.06.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 01/16/2023]
|
44
|
Meguro-Horike M, Yasui DH, Powell W, Schroeder DI, Oshimura M, Lasalle JM, Horike SI. Neuron-specific impairment of inter-chromosomal pairing and transcription in a novel model of human 15q-duplication syndrome. Hum Mol Genet 2011; 20:3798-810. [PMID: 21725066 DOI: 10.1093/hmg/ddr298] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although the etiology of autism remains largely unknown, cytogenetic and genetic studies have implicated maternal copy number gains of 15q11-q13 in 1-3% of autism cases. In order to understand how maternal 15q duplication leads to dysregulation of gene expression and altered chromatin interactions, we used microcell-mediated chromosome transfer to generate a novel maternal 15q duplication model in a human neuronal cell line. Our 15q duplication neuronal model revealed that by quantitative RT-PCR, transcript levels of NDN, SNRPN, GABRB3 and CHRNA7 were reduced compared with expected levels despite having no detectable alteration in promoter DNA methylation. Since 15q11-q13 alleles have been previously shown to exhibit homologous pairing in mature human neurons, we assessed homologous pairing of 15q11-q13 by fluorescence in situ hybridization. Homologous pairing of 15q11-q13 was significantly disrupted by 15q duplication. To further understand the extent and mechanism of 15q11-q13 homologous pairing, we mapped the minimal region of homologous pairing to a ∼500 kb region at the 3' end of GABRB3 which contains multiple binding sites for chromatin regulators MeCP2 and CTCF. Both active transcription and the chromatin factors MeCP2 and CTCF are required for the homologous pairing of 15q11-q13 during neuronal maturational differentiation. These data support a model where 15q11-q13 genes are regulated epigenetically at the level of both inter- and intra-chromosomal associations and that chromosome imbalance disrupts the epigenetic regulation of genes in 15q11-q13.
Collapse
Affiliation(s)
- Makiko Meguro-Horike
- Frontier Science Organization, Kanazawa University, 13-1 Takaramachi, Kanazawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Dubose AJ, Smith EY, Yang TP, Johnstone KA, Resnick JL. A new deletion refines the boundaries of the murine Prader-Willi syndrome imprinting center. Hum Mol Genet 2011; 20:3461-6. [PMID: 21659337 DOI: 10.1093/hmg/ddr262] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human chromosomal 15q11-15q13 region is subject to both maternal and paternal genomic imprinting. Absence of paternal gene expression from this region results in Prader-Willi syndrome (PWS), while absence of maternal gene expression leads to Angelman syndrome. Transcription of paternally expressed genes in the region depends upon an imprinting center termed the PWS-IC. Imprinting defects in PWS can be caused by microdeletions and the smallest commonly deleted region indicates that the PWS-IC lies within a region of 4.3 kb. The function and location of the PWS-IC is evolutionarily conserved, but delineation of the PWS-IC in mouse has proven difficult. The first targeted mutation of the PWS-IC, a deletion of 35 kb spanning Snrpn exon 1, exhibited a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally showed a complete loss of paternal gene expression and died neonatally. A reported deletion of 4.8 kb showed only a reduction in paternal gene expression and incomplete penetrance of neonatal lethality, suggesting that some PWS-IC function had been retained. Here, we report that a 6 kb deletion spanning Snrpn exon 1 exhibits a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally lack detectable expression of all PWS genes and paternal silencing of Ube3a, exhibit maternal DNA methylation imprints at Ndn and Mkrn3 and suffer failure to thrive leading to a fully penetrant neonatal lethality.
Collapse
Affiliation(s)
- Amanda J Dubose
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, PO Box 100266, Gainesville, FL 32610-0266, USA
| | | | | | | | | |
Collapse
|
46
|
Al-Khtib M, Perret A, Khoueiry R, Ibala-Romdhane S, Blachère T, Greze C, Lornage J, Lefèvre A. Vitrification at the germinal vesicle stage does not affect the methylation profile of H19 and KCNQ1OT1 imprinting centers in human oocytes subsequently matured in vitro. Fertil Steril 2011; 95:1955-60. [DOI: 10.1016/j.fertnstert.2011.02.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 12/11/2022]
|
47
|
Chédin F. The DNMT3 family of mammalian de novo DNA methyltransferases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:255-85. [PMID: 21507354 DOI: 10.1016/b978-0-12-387685-0.00007-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The deposition of DNA methylation at promoters of transposons, X-linked genes, imprinted genes, and other lineage-specific genes is clearly associated with long-term transcriptional silencing. Thus, DNA methylation represents a key layer of epigenetic information in mammals that is required for embryonic development, germline differentiation, and, as shown more recently, for the function and maturation of neuronal tissues. The DNMT3A, DNMT3B, and DNMT3L proteins are primarily responsible for the establishment of genomic DNA methylation patterns and, as such, play an important role in human developmental, reproductive, and mental health. Progress in our understanding of this important protein family has been rapid in recent years and has been accompanied by stunning developments in the analysis of the human DNA methylome in multiple cell types. This review focuses on recent developments in the characterization of the DNMT3 family of DNA methyltransferases at the biochemical, structural, and functional levels. Interconnections between the DNA-based and histone-based layers of epigenetic information are particularly highlighted, as it is now clear that de novo methylation occurs chiefly in the context of nucleosomal templates.
Collapse
Affiliation(s)
- Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, California, USA
| |
Collapse
|
48
|
Abstract
Germ cell development is controlled by unique gene expression programs and involves epigenetic reprogramming of histone modifications and DNA methylation. The central event is meiosis, during which homologous chromosomes pair and recombine, processes that involve histone alterations. At unpaired regions, chromatin is repressed by meiotic silencing. After meiosis, male germ cells undergo chromatin remodeling, including histone-to-protamine replacement. Male and female germ cells are also differentially marked by parental imprints, which contribute to sex determination in insects and mediate genomic imprinting in mammals. Here, we review epigenetic transitions during gametogenesis and discuss novel insights from animal and human studies.
Collapse
Affiliation(s)
- Satya K Kota
- Institute of Molecular Genetics, CNRS UMR5535 and University of Montpellier I & II, 1919 route de Mende, 34293 Montpellier, France
| | | |
Collapse
|
49
|
Yang J, Cai J, Zhang Y, Wang X, Li W, Xu J, Li F, Guo X, Deng K, Zhong M, Chen Y, Lai L, Pei D, Esteban MA. Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J Biol Chem 2010; 285:40303-11. [PMID: 20956530 DOI: 10.1074/jbc.m110.183392] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The recent discovery of induced pluripotent stem cell (iPSC) technology provides an invaluable tool for creating in vitro representations of human genetic conditions. This is particularly relevant for those diseases that lack adequate animal models or where the species comparison is difficult, e.g. imprinting diseases such as the neurogenetic disorder Prader-Willi syndrome (PWS). However, recent reports have unveiled transcriptional and functional differences between iPSCs and embryonic stem cells that in cases are attributable to imprinting errors. This has suggested that human iPSCs may not be useful to model genetic imprinting diseases. Here, we describe the generation of iPSCs from a patient with PWS bearing a partial translocation of the paternally expressed chromosome 15q11-q13 region to chromosome 4. The resulting iPSCs match all standard criteria of bona fide reprogramming and could be readily differentiated into tissues derived from the three germ layers, including neurons. Moreover, these iPSCs retain a high level of DNA methylation in the imprinting center of the maternal allele and show concomitant reduced expression of the disease-associated small nucleolar RNA HBII-85/SNORD116. These results indicate that iPSCs may be a useful tool to study PWS and perhaps other genetic imprinting diseases as well.
Collapse
Affiliation(s)
- Jiayin Yang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Crane JL, Shamblott MJ, Axelman J, Hsu S, Levine MA, Germain-Lee EL. Imprinting status of Galpha(s), NESP55, and XLalphas in cell cultures derived from human embryonic germ cells: GNAS imprinting in human embryonic germ cells. Clin Transl Sci 2010; 2:355-60. [PMID: 20443919 DOI: 10.1111/j.1752-8062.2009.00148.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GNAS is a complex gene that through use of alternative first exons encodes signaling proteins Galpha(s) and XLalphas plus neurosecretory protein NESP55. Tissue-specific expression of these proteins is regulated through reciprocal genomic imprinting in fully differentiated and developed tissue. Mutations in GNAS account for several human disorders, including McCune-Albright syndrome and Albright hereditary osteodystrophy, and further knowledge of GNAS imprinting may provide insights into variable phenotypes of these disorders. We therefore analyzed expression of Galpha(s), NESP55, and XLalphas prior to tissue differentiation in cell cultures derived from human primordia germ cells. We found that the expression of Galpha(s) was biallelic (maternal allele: 52.6%+/- 2.5%; paternal allele: 47.2%+/- 2.5%; p= 0.07), whereas NESP55 was expressed preferentially from the maternal allele (maternal allele: 81.9%+/- 10%; paternal allele: 18.1%+/- 10%; p= 0.002) and XLalphas was preferentially expressed from the paternal allele (maternal allele: 2.7%+/- 0.3%; paternal allele: 97.3%+/- 0.3%; p= 0.007). These results demonstrate that imprinting of NESP55 occurs very early in development, although complete imprinting appears to take place later than 5-11 weeks postfertilization, and that imprinting of XLalphas occurs very early postfertilization. By contrast, imprinting of Galpha(s) most likely occurs after 11 weeks postfertilization and after tissue differentiation.
Collapse
Affiliation(s)
- Janet L Crane
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|