1
|
Maruyama R, Kudo Y, Sugiyama T. A new strategy for screening novel functional genes involved in reduction of lipid droplet accumulation. Biofactors 2024; 50:467-476. [PMID: 37983968 DOI: 10.1002/biof.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Lipid droplets (LDs) are organelles that store excess lipids and provide fatty acids for energy production during starvation. LDs are also essential for cellular maintenance, but excessive accumulation of LDs triggers various cancers in addition to metabolic diseases such as diabetes. In this study, we aimed to develop a strategy to identify new genes that reduces accumulation of LDs in cancer cells using an RNA interference (RNAi) screening system employing artificial sequence-enriched shRNA libraries. Monitoring LDs by fluorescent activated cell sorting, the subsequently collected cumulative LDs cells, and shRNA sequence analysis identified a clone that potentially functioned to accumulate LDs. The clone showed no identical sequence to human Refseq. It showed very similar sequence to seven genes by allowing three mismatches. Among these genes, we identified the mediator complex subunit 6 (MED6) gene as a target of this shRNA. Silencing of MED6 led to an increase in LD accumulation and expression of the marker genes, PLIN2 and DGAT1, in fatty cells. MED6 is a member of the mediator complex that regulates RNA polymerase II transcription through transcription factor II. Some mediator complexes play important roles in both normal and pathophysiological transcription processes. These results suggest that MED6 transcriptionally regulates the genes involved in lipid metabolism and suppresses LD accumulation.
Collapse
Affiliation(s)
- Ryuto Maruyama
- Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
- Department of Life Science, Rikkyo University, Tokyo, Japan
| | - Yasuhiro Kudo
- Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
| | - Tomoyasu Sugiyama
- Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
| |
Collapse
|
2
|
Chen ZL, Ma YY, Mou XZ, Zhang JG. Upregulation of MED7 was associated with progression in hepatocellular carcinoma. Cancer Biomark 2023; 38:603-611. [PMID: 38073375 DOI: 10.3233/cbm-220439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
OBJECTIVE MED subunits have been reported to be associated with various types of tumors, however, the potential role of MED7 in hepatocellular carcinoma (HCC) was still unclear. The aim of the study was to explore the role of MED7 in HCC. METHODS In this study, MED7 mRNA expression levels between HCC and adjacent normal tissues were first analyzed by several public datasets. Then we utilized a tissue microarray (TMA) to investigate the clinical role of MED7 in HCC by immunohistochemistry (IHC). Meanwhile, the potential mechanisms of MED7 based on gene-gene correlation analyses were also explored. RESULTS High mRNA level of MED7 correlated with advanced stage and worse grade of differentiation. IHC results showed that MED7 protein level was upregulated in HCC and associated with Edmondson grade and Microvascular invasion in 330 cases of HCC. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis revealed that MED7 co-expressed genes participate primarily in ribonucleoprotein complex biogenesis, protein targeting, mRNA processing and nucleoside triphosphate metabolic process et cetera. Further analysis also revealed that MED7 mRNA level has significant correlation with immune cells infiltration levels. CONCLUSION MED7 was upregulated in HCC and correlated with progression of HCC. Meanwhile, MED7 may promote HCC through participating in multiple gene networks to influence tumorigenesis as well as immune response in HCC microenvironment.
Collapse
Affiliation(s)
- Zheng-Lin Chen
- Graduate School of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun-Gang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Jin X, Song Y, An Z, Wu S, Cai D, Fu Y, Zhang C, Chen L, Tang W, Zheng Z, Lu H, Lian J. A Predictive Model for Prognosis and Therapeutic Response in Hepatocellular Carcinoma Based on a Panel of Three MED8-Related Immunomodulators. Front Oncol 2022; 12:868411. [PMID: 35558516 PMCID: PMC9086905 DOI: 10.3389/fonc.2022.868411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
The current tumor-node-metastasis (TNM) system is limited in predicting the survival and guiding the treatment of hepatocellular carcinoma (HCC) patients since the TNM system only focuses on the anatomical factors, regardless of the intratumoral molecule heterogeneity. Besides, the landscape of intratumoral immune genes has emerged as a prognostic indicator. The mediator complex subunit 8 (MED8) is a major polymerase regulator and has been described as an oncogene in renal cell carcinoma, but its pathophysiological significance of HCC and its contribution to the prognosis of HCC remain unclear. Here, we aimed to discuss the expression profile and clinical correlation of MED8 in HCC and construct a predictive model based on MED8-related immunomodulators as a supplement to the TNM system. According to our analyses, MED8 was overexpressed in HCC tissues and increased expression of MED8 was an indicator of poor outcome in HCC. The knockdown of MED8 weakened the proliferation, colony forming, and migration of HepG2 and Huh7 cells. Subsequently, a predictive model was identified based on a panel of three MED8-related immunomodulators using The Cancer Genome Atlas (TCGA) database and further validated in International Cancer Genome Consortium (ICGC) database. The combination of the predictive model and the TNM system could improve the performance in predicting the survival of HCC patients. High-risk patients had poor overall survival in TCGA and ICGC databases, as well as in subgroup analysis with early clinicopathology classification. It was also found that high-risk patients had a higher probability of recurrence in TCGA cohort. Furthermore, low-risk score indicated a better response to immunotherapy and drug therapy. This predictive model can be served as a supplement to the TNM system and may have implications in prognosis stratification and therapeutic guidance for HCC.
Collapse
Affiliation(s)
- Xiaojun Jin
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiovasology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Yongfei Song
- Department of Cardiovasology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Zhanglu An
- Graduate School, Hebei North University, Zhangjiakou, China.,Department of Pathology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou, China
| | - Shanshan Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Dihui Cai
- School of Medicine, Ningbo University, Ningbo, China
| | - Yin Fu
- School of Medicine, Ningbo University, Ningbo, China
| | | | - Lichao Chen
- School of Medicine, Ningbo University, Ningbo, China
| | - Wen Tang
- School of Medicine, Ningbo University, Ningbo, China
| | - Zequn Zheng
- School of Medicine, Ningbo University, Ningbo, China
| | - Hongsheng Lu
- Department of Pathology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou, China
| | - Jiangfang Lian
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiovasology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| |
Collapse
|
4
|
Wu S, Li Q, Cao Y, Luo S, Wang Z, Zhang T. Mediator complex subunit 8 is a prognostic biomarker in hepatocellular carcinoma. Am J Transl Res 2022; 14:1765-1777. [PMID: 35422940 PMCID: PMC8991165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mediator complex subunit 8 (MED8) is known for its role in encoding a subunit of the mediator complex (MED), that is critical for transcription. MED8 is significantly expressed in various tumors and has been correlated with an unfavorable prognosis. Nevertheless, no relationships have been found between MED8 and the clinical characteristics of hepatocellular carcinoma (HCC). METHODS To conduct an evaluation of correlations between clinicopathologic characteristics and MED8 expression, the logistic regression, Wilcoxon signed-rank test, and Kruskal-Wallis test were used. To perform analysis of factors contributing to prognosis, the Kaplan-Meier approach and the Cox regression analyses were used. A nomogram on the basis of a Cox multivariate analysis was employed to anticipate the influence of MED8 on patient prognosis. The receiver operating characteristic (ROC) curves were plotted and the areas under the curve (AUC) were calculated to assess the prognostic value of MED8. Both immune infiltration analysis and Gene Set Enrichment Analysis (GSEA) were applied to reveal significant enrichment differences among TCGA data. Quantitative RT-PCR (qRT-PCR) and western blotting were used to verify the difference in the expression of MED8 in normal and hepatocellular carcinoma cells. The immunohistochemical method was used to validate the MED8 expression in tumor and adjoining tissues of HCC patients. RESULTS A univariate analysis showed that high MED8 expression predicts poor disease-specific survival (DSS) (HR: 2.57; 95% confidence interval (CI) 1.62, 4.07; P<0.001). Multivariate regression analysis showed that high MED8 (adjusted HR: 3.032 (1.817, 5.060); P<0.001) expression and M stage (adjusted HR=4.075 (1.179-14.091) for M1 vs. M0, P=0.026) served as prognostic indicators of unfavorable overall survival in an independent manner in patients with HCC. The C-index for the nomogram was 0.732 (95% CI: 0.698, 0.766) and the AUC of MED8 was 0.817 (95% CI: 0.778, 0.857). Functional analysis showed that the cell cycle checkpoints, p53 dependent G1-DNA damage response, mitotic G1-G1-S phases, and mitotic G2-G2-M phases, were significantly enriched in DEGs associated with MED8 expression. Th2 cells were positively correlated with MED8 expression. CONCLUSIONS MED8 predicts poor prognosis in HCC, possibly through modulating the cell cycle and Th2 cells.
Collapse
Affiliation(s)
- Shuang Wu
- Clinical Laboratory, The Affiliated Children Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Qiao Li
- Clinical Laboratory, The Affiliated Children Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Yuan Cao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital)Xi’an, Shaanxi, China
| | - Senyuan Luo
- Department of Pathology, Taihe Hospital, Hubei Medical UniversityShiyan, Hubei, China
| | - Zengguo Wang
- Clinical Laboratory, The Affiliated Children Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Taoyuan Zhang
- Department of Anesthesiology, Rizhao International Heart HospitalRizhao, Shandong, China
| |
Collapse
|
5
|
Zhang Y, Qin P, Xu X, Li M, Huang H, Yan J, Zhou Y. Mediator Complex Subunit 19 Promotes the Development of Hepatocellular Carcinoma by Regulating the AKT/mTOR Signaling Pathway. Front Oncol 2022; 11:792285. [PMID: 35047403 PMCID: PMC8761619 DOI: 10.3389/fonc.2021.792285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, the pathogenesis of which remains unclear. Mediator complex subunit 19 (MED19), a subunit of the Mediator complex, is a multi-protein co-activator necessary for DNA transcription factors to induce RNA polymerase II transcription. In the current study, we aimed to study the role of MED19 in HCC and elucidate its mechanism. Methods MED19 expression in HCC tissues was determined. The relationship between MED19 and the clinical prognosis was explored. The influence of MED19 on HCC cell viability, migration, invasion, and apoptosis was studied. The expression of AKT/mTOR pathway genes and proteins was detected by qRT-PCR and western blot. The correlation between MED19 and immune infiltration was investigated. Results MED19 was upregulated in HCC tissues compared with tumor-adjacent tissues, and was associated with a poor prognosis. Furthermore, high MED19 expression was correlated with race, gender, etc. Knockdown of MED19 inhibited cell proliferation, migration, invasion, and promoted apoptosis. Knockdown of MED19 decreased p-AKT and p-mTOR protein expression. Additionally, the downstream effectors of the AKT/mTOR pathway, p70S6K1 and 4EBP1, were affected by MED19. Notably, MED19 expression was positively correlated with the infiltration levels of B cells, CD4+ T cells, CD8+ T cells, macrophages, etc. Conclusion MED19 is significantly upregulated in HCC tissues and cells. MED19 may promote the progression of HCC in vitro and may be related to immune infiltration. Together, our data show that MED19 could be considered as a new possible biomarker as well as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Microbiology, Guilin Medical University, Guilin, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Peifang Qin
- Department of Microbiology, Guilin Medical University, Guilin, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Xingfeng Xu
- Department of Physiology, Guilin Medical University, Guilin, China
| | - Mao Li
- Department of Physiology, Guilin Medical University, Guilin, China
| | - Haitao Huang
- Department of Microbiology, Guilin Medical University, Guilin, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| |
Collapse
|
6
|
Zhang Y, Qin P, Tian L, Yan J, Zhou Y. The role of mediator complex subunit 19 in human diseases. Exp Biol Med (Maywood) 2021; 246:1681-1687. [PMID: 34038190 PMCID: PMC8719036 DOI: 10.1177/15353702211011701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mediator is an evolutionarily conserved multi-protein complex that mediates the interaction between different proteins as a basic linker in the transcription mechanism of eukaryotes. It interacts with RNA polymerase II and participates in the process of gene expression. Mediator complex subunit 19 or regulation by oxygen 3, or lung cancer metastasis-related protein 1 is located at the head of the mediator complex; it is a multi-protein co-activator that induces the transcription of RNA polymerase II by DNA transcription factors. It is a tumor-related gene that plays an important role in transcriptional regulation, cell proliferation, and apoptosis and is closely related to the occurrence and development of the cancers of the lung, bladder, skin, etc. Here, we used the structure of mediator complex subunit 19 to review its role in tumor progression, fat metabolism, drug therapy, as well as the novel coronavirus, which has attracted much attention at present, suggesting that mediator complex subunit 19 has broad application in the occurrence and development of clinical diseases. As a tumor-related gene, the role and mechanism of mediator complex subunit 19 in the regulation of tumor growth could be of great significance for the diagnosis, prognosis, and treatment of mediator complex subunit 19 -related tumors.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Peifang Qin
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Linlin Tian
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| | - Jianguo Yan
- Department of Physiology, Guilin Medical University, Guilin 541004, China
| | - Yali Zhou
- Department of Microbiology, Guilin Medical University, Guilin 541004, China.,Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
| |
Collapse
|
7
|
Weidle UH, Brinkmann U, Auslaender S. microRNAs and Corresponding Targets Involved in Metastasis of Colorectal Cancer in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 17:453-468. [PMID: 32859626 DOI: 10.21873/cgp.20204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 12/27/2022] Open
Abstract
The high death toll of colorectal cancer patients is due to metastatic disease which is difficult to treat. The liver is the preferred site of metastasis, followed by the lungs and peritoneum. In order to identify new targets and new modalities of intervention we surveyed the literature for microRNAs (miRs) which modulate metastasis of colorectal cancer in preclinical in vivo models. We identified 12 up-regulated and 19 down-regulated miRs corresponding to the latter criterium. The vast majority (n=16) of identified miRs are involved in modulation of epithelial-mesenchymal transition (EMT). Other categories of metastasis-related miRs exhibit tumor- and metastasis-suppressing functions, modulation of signaling pathways, transmembrane receptors and a class of miRs, which interfere with targets which do not fit into these categories. Finally, we discuss the principles of miR inhibition and reconstitution of function, prospective clinical evaluation of with miR-related agents in the context of clinical evaluation in metastasis relevant settings.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Simon Auslaender
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
8
|
Liu B, Qi X, Zhang X, Gao D, Fang K, Guo Z, Li L. Med19 is involved in chemoresistance by mediating autophagy through HMGB1 in breast cancer. J Cell Biochem 2019; 120:507-518. [PMID: 30161287 DOI: 10.1002/jcb.27406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/11/2018] [Indexed: 12/19/2022]
Abstract
Adriamycin (ADM)-based regimens are the most effective chemotherapeutic treatments for breast cancer. However, intrinsic and acquired chemoresistance is a major therapeutic problem. Our goal was to clarify the role of mediator complex subunit 19 (Med19) in chemotherapy resistance and to elucidate the related molecular mechanisms. In this study, ADM-resistant human cells (MCF-7/ADM) and tissues exhibited increased Med19 expression and autophagy levels relative to the corresponding control groups. Additionally, MCF-7/ADM cells showed changes in two selective markers of autophagy. There was a dose-dependent increase in the light chain 3 (LC3)-II/LC3-I ratio and a decrease in sequestosome 1 (P62/SQSTMl) expression. Furthermore, lentivirus-mediated Med19 inhibition significantly attenuated the LC3-II/LC3-I ratio, autophagy-related gene 3 (Atg3) and autophagy-related gene 5 (Atg5) expression, P62 degradation, and red fluorescent protein-LC3 dot formation after treatment with ADM or rapamycin, an autophagy activator. Furthermore, the antiproliferative effects of ADM, cisplatin (DDP), and taxol (TAX) were significantly enhanced after suppressing Med19 expression. Notably, the effects of Med19 on autophagy were mediated through the high-mobility group box-1 (HMGB1) pathway. Our findings suggest that Med19 suppression increased ADM chemosensitivity by downregulating autophagy through the inhibition of HMGB1 signaling in human breast cancer cells. Thus, the regulatory mechanisms of Med19 in autophagy should be investigated to reduce tumor resistance to chemotherapy.
Collapse
Affiliation(s)
- Beibei Liu
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaowei Qi
- Department of Pathology, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiufen Zhang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Danfeng Gao
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kai Fang
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zijian Guo
- Department of Oncological Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Lihua Li
- Oncology Institute, The Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Role and mechanism of miR-4778-3p and its targets NR2C2 and Med19 in cervical cancer radioresistance. Biochem Biophys Res Commun 2018; 508:210-216. [PMID: 30473219 DOI: 10.1016/j.bbrc.2018.11.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/17/2018] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the effect of miR-4778-3p on the radiosensitivity of cervical cancer cells and to elucidate the underlying mechanism. Tissue samples were collected from eight patients with cervical cancer prior to chemoradiotherapy. MicroRNA chip analyses, RT-PCR, gene transfection, CCK8, wound healing and Transwell assays, colony-forming assay, western blot, and the Dual-Luciferase Reporter Assay System were used to evaluate the role of miR-4778-3p in cervical cancer radiosensitivity and its relationships with target molecules NR2C2 and Med19. Thirty-two differentially expressed miRNA molecules (fold-change > 2; p < 0.05) associated with cervical cancer radioresistance were identified. The expression of miR-4778-3p was significantly lower in recurrent or metastatic patients than in control subjects. In vitro studies using radioresistant HeLa and SiHa cervical cancer cell lines showed that miR-4778-3p upregulation significantly inhibited cell proliferation, invasiveness, and migration after irradiation. There was also a significant increase in apoptosis and a significant decrease in the proportion of cells at the G2/M phase. Further, miR-4778-3p upregulation led to increased expression of apoptosis-related molecules, such as Bax, Caspase-3, Caspase-8, and Caspase-9. Reporter gene assays showed that miR-4778-3p bound specifically to NR2C2 and Med19 and negatively regulated their expression. Thus, miR-4778-3p reduces the vitality, proliferation, and migration of radioresistant cervical cancer cells and may regulate the radiosensitivity of cervical cancer by targeting and regulating NR2C2 and Med19 expression.
Collapse
|
10
|
Yuan H, Yu S, Cui Y, Men C, Yang D, Gao Z, Zhu Z, Wu J. Knockdown of mediator subunit Med19 suppresses bladder cancer cell proliferation and migration by downregulating Wnt/β-catenin signalling pathway. J Cell Mol Med 2017. [PMID: 28631286 PMCID: PMC5706513 DOI: 10.1111/jcmm.13229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mediator complex subunit 19 (Med19), a RNA polymerase II‐embedded coactivator, is reported to be involved in bladder cancer (BCa) progression, but its functional contribution to this process is poorly understood. Here, we investigate the effects of Med19 on malignant behaviours of BCa, as well as to elucidate the possible mechanisms. Med19 expression in 15 BCa tissues was significantly higher than adjacent paired normal tissues using real‐time PCR and Western blot analysis. Immunohistochemical staining of 167 paraffin‐embedded BCa tissues was performed, and the results showed that high Med19 protein level was positively correlated with clinical stages and histopathological grade. Med19 was knocked down in BCa cells using short‐hairpin RNA. Functional assays showed that knocking‐down of Med19 can suppress cell proliferation and migration in T24, UM‐UC3 cells and 5637 in vitro, and inhibited BCa tumour growth in vivo. TOP/FOPflash reporter assay revealed that Med19 knockdown decreased the activity of Wnt/β‐catenin pathway, and the target genes of Wnt/β‐catenin pathway were down‐regulated, including Wnt2, β‐catenin, Cyclin‐D1 and MMP‐9. However, protein levels of Gsk3β and E‐cadherin were elevated. Our data suggest that Med19 expression correlates with aggressive characteristics of BCa and Med19 knockdown suppresses the proliferation and migration of BCa cells through down‐regulating the Wnt/β‐catenin pathway, thereby highlighting Med19 as a potential therapeutic target for BCa treatment.
Collapse
Affiliation(s)
- Hejia Yuan
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Shengqiang Yu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Changping Men
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Diandong Yang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhenli Gao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhe Zhu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
11
|
Zhao Y, Meng Q, Gao X, Zhang L, An L. Down-regulation of mediator complex subunit 19 (Med19) induces apoptosis in human laryngocarcinoma HEp2 cells in an Apaf-1-dependent pathway. Am J Transl Res 2017; 9:755-761. [PMID: 28337304 PMCID: PMC5340711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Mediator 19 (Med19) is a component of the mediator complex which is a co-activator for DNA-binding factors that activate transcription via RNA polymerase II. Accumulating evidence has shown that Med19 plays important roles in cancer cell proliferation and tumorigenesis. The physiological mechanism by which Med19 exerts its promoting effects in laryngocarcinoma is not yet fully understood. Here, we found that the expression of Med19 was increased in laryngocarcinoma samples from patients compared to normal bone tissues. Med19 knockdown significantly induced growth inhibition and suppressed migration in the HEp2 cell lines. Med19 knockdown also induced apoptosis in HEp2 cells via activation of caspase-3, 9 and Apaf-1. In addition, The tumorigenicity of Med19 short hairpin RNA (shRNA)-expressing cells were decreased after inoculating into nude mice. Taken together, our data suggest that Med19 acts as an oncogene in laryngocarcinoma via a possible caspase modulation pathway.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Allergy, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Qingfeng Meng
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry, Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Lihua Zhang
- Department of Allergy, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| | - Lixin An
- Department of Allergy, The First Affiliated Hospital of Harbin Medical UniversityHarbin 150001, Heilongjiang Province, China
| |
Collapse
|
12
|
Yu S, Wang Y, Yuan H, Zhao H, Lv W, Chen J, Wan F, Liu D, Gao Z, Wu J. Knockdown of Mediator Complex Subunit 19 Suppresses the Growth and Invasion of Prostate Cancer Cells. PLoS One 2017; 12:e0171134. [PMID: 28125713 PMCID: PMC5270333 DOI: 10.1371/journal.pone.0171134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in elderly men. Mediator Complex Subunit 19 (Med19) is overexpressed and plays promotional roles in many cancers. However, the roles of Med19 in PCa are still obscure. In this study, by using immunohistochemical staining, we found higher expression level of Med19 in PCa tissues than in adjacent benign prostate tissues. We then knocked down the Med19 expression in PCa cell lines LNCaP and PC3 by using lentivirus siRNA. Cell proliferation, anchor-independent growth, migration, and invasion were suppressed in Med19 knockdown PCa cells. In nude mice xenograft model, we found that Med19 knockdown PCa cells formed smaller tumors with lower proliferation index than did control cells. In the mechanism study, we found that Med19 could regulate genes involved in cell proliferation, cell cycle, and epithelial-mesenchymal transition, including P27, pAKT, pPI3K, IGF1R, E-Cadherin, N-Cadherin, Vimentin, ZEB2, Snail-1 and Snail-2. Targeting Med19 in PCa cells could inhibit the PCa growth and metastasis, and might be a therapeutic option for PCa in the future.
Collapse
Affiliation(s)
- Shengqiang Yu
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- * E-mail: (SY); (JW)
| | - Yanwei Wang
- Central Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hejia Yuan
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hongwei Zhao
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Wei Lv
- Department of Nephrology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jian Chen
- Central Laboratory, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Fengchun Wan
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Dongfu Liu
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhenli Gao
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jitao Wu
- Department of Urology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- * E-mail: (SY); (JW)
| |
Collapse
|
13
|
Agaësse G, Barbollat-Boutrand L, Sulpice E, Bhajun R, El Kharbili M, Berthier-Vergnes O, Degoul F, de la Fouchardière A, Berger E, Voeltzel T, Lamartine J, Gidrol X, Masse I. A large-scale RNAi screen identifies LCMR1 as a critical regulator of Tspan8-mediated melanoma invasion. Oncogene 2017; 36:446-457. [PMID: 27375018 DOI: 10.1038/onc.2016.219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022]
Abstract
Melanoma is the deadliest form of skin cancer owing to its proclivity to metastasise, and recently developed therapies have not yielded the expected results, because almost all patients relapse. Therefore, understanding the molecular mechanisms that underlie early invasion by melanoma cells is crucial to improving patient survival. We have previously shown that, whereas the Tetraspanin 8 protein (Tspan8) is undetectable in normal skin and benign lesions, its expression arises with the progression of melanoma and is sufficient to increase cell invasiveness. Therefore, to identify Tspan8 transcriptional regulators that could explain the onset of Tspan8 expression, thereby conferring an invasive phenotype, we performed an innovative RNA interference-based screen, which, for the first time, identified several Tspan8 repressors and activators, such as GSK3β, PTEN, IQGAP1, TPT1 and LCMR1. LCMR1 is a recently identified protein that is overexpressed in numerous carcinomas; its expression and role, however, had not previously been studied in melanoma. The present study identified Tspan8 as the first LCMR1 target that could explain its function in carcinogenesis. LCMR1 modulation was sufficient to positively regulate endogenous Tspan8 expression, with concomitant in vitro phenotypic changes such as loss of melanoma cell-matrix adherence and increase in invasion, and Tspan8 expression promoted tumourigenicity in vivo. Moreover, LCMR1 and Tspan8 overexpression were shown to correlate in melanoma lesions, and both proteins could be downregulated in vitro by vemurafenib. In conclusion, this study highlights the importance of Tspan8 and its regulators in the control of early melanoma invasion and suggests that they may be promising new therapeutic targets downstream of the RAF-MEK-ERK signalling pathway.
Collapse
Affiliation(s)
- G Agaësse
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - L Barbollat-Boutrand
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - E Sulpice
- Université Grenoble-Alpes, Grenoble, France
- CEA, BIG-BGE, Biomics, Grenoble, France
- Inserm, BGE, Grenoble, France
| | - R Bhajun
- Université Grenoble-Alpes, Grenoble, France
- CEA, BIG-BGE, Biomics, Grenoble, France
- Inserm, BGE, Grenoble, France
| | - M El Kharbili
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - O Berthier-Vergnes
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - F Degoul
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP, Clermont-Ferrand, France
- Inserm, U 990, Clermont-Ferrand, France
| | | | - E Berger
- Laboratoire CarMeN (INSERM 1060, INRA 1397, INSA), Université de Lyon, Lyon, France
| | - T Voeltzel
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Université Lyon 1, Lyon, France
| | - J Lamartine
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| | - X Gidrol
- Université Grenoble-Alpes, Grenoble, France
- CEA, BIG-BGE, Biomics, Grenoble, France
- Inserm, BGE, Grenoble, France
| | - I Masse
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS, UMR5534, Centre de Génétique et de Physiologie Moléculaires et Cellulaires, Villeurbanne, France
| |
Collapse
|
14
|
Wei L, Wang XW, Sun JJ, Lv LY, Xie L, Song XR. Knockdown of Med19 suppresses proliferation and enhances chemo-sensitivity to cisplatin in non-small cell lung cancer cells. Asian Pac J Cancer Prev 2015; 16:875-80. [PMID: 25735376 DOI: 10.7314/apjcp.2015.16.3.875] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Mediator 19 (Med19) is a component of the mediator complex which is a coactivator for DNA-binding factors that activate transcription via RNA polymerase II. Accumulating evidence has shown that Med19 plays important roles in cancer cell proliferation and tumorigenesis. The involvement of Med19 in sensitivity to the chemotherapeutic agent cisplatin was here investigated. We employed RNA interference to reduce Med19 expression in human non-small cell lung cancer (NSCLC) cell lines and analyzed their phenotypic changes. The results showed that after Med19 siRNA transfection, expression of Med19 mRNA and protein was dramatically reduced (p<0.05). Meanwhile, impaired growth potential, arrested cell cycle at G0/G1 phase and enhanced sensitivity to cisplatin were exhibited. Apoptosis and caspase-3 activity were increased when cells were exposed to Med19 siRNA and/or cisplatin. The present findings suggest that Med19 facilitates tumorigenic properties of NSCLC cells and knockdown of Med19 may be a rational therapeutic tool for lung cancer cisplatin sensitization.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China E-mail :
| | | | | | | | | | | |
Collapse
|
15
|
Jiang P, Cao J, Bai WH. Lentivirus-Mediated siRNA Targeting ER-α Inhibits Tumorigenesis and Induces Apoptosis in Hepatocarcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:490681. [PMID: 26413526 PMCID: PMC4564599 DOI: 10.1155/2015/490681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/01/2015] [Accepted: 01/03/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Estrogen receptor-α (ER-α) plays important roles in hepatocarcinogenesis. Recent studies have shown that ER-α could lead to cell cycle progression or inhibition of apoptosis. To better understand the role of ER-α, RNA interference (RNAi) was used to inhibit ER-α expression in the human hepatocellular carcinoma (HCC) cells. METHODS Lentivirus-mediated ER-α small interfering RNA (siRNA) was transfected into HCC cells Hep3B. ER-α expression was monitored by real-time polymerase chain reaction (PCR) and western blot. Cell proliferation, apoptosis, and invasion were examined by methyl thiazol tetrazolium (MTT), flow cytometry (FCM), and invasion assay, respectively. RESULTS ER-α siRNA efficiently downregulated the expression of ER-α in Hep3B cells at both mRNA and protein levels in a time-dependent manner. ER-α siRNA also inhibited cell proliferation and reduced cell invasion (compared with other groups, P < 0.05, resp.). Furthermore, knockdown of ER-α slowed down the cell population at S phase and increased the rate of apoptosis (P < 0.05, resp.). CONCLUSION ER-α knockdown suppressed the growth of HCC cells. Thus, ER-α may play a very important role in carcinogenesis of HCC and its knockdown may offer a new potential gene therapy approach for human liver cancer in the future.
Collapse
Affiliation(s)
- Ping Jiang
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Jun Cao
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Wen-Hui Bai
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
| |
Collapse
|
16
|
Boube M, Hudry B, Immarigeon C, Carrier Y, Bernat-Fabre S, Merabet S, Graba Y, Bourbon HM, Cribbs DL. Drosophila melanogaster Hox transcription factors access the RNA polymerase II machinery through direct homeodomain binding to a conserved motif of mediator subunit Med19. PLoS Genet 2014; 10:e1004303. [PMID: 24786462 PMCID: PMC4006704 DOI: 10.1371/journal.pgen.1004303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/28/2014] [Indexed: 11/18/2022] Open
Abstract
Hox genes in species across the metazoa encode transcription factors (TFs) containing highly-conserved homeodomains that bind target DNA sequences to regulate batteries of developmental target genes. DNA-bound Hox proteins, together with other TF partners, induce an appropriate transcriptional response by RNA Polymerase II (PolII) and its associated general transcription factors. How the evolutionarily conserved Hox TFs interface with this general machinery to generate finely regulated transcriptional responses remains obscure. One major component of the PolII machinery, the Mediator (MED) transcription complex, is composed of roughly 30 protein subunits organized in modules that bridge the PolII enzyme to DNA-bound TFs. Here, we investigate the physical and functional interplay between Drosophila melanogaster Hox developmental TFs and MED complex proteins. We find that the Med19 subunit directly binds Hox homeodomains, in vitro and in vivo. Loss-of-function Med19 mutations act as dose-sensitive genetic modifiers that synergistically modulate Hox-directed developmental outcomes. Using clonal analysis, we identify a role for Med19 in Hox-dependent target gene activation. We identify a conserved, animal-specific motif that is required for Med19 homeodomain binding, and for activation of a specific Ultrabithorax target. These results provide the first direct molecular link between Hox homeodomain proteins and the general PolII machinery. They support a role for Med19 as a PolII holoenzyme-embedded “co-factor” that acts together with Hox proteins through their homeodomains in regulated developmental transcription. Mutations of Hox developmental genes in the fruit fly Drosophila melanogaster may provoke spectacular changes in form: transformations of one body part into another, or loss of organs. This attribute identifies them as important developmental genes. Insect and vertebrate Hox proteins contain highly related homeodomain motifs used to bind to regulatory DNA and influence expression of developmental target genes. This occurs at the level of transcription of target gene DNA to messenger RNA by RNA polymerase II and its associated protein machinery (>50 proteins). How Hox homeodomain proteins induce fine-tuned transcription remains an open question. We provide an initial response, finding that Hox proteins also use their homeodomains to bind one machinery protein, Mediator complex subunit 19 (Med19) through a Med19 sequence that is highly conserved in animal phyla. Med19 mutants isolated in this work (the first animal mutants) show that Med19 assists Hox protein functions. Further, they indicate that homeodomain binding to the Med19 motif is required for normal expression of a Hox target gene. Our work provides new clues for understanding how the specific transcriptional inputs of the highly conserved Hox class of transcription factors are integrated at the level of the whole transcription machinery.
Collapse
Affiliation(s)
- Muriel Boube
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
- * E-mail: (MB); (HMB); (DLC)
| | - Bruno Hudry
- Institut de Biologie du Développement de Marseille Luminy, IBDML, UMR6216 CNRS, Université de la méditerranée, Marseille, France
| | - Clément Immarigeon
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
| | - Yannick Carrier
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
| | - Sandra Bernat-Fabre
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
| | - Samir Merabet
- Institut de Biologie du Développement de Marseille Luminy, IBDML, UMR6216 CNRS, Université de la méditerranée, Marseille, France
| | - Yacine Graba
- Institut de Biologie du Développement de Marseille Luminy, IBDML, UMR6216 CNRS, Université de la méditerranée, Marseille, France
| | - Henri-Marc Bourbon
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
- * E-mail: (MB); (HMB); (DLC)
| | - David L. Cribbs
- Centre de Biologie du Développement, CBD, UMR5547 CNRS/UPS, Université de Toulouse, Toulouse, France
- * E-mail: (MB); (HMB); (DLC)
| |
Collapse
|
17
|
Schiano C, Casamassimi A, Rienzo M, de Nigris F, Sommese L, Napoli C. Involvement of Mediator complex in malignancy. Biochim Biophys Acta Rev Cancer 2013; 1845:66-83. [PMID: 24342527 DOI: 10.1016/j.bbcan.2013.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/28/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022]
Abstract
Mediator complex (MED) is an evolutionarily conserved multiprotein, fundamental for growth and survival of all cells. In eukaryotes, the mRNA transcription is dependent on RNA polymerase II that is associated to various molecules like general transcription factors, MED subunits and chromatin regulators. To date, transcriptional machinery dysfunction has been shown to elicit broad effects on cell proliferation, development, differentiation, and pathologic disease induction, including cancer. Indeed, in malignant cells, the improper activation of specific genes is usually ascribed to aberrant transcription machinery. Here, we focus our attention on the correlation of MED subunits with carcinogenesis. To date, many subunits are mutated or display altered expression in human cancers. Particularly, the role of MED1, MED28, MED12, CDK8 and Cyclin C in cancer is well documented, although several studies have recently reported a possible association of other subunits with malignancy. Definitely, a major comprehension of the involvement of the whole complex in cancer may lead to the identification of MED subunits as novel diagnostic/prognostic tumour markers to be used in combination with imaging technique in clinical oncology, and to develop novel anti-cancer targets for molecular-targeted therapy.
Collapse
Affiliation(s)
- Concetta Schiano
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy
| | - Amelia Casamassimi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Monica Rienzo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Filomena de Nigris
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Linda Sommese
- U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), 1st School of Medicine, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| | - Claudio Napoli
- Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Via E. Gianturco 113, 80143 Naples, Italy; Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy; U.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU), 1st School of Medicine, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
18
|
Zhu LJ, Yan WX, Chen ZW, Chen Y, Chen D, Zhang TH, Liao GQ. Disruption of mediator complex subunit 19 (Med19) inhibits cell growth and migration in tongue cancer. World J Surg Oncol 2013; 11:116. [PMID: 23705783 PMCID: PMC3673833 DOI: 10.1186/1477-7819-11-116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 05/09/2013] [Indexed: 12/15/2022] Open
Abstract
Background Mediator complex subunit 19 (Med19) is a critical subunit of the mediator complex that forms a bridge between the transcription factors and RNA polymerase II. Although it has been reported that Med19 plays an important role in stabilizing the whole mediator complex, its biological importance in tongue cancer cell proliferation and migration has not been addressed. Methods By using MTT, BrdU incorporation, colony formation, flow cytometric, tumorigenesis and transwell assays, We tested the Med19 role on tongue cancer cell growth and migration. Results We demonstrated that lentivirus-mediated Med19 knockdown could arrest tongue cancer cells at G1 phase, inhibit tongue cancer cell proliferation and migration in vitro. The tumorigenicity of Med19 short hairpin RNA (shRNA)-expressing lentivirus infected tongue cancer cells were decreased after inoculating into nude mice. Conclusions These results indicate that Med19 plays an important role in tongue cancer proliferation and migration, and suggest possible applications for tongue cancer therapy.
Collapse
Affiliation(s)
- Li-Jun Zhu
- Department of Oral and Maxillofacial Surgery, Guanghua College of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Bywater MJ, Pearson RB, McArthur GA, Hannan RD. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 2013; 13:299-314. [PMID: 23612459 DOI: 10.1038/nrc3496] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations that directly affect transcription by RNA polymerases rank among the most central mediators of malignant transformation, but the frequency of new anticancer drugs that selectively target defective transcription apparatus entering the clinic has been limited. This is because targeting the large protein-protein and protein-DNA interfaces that control both generic and selective aspects of RNA polymerase transcription has proved extremely difficult. However, recent technological advances have led to a 'quantum leap' in our comprehension of the structure and function of the core RNA polymerase components, how they are dysregulated in a broad range of cancers and how they may be targeted for 'transcription therapy'.
Collapse
Affiliation(s)
- Megan J Bywater
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne 8006, Victoria, Australia
| | | | | | | |
Collapse
|
20
|
XU YANG, LI CHUNSUN, TIAN QING, LI YANQIN, YANG ZHEN, LIANG ZHIXIN, CHEN LIANGAN. Suppression of lung cancer metastasis-related protein 1 promotes apoptosis in lung cancer cells. Int J Mol Med 2012; 30:1481-6. [DOI: 10.3892/ijmm.2012.1160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 09/14/2012] [Indexed: 11/06/2022] Open
|
21
|
Ding XF, Huang GM, Shi Y, Li JA, Fang XD. Med19 promotes gastric cancer progression and cellular growth. Gene 2012; 504:262-7. [DOI: 10.1016/j.gene.2012.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/25/2012] [Accepted: 04/11/2012] [Indexed: 01/19/2023]
|
22
|
Unraveling framework of the ancestral Mediator complex in human diseases. Biochimie 2011; 94:579-87. [PMID: 21983542 DOI: 10.1016/j.biochi.2011.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/15/2011] [Indexed: 01/13/2023]
Abstract
Mediator (MED) is a fundamental component of the RNA polymerase II-mediated transcription machinery. This multiprotein complex plays a pivotal role in the regulation of eukaryotic mRNA synthesis. The yeast Mediator complex consists of 26 different subunits. Recent studies indicate additional pathogenic roles for Mediator, for example during transcription elongation and non-coding RNA production. Mediator subunits have been emerging also to have pathophysiological roles suggesting MED-dependent therapeutic targets involving in several diseases, such as cancer, cardiovascular disease (CVD), metabolic and neurological disorders.
Collapse
|
23
|
Cui X, Xu D, Lv C, Qu F, He J, Chen M, Liu Y, Gao Y, Che J, Yao Y, Yu H. Suppression of MED19 expression by shRNA induces inhibition of cell proliferation and tumorigenesis in human prostate cancer cells. BMB Rep 2011; 44:547-52. [DOI: 10.5483/bmbrep.2011.44.8.547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|