1
|
Aghapour M, Ubags ND, Bruder D, Hiemstra PS, Sidhaye V, Rezaee F, Heijink IH. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. Eur Respir Rev 2022; 31:31/163/210112. [PMID: 35321933 PMCID: PMC9128841 DOI: 10.1183/16000617.0112-2021] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic exposure to environmental pollutants is a major contributor to the development and progression of obstructive airway diseases, including asthma and COPD. Understanding the mechanisms underlying the development of obstructive lung diseases upon exposure to inhaled pollutants will lead to novel insights into the pathogenesis, prevention and treatment of these diseases. The respiratory epithelial lining forms a robust physicochemical barrier protecting the body from inhaled toxic particles and pathogens. Inhalation of airborne particles and gases may impair airway epithelial barrier function and subsequently lead to exaggerated inflammatory responses and airway remodelling, which are key features of asthma and COPD. In addition, air pollutant-induced airway epithelial barrier dysfunction may increase susceptibility to respiratory infections, thereby increasing the risk of exacerbations and thus triggering further inflammation. In this review, we discuss the molecular and immunological mechanisms involved in physical barrier disruption induced by major airborne pollutants and outline their implications in the pathogenesis of asthma and COPD. We further discuss the link between these pollutants and changes in the lung microbiome as a potential factor for aggravating airway diseases. Understanding these mechanisms may lead to identification of novel targets for therapeutic intervention to restore airway epithelial integrity in asthma and COPD. Exposure to air pollution induces airway epithelial barrier dysfunction through several mechanisms including increased oxidative stress, exaggerated cytokine responses and impaired host defence, which contributes to development of asthma and COPD. https://bit.ly/3DHL1CA
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Venkataramana Sidhaye
- Pulmonary and Critical Care Medicine, Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Fariba Rezaee
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, OH, USA.,Dept of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Depts of Pathology and Medical Biology and Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| |
Collapse
|
2
|
Barnes JL, Plank MW, Asquith K, Maltby S, Sabino LR, Kaiko GE, Lochrin A, Horvat JC, Mayall JR, Kim RY, Hansbro PM, Keely S, Belz GT, Tay HL, Foster PS. T-helper 22 cells develop as a distinct lineage from Th17 cells during bacterial infection and phenotypic stability is regulated by T-bet. Mucosal Immunol 2021; 14:1077-1087. [PMID: 34083747 DOI: 10.1038/s41385-021-00414-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/03/2021] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
CD4+ T-helper 22 (Th22) cells are a phenotypically distinct lymphocyte subset that produces high levels of interleukin (IL)-22 without co-production of IL-17A. However, the developmental origin and lineage classification of Th22 cells, their interrelationship to Th17 cells, and potential for plasticity at sites of infection and inflammation remain largely undefined. An improved understanding of the mechanisms underpinning the outgrowth of Th22 cells will provide insights into their regulation during homeostasis, infection, and disease. To address this knowledge gap we generated 'IL-17A-fate-mapping IL-17A/IL-22 reporter transgenic mice' and show that Th22 cells develop in the gastrointestinal tract and lung during bacterial infection without transitioning via an Il17a-expressing intermediate, although in some compartments alternative transition pathways exist. Th22-cell development was not dependent on T-bet; however, this transcription factor functioned as a promiscuous T-cell-intrinsic regulator of IL-17A and IL-22 production, in addition to regulating the outgrowth, phenotypic stability, and plasticity of Th22 cells. Thus, we demonstrate that at sites of mucosal bacterial infection Th22 cells develop as a distinct lineage independently of Th17 cells; though both lineages exhibit bidirectional phenotypic flexibility within infected tissues and their draining lymph nodes, and that T-bet plays a critical regulatory role in Th22-cell function and identity.
Collapse
Affiliation(s)
- Jessica L Barnes
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Maximilian W Plank
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Medical Directorate, GSK, Abbotsford, VIC, Australia
| | - Kelly Asquith
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Lorena R Sabino
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gerard E Kaiko
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alyssa Lochrin
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
- Centre for Inflammation, Centenary Institute, Camperdown, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
- Centre for Inflammation, Centenary Institute, Camperdown, NSW, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Simon Keely
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
3
|
Zhang N, Li P, Lin H, Shuo T, Ping F, Su L, Chen G. IL-10 ameliorates PM2.5-induced lung injury by activating the AMPK/SIRT1/PGC-1α pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103659. [PMID: 33862202 DOI: 10.1016/j.etap.2021.103659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Exposure to fine particulate matter with a diameter ≤2.5 μm (PM2.5) can cause a number of respiratory diseases. However, there is currently no safe treatment for PM2.5-induced lung damage. This study investigated the protective effect of IL-10 against lung injury and the possible involvement of AMPK/SIRT1/PGC-1α signaling. The mean diameter, particle size distribution, and zeta potential of PM2.5 samples were assessed using a Zetasizer Nano ZS90 analyzer. Thereafter, Wistar rats were exposed to PM2.5 (1.8, 5.4, or 16.2 mg/kg) alone or high-dose PM2.5 with recombinant rat IL-10 (rrIL-10; 5 μg/rat). Treatment with rrIL-10 ameliorated PM2.5-induced acute lung injury, reduced mitochondrial damage, and inhibited inflammation, oxidative stress, and apoptosis in the PM2.5-treated rats. Moreover, the mRNA and protein expression of AMPK, SIRT1, and PGC-1α were upregulated by rrIL-10 treatment. In conclusion, rrIL-10 protected lung tissues against PM2.5-induced inflammation by reducing oxidative stress and apoptosis via activating AMPK/SIRT1/PGC-1α signaling.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China; Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Ping Li
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Hua Lin
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Tian Shuo
- Department of Urinary Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, 050051, Hebei, China
| | - Fen Ping
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Li Su
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Gang Chen
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
4
|
Starkey MR, Plank MW, Casolari P, Papi A, Pavlidis S, Guo Y, Cameron GJM, Haw TJ, Tam A, Obiedat M, Donovan C, Hansbro NG, Nguyen DH, Nair PM, Kim RY, Horvat JC, Kaiko GE, Durum SK, Wark PA, Sin DD, Caramori G, Adcock IM, Foster PS, Hansbro PM. IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis. Eur Respir J 2019; 54:1800174. [PMID: 31196943 PMCID: PMC8132110 DOI: 10.1183/13993003.00174-2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/19/2019] [Indexed: 12/24/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death globally. The lack of effective treatments results from an incomplete understanding of the underlying mechanisms driving COPD pathogenesis.Interleukin (IL)-22 has been implicated in airway inflammation and is increased in COPD patients. However, its roles in the pathogenesis of COPD is poorly understood. Here, we investigated the role of IL-22 in human COPD and in cigarette smoke (CS)-induced experimental COPD.IL-22 and IL-22 receptor mRNA expression and protein levels were increased in COPD patients compared to healthy smoking or non-smoking controls. IL-22 and IL-22 receptor levels were increased in the lungs of mice with experimental COPD compared to controls and the cellular source of IL-22 included CD4+ T-helper cells, γδ T-cells, natural killer T-cells and group 3 innate lymphoid cells. CS-induced pulmonary neutrophils were reduced in IL-22-deficient (Il22 -/-) mice. CS-induced airway remodelling and emphysema-like alveolar enlargement did not occur in Il22 -/- mice. Il22 -/- mice had improved lung function in terms of airway resistance, total lung capacity, inspiratory capacity, forced vital capacity and compliance.These data highlight important roles for IL-22 and its receptors in human COPD and CS-induced experimental COPD.
Collapse
Affiliation(s)
- Malcolm R Starkey
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Maximilian W Plank
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Paolo Casolari
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Alberto Papi
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Yike Guo
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Guy J M Cameron
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Tatt Jhong Haw
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Anthony Tam
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ma'en Obiedat
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chantal Donovan
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Nicole G Hansbro
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
- Centre for inflammation, Centenary Institute, Sydney, Australia
- School of Life Sciences, University of Technology, Ultimo, Australia
| | - Duc H Nguyen
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Prema Mono Nair
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Richard Y Kim
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Jay C Horvat
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Gerard E Kaiko
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Scott K Durum
- Laboratory of Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Peter A Wark
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Don D Sin
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gaetano Caramori
- UOC di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Paul S Foster
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Philip M Hansbro
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
- Centre for inflammation, Centenary Institute, Sydney, Australia
- School of Life Sciences, University of Technology, Ultimo, Australia
| |
Collapse
|
5
|
Ramos CDO, Campos KKD, Costa GDP, Cangussú SD, Talvani A, Bezerra FS. Taurine treatment decreases inflammation and oxidative stress in lungs of adult mice exposed to cigarette smoke. Regul Toxicol Pharmacol 2018; 98:50-57. [PMID: 30026134 DOI: 10.1016/j.yrtph.2018.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023]
Abstract
Taurine is the major free amino acid found in mammalian cells and is known to be an antioxidant and membrane-stabilizing agent. This study aimed to evaluate the effects of taurine on oxidative stress and inflammatory response in the lungs of mice exposed to cigarette smoke. Fifty male C57BL/6 mice were divided into 5 groups: control group (CG), vehicle group (VG), taurine group (TG), cigarette smoke group (CSG), and cigarette smoke + taurine group (CSTG). For five consecutive days, CSG and CSTG were exposed to 4 cigarettes 3 times a day. Taurine administration was able to reduce total leukocytes in bronchoalveolar lavage fluid in CSTG compared to CSG. There was an increase in antioxidant superoxide dismutase and catalase activity in CSG compared to that in CG and TG, and a decrease in CSTG compared to CSG. There was an increase in the concentration of TNF and IL-17 in CSG and CSTG compared to CG and TG. There was an increase in the concentration of IL-22 in CSG compared to CG and TG, and a decrease in CSTG compared to CSG. The administration of taurine has been shown to reduce the inflammation and oxidative stress induced by short-term exposure to cigarette smoke.
Collapse
Affiliation(s)
- Camila de Oliveira Ramos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Keila Karine Duarte Campos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences(NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil.
| |
Collapse
|
6
|
Alabbas SY, Begun J, Florin TH, Oancea I. The role of IL-22 in the resolution of sterile and nonsterile inflammation. Clin Transl Immunology 2018; 7:e1017. [PMID: 29713472 PMCID: PMC5905349 DOI: 10.1002/cti2.1017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
In a broad sense, inflammation can be conveniently characterised by two phases: the first phase, which is a pro-inflammatory, has evolved to clear infection and/or injured tissue; and the second phase concerns regeneration of normal tissue and restitution of normal physiology. Innate immune cell-derived pro-inflammatory cytokines and chemokines activate and recruit nonresident immune cells to the site of infection, thereby amplifying the inflammatory responses to clear infection or injury. This phase is followed by a cytokine milieu that promotes tissue regeneration. There is no absolute temporal distinction between these two phases, and cytokines may have dual pleiotropic effects depending on the timing of release, inflammatory microenvironment or concentrations. IL-22 is a cytokine with reported pro- and anti-inflammatory roles; in this review, we contend that this protein has primarily a function in restitution of normal tissue and physiology.
Collapse
Affiliation(s)
- Saleh Y Alabbas
- Faculty of MedicineSchool of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Jakob Begun
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Timothy H Florin
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Iulia Oancea
- Faculty of MedicineSchool of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
7
|
Le Rouzic O, Pichavant M, Frealle E, Guillon A, Si-Tahar M, Gosset P. Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations. Eur Respir J 2017; 50:1602434. [PMID: 29025886 DOI: 10.1183/13993003.02434-2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/14/2017] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways caused mainly by cigarette smoke exposure. COPD progression is marked by exacerbations of the disease, often associated with infections. Recent data show the involvement in COPD pathophysiology of interleukin (IL)-17 and IL-22, two cytokines that are important in the control of lung inflammation and infection. During the initiation and progression of the disease, increased IL-17 secretion causes neutrophil recruitment, leading to chronic inflammation, airways obstruction and emphysema. In the established phase of COPD, a defective IL-22 response facilitates pathogen-associated infections and disease exacerbations. Altered production of these cytokines involves a complex network of immune cells and dysfunction of antigen-presenting cells. In this review, we describe current knowledge on the involvement of IL-17 and IL-22 in COPD pathophysiology at steady state and during exacerbations, and discuss implications for COPD management and future therapeutic approaches.
Collapse
Affiliation(s)
- Olivier Le Rouzic
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
- Service de Pneumologie Immunologie et Allergologie, CHU Lille, Lille, France
| | - Muriel Pichavant
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Emilie Frealle
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
- Laboratoire de Parasitologie et Mycologie Médicale, CHU Lille, Lille, France
| | - Antoine Guillon
- Service de Réanimation Polyvalente, CHRU de Tours, Tours, France
- Inserm, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- Inserm, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université François Rabelais, Tours, France
| | - Philippe Gosset
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
8
|
Wong H, Zou S, Li J, Ma C, Chen J, Leong P, Leung H, Chan W, Ko K. <i>Lily bulb</i> Nectar Produces Expectorant and Anti-Tussive Activities, and Suppresses Cigarette Smoke-Induced Inflammatory Response in the Respiratory Tract in Mice. Chin Med 2015. [DOI: 10.4236/cm.2015.62015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|