1
|
He Q, Li X, Li H, Tan A, Chi Y, Fang D, Li X, Liu Z, Shang Q, Zhu Y, Cielecka-Piontek J, Chen J. TGR5 Activation by Dietary Bioactives and Related Improvement in Mitochondrial Function for Alleviating Diabetes and Associated Complications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6293-6314. [PMID: 40045496 DOI: 10.1021/acs.jafc.4c10395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Takeda G protein-coupled receptor 5 (TGR5), also known as G protein-coupled bile acid receptor 1 (GPBAR1), is a cell surface receptor involved in key physiological processes, including glucose homeostasis and energy metabolism. Recent research has focused on the role of TGR5 activation in preventing or treating diabetes while also highlighting its potential impact on the progression of diabetic complications. Functional foods and edible plants have emerged as valuable sources of natural compounds that can activate TGR5, offering potential therapeutic benefits for diabetes management. Despite growing interest, studies on the activation of TGR5 by dietary bioactive compounds remain scattered. This Review aims to provide a comprehensive analysis of how dietary bioactives act as potential agents for TGR5 activation in managing diabetes and its complications. It explores the mechanisms of TGR5 activation through both direct agonistic effects and indirect pathways via modulation of the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Quanrun He
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Xinhang Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Haimeng Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Aditya Tan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Yunlin Chi
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
| | - Daozheng Fang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Xinyue Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Zhihao Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Qixiang Shang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Yong Zhu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznan, Poland
| | - Jihang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, P.R. China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian Free Trade Zone, Futian District, Shenzhen, Guangdong 518045, P.R. China
| |
Collapse
|
2
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Jin W, Zheng M, Chen Y, Xiong H. Update on the development of TGR5 agonists for human diseases. Eur J Med Chem 2024; 271:116462. [PMID: 38691888 DOI: 10.1016/j.ejmech.2024.116462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
The G protein-coupled bile acid receptor 1 (GPBAR1) or TGR5 is widely distributed across organs, including the small intestine, stomach, liver, spleen, and gallbladder. Many studies have established strong correlations between TGR5 and glucose homeostasis, energy metabolism, immune-inflammatory responses, and gastrointestinal functions. These results indicate that TGR5 has a significant impact on the progression of tumor development and metabolic disorders such as diabetes mellitus and obesity. Targeting TGR5 represents an encouraging therapeutic approach for treating associated human ailments. Notably, the GLP-1 receptor has shown exceptional efficacy in clinical settings for diabetes management and weight loss promotion. Currently, numerous TGR5 agonists have been identified through natural product-based approaches and virtual screening methods, with some successfully progressing to clinical trials. This review summarizes the intricate relationships between TGR5 and various diseases emphasizing recent advancements in research on TGR5 agonists, including their structural characteristics, design tactics, and biological activities. We anticipate that this meticulous review could facilitate the expedited discovery and optimization of novel TGR5 agonists.
Collapse
Affiliation(s)
- Wangrui Jin
- Institute for Advanced Study, and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yihua Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, China; Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Hai Xiong
- Institute for Advanced Study, and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
4
|
Zhuo N, Yun Y, Zhang C, Guo S, Yin J, Zhao T, Ge X, Gu M, Xie X, Nan F. Discovery of betulinic acid derivatives as gut-restricted TGR5 agonists: Balancing the potency and physicochemical properties. Bioorg Chem 2024; 144:107132. [PMID: 38241768 DOI: 10.1016/j.bioorg.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The pleiotropic effects of TGR5 make it an appealing target for intervention of metabolic and inflammatory disorders, but systemic activation of TGR5 faces challenges of on-target side effects, especially gallbladder filling. Gut-restricted agonists were proved to be sufficient to circumvent these side effects, but extremely low systemic exposure may not be effective in activating TGR5 since it is located on the basolateral membrane. Herein, to balance potency and physicochemical properties, a series of gut-restricted TGR5 agonists with diversified kinetophores had been designed and synthesized. Compound 22-Na exhibited significant antidiabetic effect, and showed favorable gallbladder safety after 7 days of oral administration in humanized TGR5H88Y mice, confirming that gut-restricted agonism of TGR5 is a viable strategy to alleviate systemic target-related effects.
Collapse
Affiliation(s)
- Ning Zhuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Yun
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chenlu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Tingting Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xiu Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| |
Collapse
|
5
|
Zhang C, Liu Y, Wang Y, Ge X, Jiao T, Yin J, Wang K, Li C, Guo S, Xie X, Xie C, Nan F. Discovery of Betulinic Acid Derivatives as Potent Intestinal Farnesoid X Receptor Antagonists to Ameliorate Nonalcoholic Steatohepatitis. J Med Chem 2022; 65:13452-13472. [DOI: 10.1021/acs.jmedchem.2c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenlu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Wang
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xiu Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
| | - Tingying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cuina Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xin Xie
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P.R. China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
6
|
Zhou JX, Li CN, Liu YM, Lin SQ, Wang Y, Xie C, Nan FJ. Discovery of 9,11-Seco-Cholesterol Derivatives as Novel FXR Antagonists. ACS OMEGA 2022; 7:17401-17405. [PMID: 35647433 PMCID: PMC9134407 DOI: 10.1021/acsomega.2c01567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The farnesoid X receptor (FXR) plays an important role in the regulation of bile acid, lipid, and glucose homeostasis. Recent findings have shown that the inhibition of FXR is beneficial to improvement of related metabolic diseases and cholestasis. In the present work, 9,11-seco-cholesterol derivatives were designed and synthesized by cleaving the C ring of cholesterol and were identified as novel structures of FXR antagonists. Compound 9a displayed the best FXR antagonistic activity at the cellular level (IC50 = 4.6 μM) and decreased the expression of the target genes of FXR in vivo.
Collapse
Affiliation(s)
- Jia-Xu Zhou
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People’s Republic of China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
| | - Cui-Na Li
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
| | - Ya-Meng Liu
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
| | - Su-Qin Lin
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, Nanjing 210046, People’s Republic
of China
| | - Ying Wang
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
| | - Cen Xie
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
| | - Fa-Jun Nan
- University
of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, People’s Republic of China
- State
Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
- Drug
Discovery Shandong Laboratory, Bohai Rim
Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, People’s Republic of China
| |
Collapse
|
7
|
Yun Y, Zhang C, Guo S, Liang X, Lan Y, Wang M, Zhuo N, Yin J, Liu H, Gu M, Li J, Xie X, Nan F. Identification of Betulinic Acid Derivatives as Potent TGR5 Agonists with Antidiabetic Effects via Humanized TGR5 H88Y Mutant Mice. J Med Chem 2021; 64:12181-12199. [PMID: 34406006 DOI: 10.1021/acs.jmedchem.1c00851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is a promising target for treating metabolic syndrome and inflammatory diseases. Herein, we identified a new series of betulinic acid derivatives as potent TGR5 agonists, which show remarkable activity on human (h) and canine (c) TGR5 but exhibit unpromising activity on murine (m) TGR5. Species difference was also observed with many other reported TGR5 agonists. Therefore, we screened 29 amino acids which were conserved in hTGR5 and cTGR5 but different in mTGR5 and found a key amino acid, H88 in mTGR5 (Y89 in hTGR5), which contributed to the species difference. With the CRISPR/Cas9 system, the mTGR5H88Y mutation was introduced into mice, and the optimized compound 11d-Na displayed a significant glucose-lowering effect and stimulated GLP-1 and insulin secretion in TGR5H88Y mice but not in wild-type animals. Taken together, our study provides a useful tool to bridge the gap of species difference and discovers a potent TGR5 agonist for further investigation.
Collapse
Affiliation(s)
- Ying Yun
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chenlu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xiaoying Liang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Lan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Min Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Zhuo
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Huanan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Li
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Fajun Nan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| |
Collapse
|
8
|
Bailly C. Acankoreagenin and acankoreosides, a family of lupane triterpenoids with anti-inflammatory properties: an overview. Ann N Y Acad Sci 2021; 1502:14-27. [PMID: 34145915 DOI: 10.1111/nyas.14623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Acankoreagenin (ACK, also known as acankoreanogenin and HLEDA) and impressic acid are two lupane-type triterpenes that can be isolated from various Acanthopanax and Schefflera species. They efficiently block activation of the NF-κB signaling pathway and the release of proinflammatory cytokines and/or the action of inflammation mediators (HMGB1, iNOS, and NO). These effects are the basis for the antiviral and anticancer activities reported with these pentacyclic compounds or their various glycoside derivatives. More than 15 acankoreosides (Ack-A to -O, and -R) and a few other mono- and bidesmosidic saponins (acantrifoside A and acangraciliside S) derive from the ACK aglycone. Compounds like Ack-A and -B are remarkable anti-inflammatory agents, inhibiting cytokine release from activated macrophages. Despite their effectiveness, ACK and impressic acid are far much less known and studied than the structurally related compounds betulinic acid and 23-hydroxybetulinic acid (anemosapogenin). The structural differences (notably the R/S stereoisomerism of the 3-hydroxyl group) and functional similarities of these compounds are discussed. The complete series of acankoreosides is presented for the first time. These natural products deserve further attention as anti-inflammatory agents, and ACK is recommended as a template for the design of new anticancer and antiviral drugs.
Collapse
|
9
|
Wang Y, Zhu Y, Niu J, Deng Q, Guo S, Jiang H, Peng Z, Xue Y, Peng H, Xuan L, Pan G. A novel bile acid analog, A17, ameliorated non-alcoholic steatohepatitis in high-fat diet-fed hamsters. Toxicol Appl Pharmacol 2020; 404:115169. [PMID: 32738331 DOI: 10.1016/j.taap.2020.115169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Being endocrine signaling molecules that regulate lipid metabolism and affect energy balance, bile acids are potential drug candidates for non-alcoholic steatohepatitis (NASH). Obeticholic acid (OCA) could improve NASH accompanied by significant side effects. Therefore, it is worthwhile to develop safer and more effective bile acid analogs. In this study, a new bile acid analog A17 was synthesized and its potential anti-NASH effects were assessed in vitro and in vivo. The impact of A17 on steatosis was investigated in the rat primary hepatocytes challenged with oleic acid. It was found that A17 alleviated lipid accumulation by reducing fatty acid (FA) uptake and promoting FA oxidation. The reduction of FA uptake came from inhibiting fatty acid translocase (Cd36) expression. The promotion of FA oxidation came from stimulating the phosphorylation of adenosine monophosphate (AMP)-activated protein kinase alpha (AMPKα). In addition, A17 reduced lipopolysaccharide-induced inflammation in Raw264.7 cells by activating Takeda G protein-coupled receptor 5 (TGR5). In in vivo study, male Golden Syrian hamsters were fed with high fat (HF) diet and then treated with 50 mg/kg/d A17 for 6 weeks. A17 lowered the lipid profiles and liver enzyme levels in serum and improved liver pathological conditions with less side effects compared with OCA. Further studies confirmed that the molecular mechanisms of A17 in vivo were similar to those in vitro. In conclusion, a novel bile acid analog A17 was identified to ameliorate NASH in HF-fed hamsters. The potential mechanisms could be contributed to reducing FA uptake, stimulating FA oxidation and relieving inflammation.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxing Niu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiangqiang Deng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Center for Drug Screening, Shanghai 201203, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Center for Drug Screening, Shanghai 201203, China
| | - Zhaoliang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Xue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huige Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijiang Xuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guoyu Pan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Valencia-Chan LS, García-Cámara I, Torres-Tapia LW, Moo-Puc RE, Peraza-Sánchez SR. Lupane-Type Triterpenes of Phoradendron vernicosum. JOURNAL OF NATURAL PRODUCTS 2017; 80:3038-3042. [PMID: 29120172 DOI: 10.1021/acs.jnatprod.7b00177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Three new lupane-type triterpenes, 3α,24-dihydroxylup-20(29)-en-28-oic acid (1), 3α,23-dihydroxy-30-oxolup-20(29)-en-28-oic acid (2), and 3α,23-O-isopropylidenyl-3α,23-dihydroxylup-20(29)-en-28-oic acid (3), together with eight known compounds (4-11) were isolated from a methanol extract of Phoradendron vernicosum aerial parts. The chemical structures of 1-3 were determined on the basis of spectroscopic data interpretation. The isolated compounds were tested against seven human cancer cell lines and two normal cell lines.
Collapse
Affiliation(s)
- Lía S Valencia-Chan
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY) , Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán, México 97205
| | - Isabel García-Cámara
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY) , Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán, México 97205
| | - Luis W Torres-Tapia
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY) , Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán, México 97205
| | - Rosa E Moo-Puc
- Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad, Centro Médico Ignacio García Téllez, Instituto Mexicano del Seguro Social (IMSS) , Calle 41 No. 439, Col. Industrial, Mérida, Yucatán, México 97200
| | - Sergio R Peraza-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY) , Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán, México 97205
| |
Collapse
|
11
|
Lo SH, Li Y, Cheng KC, Niu CS, Cheng JT, Niu HS. Ursolic acid activates the TGR5 receptor to enhance GLP-1 secretion in type 1-like diabetic rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:1097-1104. [PMID: 28756460 DOI: 10.1007/s00210-017-1409-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
Abstract
Endogenous Takeda G-protein-coupled receptor 5 (TGR5), G-protein-coupled bile acid receptor 1 (GPBAR1), regulates glucose metabolism. In animals, TGR5 activation by a chemical agonist may increase incretin secretion and reduce the blood sugar level. Recently, betulinic acid has been suggested to activate TGR5. Ursolic acid is a well-known pentacyclic triterpenoid that is similar to betulinic acid. It is of special interest to determine the potential effect of ursolic acid on TGR5. Therefore, we transfected cultured Chinese hamster ovary (CHO-K1) cells with the TGR5 gene. The functions of the transfected cells were confirmed via glucose uptake using a fluorescent indicator. Moreover, NCI-H716 cells that secreted incretin were also investigated, and the glucagon-like peptide (GLP-1) levels were quantified using ELISA kits. In addition, streptozotocin (STZ)-induced type 1-like diabetic rats were used to identify the effect of ursolic acid in vivo. Ursolic acid concentration dependently increased glucose uptake in CHO-K1 cells expressing TGR5. In NCI-H716 cells, ursolic acid induced a concentration-dependent elevation in GLP-1 secretion, which was inhibited by triamterene at the effective concentrations to block TGR5. Ursolic acid also increased the plasma GLP-1 level via TGR5 activation, which was further characterized in vivo with type 1-like diabetic rats. Moreover, ursolic acid is more effective than betulinic acid in reduction of hyperglycemia and increase of GLP-1 secretion. Therefore, we demonstrated that ursolic acid can activate TGR5, enhancing GLP-1 secretion in vitro and in vivo. Therefore, ursolic acid is suitable for use in TGR5 activation.
Collapse
Affiliation(s)
- Shih-Hsiang Lo
- Division of Cardiology, Department of Internal Medicine, Chung Hsing Branch of Taipei City Hospital, Taipei City, Taiwan, 10341
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City, Taiwan, 97005
| | - Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan, 71003
| | - Kai Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
| | - Chiang-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City, Taiwan, 97005
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan, 71003.
- College of Health Science, Chang Jung Christian University, Institute of Medical Science, Guei-Ren, Tainan City, Taiwan, 71101.
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City, Taiwan, 97005
| |
Collapse
|
12
|
Wang LY, Cheng KC, Li Y, Niu CS, Cheng JT, Niu HS. Glycyrrhizic acid increases glucagon like peptide-1 secretion via TGR5 activation in type 1-like diabetic rats. Biomed Pharmacother 2017; 95:599-604. [PMID: 28881290 DOI: 10.1016/j.biopha.2017.08.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022] Open
Abstract
Glycyrrhizic acid (GA) is belonged to triterpenoid saponin that is contained in the root of licorice and is known to affect metabolic regulation. Recently, glucagon like peptide-1 (GLP-1) has widely been applied in diabetes therapeutics. However, the role of GLP-1 in GA-induced anti-diabetic effects is still unknown. Therefore, we are interested in understanding the association of GLP-1 with GA-induced effects. In type 1-like diabetic rats induced by streptozotocin (STZ-treated rats), GA increased the level of plasma GLP-1, which was blocked by triamterene at a dose sufficient to inhibit Takeda G-protein-coupled receptor 5 (TGR5). The direct effect of GA on TGR5 has been identified using the cultured Chinese hamster ovary cells (CHO-K1 cells) transfected TGR5 gene. Moreover, in intestinal NCI-H716 cells that secreted GLP-1, GA promoted GLP-1 secretion with a marked elevation of calcium levels. However, both effects of GA were reduced by ablation of TGR5 with siRNA in NCI-H716 cells. Therefore, we demonstrated that GA can enhance GLP-1 secretion through TGR5 activation.
Collapse
Affiliation(s)
- Lin-Yu Wang
- Department of Childhood Education and Nursery, Chia Nan University of Pharmacy and Science, Rende, Tainan City 71710, Taiwan; Division of Pediatrics, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan; Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 81201, Taiwan
| | - Kai Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan
| | - Chiang-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City 97005, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan; Institute of Medical Science, College of Health Science, Chang Jung Christian University, Guei-Ren, Tainan City 71101, Taiwan.
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City 97005, Taiwan.
| |
Collapse
|
13
|
Wang LY, Cheng KC, Li Y, Niu CS, Cheng JT, Niu HS. The Dietary Furocoumarin Imperatorin Increases Plasma GLP-1 Levels in Type 1-Like Diabetic Rats. Nutrients 2017; 9:1192. [PMID: 29084156 PMCID: PMC5707664 DOI: 10.3390/nu9111192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
Imperatorin, a dietary furocoumarin, is found not only in medicinal plants, but also in popular culinary herbs, such as parsley and fennel. Recently, imperatorin has been shown to activate GPR119 in cells. Another GPR, GPR131, also called TGR5 or G-protein-coupled bile acid receptor 1 (GPBAR1), is known to regulate glucose metabolism. Additionally, TGR5 activation increases glucagon-like peptide (GLP-1) secretion to lower blood sugar levels in animals. Therefore, the present study aims to determine whether the effects of imperatorin on GLP-1 secretion are mediated by TGR5. First, we transfected cultured Chinese hamster ovary cells (CHO-K1 cells) with the TGR5 gene. Glucose uptake was confirmed in the transfected cells using a fluorescent indicator. Moreover, NCI-H716 cells, which secrete GLP-1, were used to investigate the changes in calcium concentrations and GLP-1 levels. In addition, streptozotocin (STZ)-induced type 1-like diabetic rats were used to identify the effects of imperatorin in vivo. Imperatorin dose-dependently increased glucose uptake in CHO-K1 cells expressing TGR5. In STZ diabetic rats, similar to the results in NCI-H716 cells, imperatorin induced a marked increase of GLP-1 secretion that was reduced, but not totally abolished, by a dose of triamterene that inhibited TGR5. Moreover, increases in GLP-1 secretion induced by imperatorin and GPR119 activation were shown in NCI-H716 cells. We demonstrated that imperatorin induced GLP-1 secretion via activating TGR5 and GPR119. Therefore, imperatorin shall be considered as a TGR5 and GPR119 agonist.
Collapse
Affiliation(s)
- Lin-Yu Wang
- Department of Childhood Education and Nursery, Chia Nan University of Pharmacy and Science, Rende, Tainan City 71710, Taiwan.
- Division of Pediatrics, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan.
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 81201, Taiwan.
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan.
| | - Yingxiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan.
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan.
| | - Chiang-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City 97005, Taiwan.
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City 71003, Taiwan.
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Guei-Ren, Tainan City 71101, Taiwan.
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City 97005, Taiwan.
| |
Collapse
|
14
|
Komissarova NG, Dubovitskii SN, Shitikova OV, Vyrypaev EM, Spirikhin LV, Eropkina EM, Lobova TG, Eropkin MY, Yunusov MS. Synthesis of Conjugates of Lupane-Type Pentacyclic Triterpenoids with 2-Aminoethane- and N-Methyl-2-Aminoethanesulfonic Acids. Assessment of in vitro Toxicity. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-2153-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Li Y, Cheng KC, Niu CS, Lo SH, Cheng JT, Niu HS. Investigation of triamterene as an inhibitor of the TGR5 receptor: identification in cells and animals. Drug Des Devel Ther 2017; 11:1127-1134. [PMID: 28435224 PMCID: PMC5391213 DOI: 10.2147/dddt.s131892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) has been shown to participate in glucose homeostasis. In animal models, a TGR5 agonist increases incretin secretion to reduce hyperglycemia. Many agonists have been developed for clinical use. However, the effects of TGR5 blockade have not been studied extensively, with the exception of studies using TGR5 knockout mice. Therefore, we investigated the potential effect of triamterene on TGR5. METHODS We transfected the TGR5 gene into cultured Chinese hamster ovary cells (CHO-K1 cells) to express TGR5. Then, we applied a fluorescent indicator to examine the glucose uptake of these transfected cells. In addition, NCI-H716 cells that secrete incretin were also evaluated. Fura-2, a fluorescence indicator, was applied to determine the changes in calcium concentrations. The levels of cyclic adenosine monophosphate (cAMP) and glucagon-like peptide (GLP-1) were estimated using enzyme-linked immunosorbent assay kits. Moreover, rats with streptozotocin (STZ)-induced type 1-like diabetes were used to investigate the effects in vivo. RESULTS Triamterene dose dependently inhibits the increase in glucose uptake induced by TGR5 agonists in CHO-K1 cells expressing the TGR5 gene. In cultured NCI-H716 cells, TGR5 activation also increases GLP-1 secretion by increasing calcium levels. Triamterene inhibits the increased calcium levels by TGR5 activation through competitive antagonism. Moreover, the GLP-1 secretion and increased cAMP levels induced by TGR5 activation are both dose dependently reduced by triamterene. However, treatment with KB-R7943 at a dose sufficient to block the Na+/Ca2+ exchanger (NCX) failed to modify the responses to TGR5 activation in NCI-H716 cells or CHO-K1 cells expressing TGR5. Therefore, the inhibitory effects of triamterene on TGR5 activation do not appear to be related to NCX inhibition. Blockade of TGR5 activation by triamterene was further characterized in vivo using the STZ-induced diabetic rats. CONCLUSION Based on the obtained data, we identified triamterene as a reliable inhibitor of TGR5. Therefore, triamterene can be developed as a clinical inhibitor of TGR5 activation in future studies.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cells, Cultured
- Cricetulus
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Dose-Response Relationship, Drug
- Humans
- Injections, Intravenous
- Lithocholic Acid/antagonists & inhibitors
- Lithocholic Acid/pharmacology
- Male
- Pentacyclic Triterpenes
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Streptozocin/administration & dosage
- Structure-Activity Relationship
- Triamterene/administration & dosage
- Triamterene/pharmacology
- Triterpenes/antagonists & inhibitors
- Triterpenes/pharmacology
- Betulinic Acid
Collapse
Affiliation(s)
- Yingxiao Li
- Department of Psychosomatic Internal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Medical Research, Chi Mei Medical Center, Yong Kang, Tainan City
| | - Kai Chun Cheng
- Department of Psychosomatic Internal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Chiang-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City
| | - Shih-Hsiang Lo
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City
- Division of Cardiology, Department of Internal Medicine, Chung Hsing Branch of Taipei City Hospital
| | - Juei-Tang Cheng
- Department of Medical Research, Chi Mei Medical Center, Yong Kang, Tainan City
- Institute of Medical Sciences, College of Health Science, Chang-Jung Christian University, Guei-Ren, Tainan City, Taiwan
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City
| |
Collapse
|
16
|
Lo SH, Cheng KC, Li YX, Chang CH, Cheng JT, Lee KS. Development of betulinic acid as an agonist of TGR5 receptor using a new in vitro assay. Drug Des Devel Ther 2016; 10:2669-2676. [PMID: 27578964 PMCID: PMC5001664 DOI: 10.2147/dddt.s113197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND G-protein-coupled bile acid receptor 1, also known as TGR5 is known to be involved in glucose homeostasis. In animal models, treatment with a TGR5 agonist induces incretin secretion to reduce hyperglycemia. Betulinic acid, a triterpenoid present in the leaves of white birch, has been introduced as a selective TGR5 agonist. However, direct activation of TGR5 by betulinic acid has not yet been reported. METHODS Transfection of TGR5 into cultured Chinese hamster ovary (CHO-K1) cells was performed to establish the presence of TGR5. Additionally, TGR5-specific small interfering RNA was employed to silence TGR5 in cells (NCI-H716 cells) that secreted incretins. Uptake of glucose by CHO-K1 cells was evaluated using a fluorescent indicator. Amounts of cyclic adenosine monophosphate and glucagon-like peptide were quantified using enzyme-linked immunosorbent assay kits. RESULTS Betulinic acid dose-dependently increases glucose uptake by CHO-K1 cells transfected with TGR5 only, which can be considered an alternative method instead of radioligand binding assay. Additionally, signals coupled to TGR5 activation are also increased by betulinic acid in cells transfected with TGR5. In NCI-H716 cells, which endogenously express TGR5, betulinic acid induces glucagon-like peptide secretion via increasing calcium levels. However, the actions of betulinic acid were markedly reduced in NCI-H716 cells that received TGR5-silencing treatment. Therefore, the present study demonstrates the activation of TGR5 by betulinic acid for the first time. CONCLUSION Similar to the positive control lithocholic acid, which is the established agonist of TGR5, betulinic acid has been characterized as a useful agonist of TGR5 and can be used to activate TGR5 in the future.
Collapse
Affiliation(s)
- Shih-Hsiang Lo
- Division of Cardiology, Department of Internal Medicine, Zhongxing Branch of Taipei City Hospital
- Department of History and Geography, University of Taipei, Taipei, Taiwan
| | - Kai-Chung Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ying-Xiao Li
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Medical Research
| | - Chin-Hong Chang
- Department of Medical Research
- Department of Neurosurgery, Chi-Mei Medical Center, Yong Kang
| | - Juei-Tang Cheng
- Department of Medical Research
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan
| | - Kung-Shing Lee
- Department of Surgery, Pingtung Hospital
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|