1
|
Cao G, Liao X, Zhao S, Li M, Xie Z, Yang J, Li Y, Zhu Z, Jin X, Huang R, Guo Z, Niu X, Ji X. Arthrocolin B Impairs Adipogenesis via Delaying Cell Cycle Progression During the Mitotic Clonal Expansion Period. Int J Mol Sci 2025; 26:1474. [PMID: 40003939 PMCID: PMC11855396 DOI: 10.3390/ijms26041474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity and its related diseases severely threaten people's health, causing persistently high morbidity and mortality worldwide. The abnormal proliferation and hypertrophy of adipocytes mediate the expansion of adipose tissue, which is the main cause of obesity-related diseases. Inhibition of cell proliferation during the mitotic clonal expansion (MCE) period of adipogenesis may be a promising strategy for preventing and treating obesity. Arthrocolins are a series of fluorescent dye-like complex xanthenes from engineered Escherichia coli, with potential anti-tumor and antifungal activities. However, the role and underlying mechanisms of these compounds in adipocyte differentiation remain unclear. In this study, we discovered that arthrocolin B, a member of the arthrocolin family, significantly impeded adipogenesis by preventing the accumulation of lipid droplets and triglycerides, as well as by downregulating the expression of key factors involved in adipogenesis, such as SREBP1, C/EBPβ, C/EBPδ, C/EBPα, PPARγ, and FABP4. Moreover, we revealed that this inhibition might be a consequence of cell cycle arrest during the MCE of adipocyte differentiation, most likely by modulating the p53, AKT, and ERK pathways, upregulating the expression of p21 and p27, and repressing the expression of CDK1, CDK4, Cyclin A2, Cyclin D1, and p-Rb. Additionally, arthrocolin B could promote the expression of CPT1A during adipocyte differentiation, implying its potential role in fatty acid oxidation. Overall, our research concludes that arthrocolin B has the ability to suppress the early stages of adipocyte differentiation mainly by modulating the signaling proteins involved in cell cycle progression. This work broadens our understanding of the function and mechanisms of arthrocolins in regulation of adipogenesis and might provide a potential lead compound for treating the obesity.
Collapse
Affiliation(s)
- Guang Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Xuemei Liao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Shuang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Mengwen Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Zhengyuan Xie
- NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Yunnan Population and Family Planning Research Institute, Kunming 650021, China;
| | - Jinglan Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Yanze Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Zihao Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Xiaoru Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Rui Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Ziyin Guo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Xuemei Niu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650500, China
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| |
Collapse
|
2
|
Peterfi L, Yusenko MV, Kovacs G, Beothe T. Lack of VEGFA/KDR Signaling in Conventional Renal Cell Carcinoma Explains the Low Efficacy of Target Therapy and Frequent Adverse Events. Int J Mol Sci 2024; 25:7359. [PMID: 39000466 PMCID: PMC11242259 DOI: 10.3390/ijms25137359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
It is acknowledged that conventional renal cell carcinoma (cRCC), which makes up 85% of renal malignancies, is a highly vascular tumor. Humanized monoclonal antibodies were developed to inhibit tumor neo-angiogenesis, which is driven by VEGFA/KDR signaling. The results largely met our expectations, and in several cases, adverse events occurred. Our study aimed to analyze the expression of VEGFA and its receptor KDR by immunohistochemistry in tissue multi-array containing 811 cRCC and find a correlation between VEGFA/KDR signaling and new vessel formation. None of the 811 cRCC displayed VEGFA-positive immunostaining. However, each glomerulus in normal kidney showed VEGFA-positive endothelial cells. KDR expression in endothelial meshwork was found in only 9% of cRCC, whereas 2% of the cRCC displayed positive KDR reaction in the cytoplasm of tumor cells. Our results disclose the involvement of VEGFA/KDR signaling in the neo-vascularization of cRCC and explain the frequent resistance to drugs targeting the VEGFA/KDR signaling and the high frequency of adverse events.
Collapse
Affiliation(s)
- Lehel Peterfi
- Department of Urology, Medical School, University of Pecs, 7602 Pecs, Hungary;
| | - Maria V. Yusenko
- Institute of Human Genetics, Ruhr-University, 44801 Bochum, Germany;
| | - Gyula Kovacs
- Department of Urology, Medical School, University of Pecs, 7602 Pecs, Hungary;
- Medical Faculty, Ruprecht-Karls-University, 69117 Heidelberg, Germany
| | - Tamas Beothe
- Department of Urology, Peterfy Sandor Hospital, 1076 Budapest, Hungary;
| |
Collapse
|
3
|
Bahman A, Abaza MS, Khoushaish S, Al-Attiyah RJ. Therapeutic efficacy of sorafenib and plant-derived phytochemicals in human colorectal cancer cells. BMC Complement Med Ther 2023; 23:210. [PMID: 37365571 DOI: 10.1186/s12906-023-04032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The present study aimed to investigate the sequence-dependent anticancer effects of combined treatment with sorafenib (Sora), a Food and Drug Administration-approved multikinase inhibitor drug, and plant-derived phytochemicals (PPCs) on human colorectal cancer (CRC) cell growth, and proteins associated with the control of cell cycle and apoptosis. METHODS The cytotoxic effects of 14 PPCs on CRL1554 fibroblast cells were determined using an MTT assay. Moreover, the cytotoxicity of Sora, PPCs, and a combination of both on CRC cells were also investigated. Cell cycle analysis was performed using flow cytometry, and cell apoptosis was investigated using DNA fragmentation, Annexin V/propidium iodide double staining, and mitochondrial membrane potential analyses. The cell cycle- and apoptosis-associated protein expression levels were analysed using western blotting. RESULTS Based on their low levels of cytotoxicity in CRL1554 cells at ≤ 20%, curcumin, quercetin, kaempferol, and resveratrol were selected for use in subsequent experiments. The combined treatment of sora and PPCs caused levels of CRC cytotoxicity in a dose-, cell type-, and schedule-dependent manner. Moreover, the combined treatment of CRC cells arrested cell growth at the S and G2/M phases, induced apoptotic cell death, caused extensive mitochondrial membrane damage, and altered the expression of the cell cycle and apoptotic proteins. CONCLUSIONS Results of the present study highlighted a difference in the level of sora efficacy in CRC cells when combined with PPCs. Further in vivo and clinical studies using the combined treatment of sora and PPCs are required to determine their potential as a novel therapeutic strategy for CRCs.
Collapse
Affiliation(s)
- Abdulmajeed Bahman
- Department of Biological Sciences, Molecular Biology Program, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait
| | - Mohamed-Salah Abaza
- Department of Biological Sciences, Molecular Biology Program, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait.
| | - Sarah Khoushaish
- Department of Biological Sciences, Molecular Biology Program, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait
| | - Rajaa J Al-Attiyah
- Department of Microbiology and Immunology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110, Safat, Kuwait
| |
Collapse
|
4
|
Charbonneau M, Harper K, Brochu-Gaudreau K, Perreault A, McDonald PP, Ekindi-Ndongo N, Jeldres C, Dubois CM. Establishment of a ccRCC patient-derived chick chorioallantoic membrane model for drug testing. Front Med (Lausanne) 2022; 9:1003914. [PMID: 36275794 PMCID: PMC9582329 DOI: 10.3389/fmed.2022.1003914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is an aggressive subtype of renal cell carcinoma accounting for the majority of deaths in kidney cancer patients. Advanced ccRCC has a high mortality rate as most patients progress and develop resistance to currently approved targeted therapies, highlighting the ongoing need for adequate drug testing models to develop novel therapies. Current animal models are expensive and time-consuming. In this study, we investigated the use of the chick chorioallantoic membrane (CAM), a rapid and cost-effective model, as a complementary drug testing model for ccRCC. Our results indicated that tumor samples from ccRCC patients can be successfully cultivated on the chick chorioallantoic membrane (CAM) within 7 days while retaining their histopathological characteristics. Furthermore, treatment of ccRCC xenografts with sunitinib, a tyrosine kinase inhibitor used for the treatment of metastatic RCC, allowed us to evaluate differential responses of individual patients. Our results indicate that the CAM model is a complementary in vivo model that allows for rapid and cost-effective evaluation of ccRCC patient response to drug therapy. Therefore, this model has the potential to become a useful platform for preclinical evaluation of new targeted therapies for the treatment of ccRCC.
Collapse
Affiliation(s)
- Martine Charbonneau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kelly Harper
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Claudio Jeldres
- Division of Urology, Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada,*Correspondence: Claire M. Dubois
| |
Collapse
|
5
|
Dahiya M, Dureja H. Sorafenib for hepatocellular carcinoma: potential molecular targets and resistance mechanisms. J Chemother 2021; 34:286-301. [PMID: 34291704 DOI: 10.1080/1120009x.2021.1955202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most widespread typical therapy-resistant, unresectable type of malignant solid tumour with a high death rate constituting huge medical concern. Sorafenib is a small molecule oral multi-target kinase potent inhibitor that acts by suppressing/blocking the multiplication of the tumour cells, angiogenesis, and encouraging apoptosis of the tumour cells. Though, the precise mechanism of tumour cell death induction by sorafenib is yet under exploration. Furthermore, genetic heterogeneity plays a critical role in developing sorafenib resistance, which leads the way to identify the need for predictive biomarkers responsible for drug resistance. Therefore, it is essential to find out the fundamental resistance mechanisms to expand therapeutic plans. The authors summarize the molecular concepts of resistance, progression, potential molecular targets, HCC management therapies, and discussion on the advancements expected in the coming future, inclusive of biomarker-driven treatment strategies, which may provide the prospects to design innovative therapeutically targeted strategies for the HCC treatment and the clinical implementation of emerging targeted agents.
Collapse
Affiliation(s)
- Mandeep Dahiya
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
6
|
Tian H, Lyu Y, Yang YG, Hu Z. Humanized Rodent Models for Cancer Research. Front Oncol 2020; 10:1696. [PMID: 33042811 PMCID: PMC7518015 DOI: 10.3389/fonc.2020.01696] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
As one of the most popular laboratory animal models, rodents have been playing crucial roles in mechanistic investigations of oncogenesis as well as anticancer drug or regimen discoveries. However, rodent tumors show different or no responses to therapies against human cancers, and thus, in recent years, increased attention has been given to mouse models with xenografted or spontaneous human cancer cells. By combining with the human immune system (HIS) mice, these models have become more sophisticated and robust, enabling in vivo exploration of human cancer immunology and immunotherapy. In this review, we summarize the pros and cons of these humanized mouse models, with a focus on their potential as an in vivo platform for human cancer research. We also discuss the strategies for further improving these models.
Collapse
Affiliation(s)
- Huimin Tian
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| |
Collapse
|
7
|
Nava CF, Scheffel RS, Cristo AP, Ferreira CV, Weber S, Zanella AB, Paixão FC, Migliavaca A, Guimarães JR, Graudenz MS, Dora JM, Maia AL. Neoadjuvant Multikinase Inhibitor in Patients With Locally Advanced Unresectable Thyroid Carcinoma. Front Endocrinol (Lausanne) 2019; 10:712. [PMID: 31695679 PMCID: PMC6817485 DOI: 10.3389/fendo.2019.00712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Papillary thyroid carcinoma (PTC) is the most common and less aggressive thyroid cancer, but some patients may display locally advanced disease. Therapeutic options are limited in these cases, particularly for those patients with unresectable tumors. Neoadjuvant therapy is not part of the recommended work up. Methods: Report a case of an unresectable grossly locally invasive PTC successfully managed with neoadjuvant therapy and provide a systematic review (SR) using the terms "Neoadjuvant therapy" AND "Thyroid carcinoma." Results: A 32-year-old man with a 7.8 cm (in the largest dimension) PTC was referred to total thyroidectomy, but tumor resection was not feasible due to extensive local invasion (trachea, esophagus, and adjacent structures). Sorafenib, a multikinase inhibitor (MKI), was initiated; a 70% tumor reduction was observed after 6 months, allowing new surgical intervention and complete resection. Radioactive iodine (RAI) was administered as adjuvant therapy, and whole body scan (WBS) shows uptake on thyroid bed. One-year post-surgery the patient is asymptomatic with a status of disease defined as an incomplete biochemical response. The SR retrieved 123 studies on neoadjuvant therapy use in thyroid carcinoma; of them, 6 were extracted: 4 case reports and 2 observational studies. MKIs were used as neoadjuvant therapy in three clinical cases with 70-84% of tumor reduction allowing surgery. Conclusion: Our findings, along with other reports, suggest that MKIs is an effective neoadjuvant therapy and should be considered as a therapeutic strategy for unresectable grossly locally invasive thyroid carcinomas.
Collapse
Affiliation(s)
- Carla Fernanda Nava
- Thyroid Unit, Endocrine Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Selbach Scheffel
- Thyroid Unit, Endocrine Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Patrícia Cristo
- Pathology Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Vaz Ferreira
- Thyroid Unit, Endocrine Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Shana Weber
- Thyroid Unit, Endocrine Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - André Borsatto Zanella
- Thyroid Unit, Endocrine Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Francisco Costa Paixão
- Surgical Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alceu Migliavaca
- Surgical Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - José Ricardo Guimarães
- Surgical Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcia Silveira Graudenz
- Pathology Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - José Miguel Dora
- Thyroid Unit, Endocrine Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Luiza Maia
- Thyroid Unit, Endocrine Division, Faculdade de Medicina, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Crona DJ, Skol AD, Leppänen VM, Glubb DM, Etheridge AS, Hilliard E, Peña CE, Peterson YK, Klauber-DeMore N, Alitalo KK, Innocenti F. Genetic Variants of VEGFA and FLT4 Are Determinants of Survival in Renal Cell Carcinoma Patients Treated with Sorafenib. Cancer Res 2019; 79:231-241. [PMID: 30385613 PMCID: PMC6541205 DOI: 10.1158/0008-5472.can-18-1089] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/03/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022]
Abstract
Molecular markers of sorafenib efficacy in patients with metastatic renal cell carcinoma (mRCC) are not available. The purpose of this study was to discover genetic markers of survival in patients with mRCC treated with sorafenib. Germline variants from 56 genes were genotyped in 295 patients with mRCC. Variant-overall survival (OS) associations were tested in multivariate regression models. Mechanistic studies were conducted to validate clinical associations. VEGFA rs1885657, ITGAV rs3816375, and WWOX rs8047917 (sorafenib arm), and FLT4 rs307826 and VEGFA rs3024987 (sorafenib and placebo arms combined) were associated with shorter OS. FLT4 rs307826 increased VEGFR-3 phosphorylation, membrane trafficking, and receptor activation. VEGFA rs1885657 and rs58159269 increased transcriptional activity of the constructs containing these variants in endothelial and RCC cell lines, and VEGFA rs58159269 increased endothelial cell proliferation and tube formation. FLT4 rs307826 and VEGFA rs58159269 led to reduced sorafenib cytotoxicity. Genetic variation in VEGFA and FLT4 could affect survival in sorafenib-treated patients with mRCC. These markers should be examined in additional malignancies treated with sorafenib and in other angiogenesis inhibitors used in mRCC. SIGNIFICANCE: Clinical and mechanistic data identify germline genetic variants in VEGFA and FLT4 as markers of survival in patients with metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Daniel J Crona
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Pharmacogenomics and Individualized Therapy, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Andrew D Skol
- The University of Chicago, Department of Medicine, Chicago, Illinois
| | | | - Dylan M Glubb
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Pharmacogenomics and Individualized Therapy, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
- The Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Amy S Etheridge
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Pharmacogenomics and Individualized Therapy, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Eleanor Hilliard
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Carol E Peña
- Bayer HealthCare Pharmaceuticals, Montville, New Jersey
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Kari K Alitalo
- Wihuri Research Institute and University of Helsinki, Helsinki, Finland
| | - Federico Innocenti
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Pharmacogenomics and Individualized Therapy, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Autophagic cell death associated to Sorafenib in renal cell carcinoma is mediated through Akt inhibition in an ERK1/2 independent fashion. PLoS One 2018; 13:e0200878. [PMID: 30048489 PMCID: PMC6062059 DOI: 10.1371/journal.pone.0200878] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To fully clarify the role of Mitogen Activated Protein Kinase in the therapeutic response to Sorafenib in Renal Cell Carcinoma as well as the cell death mechanism associated to this kinase inhibitor, we have evaluated the implication of several Mitogen Activated Protein Kinases in Renal Cell Carcinoma-derived cell lines. MATERIALS AND METHODS An experimental model of Renal Cell Carcinoma-derived cell lines (ACHN and 786-O cells) was evaluated in terms of viability by MTT assay, induction of apoptosis by caspase 3/7 activity, autophagy induction by LC3 lipidation, and p62 degradation and kinase activity using phospho-targeted antibodies. Knock down of ATG5 and ERK5 was performed using lentiviral vector coding specific shRNA. RESULTS Our data discard Extracellular Regulated Kinase 1/2 and 5 as well as p38 Mitogen Activated Protein Kinase pathways as mediators of Sorafenib toxic effect but instead indicate that the inhibitory effect is exerted through the PI3K/Akt signalling pathway. Furthermore, we demonstrate that inhibition of Akt mediates cell death associated to Sorafenib without caspase activation, and this is consistent with the induction of autophagy, as indicated by the use of pharmacological and genetic approaches. CONCLUSION The present report demonstrates that Sorafenib exerts its toxic effect through the induction of autophagy in an Akt-dependent fashion without the implication of Mitogen Activated Protein Kinase. Therefore, our data discard the use of inhibitors of the RAF-MEK-ERK1/2 signalling pathway in RCC and support the use of pro-autophagic compounds, opening new therapeutic opportunities for Renal Cell Carcinoma.
Collapse
|
10
|
Bahman AA, Abaza MSI, Khoushiash SI, Al-Attiyah RJ. Sequence‑dependent effect of sorafenib in combination with natural phenolic compounds on hepatic cancer cells and the possible mechanism of action. Int J Mol Med 2018; 42:1695-1715. [PMID: 29901131 PMCID: PMC6089756 DOI: 10.3892/ijmm.2018.3725] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Sorafenib (Nexavar, BAY43-9006 or Sora) is the first molecular targeted agent that has exhibited significant therapeutic benefits in advanced hepatocellular carcinoma (HCC). However, not all HCC patients respond well to Sora and novel therapeutic strategies to optimize the efficacy of Sora are urgently required. Plant-based drugs have received increasing attention owing to their excellent chemotherapeutic and chemopreventive activities; they are also well tolerated, non-toxic, easily available and inexpensive. It is well known that certain biologically active natural products act synergistically with synthetic drugs used in clinical applications. The present study aimed to investigate whether a combination therapy with natural phenolic compounds (NPCs), including curcumin (Cur), quercetin (Que), kaempherol (Kmf) and resveratrol (Rsv), would allow a dose reduction of Sora without concomitant loss of its effectiveness. Furthermore, the possible molecular mechanisms of this synergy were assessed. The hepatic cancer cell lines Hep3b and HepG2 were treated with Sora alone or in combination with NPCs in concomitant, sequential, and inverted sequential regimens. Cell proliferation, cell cycle, apoptosis and expression of proteins associated with the cell cycle and apoptosis were investigated. NPCs markedly potentiated the therapeutic efficacy of Sora in a sequence-, type-, NPC dose- and cell line-dependent manner. Concomitant treatment with Sora and Cur [sensitization ratio (SR)=28], Kmf (SR=18) or Que (SR=8) was associated with the highest SRs in Hep3b cells. Rsv markedly potentiated the effect of Sora (SR=17) on Hep3b cells when administered in a reverse sequential manner. By contrast, Rsv and Que did not improve the efficacy of Sora against HepG2 cells, while concomitant treatment with Cur (SR=10) or Kmf (SR=4.01) potentiated the cytotoxicity of Sora. Concomitant treatment with Sora and Cur or Kmf caused S-phase and G2/M phase arrest of liver cancer cells and markedly induced apoptosis compared with mono-treatment with Sora, Cur or Kmf. Concomitant treatment with Sora and Cur reduced the protein levels of cyclins A, B2 and D1, phosphorylated retinoblastoma and B-cell lymphoma (Bcl) extra-large protein. By contrast, Sora and Cur co-treatment increased the protein levels of Bcl-2-associated X protein, cleaved caspase-3 and cleaved caspase-9 in a dose-dependent manner. In conclusion, concomitant treatment with Sora and Cur or Kmf appears to be a potent and promising therapeutic approach that may control hepatic cancer by triggering cell cycle arrest and apoptosis. Additional studies are required to examine the potential of combined treatment with Sora and NPCs in human hepatic cancer and other solid tumor types in vivo.
Collapse
Affiliation(s)
- Abdulmajeed A Bahman
- Molecular Biology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, 13060 Safat, State of Kuwait
| | - Mohamed Salah I Abaza
- Molecular Biology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, 13060 Safat, State of Kuwait
| | - Sarah I Khoushiash
- Molecular Biology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, 13060 Safat, State of Kuwait
| | - Rajaa J Al-Attiyah
- Department of Microbiology and Immunology, Faculty of Medicine, Kuwait University, 13060 Safat, State of Kuwait
| |
Collapse
|
11
|
Arid1a regulates response to anti-angiogenic therapy in advanced hepatocellular carcinoma. J Hepatol 2018; 68:465-475. [PMID: 29113912 DOI: 10.1016/j.jhep.2017.10.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/24/2017] [Accepted: 10/18/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS AT-rich interaction domain 1a (Arid1a), a component of the chromatin remodeling complex, has emerged as a tumor suppressor gene. It is frequently mutated in hepatocellular carcinoma (HCC). However, it remains unknown how Arid1a suppresses HCC development and whether Arid1a deficiency could be exploited for therapy, we aimed to explore these questions. METHODS The expression of Arid1a in human and mouse HCCs was determined by immunohistochemical (IHC) staining. Gene expression was determined by quantitative PCR, ELISA or western blotting. Arid1a knockdown HCC cell lines were established by lentiviral-based shRNA. Tumor angiogenesis was quantified based on vessel density. The regulation of angiopoietin (Ang2) expression by Arid1a was identified by chromatin immunoprecipitation (ChIP) assay. The tumor promoting function of Arid1a loss was studied with a xenograft model in nude mice and diethylnitrosamine (DEN)-induced HCC in Arid1a conditional knockout mice. The therapeutic values of Ang2 antibody and sorafenib treatment were evaluated both in vitro and in vivo. RESULTS We demonstrate that Arid1a deficiency, occurring in advanced human HCCs, is associated with increased vessel density. Mechanistically, loss of Arid1a causes aberrant histone H3K27ac deposition at the angiopoietin-2 (Ang2) enhancer and promoter, which eventually leads to ectopic expression of Ang2 and promotes HCC development. Ang2 blockade in Arid1a-deficient HCCs significantly reduces vessel density and tumor progression. Importantly, sorafenib treatment, which suppresses H3K27 acetylation and Ang2 expression, profoundly halts the progression of Arid1a-deficient HCCs. CONCLUSIONS Arid1a-deficiency activates Ang2-dependent angiogenesis and promotes HCC progression. Loss of Arid1a in HCCs confers sensitivity to Ang2 blockade and sorafenib treatment. LAY SUMMARY AT-rich interaction domain 1a (Arid1a), is a tumor suppressor gene. Arid1a-deficiency promotes Ang2-dependent angiogenesis leading to hepatocellular carcinoma progression. Arid1a-deficiency also sensitizes tumors to Ang2 blockade by sorafenib treatment.
Collapse
|
12
|
Wu LMN, Deng Y, Wang J, Zhao C, Wang J, Rao R, Xu L, Zhou W, Choi K, Rizvi TA, Remke M, Rubin JB, Johnson RL, Carroll TJ, Stemmer-Rachamimov AO, Wu J, Zheng Y, Xin M, Ratner N, Lu QR. Programming of Schwann Cells by Lats1/2-TAZ/YAP Signaling Drives Malignant Peripheral Nerve Sheath Tumorigenesis. Cancer Cell 2018; 33:292-308.e7. [PMID: 29438698 PMCID: PMC5813693 DOI: 10.1016/j.ccell.2018.01.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/04/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive Schwann cell (SC)-lineage-derived sarcomas. Molecular events driving SC-to-MPNST transformation are incompletely understood. Here, we show that human MPNSTs exhibit elevated HIPPO-TAZ/YAP expression, and that TAZ/YAP hyperactivity in SCs caused by Lats1/2 loss potently induces high-grade nerve-associated tumors with full penetrance. Lats1/2 deficiency reprograms SCs to a cancerous, progenitor-like phenotype and promotes hyperproliferation. Conversely, disruption of TAZ/YAP activity alleviates tumor burden in Lats1/2-deficient mice and inhibits human MPNST cell proliferation. Moreover, genome-wide profiling reveals that TAZ/YAP-TEAD1 directly activates oncogenic programs, including platelet-derived growth factor receptor (PDGFR) signaling. Co-targeting TAZ/YAP and PDGFR pathways inhibits tumor growth. Thus, our findings establish a previously unrecognized convergence between Lats1/2-TAZ/YAP signaling and MPNST pathogenesis, revealing potential therapeutic targets in these untreatable tumors.
Collapse
Affiliation(s)
- Lai Man Natalie Wu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yaqi Deng
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jincheng Wang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chuntao Zhao
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jiajia Wang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rohit Rao
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lingli Xu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marc Remke
- Departments of Pediatric Oncology, Neuropathology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf 40225, Germany; Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Düsseldorf 40225, Germany
| | - Joshua B Rubin
- Departments of Pediatrics and Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randy L Johnson
- Department of Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77054, USA
| | - Thomas J Carroll
- Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anat O Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mei Xin
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Sim MY, Huynh H, Go ML, Yuen JSP. Action of YM155 on clear cell renal cell carcinoma does not depend on survivin expression levels. PLoS One 2017; 12:e0178168. [PMID: 28582447 PMCID: PMC5459331 DOI: 10.1371/journal.pone.0178168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The dioxonapthoimidazolium YM155 is a survivin suppressant which has been investigated as an anticancer agent in clinical trials. Here, we investigated its growth inhibitory properties on a panel of immortalized and patient derived renal cell carcinoma (RCC) cell lines which were either deficient in the tumour suppressor von Hippel-Lindau (VHL) protein or possessed a functional copy. Neither the VHL status nor the survivin expression levels of these cell lines influenced their susceptibility to growth inhibition by YM155. Of the various RCC lines, the papillary subtype was more resistant to YM155, suggesting that the therapeutic efficacy of YM155 may be restricted to clear cell subtypes. YM155 was equally potent in cells (RCC786.0) in which survivin expression had been stably silenced or overexpressed, implicating a limited reliance on survivin in the mode of action of YM155. A follow-up in-vitro high throughput RNA microarray identified possible targets of YM155 apart from survivin. Selected genes (ID1, FOXO1, CYLD) that were differentially expressed in YM155-sensitive RCC cells and relevant to RCC pathology were validated with real-time PCR and western immunoblotting analyses. Thus, there is corroboratory evidence that the growth inhibitory activity of YM155 in RCC cell lines is not exclusively mediated by its suppression of survivin. In view of the growing importance of combination therapy in oncology, we showed that a combination of YM155 and sorafenib at ½ x IC50 concentrations was synergistic on RCC786.0 cells. However, when tested intraperitoneally on a murine xenograft model derived from a nephrectomised patient with clear cell RCC, a combination of suboptimal doses of both drugs failed to arrest tumour progression. The absence of synergy in vivo highlighted the need to further optimize the dosing schedules of YM155 and sorafenib, as well as their routes of administration. It also implied that the expression of other oncogenic proteins which YM155 may target is either low or absent in this clear cell RCC.
Collapse
Affiliation(s)
- Mei Yi Sim
- Department of Urology, Singapore General Hospital, Republic of Singapore
- * E-mail:
| | - Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Republic of Singapore
| | - Mei Lin Go
- Department of Pharmacy, National University of Singapore, Republic of Singapore
| | | |
Collapse
|
14
|
Inoue T, Terada N, Kobayashi T, Ogawa O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat Rev Urol 2017; 14:267-283. [PMID: 28248952 DOI: 10.1038/nrurol.2017.19] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lack of appropriate models that recapitulate the complexity and heterogeneity of urological tumours precludes most of the preclinical reagents that target urological tumours from receiving regulatory approval. Patient-derived xenograft (PDX) models are characterized by direct engraftment of patient-derived tumour fragments into immunocompromised mice. PDXs can maintain the original histology, as well as the molecular and genetic characteristics of the source tumour. Thus, PDX models have various advantages over conventional cell-line-derived xenograft (CDX) and other models, which has resulted in an increase in the use of urological tumour PDXs in the analysis of tumour biology and, importantly, for drug development and treatment decisions in personalized medicine. PDX models of urological malignancies have great potential to be used for both basic and clinical research, but limitations exist and need to be overcome. In particular, several agents targeting the immune system have shown promising results in kidney and bladder cancer; however, establishing PDX models in mice with an intact immune system so that an immune response against the tumour is triggered is important to investigate these new therapeutics. Moreover, international collaboration to share PDX models is essential for research concerning fatal urological tumours.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| | - Naoki Terada
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, 54 Kawaharacho Shogoin Sakyo-ku, Kyoto, 6068507, Japan
| |
Collapse
|
15
|
Wan X, Zhai X, Yan Z, Yang P, Li J, Wu D, Wang K, Xia Y, Shen F. Retrospective analysis of transarterial chemoembolization and sorafenib in Chinese patients with unresectable and recurrent hepatocellular carcinoma. Oncotarget 2016; 7:83806-83816. [PMID: 27566566 PMCID: PMC5347807 DOI: 10.18632/oncotarget.11514] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 08/13/2016] [Indexed: 12/12/2022] Open
Abstract
We explored the hypothesis that sorafenib may improve the effect of transarterial chemoembolization (TACE) in patients with recurrent hepatocellular carcinoma (HCC) and that longer sorafenib duration was associated with additional survival benefits. In this retrospective, nested case-controlled study, 1126 cases of unresectable HCC were collected. Patients with unresectable disease treated with TACE+sorafenib (n=245) and TACE alone (n=245) and those with recurrence after surgery treated with TACE+sorafenib (n=127) and TACE alone (n=127) were identified and matched according to sex, age, and lesion size and number. The clinicopathological factors associated with survival were examined by univariate and multivariate analyses. The mean duration of sorafenib treatment was 10.8±10.51 months. Sorafenib significantly increased the median survival time as compared to TACE alone (unresectable HCC: 20.23 vs. 13.97 months, respectively; p=0.013 and recurrent HCC: 30.7 and 18.22 months, respectively; p=0.003). The survival of patients with unresectable HCC was associated with the presence of portal vein tumor thrombus (HR=1.47, p=0.004) and treatment method (TACE+sorafenib combination therapy; HR=0.72, p=0.003). For patients with recurrent HCC, the presence of extrahepatic metastasis (HR=1.71, p=0.012) and treatment method (TACE+sorafenib therapy; HR=0.60, p=0.002) also was associated with survival. For patients treated with TACE+sorafenib, multivariate analysis showed decreased hazard of death with longer duration of sorafenib treatment (HR=0.9, p<0.001). Thus, sorafenib plus TACE may provide survival benefits, which may be related with sorafenib treatment duration, particularly for patients with HCC recurrence. Further clinical studies are required to confirm these results and identify which patients are most likely to benefit from this therapeutic strategy.
Collapse
Affiliation(s)
- Xuying Wan
- Department of Combined Traditional Chinese and Western Medicine, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaofeng Zhai
- Department of Traditional Chinese Medicine, The Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhenlin Yan
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Pinghua Yang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun Li
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Dong Wu
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Kui Wang
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Sia D, Moeini A, Labgaa I, Villanueva A. The future of patient-derived tumor xenografts in cancer treatment. Pharmacogenomics 2015; 16:1671-83. [PMID: 26402657 DOI: 10.2217/pgs.15.102] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Over the last decades, major technological advancements have led to a better understanding of the molecular drivers of human malignancies. Nonetheless, this progress only marginally impacted the cancer therapeutic approach, probably due to the limited ability of experimental models to predict efficacy in clinical trials. In an effort to offset this limitation, there has been an increasing interest in the development of patient-derived xenograft (PDX) models where human tumors are xenotransplanted into immunocompromised mice. Considering their high resemblance to human tumors and their stability, PDX models are becoming the preferred translational tools in preclinical studies. Nonetheless, several limitations hamper a wider use of PDX models and tarnish the concept that they might represent the missing piece in the personalized medicine puzzle.
Collapse
Affiliation(s)
- Daniela Sia
- Barcelona-Clínic Liver Cancer Group, HCC Translational Research Laboratory, Liver Unit, Hepato-biliary Surgery, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, CIBERehd, Universitat de Barcelona, C/Rossello 153, Barcelona, Catalonia, Spain.,Gastrointestinal Surgery & Liver Transplantation Unit, Department of Surgery, National Cancer Institute, via Venezian, 1, Milan, Italy.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue NY 10029, USA
| | - Agrin Moeini
- Barcelona-Clínic Liver Cancer Group, HCC Translational Research Laboratory, Liver Unit, Hepato-biliary Surgery, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, CIBERehd, Universitat de Barcelona, C/Rossello 153, Barcelona, Catalonia, Spain.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue NY 10029, USA
| | - Ismail Labgaa
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue NY 10029, USA
| | - Augusto Villanueva
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue NY 10029, USA.,Division of Hematology & Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, NY, USA
| |
Collapse
|
17
|
Chang DK, Moniz RJ, Xu Z, Sun J, Signoretti S, Zhu Q, Marasco WA. Human anti-CAIX antibodies mediate immune cell inhibition of renal cell carcinoma in vitro and in a humanized mouse model in vivo. Mol Cancer 2015; 14:119. [PMID: 26062742 PMCID: PMC4464115 DOI: 10.1186/s12943-015-0384-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/11/2015] [Indexed: 12/17/2022] Open
Abstract
Background Carbonic anhydrase (CA) IX is a surface-expressed protein that is upregulated by the hypoxia inducible factor (HIF) and represents a prototypic tumor-associated antigen that is overexpressed on renal cell carcinoma (RCC). Therapeutic approaches targeting CAIX have focused on the development of CAIX inhibitors and specific immunotherapies including monoclonal antibodies (mAbs). However, current in vivo mouse models used to characterize the anti-tumor properties of fully human anti-CAIX mAbs have significant limitations since the role of human effector cells in tumor cell killing in vivo is not directly evaluated. Methods The role of human anti-CAIX mAbs on CAIX+ RCC tumor cell killing by immunocytes or complement was tested in vitro by antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP) as well as on CAIX+ RCC cellular motility, wound healing, migration and proliferation. The in vivo therapeutic activity mediated by anti-CAIX mAbs was determined by using a novel orthotopic RCC xenograft humanized animal model and analyzed by histology and FACS staining. Results Our studies demonstrate the capacity of human anti-CAIX mAbs that inhibit CA enzymatic activity to result in immune-mediated killing of RCC, including nature killer (NK) cell-mediated ADCC, CDC, and macrophage-mediated ADCP. The killing activity correlated positively with the level of CAIX expression on RCC tumor cell lines. In addition, Fc engineering of anti-CAIX mAbs was shown to enhance the ADCC activity against RCC. We also demonstrate that these anti-CAIX mAbs inhibit migration of RCC cells in vitro. Finally, through the implementation of a novel orthotopic RCC model utilizing allogeneic human peripheral blood mononuclear cells in NOD/SCID/IL2Rγ−/− mice, we show that anti-CAIX mAbs are capable of mediating human immune response in vivo including tumor infiltration of NK cells and activation of T cells, resulting in inhibition of CAIX+ tumor growth. Conclusions Our findings demonstrate that these novel human anti-CAIX mAbs have therapeutic potential in the unmet medical need of targeted killing of HIF-driven CAIX+RCC. The orthotopic tumor xenografted humanized mouse provides an improved model to evaluate the in vivo anti-tumor capabilities of fully human mAbs for RCC therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0384-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- De-Kuan Chang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Raymond J Moniz
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Zhongyao Xu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA.
| | - Jiusong Sun
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Quan Zhu
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| | - Wayne A Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, USA. .,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| |
Collapse
|
18
|
Chu Q, Han N, Yuan X, Nie X, Wu H, Chen Y, Guo M, Yu S, Wu K. DACH1 inhibits cyclin D1 expression, cellular proliferation and tumor growth of renal cancer cells. J Hematol Oncol 2014; 7:73. [PMID: 25322986 PMCID: PMC4203876 DOI: 10.1186/s13045-014-0073-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/22/2014] [Indexed: 12/15/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is a complex with diverse biological characteristics and distinct molecular signature. New target therapies to molecules that drive RCC initiation and progression have achieved promising responses in some patients, but the total effective rate is still far from satisfaction. Dachshund (DACH1) network is a key signaling pathway for kidney development and has recently been identified as a tumor suppressor in several cancer types. However, its role in renal cell carcinoma has not been fully investigated. Methods Immunohistochemical staining for DACH1, PCNA and cyclin D1 was performed on human renal tissue microaraays and correlation with clinic-pathological characteristics was analyzed. In vitro proliferation, apoptosis and in vivo tumor growth were evaluated on human renal cancer cell lines with decitabine treatment or ectopic expression of DACH1. Downstream targets and potential molecular mechanism were investigated through western blot, immunoprecipitation and reporter gene assays. Results Expression of DACH1 was significantly decreased in human renal carcinoma tissue. DACH1 protein abundance was inversely correlated with the expression of PCNA and cyclin D1, tumor grade, and TNM stage. Restoration of DACH1 function in renal clear cell cancer cells inhibited in vitro cellular proliferation, S phase progression, clone formation, and in vivo tumor growth. In mechanism, DACH1 repressed cyclin D1 transcription through association with AP-1 protein. Conclusion Our results indicated that DACH1 was a novel molecular marker of RCC and it attributed to the malignant behavior of renal cancer cells. Re-activation of DACH1 may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Na Han
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Xin Nie
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Hua Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Yu Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China.
| | - Shiying Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
19
|
CHEN XIANGQI, WANG YULAN, LI ZHIYING, LIN TINGYAN. Therapeutic effects of sorafenib on the A549/DDP human lung adenocarcinoma cell line in vitro. Mol Med Rep 2014; 10:347-52. [DOI: 10.3892/mmr.2014.2163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 03/04/2014] [Indexed: 11/06/2022] Open
|
20
|
Essers PB, Klasson TD, Pereboom TC, Mans DA, Nicastro M, Boldt K, Giles RH, MacInnes AW. The von Hippel-Lindau tumor suppressor regulates programmed cell death 5-mediated degradation of Mdm2. Oncogene 2014; 34:771-9. [PMID: 24469044 DOI: 10.1038/onc.2013.598] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/13/2013] [Indexed: 12/14/2022]
Abstract
Functional loss of the von Hippel-Lindau (VHL) tumor suppressor protein (pVHL), which is part of an E3-ubiquitin ligase complex, initiates most inherited and sporadic clear-cell renal cell carcinomas (ccRCC). Genetic inactivation of the TP53 gene in ccRCC is rare, suggesting that an alternate mechanism alleviates the selective pressure for TP53 mutations in ccRCC. Here we use a zebrafish model to describe the functional consequences of pVHL loss on the p53/Mdm2 pathway. We show that p53 is stabilized in the absence of pVHL and becomes hyperstabilized upon DNA damage, which we propose is because of a novel in vivo interaction revealed between human pVHL and a negative regulator of Mdm2, the programmed cell death 5 (PDCD5) protein. PDCD5 is normally localized at the plasma membrane and in the cytoplasm. However, upon hypoxia or loss of pVHL, PDCD5 relocalizes to the nucleus, an event that is coupled to the degradation of Mdm2. Despite the subsequent hyperstabilization and normal transcriptional activity of p53, we find that zebrafish vhl(-/-) cells are still as highly resistant to DNA damage-induced cell cycle arrest and apoptosis as human ccRCC cells. We suggest this is because of a marked increase in expression of birc5a, the zebrafish homolog of Survivin. Accordingly, when we knock down Survivin in human ccRCC cells we are able to restore caspase activity in response to DNA damage. Taken together, our study describes a new mechanism for p53 stabilization through PDCD5 upon hypoxia or pVHL loss, and reveals new clinical potential for the treatment of pathobiological disorders linked to hypoxic stress.
Collapse
Affiliation(s)
- P B Essers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - T D Klasson
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - T C Pereboom
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - D A Mans
- 1] Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands [2] Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - M Nicastro
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K Boldt
- Center for Ophthalmic Research, Medical Proteome Center, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - R H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A W MacInnes
- Hubrecht Institute for Developmental Biology and Stem Cell Research, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Monzon JG, Heng DYC. Management of metastatic kidney cancer in the era of personalized medicine. Crit Rev Clin Lab Sci 2014; 51:85-97. [PMID: 24450515 DOI: 10.3109/10408363.2013.869544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patients with localized renal cell cancer (RCC) are often cured following surgical resection. However, a significant proportion of patients will experience recurrence or present with metastatic disease at distant sites and may be deemed incurable. The worldwide incidence of RCC is rising, affecting more than 271,000 people and resulting in 116,000 deaths each year. Unfortunately, advanced RCC is typically resistant to classical chemotherapy and radiotherapy. Previously, non-specific immunotherapies such as interleukin-2 and interferon were used in hopes of improving cancer immunity, leading to rare but durable responses. However, enthusiasm for these immunotherapies has waned due to limited patient responses, their excessive toxicities, and the emergence of alternative targeted therapies that have resulted in improved clinical endpoints for patients with metastatic RCC (mRCC). Strides in targeted treatment can be attributed to an improved understanding of the molecular underpinnings that cause and drive the progression of renal cell cancers. More recently, interest in immunotherapies has resurfaced, as agents inhibiting specific checkpoints involved in cancer immune evasion have demonstrated promising activity in patients with mRCC. Here we review the novel targeted agents, biomarkers and immunotherapies that promise to change the clinical outcomes for patients with advanced RCC.
Collapse
Affiliation(s)
- Jose G Monzon
- Department of Medical Oncology, Tom Baker Cancer Center, University of Calgary , Calgary, AB , Canada
| | | |
Collapse
|
22
|
Malaney P, Nicosia SV, Davé V. One mouse, one patient paradigm: New avatars of personalized cancer therapy. Cancer Lett 2013; 344:1-12. [PMID: 24157811 DOI: 10.1016/j.canlet.2013.10.010] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/09/2013] [Accepted: 10/14/2013] [Indexed: 12/26/2022]
Abstract
Over the last few decades, study of cancer in mouse models has gained popularity. Sophisticated genetic manipulation technologies and commercialization of these murine systems have made it possible to generate mice to study human disease. Given the large socio-economic burden of cancer, both on academic research and the health care industry, there is a need for in vivo animal cancer models that can provide a rationale that is translatable to the clinic. Such a bench-to-bedside transition will facilitate a long term robust strategy that is economically feasible and clinically effective to manage cancer. The major hurdles in considering mouse models as a translational platform are the lack of tumor heterogeneity and genetic diversity, which are a hallmark of human cancers. The present review, while critical of these pitfalls, discusses two newly emerging concepts of personalized mouse models called "Mouse Avatars" and Co-clinical Trials. Development of "Mouse Avatars" entails implantation of patient tumor samples in mice for subsequent use in drug efficacy studies. These avatars allow for each patient to have their own tumor growing in an in vivo system, thereby allowing the identification of a personalized therapeutic regimen, eliminating the cost and toxicity associated with non-targeted chemotherapeutic measures. In Co-clinical Trials, genetically engineered mouse models (GEMMs) are used to guide therapy in an ongoing human patient trial. Murine and patient trials are conducted concurrently, and information obtained from the murine system is applied towards future clinical management of the patient's tumor. The concurrent trials allow for a real-time integration of the murine and human tumor data. In combination with several molecular profiling techniques, the "Mouse Avatar" and Co-clinical Trial concepts have the potential to revolutionize the drug development and health care process. The present review outlines the current status, challenges and the future potential of these two new in vivo approaches in the field of personalized oncology.
Collapse
Affiliation(s)
- Prerna Malaney
- Morsani College of Medicine, Department of Pathology and Cell Biology, Tampa, FL 33612, USA
| | - Santo V Nicosia
- Morsani College of Medicine, Department of Pathology and Cell Biology, Tampa, FL 33612, USA
| | - Vrushank Davé
- Morsani College of Medicine, Department of Pathology and Cell Biology, Tampa, FL 33612, USA; Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
23
|
Yang OC, Maxwell PH, Pollard PJ. Renal cell carcinoma: translational aspects of metabolism and therapeutic consequences. Kidney Int 2013; 84:667-81. [DOI: 10.1038/ki.2013.245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 02/08/2023]
|
24
|
Sivanand S, Peña-Llopis S, Zhao H, Kucejova B, Spence P, Pavia-Jimenez A, Yamasaki T, McBride DJ, Gillen J, Wolff NC, Morlock L, Lotan Y, Raj GV, Sagalowsky A, Margulis V, Cadeddu JA, Ross MT, Bentley DR, Kabbani W, Xie XJ, Kapur P, Williams NS, Brugarolas J. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci Transl Med 2012; 4:137ra75. [PMID: 22674553 DOI: 10.1126/scitranslmed.3003643] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most anticancer drugs entering clinical trials fail to achieve approval from the U.S. Food and Drug Administration. Drug development is hampered by the lack of preclinical models with therapeutic predictive value. Herein, we report the development and validation of a tumorgraft model of renal cell carcinoma (RCC) and its application to the evaluation of an experimental drug. Tumor samples from 94 patients were implanted in the kidneys of mice without additives or disaggregation. Tumors from 35 of these patients formed tumorgrafts, and 16 stable lines were established. Samples from metastatic sites engrafted at higher frequency than those from primary tumors, and stable engraftment of primary tumors in mice correlated with decreased patient survival. Tumorgrafts retained the histology, gene expression, DNA copy number alterations, and more than 90% of the protein-coding gene mutations of the corresponding tumors. As determined by the induction of hypercalcemia in tumorgraft-bearing mice, tumorgrafts retained the ability to induce paraneoplastic syndromes. In studies simulating drug exposures in patients, RCC tumorgraft growth was inhibited by sunitinib and sirolimus (the active metabolite of temsirolimus in humans), but not by erlotinib, which was used as a control. Dovitinib, a drug in clinical development, showed greater activity than sunitinib and sirolimus. The routine incorporation of models recapitulating the molecular genetics and drug sensitivities of human tumors into preclinical programs has the potential to improve oncology drug development.
Collapse
Affiliation(s)
- Sharanya Sivanand
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Martin B, Edeline J, Patard JJ, Oger E, Jouan F, Boulanger G, Zerrouki S, Vigneau C, Rioux-Leclercq N. Combination of Temsirolimus and tyrosine kinase inhibitors in renal carcinoma and endothelial cell lines. J Cancer Res Clin Oncol 2012; 138:907-16. [PMID: 22322364 DOI: 10.1007/s00432-012-1162-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 01/24/2012] [Indexed: 12/23/2022]
Abstract
PURPOSE Multitargeted tyrosine kinase inhibitors (TKIs) (such as Sunitinib and Sorafenib) and mTOR inhibitors (such as Temsirolimus) are effective in treating metastatic clear-cell renal cell carcinoma (CCRCC), by acting on different pathways in both tumour and endothelial cells. A study of their combined effect could be of major interest. METHODS We studied endothelial and CCRCC cell lines treated with Sunitinib, Sorafenib, Temsirolimus and 2 drug combinations: Sunitinib-Temsirolimus and Sorafenib-Temsirolimus. We studied inhibition of proliferation with an MTT assay under normoxia and hypoxia, VEGF expression by quantitative RT-PCR and ELISA, and angiogenesis with a Matrigel assay. RESULTS TKIs and Temsirolimus inhibited proliferation of endothelial and tumour cell lines and inhibited angiogenesis. Anti-proliferative effects were more significant on cell lines with VHL gene inactivation and under hypoxic conditions. VEGF expression was induced by TKIs, but inhibited by Temsirolimus. The Sunitinib/Temsirolimus combination had synergistic or additive effects on the proliferation of tumour and endothelial cell lines. The Sorafenib-Temsirolimus combination had additive effects on the proliferation of most tumour cell lines, but not endothelial cell lines. Both combinations had additive effects on the inhibition of angiogenesis. CONCLUSION In our model, Sunitinib, Sorafenib and Temsirolimus had anti-tumour and anti-angiogenic effects. The combinations of Sunitinib or Sorafenib with Temsirolimus had additive or synergistic effects on the inhibition of tumour and endothelial cell proliferation, and on the inhibition of angiogenesis. This work could lead to new trials with lower-dose combinations to prevent side effects and enhance efficacy.
Collapse
Affiliation(s)
- Bénédicte Martin
- CNRS/UMR 6061, Université de Rennes 1, IFR140, 2 av du Professeur Léon Bernard, 35043 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yuen JSP, Sim MY, Sim HG, Chong TW, Lau WKO, Cheng CWS, Ong RW, Huynh H. Combination of the ERK inhibitor AZD6244 and low-dose sorafenib in a xenograft model of human renal cell carcinoma. Int J Oncol 2012; 41:712-20. [PMID: 22641227 DOI: 10.3892/ijo.2012.1494] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/23/2012] [Indexed: 11/06/2022] Open
Abstract
Sorafenib, a multikinase inhibitor, is currently used as monotherapy for advanced renal cell carcinoma (RCC). However, adverse effects associated with its use have been experienced by some patients. In this study, we examined the antitumor and antiangiogenic activities of low-dose sorafenib in combination with the MEK inhibitor AZD6244 (sorafenib/AZD6244) in a preclinical model of RCC. Primary RCC 08-0910 and RCC 786-0 cells as well as patient-derived RCC models were used to study the antitumor and antiangiogenic activities of sorafenib/AZD6244. Changes of biomarkers relevant to angiogenesis and cell cycle were determined by western immunoblotting. Microvessel density, apoptosis and cell proliferation were analyzed by immunohistochemistry. Treatment of RCC 786-0 cells with sorafenib/AZD6244 resulted in G1 cell cycle arrest and blockade of serum-induced cell migration. Sorafenib/AZD6244 induced apoptosis in primary RCC 08-0910 cells at low concentrations. In vivo addition of AZD6244 to sorafenib significantly augmented the antitumor activity of sorafenib and allowed dose reduction of sorafenib without compromising its antitumor activity. Sorafenib/AZD6244 potently inhibited angiogenesis and phosphorylation of VEGFR-2, PDGFR-β and ERK, p90RSK, p70S6K, cdk-2 and retinoblastoma. Sorafenib/AZD6244 also caused upregulation of p27, Bad and Bim but downregulation of survivin and cyclin B1. These resulted in a reduction in cellular proliferation and the induction of tumor cell apoptosis. Our findings showed that AZD6244 and sorafenib complement each other to inhibit tumor growth. This study provides sound evidence for the clinical investigation of low-dose sorafenib in combination with AZD6244 in patients with advanced RCC.
Collapse
Affiliation(s)
- John Shyi Peng Yuen
- Department of Urology, Singapore General Hospital, Singapore, Republic of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Progress in oncology drug development has been hampered by a lack of preclinical models that reliably predict clinical activity of novel compounds in cancer patients. In an effort to address these shortcomings, there has been a recent increase in the use of patient-derived tumour xenografts (PDTX) engrafted into immune-compromised rodents such as athymic nude or NOD/SCID mice for preclinical modelling. Numerous tumour-specific PDTX models have been established and, importantly, they are biologically stable when passaged in mice in terms of global gene-expression patterns, mutational status, metastatic potential, drug responsiveness and tumour architecture. These characteristics might provide significant improvements over standard cell-line xenograft models. This Review will discuss specific PDTX disease examples illustrating an overview of the opportunities and limitations of these models in cancer drug development, and describe concepts regarding predictive biomarker development and future applications.
Collapse
|