1
|
Shin AE, Sugiura K, Kariuki SW, Cohen DA, Flashner SP, Klein-Szanto AJ, Nishiwaki N, De D, Vasan N, Gabre JT, Lengner CJ, Sims PA, Rustgi AK. LIN28B-mediated PI3K/AKT pathway activation promotes metastasis in colorectal cancer models. J Clin Invest 2025; 135:e186035. [PMID: 39808497 PMCID: PMC11996871 DOI: 10.1172/jci186035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer death because of metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice. We developed genetically modified mouse models with constitutively active Pik3ca that form intestinal tumors progressing to liver metastases with an intact immune system, addressing the limitations of previous Pik3ca-mutant models, including long tumor latency, mixed histology, and lack of distant metastases. The PI3Kα-specific inhibitor alpelisib reduced migration and invasion in vitro and metastasis in vivo. We present a comprehensive analysis of vertical inhibition of the PI3K/AKT pathway in CRC using the FDA-approved drugs alpelisib and capivasertib (an AKT inhibitor) in combination with LY2584702 (a ribosomal protein S6 kinase inhibitor) in CRC cell lines and mouse- and patient-derived organoids. Tissue microarrays from patients with CRC verified that LIN28B and PI3K/AKT pathway activation correlate with CRC progression. These findings highlight the critical role of the LIN28B-mediated PI3K/AKT pathway in CRC metastasis, the therapeutic potential of targeted inhibition, and the promise of patient-derived organoids in precision medicine in metastatic CRC.
Collapse
Affiliation(s)
- Alice E. Shin
- Division of Digestive and Liver Diseases, Department of Medicine, and
| | - Kensuke Sugiura
- Division of Digestive and Liver Diseases, Department of Medicine, and
| | | | - David A. Cohen
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons; Columbia University Irving Medical Center, New York, New York, USA
| | | | | | | | - Dechokyab De
- Division of Digestive and Liver Diseases, Department of Medicine, and
| | - Neil Vasan
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Joel T. Gabre
- Division of Digestive and Liver Diseases, Department of Medicine, and
| | - Christopher J. Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter A. Sims
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, and
| |
Collapse
|
2
|
Cao JF, Zhang X, Xia Q, Hang K, Men J, Tian J, Liao D, Xia Z, Li K. Insights into curcumin's anticancer activity in pancreatic ductal adenocarcinoma: Experimental and computational evidence targeting HRAS, CCND1, EGFR and AKT1. Bioorg Chem 2025; 157:108264. [PMID: 39954354 DOI: 10.1016/j.bioorg.2025.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE Curcumin, as a natural polyphenolic compound, possesses antitumor, antioxidant properties and anti-inflammatory. Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor, and there is a lack of molecular mechanisms and therapeutic options regarding relevant therapeutic agents. Therefore, we investigated the mechanism of curcumin inhibiting pancreatic cancer growth by modulating proliferation of cells and cellular metabolism. METHODS Bioinformatics analysis was involved in analyzing the intersecting targets of curcumin and pancreatic ductal adenocarcinoma. The effect of curcumin on proliferation of PANC-1 cells was tested by CCK-8, and total RNA from PANC-1 was also analysed by transcriptome sequencing. Molecular docking was involved in verifying binding stability of curcumin to protein targets. Molecular dynamics simulated and evaluated binding free energy, hydrogen bonds and root mean square fluctuation of the complex. RESULTS PPI, GO and KEGG were involved in screening and analysing key interacting protein targets. 40 μg/mL curcumin significantly inhibited the growth and proliferation of PANC-1. Transcriptome sequencing results showed gene expression of Cyclin D1 (CCND1), AKT serine/threonine kinase 1 (AKT1), HRas proto-oncogene (HRAS), epidermal growth factor receptor (EGFR) was significantly down-regulated by curcumin treatment. Result of molecular dynamics and molecular docking inhibited the free binding energies of CCND1/Curcumin, HRAS/Curcumin, AKT1/Curcumin and EGFR/Curcumin were -21.13 ± 3.41 kcal/mol, -21.84 ± 4.38 kcal/mol, -20.61 ± 1.82 kcal/mol and -27.37 ± 1.94 kcal/mol, respectively. CONCLUSION We found curcumin may not only regulate cell cycle progression in PDAC and apoptosis by down-regulating HRAS, thereby inhibiting CCND1 and its downstream signaling pathways, but also inhibit energy metabolism reprogramming, Ras-RAF-MEK-ERK and other downstream signalling pathways by down-regulating EGFR and AKT1, thereby affecting tumor cell metastasis, survival and proliferation.
Collapse
Affiliation(s)
- Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Xiao Zhang
- Chengdu Medical College, Chengdu 610500 Sichuan, China
| | - Qingjie Xia
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Kuan Hang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Jie Men
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Jin Tian
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China
| | - Dunshui Liao
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Zengliang Xia
- Institute of Neurological Diseases, Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Kezhou Li
- College of Medicine, Southwest Jiaotong University, Chengdu 610031 Sichuan, China; Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China.
| |
Collapse
|
3
|
Chakraborty A, Midde A, Chakraborty P, Adhikary S, Kumar S, Arri N, Chandra Das N, Sen Gupta PS, Banerjee A, Mukherjee S. Revisiting Luteolin Against the Mediators of Human Metastatic Colorectal Carcinoma: A Biomolecular Approach. J Cell Biochem 2025; 126:e30654. [PMID: 39300917 DOI: 10.1002/jcb.30654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Metastatic colorectal carcinoma (mCRC) is one of the prevalent subtypes of human cancers and is caused by the alterations of various lifestyle and diet-associated factors. β-catenin, GSK-3β, PI3K-α, AKT1, and NF-κB p50 are known to be the critical regulators of tumorigenesis and immunopathogenesis of mCRC. Unfortunately, current drugs have limited efficacy, side effects and can lead to chemoresistance. Therefore, searching for a nontoxic, efficacious anti-mCRC agent is crucial and of utmost interest. The present study demonstrates the identification of a productive and nontoxic anti-mCRC agent through a five-targets (β-catenin, GSK-3β, PI3K-α, AKT1, and p50)-based and three-tier (binding affinity, pharmacokinetics, and pharmacophore) screening strategy involving a series of 30 phytocompounds having a background of anti-inflammatory/anti-mCRC efficacy alongside 5-fluorouracil (FU), a reference drug. Luteolin (a phyto-flavonoid) was eventually rendered as the most potent and safe phytocompound. This inference was verified through three rounds of validation. Firstly, luteolin was found to be effective against the different mCRC cell lines (HCT-15, HCT-116, DLD-1, and HT-29) without hampering the viability of non-tumorigenic ones (RWPE-1). Secondly, luteolin was found to curtail the clonogenicity of CRC cells, and finally, it also disrupted the formation of colospheroids, a characteristic of metastasis. While studying the mechanistic insights, luteolin was found to inhibit β-catenin activity (a key regulator of mCRC) through direct physical interactions, promoting its degradation by activating GSK3-β and ceasing its activation by inactivating AKT1 and PI3K-α. Luteolin also inhibited p50 activity, which could be useful in mitigating mCRC-associated proinflammatory milieu. In conclusion, our study provides evidence on the efficacy of luteolin against the critical key regulators of immunopathogenesis of mCRC and recommends further studies in animal models to determine the effectiveness efficacy of this natural compound for treating mCRC in the future.
Collapse
Affiliation(s)
- Ankita Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Advaitha Midde
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pritha Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sourin Adhikary
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
- Food Toxicology Laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Simran Kumar
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Navpreet Arri
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D. Y. Patil International University, Pune, Maharashtra, India
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
4
|
Mohammadpour S, Torshizi Esfahani A, Sarpash S, Vakili F, Zafarjafarzadeh N, Mashaollahi A, Pardakhtchi A, Nazemalhosseini-Mojarad E. Hippo Signaling Pathway in Colorectal Cancer: Modulation by Various Signals and Therapeutic Potential. Anal Cell Pathol (Amst) 2024; 2024:5767535. [PMID: 39431199 PMCID: PMC11489006 DOI: 10.1155/2024/5767535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024] Open
Abstract
Colorectal cancer (CRC) stands as a significant global health issue, marked by elevated occurrence and mortality statistics. Despite the availability of various treatments, including chemotherapy, radiotherapy, and targeted therapy, CRC cells often exhibit resistance to these interventions. As a result, it is imperative to identify the disease at an earlier stage and enhance the response to treatment by acquiring a deeper comprehension of the processes driving tumor formation, aggressiveness, metastasis, and resistance to therapy. The Hippo pathway plays a critical role in facilitating the initiation of tumorigenesis and frequently experiences disruption within CRC because of genetic mutations and modified expression in its fundamental constituents. Targeting upstream regulators or core Hippo pathway components may provide innovative therapeutic strategies for modulating Hippo signaling dysfunction in CRC. To advance novel therapeutic techniques for CRC, it is imperative to grasp the involvement of the Hippo pathway in CRC and its interaction with alternate signaling pathways, noncoding RNAs, gut microbiota, and the immune microenvironment. This review seeks to illuminate the function and control of the Hippo pathway in CRC, ultimately aiming to unearth innovative therapeutic methodologies for addressing this ailment.
Collapse
Affiliation(s)
- Somayeh Mohammadpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Torshizi Esfahani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - SeyedKasra Sarpash
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Vakili
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhesam Mashaollahi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Pardakhtchi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Mokhfi FZ, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Gupta JK, Vallamkonda B, Balakrishnan A, Challa M, Singh J, Prasad PD, Ali SS, Ahmad I, Doukani K, Emran TB. Alkaloid-based modulators of the PI3K/Akt/mTOR pathway for cancer therapy: Understandings from pharmacological point of view. Chem Biol Interact 2024; 402:111218. [PMID: 39209016 DOI: 10.1016/j.cbi.2024.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This review aims to summarize the role of alkaloids as potential modulators of the PI3K/Akt/mTOR (PAMT) pathway in cancer therapy. The PAMT pathway plays a critical role in cell growth, survival, and metabolism, and its dysregulation contributes to cancer hallmarks. In healthy cells, this pathway is tightly controlled. However, this pathway is frequently dysregulated in cancers and becomes abnormally active. This can happen due to mutations in genes within the pathway itself or due to other factors. This chronic overactivity promotes cancer hallmarks such as uncontrolled cell division, resistance to cell death, and increased blood vessel formation to nourish the tumor. As a result, the PAMT pathway is a crucial therapeutic target for cancer. Researchers are developing drugs that specifically target different components of this pathway, aiming to turn it off and slow cancer progression. Alkaloids, a class of naturally occurring nitrogen-containing molecules found in plants, have emerged as potential therapeutic agents. These alkaloids can target different points within the PAMT pathway, inhibiting its activity and potentially resulting in cancer cell death or suppression of tumor growth. Research is ongoing to explore the role of various alkaloids in cancer treatment. Berberine reduces mTOR activity and increases apoptosis by targeting the PAMT pathway, inhibiting cancer cell proliferation. Lycorine inhibits Akt phosphorylation and mTOR activation, increasing pro-apoptotic protein production and decreasing cell viability. In glioblastoma models, harmine suppresses mTORC1. This review focuses on alkaloids such as evodiamine, hirsuteine, chaetocochin J, indole-3-carbinol, noscapine, berberine, piperlongumine, and so on, which have shown promise in targeting the PAMT pathway. Clinical studies evaluating alkaloids as part of cancer treatment are underway, and their potential impact on patient outcomes is being investigated. In summary, alkaloids represent a promising avenue for targeting the dysregulated PAMT pathway in cancer, and further research is warranted.
Collapse
Affiliation(s)
- Fatima Zohra Mokhfi
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uppuluri Varuna Naga Venkata Arjun
- Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | | | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
| | - Anitha Balakrishnan
- Department of Pharmaceutics, GRT Institute of Pharmaceutical Education and Research, Tiruttani, Tamil Nadu, India
| | - Manjula Challa
- Department of Pharmaceutics, Vasavi Institute of Pharmaceutical Sciences, Vasavi Nagar, Peddapalli Village, Sidhout Mandal Kadapa District, Andhra Pradesh, India
| | - Jyoti Singh
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - P Dharani Prasad
- Depertment of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Syed Salman Ali
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Koula Doukani
- Department of Biology, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pathology and Laboratory Medicine and Legorreta Cancer Center Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA; Legorreta Cancer Center, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
6
|
Abukwaik R, Vera-Siguenza E, Tennant D, Spill F. p53 Orchestrates Cancer Metabolism: Unveiling Strategies to Reverse the Warburg Effect. Bull Math Biol 2024; 86:124. [PMID: 39207627 PMCID: PMC11362376 DOI: 10.1007/s11538-024-01346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Cancer cells exhibit significant alterations in their metabolism, characterised by a reduction in oxidative phosphorylation (OXPHOS) and an increased reliance on glycolysis, even in the presence of oxygen. This metabolic shift, known as the Warburg effect, is pivotal in fuelling cancer's uncontrolled growth, invasion, and therapeutic resistance. While dysregulation of many genes contributes to this metabolic shift, the tumour suppressor gene p53 emerges as a master player. Yet, the molecular mechanisms remain elusive. This study introduces a comprehensive mathematical model, integrating essential p53 targets, offering insights into how p53 orchestrates its targets to redirect cancer metabolism towards an OXPHOS-dominant state. Simulation outcomes align closely with experimental data comparing glucose metabolism in colon cancer cells with wild-type and mutated p53. Additionally, our findings reveal the dynamic capability of elevated p53 activation to fully reverse the Warburg effect, highlighting the significance of its activity levels not just in triggering apoptosis (programmed cell death) post-chemotherapy but also in modifying the metabolic pathways implicated in treatment resistance. In scenarios of p53 mutations, our analysis suggests targeting glycolysis-instigating signalling pathways as an alternative strategy, whereas targeting solely synthesis of cytochrome c oxidase 2 (SCO2) does support mitochondrial respiration but may not effectively suppress the glycolysis pathway, potentially boosting the energy production and cancer cell viability.
Collapse
Affiliation(s)
- Roba Abukwaik
- Mathematics Department, King Abdulaziz University, Rabigh, Saudi Arabia.
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| | - Elias Vera-Siguenza
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.
| |
Collapse
|
7
|
Sun Y, Zhang X, Hang D, Lau HCH, Du J, Liu C, Xie M, Pan Y, Wang L, Liang C, Zhou X, Chen D, Rong J, Zhao Z, Cheung AHK, Wu Y, Gou H, Wong CC, Du L, Deng J, Hu Z, Shen H, Miao Y, Yu J. Integrative plasma and fecal metabolomics identify functional metabolites in adenoma-colorectal cancer progression and as early diagnostic biomarkers. Cancer Cell 2024; 42:1386-1400.e8. [PMID: 39137727 DOI: 10.1016/j.ccell.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 02/09/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Changes in plasma and fecal metabolomes in colorectal cancer (CRC) progression (normal-adenoma-CRC) remain unclear. Here, plasma and fecal samples were collected from four independent cohorts of 1,251 individuals (422 CRC, 399 colorectal adenoma [CRA], and 430 normal controls [NC]). By metabolomic profiling, signature plasma and fecal metabolites with consistent shift across NC, CRA, and CRC are identified, including CRC-enriched oleic acid and CRC-depleted allocholic acid. Oleic acid exhibits pro-tumorigenic effects in CRC cells, patient-derived organoids, and two murine CRC models, whereas allocholic acid has opposing effects. By integrative analysis, we found that oleic acid or allocholic acid directly binds to α-enolase or farnesoid X receptor-1 in CRC cells, respectively, to modulate cancer-associated pathways. Clinically, we establish a panel of 17 plasma metabolites that accurately diagnoses CRC in a discovery and three validation cohorts (AUC = 0.848-0.987). Overall, we characterize metabolite signatures, mechanistic significance, and diagnostic potential of plasma and fecal metabolomes in CRC.
Collapse
Affiliation(s)
- Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Disease, Yunan Geiatric Medical Center, Kunming, Yunnan, China
| | - Xiang Zhang
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dong Hang
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Du
- Biotree Metabolomics Technology Research Center, Shanghai, China
| | - Chuanfa Liu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingxu Xie
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yasi Pan
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Le Wang
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Cong Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingyu Zhou
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Danyu Chen
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiamei Rong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Disease, Yunan Geiatric Medical Center, Kunming, Yunnan, China
| | - Zengren Zhao
- Department of Gastrointestinal Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuet Wu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongyan Gou
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lingbin Du
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Junliang Deng
- Biotree Metabolomics Technology Research Center, Shanghai, China
| | - Zhibin Hu
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Shen
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Disease, Yunan Geiatric Medical Center, Kunming, Yunnan, China.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Neamțu AA, Maghiar TA, Turcuș V, Maghiar PB, Căpraru AM, Lazar BA, Dehelean CA, Pop OL, Neamțu C, Totolici BD, Mathe E. A Comprehensive View on the Impact of Chlorogenic Acids on Colorectal Cancer. Curr Issues Mol Biol 2024; 46:6783-6804. [PMID: 39057047 PMCID: PMC11276415 DOI: 10.3390/cimb46070405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Chlorogenic acids are plant secondary metabolites, chemically-polyphenols with similar biological activity, formed through the esterification of quinic acid and hydrocinnamic acid moieties. They are best known for their high concentration in coffee and other dietary sources and the antioxidant properties that they exhibit. Both chlorogenic acids and plant extracts containing significant amounts of the compounds show promising in vitro activity against colorectal cancer. With coffee being the most popular drink in the world, and colorectal cancer at an unfortunate peak in incidence and mortality, the mechanisms through which the anti-tumorigenic effect of chlorogenic acids could be functionalized for CRC prevention seem appealing to study. Therefore, this review aims to enable a better understanding of the modes of action of chlorogenic acids in combating carcinogenesis, with a focus on cell cycle arrest, the induction of apoptosis, and the modulation of Wnt, Pi3K/Akt, and MAPK signal transduction pathways, alongside the reduction in the number of inflammatory cytokines and chemokines and the counterintuitive beneficial elevation of oxidative stress.
Collapse
Affiliation(s)
- Andreea-Adriana Neamțu
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-A.N.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical County Emergency Hospital of Arad, Andrenyi Karoly Str., No. 2-4, 310037 Arad, Romania;
- Clinical County Hospital of Târgu Mureș, 1 Decembrie 1918 Blvd., No. 1, 540011 Târgu Mures, Romania; (A.-M.C.); (B.-A.L.)
| | - Teodor Andrei Maghiar
- Doctoral School of Biomedical Sciences, University of Oradea, Universității Str., No. 1, 410087 Oradea, Romania; (T.A.M.); (P.B.M.)
- Clinical County Emergency Hospital of Oradea, Gheorghe Doja Str., No. 65, 410169 Oradea, Romania
- Pelican Hospital, Corneliu Coposu Str., No. 2, 410450 Oradea, Romania
| | - Violeta Turcuș
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
- National Institute for Economic Research “Costin C. Kiritescu” of the Romanian Academy/Centre for Mountain Economy (CE-MONT), 725700 Suceava, Romania
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Sciences, University of Oradea, Universității Str., No. 1, 410087 Oradea, Romania; (T.A.M.); (P.B.M.)
- Clinical County Emergency Hospital of Oradea, Gheorghe Doja Str., No. 65, 410169 Oradea, Romania
- Pelican Hospital, Corneliu Coposu Str., No. 2, 410450 Oradea, Romania
| | - Anca-Maria Căpraru
- Clinical County Hospital of Târgu Mureș, 1 Decembrie 1918 Blvd., No. 1, 540011 Târgu Mures, Romania; (A.-M.C.); (B.-A.L.)
- Poiana Mare Psychiatry Hospital, Gării Str., No. 40, 207470 Poiana Mare, Romania
| | - Bianca-Andreea Lazar
- Clinical County Hospital of Târgu Mureș, 1 Decembrie 1918 Blvd., No. 1, 540011 Târgu Mures, Romania; (A.-M.C.); (B.-A.L.)
| | - Cristina-Adriana Dehelean
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-A.N.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ovidiu Laurean Pop
- Faculty of Medicine and Pharmacy, University of Oradea, Universității Str., No. 1, 410081 Oradea, Romania;
| | - Carmen Neamțu
- Clinical County Emergency Hospital of Arad, Andrenyi Karoly Str., No. 2-4, 310037 Arad, Romania;
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
| | - Bogdan Dan Totolici
- Clinical County Emergency Hospital of Arad, Andrenyi Karoly Str., No. 2-4, 310037 Arad, Romania;
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
| | - Endre Mathe
- Faculty of Medicine and Faculty of Dentistry, “Vasile Goldis” Western University of Arad, Liviu Rebreanu Str., No. 86, 310045 Arad, Romania;
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str., No. 138, H-4032 Debrecen, Hungary
| |
Collapse
|
9
|
Świechowski R, Pietrzak J, Wosiak A, Mik M, Balcerczak E. Genetic Insights into Colorectal Cancer: Evaluating PI3K/AKT Signaling Pathway Genes Expression. Int J Mol Sci 2024; 25:5806. [PMID: 38891994 PMCID: PMC11172330 DOI: 10.3390/ijms25115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The PI3K/AKT pathway plays a pivotal role in cellular processes, and its dysregulation is implicated in various cancers, including colorectal cancer. The present study correlates the expression levels of critical genes (PIK3CA, PTEN, AKT1, FOXO1, and FRAP) in 60 tumor tissues with clinicopathological and demographic characteristics. The results indicate age-related variation in FOXO1 gene expression, with higher levels observed in patients aged 68 and above. In addition, tumors originating from the rectum exhibit higher FOXO1 expression compared to colon tumors, suggesting region-specific differences in expression. The results also identify the potential correlation between PTEN, PIK3CA gene expression, and parameters such as tumor grade and neuroinvasion. The bioinformatic comparative analysis found that PTEN and FOXO1 expressions were downregulated in colorectal cancer tissue compared to normal colon tissue. Relapse-free survival analysis based on gene expression identified significant correlations, highlighting PTEN and FRAP as potential indicators of favorable outcomes. Our findings provide a deeper understanding of the role of the PI3K/AKT pathway in colorectal cancer and the importance of understanding the molecular basis of colorectal cancer development and progression.
Collapse
Affiliation(s)
- Rafał Świechowski
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Jacek Pietrzak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Agnieszka Wosiak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Michał Mik
- Department of General and Colorectal Surgery, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
- BRaIn Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| |
Collapse
|
10
|
Khameneh SC, Sari S, Razi S, Yousefi AM, Bashash D. Inhibition of PI3K/AKT signaling using BKM120 reduced the proliferation and migration potentials of colorectal cancer cells and enhanced cisplatin-induced cytotoxicity. Mol Biol Rep 2024; 51:420. [PMID: 38483663 DOI: 10.1007/s11033-024-09339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Although extensive efforts have been made to improve the treatment of colorectal cancer (CRC) patients, the prognosis for these patients remains poor. A wide range of anti-cancer agents has been applied to ameliorate the clinical management of CRC patients; however, drug resistance develops in nearly all patients. Based on the prominent role of PI3K/AKT signaling in the development of CRC and current interest in the application of PI3K inhibitors, we aimed to disclose the exact mechanism underlying the efficacy of BKM120, a well-known pan-class I PI3K inhibitor, in CRC-derived SW480 cells. MATERIALS AND METHODS The effects of BKM120 on SW480 cells were studied using MTT assay, cell cycle assay, Annexin V/PI apoptosis tests, and scratch assay. In the next step, qRT-PCR was used to investigate the underlying molecular mechanisms by which the PI3K inhibitor could suppress the survival of SW480 cells. RESULT The results of the MTT assay showed that BKM120 could decrease the metabolic activity of SW480 cells in a concentration and time-dependent manner. Investigating the exact mechanism of BKM120 showed that this PI3K inhibitor induces its anti-survival effects through a G2/M cell cycle arrest and apoptosis-mediated cell death. Moreover, the scratch assay demonstrated that PI3K inhibition led to the inhibition of cancer invasion and inhibition of PI3K/AKT signaling remarkably sensitized SW480 cells to Cisplatin. CONCLUSION Based on our results, inhibition of PI3K/AKT signaling can be a promising approach, either as a single modality or in combination with Cisplatin. However, further clinical studies should be performed to improve our understanding.
Collapse
Affiliation(s)
- Sepideh Chodary Khameneh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Razi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Zhang M, Li X, Herman JG, Gao A, Wang Q, Yao Y, Shen F, He K, Guo M. Methylation of NRIP3 Is a Synthetic Lethal Marker for Combined PI3K and ATR/ATM Inhibitors in Colorectal Cancer. Clin Transl Gastroenterol 2024; 15:e00682. [PMID: 38235705 PMCID: PMC10962901 DOI: 10.14309/ctg.0000000000000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024] Open
Abstract
INTRODUCTION The aim of this study was to investigate the epigenetic regulation and underlying mechanism of NRIP3 in colorectal cancer (CRC). METHODS Eight cell lines (SW480, SW620, DKO, LOVO, HT29, HCT116, DLD1, and RKO), 187 resected margin samples from colorectal cancer tissue, 146 cases with colorectal adenomatous polyps, and 308 colorectal cancer samples were used. Methylation-specific PCR, Western blotting, RNA interference assay, and a xenograft mouse model were used. RESULTS NRIP3 exhibited methylation in 2.7% (5/187) of resected margin samples from colorectal cancer tissue, 32.2% (47/146) of colorectal adenomatous polyps, and 50.6% (156/308) of CRC samples, and the expression of NRIP3 was regulated by promoter region methylation. The methylation of NRIP3 was found to be significantly associated with late onset (at age 50 years or older), poor tumor differentiation, lymph node metastasis, and poor 5-year overall survival in CRC (all P < 0.05). In addition, NRIP3 methylation was an independent poor prognostic marker ( P < 0.05). NRIP3 inhibited cell proliferation, colony formation, invasion, and migration, while induced G1/S arrest. NRIP3 suppressed CRC growth by inhibiting PI3K-AKT signaling both in vitro and in vivo . Methylation of NRIP3 sensitized CRC cells to combined PI3K and ATR/ATM inhibitors. DISCUSSION NRIP3 was frequently methylated in both colorectal adenomatous polyps and CRC. The methylation of NRIP3 may potentially serve as an early detection, late-onset, and poor prognostic marker in CRC. NRIP3 is a potential tumor suppressor. NRIP3 methylation is a potential synthetic lethal marker for combined PI3K and ATR/ATM inhibitors.
Collapse
Affiliation(s)
- Meiying Zhang
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyun Li
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - James G. Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Aiai Gao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qian Wang
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuanxin Yao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fangfang Shen
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Kunlun He
- Key Laboratory of Ministry of Industry and Information Technology of Biomedical Engineering and Translational Medicine, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Albadari N, Xie Y, Li W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Front Pharmacol 2024; 14:1340401. [PMID: 38269272 PMCID: PMC10806212 DOI: 10.3389/fphar.2023.1340401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In 2023, colorectal cancer (CRC) is the third most diagnosed malignancy and the third leading cause of cancer death worldwide. At the time of the initial visit, 20% of patients diagnosed with CRC have metastatic CRC (mCRC), and another 25% who present with localized disease will later develop metastases. Despite the improvement in response rates with various modulation strategies such as chemotherapy combined with targeted therapy, radiotherapy, and immunotherapy, the prognosis of mCRC is poor, with a 5-year survival rate of 14%, and the primary reason for treatment failure is believed to be the development of resistance to therapies. Herein, we provide an overview of the main mechanisms of resistance in mCRC and specifically highlight the role of drug transports, EGFR, and HGF/c-MET signaling pathway in mediating mCRC resistance, as well as discuss recent therapeutic approaches to reverse resistance caused by drug transports and resistance to anti-EGFR blockade caused by mutations in EGFR and alteration in HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
13
|
Morris MT, Jain A, Sun B, Kurbatov V, Muca E, Zeng Z, Jin Y, Roper J, Lu J, Paty PB, Johnson CH, Khan SA. Multi-omic analysis reveals metabolic pathways that characterize right-sided colon cancer liver metastasis. Cancer Lett 2023; 574:216384. [PMID: 37716465 PMCID: PMC10620771 DOI: 10.1016/j.canlet.2023.216384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
There are well demonstrated differences in tumor cell metabolism between right sided (RCC) and left sided (LCC) colon cancer, which could underlie the robust differences observed in their clinical behavior, particularly in metastatic disease. As such, we utilized liquid chromatography-mass spectrometry to perform an untargeted metabolomics analysis comparing frozen liver metastasis (LM) biobank samples derived from patients with RCC (N = 32) and LCC (N = 58) to further elucidate the unique biology of each. We also performed an untargeted RNA-seq and subsequent network analysis on samples derived from an overlapping subset of patients (RCC: N = 10; LCC: N = 18). Our biobank redemonstrates the inferior survival of patients with RCC-derived LM (P = 0.04), a well-established finding. Our metabolomic results demonstrate increased reactive oxygen species associated metabolites and bile acids in RCC. Conversely, carnitines, indicators of fatty acid oxidation, are relatively increased in LCC. The transcriptomic analysis implicates increased MEK-ERK, PI3K-AKT and Transcription Growth Factor Beta signaling in RCC LM. Our multi-omic analysis reveals several key differences in cellular physiology which taken together may be relevant to clinical differences in tumor behavior between RCC and LCC liver metastasis.
Collapse
Affiliation(s)
- Montana T Morris
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Abhishek Jain
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Boshi Sun
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Vadim Kurbatov
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Engjel Muca
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Zhaoshi Zeng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Ying Jin
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Jatin Roper
- Department of Medicine/Gastroenterology, Duke University School of Medicine, 124 Davison Building, Durham, NC, 27710, USA
| | - Jun Lu
- Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06378, USA
| | - Philip B Paty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| | - Sajid A Khan
- Department of Surgery/Surgical Oncology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
14
|
Ruiz-Malagón AJ, Hidalgo-García L, Rodríguez-Sojo MJ, Molina-Tijeras JA, García F, Diez-Echave P, Vezza T, Becerra P, Marchal JA, Redondo-Cerezo E, Hausmann M, Rogler G, Garrido-Mesa J, Rodríguez-Cabezas ME, Rodríguez-Nogales A, Gálvez J. Tigecycline reduces tumorigenesis in colorectal cancer via inhibition of cell proliferation and modulation of immune response. Biomed Pharmacother 2023; 163:114760. [PMID: 37119741 DOI: 10.1016/j.biopha.2023.114760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND and Purpose: Colorectal cancer (CRC) is one of the cancers with the highest incidence in which APC gene mutations occur in almost 80% of patients. This mutation leads to β-catenin aberrant accumulation and an uncontrolled proliferation. Apoptosis evasion, changes in the immune response and microbiota composition are also events that arise in CRC. Tetracyclines are drugs with proven antibiotic and immunomodulatory properties that have shown cytotoxic activity against different tumor cell lines. EXPERIMENTAL APPROACH The effect of tigecycline was evaluated in vitro in HCT116 cells and in vivo in a colitis-associated colorectal cancer (CAC) murine model. 5-fluorouracil was assayed as positive control in both studies. KEY RESULTS Tigecycline showed an antiproliferative activity targeting the Wnt/β-catenin pathway and downregulating STAT3. Moreover, tigecycline induced apoptosis through extrinsic, intrinsic and endoplasmic reticulum pathways converging on an increase of CASP7 levels. Furthermore, tigecycline modulated the immune response in CAC, reducing the cancer-associated inflammation through downregulation of cytokines expression. Additionally, tigecycline favored the cytotoxic activity of cytotoxic T lymphocytes (CTLs), one of the main immune defenses against tumor cells. Lastly, the antibiotic reestablished the gut dysbiosis in CAC mice increasing the abundance of bacterial genera and species, such as Akkermansia and Parabacteroides distasonis, that act as protectors against tumor development. These findings resulted in a reduction of the number of tumors and an amelioration of the tumorigenesis process in CAC. CONCLUSION AND IMPLICATIONS Tigecycline exerts a beneficial effect against CRC supporting the use of this antibiotic for the treatment of this disease.
Collapse
Affiliation(s)
- Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Laura Hidalgo-García
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - José Alberto Molina-Tijeras
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio Microbiología, Hospital Universitario Clínico San Cecilio, 18100 Granada, Spain; Ciber de Enfermedades Infecciosas, CiberInfecc, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Teresa Vezza
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Patricia Becerra
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio de Anatomía Patológica, Hospital Universitario Clínico San Cecilio, 18014 Granada, Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada E-18016, Spain
| | - Eduardo Redondo-Cerezo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Servicio de Aparato Digestivo. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - José Garrido-Mesa
- The William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK.
| | - María Elena Rodríguez-Cabezas
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain.
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
15
|
Gomes GB, Zubieta CS, Guilhermi JDS, Toffoli-Kadri MC, Beatriz A, Rafique J, Parisotto EB, Saba S, Perdomo RT. Selenylated Imidazo [1,2- a]pyridine Induces Apoptosis and Oxidative Stress in 2D and 3D Models of Colon Cancer Cells. Pharmaceuticals (Basel) 2023; 16:814. [PMID: 37375763 DOI: 10.3390/ph16060814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Colon cancer incidence rates are increasing annually, a scenario aggravated by genetic and epigenetic alterations that promote drug resistance. Recent studies showed that novel synthetic selenium compounds are more efficient and less toxic than conventional drugs, demonstrating biocompatibility and pro-oxidant effects on tumor cells. This study aimed to investigate the cytotoxic effect of MRK-107, an imidazo [1,2- a]pyridine derivative, in 2D and 3D cell culture models of colon cancer (Caco-2 and HT-29). Sulforhodamine B results revealed a GI50 of 2.4 µM for Caco-2, 1.1 µM for HT-29, and 22.19 µM for NIH/3T3 in 2D cultures after 48 h of treatment. Cell recovery, migration, clonogenic, and Ki-67 results corroborated that MRK-107 inhibits cell proliferation and prevents cell regeneration and metastatic transition by selectively reducing migratory and clonogenic capacity; non-tumor cells (NIH/3T3) re-established proliferation in less than 18 h. The oxidative stress markers DCFH-DA and TBARS revealed increased ROS generation and oxidative damage. Caspases-3/7 are activated and induce apoptosis as the main mode of cell death in both cell models, as assessed by annexin V-FITC and acridine orange/ethidium bromide staining. MRK-107 is a selective, redox-active compound with pro-oxidant and pro-apoptotic properties and the capacity to activate antiproliferative pathways, showing promise in anticancer drug research.
Collapse
Affiliation(s)
- Giovana Bicudo Gomes
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Claudia Stutz Zubieta
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | | | - Mônica Cristina Toffoli-Kadri
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Adilson Beatriz
- Laboratory of Synthesis and Transformation of Organic Molecules (SINTMOL), Institute of Chemistry (INQUI), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79074-460, Brazil
| | - Jamal Rafique
- Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Goiania 74690-900, Brazil
- Laboratory of Synthesis and Transformation of Organic Molecules (SINTMOL), Institute of Chemistry (INQUI), Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79074-460, Brazil
| | - Eduardo Benedetti Parisotto
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| | - Sumbal Saba
- Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Goiania 74690-900, Brazil
| | - Renata Trentin Perdomo
- Postgraduate Course in Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, Brazil
| |
Collapse
|
16
|
Abd-Rabou AA, Shalby AB, Kotob SE. An ellagitannin-loaded CS-PEG decorated PLGA nano-prototype promotes cell cycle arrest in colorectal cancer cells. Cell Biochem Biophys 2023:10.1007/s12013-023-01132-5. [PMID: 37067762 DOI: 10.1007/s12013-023-01132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 04/18/2023]
Abstract
Colorectal cancer is associated with significant morbidity and mortality worldwide. Egypt, as a developing country, has a high-rise incidence of cancer. The current study objective was to investigate the antitumor influences of ellagitannin-loaded CS-PEG-decorated PLGA nano-prototypes against human colorectal cancer cell lines (HCT 116 as well as Caco-2) in vitro. Doxorubicin (DOX), punicalin (PN), and punicalagin (PNG)-encapsulated chitosan-polyethylene glycol-decorated PLGA (PLGA-CS-PEG) nanoparticles (NPs) were described. The cytotoxicity of each preparation was evaluated using MTT assays in HCT 116 as well as Caco-2 cells during G0, G1, S, and G2 cell cycle phases. Cell cycle-related gene expression and protein levels were measured after treatment. Reactive oxygen species (ROS) levels were also measured. Both PN and PNG PLGA-CS-PEG NPs induce colon cancer cell death with cell cycle arrest in the G1 phase in vitro. Caco-2 cells were more sensitive to the nano-therapy than HCT 116 cells. Upon treatment, the ratio of Bax to Bcl-2 expression was increased following nano-therapy, with increased levels of Cas-3 and decreased expression of Bcl-2, PI3k, and NF-ĸB compared to control. The nitric oxide level (NO), a marker of ROS, was increased following nano-therapy compared to control. In conclusion, ROS-mediated cell cycle arrest can be induced by PN as well as PNG nano-therapy in cell lines of colorectal cancer.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Aziza B Shalby
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Soheir E Kotob
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
17
|
Sane S, Srinivasan R, Potts RA, Eikanger M, Zagirova D, Freeling J, Reihe CA, Antony RM, Gupta BK, Lynch D, Bleeker J, Turaihi H, Pillatzki A, Zhou W, Luo X, Linnebacher M, Agany D, Zohim EG, Humphrey LE, Black AR, Rezvani K. UBXN2A suppresses the Rictor-mTORC2 signaling pathway, an established tumorigenic pathway in human colorectal cancer. Oncogene 2023; 42:1763-1776. [PMID: 37037900 DOI: 10.1038/s41388-023-02686-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
The mTORC2 pathway plays a critical role in promoting tumor progression in human colorectal cancer (CRC). The regulatory mechanisms for this signaling pathway are only partially understood. We previously identified UBXN2A as a novel tumor suppressor protein in CRCs and hypothesized that UBXN2A suppresses the mTORC2 pathway, thereby inhibiting CRC growth and metastasis. We first used murine models to show that haploinsufficiency of UBXN2A significantly increases colon tumorigenesis. Induction of UBXN2A reduces AKT phosphorylation downstream of the mTORC2 pathway, which is essential for a plethora of cellular processes, including cell migration. Meanwhile, mTORC1 activities remain unchanged in the presence of UBXN2A. Mechanistic studies revealed that UBXN2A targets Rictor protein, a key component of the mTORC2 complex, for 26S proteasomal degradation. A set of genetic, pharmacological, and rescue experiments showed that UBXN2A regulates cell proliferation, apoptosis, migration, and colon cancer stem cells (CSCs) in CRC. CRC patients with a high level of UBXN2A have significantly better survival, and high-grade CRC tissues exhibit decreased UBXN2A protein expression. A high level of UBXN2A in patient-derived xenografts and tumor organoids decreases Rictor protein and suppresses the mTORC2 pathway. These findings provide new insights into the functions of an ubiquitin-like protein by inhibiting a dominant oncogenic pathway in CRC.
Collapse
Affiliation(s)
- Sanam Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Rekha Srinivasan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Rashaun A Potts
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Morgan Eikanger
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Diana Zagirova
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Jessica Freeling
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Casey A Reihe
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Ryan M Antony
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Brij K Gupta
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA
| | - Douglas Lynch
- Laboratory Medicine and Pathology, Sanford School of Medicine, Sioux Falls, SD, USA
| | | | | | - Angela Pillatzki
- Veterinary and Biomedical Sciences Department, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA
| | - Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Diing Agany
- Biomedical Engineering Department, GEAR Center, Sioux Falls, SD, USA
| | | | - Lisa E Humphrey
- Tissue Sciences, Eppley Institute for Cancer Research, The University of Nebraska Medical Center, Omaha, NE, USA
| | - Adrian R Black
- Tissue Sciences, Eppley Institute for Cancer Research, The University of Nebraska Medical Center, Omaha, NE, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD, USA.
| |
Collapse
|
18
|
El-Daly SM, Abo-Elfadl MT, Hussein J, Abo-Zeid MAM. Enhancement of the antitumor effect of 5-fluorouracil with modulation in drug transporters expression using PI3K inhibitors in colorectal cancer cells. Life Sci 2023; 315:121320. [PMID: 36574946 DOI: 10.1016/j.lfs.2022.121320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
AIMS 5-Fluorouracil (5-FU) represents the cornerstone for colorectal cancer therapy. However, resistance to its action is a major hindrance. This study aimed to investigate the effectiveness of suppressing the activity of PI3K/Akt/mTOR signaling pathway on the chemosensitivity of colorectal cancer cells to 5-FU, as well as to delineate the possible underlying cellular mechanisms and the expected modulation in the expression of specific ABC drug transporters. MAIN METHODS HCT116 and Caco-2 cells were incubated with 5-FU, LY294002, or PI-103 individually or in combination. Cell viability was monitored using MTT assay. The expression of a panel of drug transporters was evaluated by RT-PCR. Immunofluorescence staining was applied to evaluate the expression pattern of phospho-AKT, phospho-mTOR, and ABGG2. HPLC evaluated the enhancement in the 5-FU cellular uptake. Cell apoptosis was detected by flow cytometry, and cell morphological changes following treatment were inspected under a fluorescence microscope. Additionally, the migration ability of cells following our suggested treatment combination was examined by wound healing assay. KEY FINDINGS The results reveal a notable enhancement in the cytotoxicity of a low dose of 5-FU when combined with a PI3K inhibitor (LY294002 or PI-103). This enhancement was influenced by the significant reduction in the expression of p-AKT and p-mTOR and was also mediated by a significant suppression in the expression of ABCG2 and ABCC5. Consequently, we detected an increase in the cellular uptake and concentration of 5-FU in cells treated with this combination rather than a single 5-FU treatment. Our Suggested combination treatment also induced cell apoptosis and reduced the migration ability of cells. SIGNIFICANCE Our data provide evidence that survival signaling pathways represent distinctive targets for the enhancement of chemotherapeutic sensitivity. The antitumor efficacy of 5-FU is enhanced when combined with a PI3K inhibitor, and this effect was mediated by alterations in the expression of specific drug transporters.
Collapse
Affiliation(s)
- Sherien M El-Daly
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, 12622, Cairo, Egypt; Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, 12622, Cairo, Egypt.
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, 12622, Cairo, Egypt; Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Jihan Hussein
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Mona A M Abo-Zeid
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, 12622, Cairo, Egypt; Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622, Cairo, Egypt
| |
Collapse
|
19
|
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, Shin JH. Butyrate producers, "The Sentinel of Gut": Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 2023; 13:1103836. [PMID: 36713166 PMCID: PMC9877435 DOI: 10.3389/fmicb.2022.1103836] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gut-microbial butyrate is a short-chain fatty acid (SCFA) of significant physiological importance than the other major SCFAs (acetate and propionate). Most butyrate producers belong to the Clostridium cluster of the phylum Firmicutes, such as Faecalibacterium, Roseburia, Eubacterium, Anaerostipes, Coprococcus, Subdoligranulum, and Anaerobutyricum. They metabolize carbohydrates via the butyryl-CoA: acetate CoA-transferase pathway and butyrate kinase terminal enzymes to produce most of butyrate. Although, in minor fractions, amino acids can also be utilized to generate butyrate via glutamate and lysine pathways. Butyrogenic microbes play a vital role in various gut-associated metabolisms. Butyrate is used by colonocytes to generate energy, stabilizes hypoxia-inducible factor to maintain the anaerobic environment in the gut, maintains gut barrier integrity by regulating Claudin-1 and synaptopodin expression, limits pro-inflammatory cytokines (IL-6, IL-12), and inhibits oncogenic pathways (Akt/ERK, Wnt, and TGF-β signaling). Colonic butyrate producers shape the gut microbial community by secreting various anti-microbial substances, such as cathelicidins, reuterin, and β-defensin-1, and maintain gut homeostasis by releasing anti-inflammatory molecules, such as IgA, vitamin B, and microbial anti-inflammatory molecules. Additionally, butyrate producers, such as Roseburia, produce anti-carcinogenic metabolites, such as shikimic acid and a precursor of conjugated linoleic acid. In this review, we summarized the significance of butyrate, critically examined the role and relevance of butyrate producers, and contextualized their importance as microbial therapeutics.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
20
|
Zhang M, Shi Z, Zhang S, Li X, To SKY, Peng Y, Liu J, Chen S, Hu H, Wong AST, Zeng JZ. The Ginsenoside Compound K Suppresses Stem-Cell-like Properties and Colorectal Cancer Metastasis by Targeting Hypoxia-Driven Nur77-Akt Feed-Forward Signaling. Cancers (Basel) 2022; 15:cancers15010024. [PMID: 36612021 PMCID: PMC9817892 DOI: 10.3390/cancers15010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxia reprograms cancer stem cells. Nur77, an orphan nuclear receptor, highly expresses and facilitates colorectal cancer (CRC) stemness and metastasis under a hypoxic microenvironment. However, safe and effective small molecules that target Nur77 for CSC depletion remain unexplored. Here, we report our identification of the ginsenoside compound K (CK) as a new ligand of Nur77. CK strongly inhibits hypoxia-induced CRC sphere formation and CSC phenotypes in a Nur77-dependent manner. Hypoxia induces an intriguing Nur77-Akt feed-forward loop, resulting in reinforced PI3K/Akt signaling that is druggable by targeting Nur77. CK directly binds and modulates Nur77 phosphorylation to block the Nur77-Akt activation loop by disassociating Nur77 from the p63-bound Dicer promoter. The transcription of Dicer that is silenced under a hypoxia microenvironment is thus reactivated by CK. Consequently, the expression and processing capability of microRNA let-7i-5p are significantly increased, which targets PIK3CA mRNA for decay. The in vivo results showed that CK suppresses cancer stemness and metastasis without causing significant adverse effects. Given that the majority of FDA-approved and currently clinically tested PI3K/Akt inhibitors are reversible ATP-competitive kinase antagonists, targeting Nur77 for PI3K/Akt inactivation may provide an alternative strategy to overcoming concerns about drug selectivity and safety. The mechanistic target identification provides a basis for exploring CK as a promising nutraceutical against CRC.
Collapse
Affiliation(s)
- Minda Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zeyu Shi
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Shuaishuai Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xudan Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Sally Kit Yan To
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yijia Peng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Siming Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hongyu Hu
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Alice Sze Tsai Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
- Correspondence: (A.S.T.W.); (J.-Z.Z.)
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (A.S.T.W.); (J.-Z.Z.)
| |
Collapse
|
21
|
Adamová B, Říhová K, Pokludová J, Beneš P, Šmarda J, Navrátilová J. Synergistic cytotoxicity of perifosine and ABT-737 to colon cancer cells. J Cell Mol Med 2022; 27:76-88. [PMID: 36523175 PMCID: PMC9806293 DOI: 10.1111/jcmm.17636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
An acidic environment and hypoxia within the tumour are hallmarks of cancer that contribute to cell resistance to therapy. Deregulation of the PI3K/Akt pathway is common in colon cancer. Numerous Akt-targeted therapies are being developed, the activity of Akt-inhibitors is, however, strongly pH-dependent. Combination therapy thus represents an opportunity to increase their efficacy. In this study, the cytotoxicity of the Akt inhibitor perifosine and the Bcl-2/Bcl-xL inhibitor ABT-737 was tested in colon cancer HT-29 and HCT-116 cells cultured in monolayer or in the form of spheroids. The efficacy of single drugs and their combination was analysed in different tumour-specific environments including acidosis and hypoxia using a series of viability assays. Changes in protein content and distribution were determined by immunoblotting and a "peeling analysis" of immunohistochemical signals. While the cytotoxicity of single agents was influenced by the tumour-specific microenvironment, perifosine and ABT-737 in combination synergistically induced apoptosis in cells cultured in both 2D and 3D independently on pH and oxygen level. Thus, the combined therapy of perifosine and ABT-737 could be considered as a potential treatment strategy for colon cancer.
Collapse
Affiliation(s)
- Barbora Adamová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Kamila Říhová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Jana Pokludová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Jarmila Navrátilová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| |
Collapse
|
22
|
Liu F, Liang Y, Sun R, Yang W, Liang Z, Gu J, Zhao F, Tang D. Astragalus mongholicus Bunge and Curcuma aromatica Salisb. inhibits liver metastasis of colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway. Chin Med 2022; 17:91. [PMID: 35922850 PMCID: PMC9351103 DOI: 10.1186/s13020-022-00641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the most challenging aspects of colon cancer (CC) prognosis and treatment is liver-tropic metastasis. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (AC) is a typical medication combination for the therapy of many malignancies. Our previous studies found that AC intervention inhibits liver metastasis of colon cancer (LMCC). Nevertheless, the comprehensive anti-metastasis mechanisms of AC have not been uncovered. METHODS In bioinformatics analysis, RNA-seq data of CC and LMCC patients were collected from TCGA and GEO databases, and differentially expressed genes (DEGs) were identified. The biological processes and signaling pathways involved in DEGs were enriched by GO and KEGG. The protein-protein interaction (PPI) network of DEGs was established and visualized using the Cytocape software, followed by screening Hub genes in the PPI network using Degree value as the criterion. Subsequently, the expression and survival relevance of Hub gene in COAD patients were verified. In the experimental study, the effects of AC on the inhibition of colon cancer growth and liver metastasis were comprehensively evaluated by cellular and animal models. Finally, based on the results of bioinformatics analysis, the possible mechanisms of AC inhibition of colon cancer EMT and liver metastasis were explored by in vivo and in vitro pharmacological experiments. RESULTS In this study, we obtained 2386 DEGs relevant to LMCC from the COAD (colon adenocarcinoma) and GSE38174 datasets. Results of GO gene function and KEGG signaling pathway enrichment analysis suggested that cellular EMT (Epithelial-mesenchymal transition) biological processes, Cytokine-cytokine receptor interaction and PI3K/Akt signaling pathways might be closely related to LMCC mechanism. We then screened for CXCL8, the core hub gene with the highest centrality within the PPI network of DEGs, and discovered that CXCL8 expression was negatively correlated with the prognosis of COAD patients. In vitro and in vivo experimental evidence presented that AC significantly inhibited colon cancer cell proliferation, migration and invasion ability, and suppressed tumor growth and liver metastasis in colon cancer orthotopic transplantation mice models. Concomitantly, AC significantly reduced CXCL8 expression levels in cell supernatants and serum. Moreover, AC reduced the expression and transcription of genes related to the PI3K/AKT pathway while suppressing the EMT process in colon cancer cells and model mice. CONCLUSIONS In summary, our research predicted the potential targets and pathways of LMCC, and experimentally demonstrated that AC might inhibit the growth and liver metastasis in colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway, which may facilitate the discovery of mechanisms and new therapeutic strategies for LMCC.
Collapse
Affiliation(s)
- Fuyan Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weicheng Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongqing Liang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfei Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
23
|
Caliceti C, Punzo A, Silla A, Simoni P, Roda G, Hrelia S. New Insights into Bile Acids Related Signaling Pathways in the Onset of Colorectal Cancer. Nutrients 2022; 14:nu14142964. [PMID: 35889921 PMCID: PMC9317521 DOI: 10.3390/nu14142964] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) ranks as the second among the causes of tumor death worldwide, with an estimation of 1.9 million new cases in 2020 and more than 900,000 deaths. This rate might increase by 60% over the next 10 years. These data are unacceptable considering that CRC could be successfully treated if diagnosed in the early stages. A high-fat diet promotes the hepatic synthesis of bile acids (BAs) increasing their delivery to the colonic lumen and numerous scientific reports correlate BAs, especially secondary BAs, with CRC incidence. We reviewed the physicochemical and biological characteristics of BAs, focusing on the major pathways involved in CRC risk and progression. We specifically pointed out the role of BAs as signaling molecules and the tangled relationships among their nuclear and membrane receptors with the big bang of molecular and cellular events that trigger CRC occurrence.
Collapse
Affiliation(s)
- Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy;
- Correspondence:
| | - Angela Punzo
- Department of Chemistry “Giacomo Ciamician” Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Alessia Silla
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (S.H.)
| | - Patrizia Simoni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Giulia Roda
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy;
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (S.H.)
| |
Collapse
|
24
|
Narayan S, Raza A, Mahmud I, Koo N, Garrett TJ, Law ME, Law BK, Sharma AK. Sensitization of FOLFOX-resistant colorectal cancer cells via the modulation of a novel pathway involving protein phosphatase 2A. iScience 2022; 25:104518. [PMID: 35754740 PMCID: PMC9218363 DOI: 10.1016/j.isci.2022.104518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
The treatment of colorectal cancer (CRC) with FOLFOX shows some efficacy, but these tumors quickly develop resistance to this treatment. We have observed increased phosphorylation of AKT1/mTOR/4EBP1 and levels of p21 in FOLFOX-resistant CRC cells. We have identified a small molecule, NSC49L, that stimulates protein phosphatase 2A (PP2A) activity, downregulates the AKT1/mTOR/4EBP1-axis, and inhibits p21 translation. We have provided evidence that NSC49L- and TRAIL-mediated sensitization is synergistically induced in p21-knockdown CRC cells, which is reversed in p21-overexpressing cells. p21 binds with procaspase 3 and prevents the activation of caspase 3. We have shown that TRAIL induces apoptosis through the activation of caspase 3 by NSC49L-mediated downregulation of p21 translation, and thereby cleavage of procaspase 3 into caspase 3. NSC49L does not affect global protein synthesis. These studies provide a mechanistic understanding of NSC49L as a PP2A agonist, and how its combination with TRAIL sensitizes FOLFOX-resistant CRC cells.
Collapse
Affiliation(s)
- Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Asif Raza
- Department of Pharmacology, Penn State University College of Medicine, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - Iqbal Mahmud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nayeong Koo
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mary E. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State University College of Medicine, Penn State Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
25
|
AKT inhibition sensitizes EVI1 expressing colon cancer cells to irinotecan therapy by regulating the Akt/mTOR axis. Cell Oncol (Dordr) 2022; 45:659-675. [PMID: 35834097 DOI: 10.1007/s13402-022-00690-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Ecotropic viral integration site 1 (EVI1) is an oncogenic transcription factor that has been attributed to chemotherapy resistance in different cancers. As yet, however, its role in colon cancer drug resistance is not completely understood. Here, we set out to investigate the functional and therapeutic relevance of EVI1 in colon cancer drug resistance. METHODS The EVI1 gene was knocked down in colon cancer cells that were subsequently tested for susceptibility to irinotecan using in vitro assays and in vivo subcutaneous mouse colon cancer models. The effect of EVI1 knockdown on the AKT-mTOR signaling pathway was assessed using cell line models, immunohistochemistry and bioinformatics tools. The anti-proliferative activity of AKT inhibitor GSK690693 and its combination with irinotecan was tested in colon cancer cell line models (2D and 3D). Finally, the therapeutic efficacy of GSK690693 and its combination with irinotecan was evaluated in xenografted EVI1 expressing colon cancer mouse models. RESULTS We found that EVI1 knockdown decreased cancer stem cell-like properties and improved irinotecan responses in both cell line and subcutaneous mouse models. In addition, we found that EVI1 downregulation resulted in inhibition of AKT/mTOR signaling and RICTOR expression. Knocking down RICTOR expression increased the cytotoxic effects of irinotecan in EVI1 downregulated colon cancer cells. Co-treatment with irinotecan and ATP-competitive AKT inhibitor GSK690693 significantly reduced colon cancer cell survival and tumor progression rates. CONCLUSION Inhibition of the AKT signaling cascade by GSK690693 may serve as an alternative to improve the irinotecan response in EVI1-expressing colon cancer cells.
Collapse
|
26
|
Hall DCN, Benndorf RA. Aspirin sensitivity of PIK3CA-mutated Colorectal Cancer: potential mechanisms revisited. Cell Mol Life Sci 2022; 79:393. [PMID: 35780223 PMCID: PMC9250486 DOI: 10.1007/s00018-022-04430-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
PIK3CA mutations are amongst the most prevalent somatic mutations in cancer and are associated with resistance to first-line treatment along with low survival rates in a variety of malignancies. There is evidence that patients carrying PIK3CA mutations may benefit from treatment with acetylsalicylic acid, commonly known as aspirin, particularly in the setting of colorectal cancer. In this regard, it has been clarified that Class IA Phosphatidylinositol 3-kinases (PI3K), whose catalytic subunit p110α is encoded by the PIK3CA gene, are involved in signal transduction that regulates cell cycle, cell growth, and metabolism and, if disturbed, induces carcinogenic effects. Although PI3K is associated with pro-inflammatory cyclooxygenase-2 (COX-2) expression and signaling, and COX-2 is among the best-studied targets of aspirin, the mechanisms behind this clinically relevant phenomenon are still unclear. Indeed, there is further evidence that the protective, anti-carcinogenic effect of aspirin in this setting may be mediated in a COX-independent manner. However, until now the understanding of aspirin's prostaglandin-independent mode of action is poor. This review will provide an overview of the current literature on this topic and aims to analyze possible mechanisms and targets behind the aspirin sensitivity of PIK3CA-mutated cancers.
Collapse
Affiliation(s)
- Daniella C N Hall
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
27
|
Sharifi-Azad M, Fathi M, Cho WC, Barzegari A, Dadashi H, Dadashpour M, Jahanban-Esfahlan R. Recent advances in targeted drug delivery systems for resistant colorectal cancer. Cancer Cell Int 2022; 22:196. [PMID: 35590367 PMCID: PMC9117978 DOI: 10.1186/s12935-022-02605-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest cancers in the world, the incidences and morality rate are rising and poses an important threat to the public health. It is known that multiple drug resistance (MDR) is one of the major obstacles in CRC treatment. Tumor microenvironment plus genomic instability, tumor derived exosomes (TDE), cancer stem cells (CSCs), circulating tumor cells (CTCs), cell-free DNA (cfDNA), as well as cellular signaling pathways are important issues regarding resistance. Since non-targeted therapy causes toxicity, diverse side effects, and undesired efficacy, targeted therapy with contribution of various carriers has been developed to address the mentioned shortcomings. In this paper the underlying causes of MDR and then various targeting strategies including exosomes, liposomes, hydrogels, cell-based carriers and theranostics which are utilized to overcome therapeutic resistance will be described. We also discuss implication of emerging approaches involving single cell approaches and computer-aided drug delivery with high potential for meeting CRC medical needs.
Collapse
Affiliation(s)
- Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Bou Malhab LJ, Abdel-Rahman WM. Obesity and Inflammation: Colorectal Cancer Engines. Curr Mol Pharmacol 2022; 15:620-646. [PMID: 34488607 DOI: 10.2174/1874467214666210906122054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
The prevalence of obesity continues to increase to the extent that it became a worldwide pandemic. An accumulating body of evidence has associated obesity with the development of different types of cancer, including colorectal cancer, which is a notorious disease with a high mortality rate. At the molecular level, colorectal cancer is a heterogenous disease characterized by a myriad of genetic and epigenetic alterations associated with various forms of genomic instability (detailed in Supplementary Materials). Recently, the microenvironment has emerged as a major factor in carcinogenesis. Our aim is to define the different molecular alterations leading to the development of colorectal cancer in obese patients with a focus on the role of the microenvironment in carcinogenesis. We also highlight all existent molecules in clinical trials that target the activated pathways in obesity-associated colorectal cancer, whether used as single treatments or in combination. Obesity predisposes to colorectal cancer via creating a state of chronic inflammation with dysregulated adipokines, inflammatory mediators, and other factors such as immune cell infiltration. A unifying theme in obesity-mediated colorectal cancer is the activation of the PI3K/AKT, mTOR/MAPK, and STAT3 signaling pathways. Different inhibitory molecules towards these pathways exist, increasing the therapeutic choice of obesity-associated colon cancer. However, obese patients are more likely to suffer from chemotherapy overdosing. Preventing obesity through maintaining a healthy and active lifestyle remains to be the best remedy.
Collapse
Affiliation(s)
- Lara J Bou Malhab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Wael M Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
29
|
Biomarkers predicting the response to chemotherapy and the prognosis in patients with esophageal squamous cell carcinoma. Gen Thorac Cardiovasc Surg 2021; 69:525-533. [PMID: 33449265 DOI: 10.1007/s11748-021-01586-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The prognosis of patients with esophageal squamous cell carcinoma (ESCC) has been improved by multidisciplinary therapy with chemoradiotherapy and surgery, but it remains poor. Advanced stage, malignant potential, and chemo-resistance contribute to the poor prognosis. Here, we attempted to identify predictive factors of the response to chemotherapy and the prognosis of ESCC patients. PATIENTS AND METHODS We examined 51 ESCC patients who were treated with chemotherapy followed by radical surgery, and 23 patients who were treated with chemotherapy alone. We conducted quantitative reverse transcription-polymerase chain reaction gene expression analysis using RNA extracted from 74 tumor tissue samples collected before chemotherapy and 67 tumor tissue samples collected after chemotherapy, focusing on PIK3CA, AKT-1, mTOR, 4E-BP1, p70S6K, PD-L1, and PD-L2. RESULTS The proportions of patients with high expressions of AKT-1 and PD-L1 before chemotherapy were significantly higher among the non-responders than among the responders (p = 0.034, p = 0.020, respectively). Multivariate analyses revealed that high PD-L1 expression before chemotherapy was associated with poor response to chemotherapy (odds ratio 2.998; 95% CI 1.043-8.619; p = 0.042) and high p70S6K expression before chemotherapy was a poor prognostic factor (hazard ratio 2.518; 95% CI 1.058-5.988; p = 0.037). In addition, the patients with high expression of PD-L1 and PD-L2 in the tumors after chemotherapy had significantly worse survival than those with low expression of these genes (p = 0.012, p = 0.007, respectively). CONCLUSION These results demonstrated that PD-L1 and p70S6K in the primary ESCC tissues were related to a poor response to chemotherapy and poor prognosis, respectively.
Collapse
|
30
|
Choo J, Heo G, Pothoulakis C, Im E. Posttranslational modifications as therapeutic targets for intestinal disorders. Pharmacol Res 2021; 165:105412. [PMID: 33412276 DOI: 10.1016/j.phrs.2020.105412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
A variety of biological processes are regulated by posttranslational modifications. Posttranslational modifications including phosphorylation, ubiquitination, glycosylation, and proteolytic cleavage, control diverse physiological functions in the gastrointestinal tract. Therefore, a better understanding of their implications in intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, celiac disease, and colorectal cancer would provide a basis for the identification of novel biomarkers as well as attractive therapeutic targets. Posttranslational modifications can be common denominators, as well as distinct biomarkers, characterizing pathological differences of various intestinal diseases. This review provides experimental evidence that identifies changes in posttranslational modifications from patient samples, primary cells, or cell lines in intestinal disorders, and a summary of carefully selected information on the use of pharmacological modulators of protein modifications as therapeutic options.
Collapse
Affiliation(s)
- Jieun Choo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
31
|
Park SR, Kim SR, Hong IS, Lee HY. A Novel Therapeutic Approach for Colorectal Cancer Stem Cells: Blocking the PI3K/Akt Signaling Axis With Caffeic Acid. Front Cell Dev Biol 2020; 8:585987. [PMID: 33425893 PMCID: PMC7785810 DOI: 10.3389/fcell.2020.585987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been identified in a multiple of cancer types and resistant to traditional cancer therapies such as chemotherapeutic agents and radiotherapy, which may destroy bulk tumor cells but not all CSCs, contributing to reformation tumor masses and subsequent relapse. Moreover, it is very difficult to effectively identify and eliminate CSCs because they share some common phenotypic and functional characteristics of normal stem cells. Therefore, finding better therapeutic strategies to selectively target CSCs might be helpful to reduce subsequent malignancies. In the present study, we found that caffeic acid effectively suppresses self-renewal capacity, stem-like characteristics, and migratory capacity of CD44+ and CD133+ colorectal CSCs in vitro and in vivo. In addition, we also revealed that PI3K/Akt signaling may be linked to multiple colorectal CSC-associated characteristics, such as radio-resistance, stem-like property, and tumorigenic potential. To the best of our knowledge, this is the first study demonstrating that caffeic acid effectively targets colorectal CSC populations by inhibiting the growth and/or self-renewal capacity of colorectal CSCs through PI3K/Akt signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon, South Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon, South Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon, South Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| | - Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, Goesan-gun, South Korea
| |
Collapse
|
32
|
Narayanankutty A, Kuzhivelil BT, Raghavamenon AC. A High-Fructose Diet Formulated with Thermally Oxidized Monounsaturated Fat Aggravates Metabolic Dysregulation in Colon Epithelial Tissues of Rats. J Am Coll Nutr 2020; 41:38-49. [PMID: 33259276 DOI: 10.1080/07315724.2020.1846145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Arunaksharan Narayanankutty
- Department of Biochemistry, Amala Cancer Research Centre (Recognized Centre of University of Calicut), Thrissur, Kerala, India
| | - Balu T. Kuzhivelil
- Department of Zoology, Applied Biochemistry and Biotechnology Laboratory, Christ College, University of Calicut, Irinjalakuda, Kerala, India
| | - Achuthan C. Raghavamenon
- Department of Biochemistry, Amala Cancer Research Centre (Recognized Centre of University of Calicut), Thrissur, Kerala, India
| |
Collapse
|
33
|
Decreased concentrations of intracellular signaling proteins in colon cancer patients with BRAF mutations. Sci Rep 2020; 10:20113. [PMID: 33208845 PMCID: PMC7675974 DOI: 10.1038/s41598-020-77109-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023] Open
Abstract
The activation of intracellular signaling pathways plays a critical role in cancer pathogenesis. The current study aims to quantify intracellular signaling proteins in localized colon cancer tissue to investigate the prognostic value of these biomarkers and elucidate their possible relations to mutation status. Colon cancer tissue and autologous reference tissue were collected from 176 patients who underwent colon cancer surgery. Assays were developed to quantify ERK, AKT and cyclin d using single-molecule array technology. KRAS/BRAF/PIK3CA mutation status was determined using droplet digital PCR. Patients with BRAF mutations had decreased concentrations of ERK (p = 0.0003), AKT (p = 0.0001) and cyclin d (p = 0.003), while no significant differences were found between patients with KRAS mutations and wild-type patients. None of the investigated proteins were associated with disease-free survival or overall survival when all patients were included. However, when patients were stratified according to mutation status, significant correlations with overall survival were seen for patients with BRAF mutations and AKT (p = 0.002) or ERK (p = 0.03) and for KRAS mutations and cyclin d (p = 0.01). Conclusions: A strong correlation exists between intracellular signaling protein concentrations and mutational BRAF status. Overall survival in colon cancer patients depends on both gene mutation status and signaling protein concentrations.
Collapse
|
34
|
Yan Y, Takayasu T, Hines G, Dono A, Hsu SH, Zhu JJ, Riascos-Castaneda RF, Kamali A, Bhattacharjee MB, Blanco AI, Tandon N, Kim DH, Ballester LY, Esquenazi AY. Landscape of Genomic Alterations in IDH Wild-Type Glioblastoma Identifies PI3K as a Favorable Prognostic Factor. JCO Precis Oncol 2020; 4:575-584. [DOI: 10.1200/po.19.00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE IDH wild-type (WT) glioblastoma (GBM) is an aggressive tumor with poor survival despite current therapies. The aim of this study was to characterize its genomic profile and determine whether a particular molecular signature is associated with improved survival outcomes. PATIENTS AND METHODS Tumor samples from 232 patients with IDH-WT GBM were sequenced, and the landscape of genomic alterations was fully delineated. Genomics data from The Cancer Genome Atlas (TCGA) cohort were analyzed for confirmation. Association of alterations with survival was evaluated in both univariable and multivariable approaches. RESULTS The genomic landscape of IDH-WT GBM revealed a high frequency of CDKN2A/B loss, TERT promoter mutations, PTEN loss, EGFR alteration, and TP53 mutations. Novel variants or gene mutations, such as ARID1B and MLL2, were identified. To better understand synergistic effects and facilitate decision making for precision medicine, we identified 11 pairs of gene alterations that tended to co-occur or were mutually exclusive, which were confirmed in the TCGA cohort. Survival analysis showed that genomic alterations in TP53 were associated with worse overall survival (OS). However, alterations in PI3K class I genes were associated with significantly better OS (univariable analysis: P = .002; multivariable analysis: hazard ratio [HR], 0.5785; P = .00162) and longer progression-free survival (univariable analysis: P = .0043; multivariable analysis: HR, 0.6228; P = .00913). CONCLUSION Genomic alterations in PI3K class I are a favorable prognostic factor in IDH-WT GBM. This new prognostic biomarker may facilitate risk stratification of patients, assist in clinical trial enrollment, and provide potential therapeutic targets
Collapse
Affiliation(s)
- Yuanqing Yan
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
| | - Takeshi Takayasu
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX
| | - Gabriella Hines
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX
| | - Antonio Dono
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX
| | - Sigmund H. Hsu
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - Roy F. Riascos-Castaneda
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, TX
| | - Arash Kamali
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, TX
| | - Meenakshi B. Bhattacharjee
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX
| | - Angel I. Blanco
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - Dong H. Kim
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - Leomar Y. Ballester
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
| | - and Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX
- Memorial Hermann Hospital, Mischer Neuroscience Institute, Houston, TX
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
35
|
Osumi H, Muroi A, Sakahara M, Kawachi H, Okamoto T, Natsume Y, Yamanaka H, Takano H, Kusama D, Shinozaki E, Ooki A, Yamaguchi K, Ueno M, Takeuchi K, Noda T, Nagayama S, Koshikawa N, Yao R. Evaluation of the RAS signaling network in response to MEK inhibition using organoids derived from a familial adenomatous polyposis patient. Sci Rep 2020; 10:17455. [PMID: 33060766 PMCID: PMC7567075 DOI: 10.1038/s41598-020-74530-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
RAS signaling is a promising target for colorectal cancer (CRC) therapy, and a variety of selective inhibitors have been developed. However, their use has often failed to demonstrate a significant benefit in CRC patients. Here, we used patient-derived organoids (PDOs) derived from a familial adenomatous polyposis (FAP) patient to analyze the response to chemotherapeutic agents targeting EGFR, BRAF and MEK. We found that PDOs carrying KRAS mutations were resistant to MEK inhibition, while those harboring the BRAF class 3 mutation were hypersensitive. We used a systematic approach to examine the phosphorylation of RAS effectors using reverse-phase protein array (RPPA) and found increased phosphorylation of MEK induced by binimetinib. A high basal level of ERK phosphorylation and its rebound activation after MEK inhibition were detected in KRAS-mutant PDOs. Notably, the phosphorylation of EGFR and AKT was more closely correlated with that of MEK than that of ERK. Transcriptome analysis identified MYC-mediated transcription and IFN signaling as significantly correlated gene sets in MEK inhibition. Our experiments demonstrated that RPPA analysis of PDOs, in combination with the genome and transcriptome, is a useful preclinical research platform to understand RAS signaling and provides clues for the development of chemotherapeutic strategies.
Collapse
Affiliation(s)
- Hiroki Osumi
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.,Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.,Director's Office, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Atsushi Muroi
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Yokohama, Kanagawa, 241-8515, Japan
| | - Mizuho Sakahara
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroshi Kawachi
- Division of Pathology, Cancer Institute Hospital, Department of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Takuya Okamoto
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yasuko Natsume
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hitomi Yamanaka
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroshi Takano
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Daisuke Kusama
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Eiji Shinozaki
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Akira Ooki
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Masashi Ueno
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute Hospital, Department of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Tetsuo Noda
- Director's Office, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Yokohama, Kanagawa, 241-8515, Japan
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
36
|
Jänicke P, Lennicke C, Meister A, Seliger B, Wessjohann LA, Kaluđerović GN. Fluorescent spherical mesoporous silica nanoparticles loaded with emodin: Synthesis, cellular uptake and anticancer activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111619. [PMID: 33321661 DOI: 10.1016/j.msec.2020.111619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
The natural product emodin (EO) exhibits anti-inflammatory, antiangiogenesis and antineoplastic properties in vitro and in vivo. Due to its biological properties as well as its fluorescence, EO can be useful in pharmacology and pharmacokinetics. To enhance its selectivity to cancer cells, EO was loaded into non-fluorescent and novel fluorescent spherical mesoporous nanoparticles bearing N-methyl isatoic anhydride (SNM~M) or lissamine rhodamine B sulfonyl moieties (SNM~L). The propylamine functionalized mesoporous silica nanomaterial (SNM) were characterized by powder X-ray diffraction (XRD), nitrogen gas sorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), fluorescence spectroscopy, thermogravimetric analysis (TGA) and UV spectroscopy. The cytotoxicity of EO-loaded nanoparticles was tested against the human colon carcinoma cell line HT-29. Non-loaded SNM did not affect cell proliferation, whereas those loaded with EO were at least as efficient as EO alone. It could be shown by fluorescence microscopy that the uptake of silica nanomaterial by the tumor cells occurred within 2 h and the release of EO occurred within 48 h of treatment. Flow cytometry and Western blot analysis showed that SNM containing EO induced apoptosis in HT-29 cells.
Collapse
Affiliation(s)
- Paul Jänicke
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany
| | - Claudia Lennicke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, D 06112 Halle (Saale), Germany
| | - Annette Meister
- Institute for Chemistry - Physical and Theoretical Chemistry, Martin Luther University Halle-Wittenberg, D 06099 Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, D 06112 Halle (Saale), Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany; Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany.
| |
Collapse
|
37
|
Small Molecule Destabilizer of β-Catenin and Ras Proteins Antagonizes Growth of K-Ras Mutation-Driven Colorectal Cancers Resistant to EGFR Inhibitors. Target Oncol 2020; 15:645-657. [PMID: 33026592 DOI: 10.1007/s11523-020-00755-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Oncogenic K-Ras mutations in colorectal cancer (CRC) combined with APC mutations worsen CRC prognosis and lower drug effectiveness. Thus, inhibition of both Wnt/β-catenin and Ras-MAPK signaling may be a rational strategy to improve the treatment of this cancer. OBJECTIVE To identify a novel compound inhibiting both Wnt/β-catenin and Ras-MAPK signaling in CRC. METHODS AND PATIENTS We developed a two-part screening system consisting of analysis of TOP flash reporter cells and then potential toxicity effects on primary neural stem cells (NSCs). We then screened 2000 chemical compounds and tested efficacy of candidates against isogenic colon cancer cells harboring wild-type or mutant K-Ras. We employed immunohistochemistry and immunocytochemistry to determine marker signatures associated with development of disease phenotypes. RESULTS We identified CPD0857, a compound that inactivates Wnt/β-catenin signaling and promotes ubiquitin-dependent proteasomal degradation of β-catenin and Ras proteins. CPD0857 effectively decreased proliferation and increased apoptosis of CRC cell lines, and overcame resistance of CRC harboring APC and K-Ras mutations to treatment with an EGFR monoclonal antibody (mAb). Moreover, CPD0857 attenuated invasiveness of highly migratory CRC cells in vitro. Accordingly, xenograft mice treated with CPD0857 showed slower tumor growth and significant decreases in both β-catenin and Ras protein expression. CONCLUSIONS CPD0857 may be a potential drug for treating aggressive CRC carrying mutations that aberrantly activate Wnt/β-catenin and Ras-ERK pathways.
Collapse
|
38
|
Yang H, Zhu J, Wang G, Liu H, Zhou Y, Qian J. STK35 Is Ubiquitinated by NEDD4L and Promotes Glycolysis and Inhibits Apoptosis Through Regulating the AKT Signaling Pathway, Influencing Chemoresistance of Colorectal Cancer. Front Cell Dev Biol 2020; 8:582695. [PMID: 33117809 PMCID: PMC7578231 DOI: 10.3389/fcell.2020.582695] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
The development of colorectal cancer (CRC) is often sporadic, but its etiology is multifactorial. Chemoresistance of CRC leads to tumor recurrence and poor prognosis in patients. The phosphorylation of protein kinase B (AKT) can activate metabolic reprogramming toward cellular glycolysis. Serine/threonine kinase 35 (STK35) regulates the cell cycle and is frequently associated with cancer progression, whereas little is known about its specific roles in CRC. In the current study, bioinformatics analyses were performed to investigate the relationship between STK35 and CRC prognosis. STK35 knockdown and overexpressing CRC cells were established to examine its functions in CRC. Fluorouracil (5-FU) was utilized to evaluate the effect of STK35 on CRC chemoresistance. Moreover, co-immunoprecipitation was performed to explore the ubiquitination of STK35. STK35 was highly expressed in CRC, and its protein expression was negatively correlated with the survival of CRC patients. Furthermore, STK35 overexpression could promote glycolysis, suppress apoptosis, upregulate p-AKT, and counteract the antitumor functions of 5-FU and neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L) in CRC cells. NEDD4L was associated with and could ubiquitinate STK35. STK35 could be a prognostic biomarker for CRC prognosis and has promotive effects on CRC cellular activities, partially through the AKT pathway. Moreover, STK35 also interferes with the chemosensitivity of CRC.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jie Zhu
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guangyao Wang
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hanyang Liu
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yan Zhou
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Qian
- Department of Gastrointestinal Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
39
|
Wei Z, Liu G, Jia R, Zhang W, Li L, Zhang Y, Wang Z, Bai X. Targeting secretory leukocyte protease inhibitor (SLPI) inhibits colorectal cancer cell growth, migration and invasion via downregulation of AKT. PeerJ 2020; 8:e9400. [PMID: 32742768 PMCID: PMC7367054 DOI: 10.7717/peerj.9400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
The secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor which plays important role in bacterial infection, inflammation, wound healing and epithelial proliferation. Dysregulation of SLPI has been reported in a variety of human cancers including glioblastoma, lung, breast, ovarian and colorectal carcinomas and is associated with tumor aggressiveness and metastatic potential. However, the pathogenic role of SLPI in colorectal cancer is still unclear. Here we showed that SLPI mRNA level was significantly upregulated in colorectal cancer tissues compared to adjacent normal controls. Targeting SLPI by siRNA inhibited proliferation, migration and invasion of colorectal cancer cells lines HT29 and HT116 in vitro. Mechanistically, blockage of cancer cell growth and metastasis after SLPI knockdown was associated with down-regulation of AKT signaling. In conclusion, SLPI regulated colorectal cell growth and metastasis via AKT signaling. SLPI may be a novel biomarker and therapeutic target for colorectal cancer. Targeting AKT signaling may be effective for colorectal cancer treatment.
Collapse
Affiliation(s)
- Zhijiang Wei
- The First Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou, China
| | - Guiying Liu
- The First Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou, China
| | - Rufu Jia
- The Brain Science Unit, CangZhou Central Hospital, Cangzhou, China
| | - Wei Zhang
- The First Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou, China
| | - Li Li
- The Brain Science Unit, CangZhou Central Hospital, Cangzhou, China
| | - Yuanyuan Zhang
- The First Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou, China
| | - Zhijing Wang
- The Brain Science Unit, CangZhou Central Hospital, Cangzhou, China
| | - Xiyong Bai
- The First Department of Surgical Oncology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
40
|
Su CM, Weng YS, Kuan LY, Chen JH, Hsu FT. Suppression of PKCδ/NF-κB Signaling and Apoptosis Induction through Extrinsic/Intrinsic Pathways Are Associated Magnolol-Inhibited Tumor Progression in Colorectal Cancer In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21103527. [PMID: 32429376 PMCID: PMC7278962 DOI: 10.3390/ijms21103527] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Magnolol is one of the hydroxylated biphenyl compounds from the root and stem bark of Magnolia officinalis, which shown to possess anti-colorectal cancer (CRC) effects. However, the regulatory mechanism of magnolol on apoptosis and NF-κB signaling in human CRC has not been elucidated. Thus, we investigated the inhibitory mechanism of magnolol on human and mouse CRC (HT-29 and CT-26) in vitro and in vivo. Results from reporter gene assay indicated that both magnolol and rottlerin (PKCδ inhibitor) reduced the endogenous NF-κB activity. In addition, indolactam V (PKCδ activator)-induced NF-κB signaling was significantly suppressed with both magnolol and rottlerin treatment. Results from Western blotting also indicated that phosphorylation of PKCδ and NF-κB -related proteins involved in tumor progression were effectively decreased by magnolol treatment. The invasion capacity of CRC cells was also attenuated by both magnolol and rottlerin. Furthermore, magnolol triggered Fas/Fas-L mediated extrinsic apoptosis and mitochondria mediated intrinsic apoptosis were validated by flow cytometry. Most importantly, tumor growth in both HT-29 and CT-26 bearing mice were suppressed by magnolol, but no pathologic change was detected in mice kidney, spleen, and liver. As confirmed by immunohistochemistry (IHC) staining from tumor tissue, PKCδ/NF-κB signaling and downstream proteins expression were decreased, while apoptotic proteins expression was increased in the magnolol treated group. According to these results, we suggest that the induction of apoptosis through extrinsic/intrinsic pathways and the blockage of PKCδ/NF-κB signaling are associated with the magnolol-inhibited progression of CRC.
Collapse
Affiliation(s)
- Chun-Min Su
- Department of Surgery, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
| | - Yueh-Shan Weng
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan;
| | - Lin-Yen Kuan
- Department of Emergency Medicine, Cathay General Hospital, Taipei 106, Taiwan; (L.-Y.K.); (J.-H.C.)
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Jiann-Hwa Chen
- Department of Emergency Medicine, Cathay General Hospital, Taipei 106, Taiwan; (L.-Y.K.); (J.-H.C.)
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan;
- Correspondence: or ; Tel.: +886-4-22053366 (ext. 2532)
| |
Collapse
|
41
|
Bender U, Rho YS, Barrera I, Aghajanyan S, Acoba J, Kavan P. Adjuvant therapy for stages II and III colon cancer: risk stratification, treatment duration, and future directions. Curr Oncol 2019; 26:S43-S52. [PMID: 31819709 PMCID: PMC6878933 DOI: 10.3747/co.26.5605] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background To date, the role of adjuvant systemic therapy in stages ii and iii colon cancer remains a topic of interest and debate. The objective of the present review was to assess the most recent data, specifically addressing methods of risk stratification, duration of therapy, and future directions. Methods PubMed and medline were searched for literature pertinent to adjuvant chemotherapy in either stage ii or stage iii colorectal cancer. Summary Locoregional disease, histopathology, age, laterality, and a number of other biologic and molecular markers appear to have a role in disease risk stratification. The duration of adjuvant therapy for stage iii disease can vary based on risk factors, but use of adjuvant therapy and duration of therapy in stage ii disease remain controversial. Future directions should include genomic assays and improved study design to provide concrete evidence about the duration of adjuvant folfox or capox and about other types of chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- U Bender
- Gerald Bronfman Department of Oncology, McGill University Faculty of Medicine, Montreal, QC
| | - Y S Rho
- University of Hawaii Internal Medicine Program, Honolulu, HI, U.S.A
| | - I Barrera
- Gerald Bronfman Department of Oncology, McGill University Faculty of Medicine, Montreal, QC
| | - S Aghajanyan
- Gerald Bronfman Department of Oncology, McGill University Faculty of Medicine, Montreal, QC
| | - J Acoba
- University of Hawaii Internal Medicine Program, Honolulu, HI, U.S.A
- University of Hawaii Cancer Center, Honolulu, HI, U.S.A
| | - P Kavan
- Gerald Bronfman Department of Oncology, McGill University Faculty of Medicine, Montreal, QC
| |
Collapse
|
42
|
Najem SA, Khawaja G, Hodroj MH, Rizk S. Synergistic Effect of Epigenetic Inhibitors Decitabine and Suberoylanilide Hydroxamic Acid on Colorectal Cancer In vitro. Curr Mol Pharmacol 2019; 12:281-300. [DOI: 10.2174/1874467212666190313154531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 01/20/2023]
Abstract
Background:Colorectal Cancer (CRC) is a common cause of oncological deaths worldwide. Alterations of the epigenetic landscape constitute a well-documented hallmark of CRC phenotype. The accumulation of aberrant DNA methylation and histone acetylation plays a major role in altering gene activity and driving tumor onset, progression and metastasis.Objective:In this study, we evaluated the effect of Suberoylanilide Hydroxamic Acid (SAHA), a panhistone deacetylase inhibitor, and Decitabine (DAC), a DNA methyltransferase inhibitor, either alone or in combination, on Caco-2 human colon cancer cell line in vitro.Results:Our results showed that SAHA and DAC, separately, significantly decreased cell proliferation, induced apoptosis and cell cycle arrest of Caco-2 cell line. On the other hand, the sequential treatment of Caco-2 cells, first with DAC and then with SAHA, induced a synergistic anti-tumor effect with a significant enhancement of growth inhibition and apoptosis induction in Caco-2 cell line as compared to cells treated with either drug alone. Furthermore, the combination therapy upregulates protein expression levels of pro-apoptotic proteins Bax, p53 and cytochrome c, downregulates the expression of antiapoptotic Bcl-2 protein and increases the cleavage of procaspases 8 and 9; this suggests that the combination activates apoptosis via both the intrinsic and extrinsic pathways. Mechanistically, we demonstrated that the synergistic anti-neoplastic activity of combined SAHA and DAC involves an effect on PI3K/AKT and Wnt/β-catenin signaling.Conclusion:In conclusion, our results provide evidence for the profound anti-tumorigenic effect of sequentially combined SAHA and DAC in the CRC cell line and offer new insights into the corresponding underlined molecular mechanism.
Collapse
Affiliation(s)
- Sonia Abou Najem
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mohammad Hassan Hodroj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
43
|
Shen W, Jin Z, Tong X, Wang H, Zhuang L, Lu X, Wu S. TRIM14 promotes cell proliferation and inhibits apoptosis by suppressing PTEN in colorectal cancer. Cancer Manag Res 2019; 11:5725-5735. [PMID: 31296997 PMCID: PMC6598940 DOI: 10.2147/cmar.s210782] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background Colorectal cancer (CRC) is among the most frequent and lethal malignancies worldwide. Although great advances have been made in the treatment of CRC, prognosis remains poor. Our previous study indicated that tripartite motif-containing 14 (TRIM14) was upregulated in CRC samples. Methods In the current study, the association between TRIM14 and CRC was investigated. Protein expression was determined by Western blotting and immunohistochemistry. Further, the biological roles of TRIM14 in CRC cell proliferation and apoptosis were explored both in vitro and in vivo. Results We observed that increased TRIM14 expression in CRC tissues was closely related with aggressive clinicopathological characteristics and poor prognosis. TRIM14 knockdown markedly reduced proliferation and increased apoptosis in HT-29 and SW620 cells, whereas TRIM14 overexpression in LoVo cells displayed opposite results. Xenograft experiments using HT-29 cells confirmed suppression of tumor growth and induction of apoptosis upon TRIM14 knockdown in vivo. Furthermore, downregulation of TRIM14 inhibited the AKT pathway, as indicated by reduced levels of phosphorylated AKT, Bcl-2 and Cyclin D1, and elevated levels of phosphatase and
tensin homology (PTEN) and p27. In addition, TRIM14 colocalized with PTEN in the cytoplasm and induced PTEN ubiquitination. Moreover, PTEN overexpression significantly inhibited pro-proliferative effects of TRIM14, indicating an involvement of PTEN/AKT signaling in mediating TRIM14 functions. Conclusions The present data demonstrate that TRIM14 overexpression promotes CRC cell proliferation, suggesting TRIM14 as an attractive therapeutic target for CRC.
Collapse
Affiliation(s)
- Weidong Shen
- Department of Gastroenterology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, People's Republic of China
| | - Zhonghai Jin
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| | - Xiuping Tong
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| | - Haiying Wang
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| | - Lilei Zhuang
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| | - Xiaofeng Lu
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| | - Shenbao Wu
- Department of Gastroenterology, Yiwu Hospital, Wenzhou Medical University, Yiwu, People's Republic of China
| |
Collapse
|
44
|
Ismail NI, Othman I, Abas F, H Lajis N, Naidu R. Mechanism of Apoptosis Induced by Curcumin in Colorectal Cancer. Int J Mol Sci 2019; 20:E2454. [PMID: 31108984 PMCID: PMC6566943 DOI: 10.3390/ijms20102454] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
Collapse
Affiliation(s)
- Nor Isnida Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
- UniKL MESTECH, A1-1 Jalan TKS1, Taman Kajang Sentral, 43000 Kajang, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, UPM, 434000 Serdang, Malaysia.
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| |
Collapse
|
45
|
Lyu X, Song AL, Bai YL, Xu XD, He DQ, Zhang YC. Inhibitory effects of petasin on human colon carcinoma cells mediated by inactivation of Akt/mTOR pathway. Chin Med J (Engl) 2019; 132:1071-1078. [PMID: 30896562 PMCID: PMC6595872 DOI: 10.1097/cm9.0000000000000199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colorectal cancer is the third most common cancer worldwide and still lack of effective therapy so far. Petasin, a natural product found in plants of the genus Petasites, has been reported to possess anticancer activity. The present study aimed to investigate the anticolon cancer activity of petasin both in vitro and in vivo. The molecular mechanism of petasin was also further explored. METHODS Caco-2, LoVo, SW-620, and HT-29 cell lines were used to detect the inhibitory effect of petasin on colon cancer proliferation. Cell viability was determined using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis was analyzed by flow cytometry. Hoechst 33258 staining was used to visualize morphological changes. Cell migration was assessed using a wound-healing migration assay, and cell invasion was investigated using Transwell chambers. Western blotting assays were employed to evaluate the expression levels of proteins in the protein kinase B/mammalian target of rapamycin (Akt/mTOR) signaling pathway. Finally, in vivo activity of petasin was evaluated using the SW-620 subcutaneous tumor model established in Balb/c nude mice. Twelve rats were randomly divided into control group and 10 mg/kg petasin group. The tumor volume was calculated every 7 days for 28 days. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was performed to assess the apoptotic effect of petasin. Differences between two groups were assessed by analysis of independent-sample t tests. RESULTS Petasin significantly inhibited the proliferation of human colon carcinoma cell lines, induced apoptosis, and suppressed migration and invasion in SW-620 cells. Western blotting results showed that petasin decreased the phosphorylation of Akt (1.01 ± 0.16 vs. 0.74 ± 0.06, P = 0.042), mTOR (0.71 ± 0.12 vs. 0.32 ± 0.11, P = 0.013), and P70S6K (1.23 ± 0.21 vs. 0.85 ± 0.14, P = 0.008), elevated the expression of caspase-3 (0.41 ± 0.09 vs. 0.74 ± 0.12, P = 0.018) and caspase-9 (1.10 ± 0.27 vs. 1.98 ± 0.22, P = 0.009), decreased the Bcl-2 protein (2.75 ± 0.47 vs. 1.51 ± 0.36, P = 0.008), downregulated the expression of matrix metalloproteinase (MMP)-3 (1.51 ± 0.31 vs. 0.82 ± 0.11, P = 0.021) and MMP-9 (1.56 ± 0.32 vs. 0.94 ± 0.15, P = 0.039) in SW-620 cell. In vivo, 10 mg/kg petasin inhibited tumor growth in Balb/c nude mice (924.18 ± 101.23 vs. 577.67 ± 75.12 mm at day 28, P = 0.001) and induced apoptosis (3.6 ± 0.7% vs. 36.0 ± 4.9%, P = 0.001) in tumor tissues. CONCLUSIONS Petasin inhibits the proliferation of colon cancer SW-620 cells via inactivating the Akt/mTOR pathway. Our findings suggest petasin as a potential candidate for colon cancer therapy.
Collapse
Affiliation(s)
- Xi Lyu
- The 5th Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Ai-Lin Song
- The 5th Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Yin-Liang Bai
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Xiao-Dong Xu
- The 2nd Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Dong-Qiang He
- The 5th Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - You-Cheng Zhang
- The 2nd Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| |
Collapse
|
46
|
Maharjan S, Park BK, Lee SI, Lim Y, Lee K, Lee Y, Kwon HJ. Gomisin G Suppresses the Growth of Colon Cancer Cells by Attenuation of AKT Phosphorylation and Arrest of Cell Cycle Progression. Biomol Ther (Seoul) 2019; 27:210-215. [PMID: 29902863 PMCID: PMC6430222 DOI: 10.4062/biomolther.2018.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/01/2018] [Accepted: 05/17/2018] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer is one of the leading causes of cancer related death due to a poor prognosis. In this study, we investigated the effect of Gomisin G on colon cancer growth and examined the underlying mechanism of action. We found that Gomisin G significantly suppressed the viability and colony formation of LoVo cells. Gomisin G reduced the phosphorylation level of AKT implying that Gomisin G suppressed the PI3K-AKT signaling pathway. Gomisin G also induced apoptosis shown by Annexin V staining and an increased level of cleaved poly-ADP ribose polymerase (PARP) and Caspase-3 proteins. Furthermore, Gomisin G remarkably triggered the accumulation of cells at the sub-G1 phase which represents apoptotic cells. In addition, the level of cyclin D1 and phosphorylated retinoblastoma tumor suppressor protein (Rb) was also reduced by the treatment with Gomisin G thus curtailing cell cycle progression. These findings show the suppressive effect of Gomisin G by inhibiting proliferation and inducing apoptosis in LoVo cells. Taken together, these results suggest Gomisin G could be developed as a potential therapeutic compound against colon cancer.
Collapse
Affiliation(s)
- Sony Maharjan
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Byoung Kwon Park
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Su In Lee
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 05029, Republic of Korea
| | - Keunwook Lee
- Department of Biomedical Science, College of Natural Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyung-Joo Kwon
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.,Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
47
|
Liu Z, Yang M, Wang S, Chen HP, Guan X, Zhao ZX, Jiang Z, Quan JC, Yang RK, Wang XS. GGN Promotes Tumorigenesis by Regulating Proliferation and Apoptosis in Colorectal Cancer. Pathol Oncol Res 2019; 25:1621-1626. [PMID: 30721393 DOI: 10.1007/s12253-019-00595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 01/15/2019] [Indexed: 04/03/2025]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. GGN is a germ cell-specific gene, but its function in CRC has been rarely reported to date. The aim of this study was to investigate the potential role of GGN in CRC tumorigenesis. Therefore, in this study, we examined the expression of GGN in CRC cell lines and tissues and its effects on cellular proliferation and apoptosis. We then explored the underlying mechanism. Our results showed that GGN was significantly overexpressed in both CRC cell lines and tissues. Silencing GGN robustly inhibited proliferation of CRC cells, and it also promoted apoptosis of CRC cells. Moreover, knockdown of GGN inhibited the expression of p-Akt in CRC cells. Taken together, these results showed that knockdown of GGN inhibits proliferation and promotes apoptosis of CRC cells through the PI3K/Akt signaling pathway. Our findings revealed for the first time a potential oncogenic role for GGN in CRC progress. This finding may provide a unique perspective on how a germ cell-specific gene might serve as a biomarker, or even as a therapeutic target, for CRC.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang Dist., Beijing, 100021, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang Dist., Beijing, 100021, China
| | - Song Wang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hai-Peng Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang Dist., Beijing, 100021, China
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang Dist., Beijing, 100021, China
| | - Zhi-Xun Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang Dist., Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang Dist., Beijing, 100021, China
| | - Ji-Chuan Quan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang Dist., Beijing, 100021, China
| | - Run-Kun Yang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xi-Shan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang Dist., Beijing, 100021, China.
| |
Collapse
|
48
|
Wu YQ, Ju CL, Wang BJ, Wang RG. PABPC1L depletion inhibits proliferation and migration via blockage of AKT pathway in human colorectal cancer cells. Oncol Lett 2019; 17:3439-3445. [PMID: 30867782 PMCID: PMC6396114 DOI: 10.3892/ol.2019.9999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Numerous studies have demonstrated that PABPC1 participates in the process of carcinogenesis and its function is inconsistent in different types of cancers. PABPC1-like (PABPC1L) is an important paralog of PABPC1 and few studies are available on the roles of PABPC1L in colorectal cancer (CRC) development. Hence, we explored the biological function and prognostic impact of PABPC1L in CRC. The mRNA expression of PABPC1L in CRC was determined based on the data obtained from The Cancer Genome Atlas (TCGA) database. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was utilized to determine the PABPC1L mRNA expression level in CRC HT-29 and LS-174T cell lines. Kaplan-Meier method and Cox proportional-hazards model were utilized to conduct the survival and prognosis analyses. HT-29 cells with silenced PABPC1L were constructed to explore the effect of PABPC1L on cell proliferation, invasion and migration capacities using cell counting kit-8 (CCK-8), clone formation, wound-healing and Transwell assays, respectively. To uncover the potential mechanisms of how PABPC1L influences CRC proliferation and migration, we analyzed the expression of AKT, p-AKT, PI3K, and p-PI3K in HT-29 cells using western blotting. Our results revealed that PABPC1L was overexpressed in CRC tissues compared with normal tissues based on the data obtained from TCGA database. Similarly, the mRNA expression of PABPC1L was higher in HT-29 and LS-174T cells than that in CCD-18Co cells. The expression of PABPC1L in CRC was found to be significantly related to age, pathologic stage, pathologic-node, pathologic-metastasis, and death. In univariate and multivariate analyses, pathologic-tumor and pathologic-metastasis were identified as independent prognostic factors for CRC. After PABPC1L depletion, cell proliferation rate, colony numbers, and the invasive and migratory capacity of HT-29 cells were all reduced. Western blot analysis showed that reduction of PABPC1L significantly inhibited p-AKT, and p-PI3K expression level in HT-29 cells. Collectively, our results suggested that PABPC1L is a potential novel candidate oncogene in CRC, and targeting PABPC1L may provide clinical utility in CRC.
Collapse
Affiliation(s)
- Yue-Qin Wu
- Department of Integration of Traditional Chinese Medicine and Western Medicine, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Chao-Long Ju
- Anorectal Department of Traditional Chinese Medicine, Central Hospital of Tongchuan Mining Bureau, Tongchuan, Shanxi 727000, P.R. China
| | - Bao-Juan Wang
- Department of Nephropathy, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300150, P.R. China
| | - Ruo-Gu Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
49
|
Chen F, Li Z, Zhou H. Identification of prognostic miRNA biomarkers for predicting overall survival of colon adenocarcinoma and bioinformatics analysis: A study based on The Cancer Genome Atlas database. J Cell Biochem 2018; 120:9839-9849. [DOI: 10.1002/jcb.28264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Fangyao Chen
- Department of Epidemiology and Health Statistics School of Public Health Xi’an Jiaotong University Health Science Center Xi’an Shaanxi China
| | - Zhe Li
- First Affiliated Hospital of Xi’an Jiaotong University Xi’an Shaanxi China
| | - Hui Zhou
- Department of Pharmacy, First Affiliated Hospatial of Xi’an Jiaotong University Xi’an Shaanxi China
| |
Collapse
|
50
|
Arisan ED, Ergül Z, Bozdağ G, Rencüzoğulları Ö, Çoker-Gürkan A, Obakan-Yerlikaya P, Coşkun D, Palavan-Ünsal N. Diclofenac induced apoptosis via altering PI3K/Akt/MAPK signaling axis in HCT 116 more efficiently compared to SW480 colon cancer cells. Mol Biol Rep 2018; 45:2175-2184. [PMID: 30406888 DOI: 10.1007/s11033-018-4378-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Diclofenac is a preferential cyclooxygenase 2 inhibitor (COX-2) and member of non-steroidal anti-inflammatory drugs (NSAIDs). Inflammation is one of the main reason of poor prognosis of colon cancer cases; thereby NSAIDs are potential therapeutic agents in colon cancer therapy. In this study, our aim to understand the potential molecular targets of diclofenac, which may propose new therapeutic targets in HCT 116 (wt p53) and SW480 (mutant p53R273H) colon cancer cells. For this purpose, we identified different response against diclofenac treatment through expression profiles of PI3K/Akt/MAPK signaling axis. Our hypothesis was diclofenac-mediated apoptosis is associated with inhibition of PI3K/Akt/MAPK signaling axis. We found that sub-cytotoxic concentration of diclofenac (400 µM) promoted further apoptosis in HCT 116 cells compared to SW480 colon cancer cells. Diclofenac triggered dephosphorylation of PTEN, PDK, Akt, which led to inhibition of PI3K/Akt survival axis in HCT 116 colon cancer cells. However, diclofenac showed lesser effect in SW480 colon cancer cells. In addition, diclofenac further activated p44/42, p38 and SAPK/JNK in HCT 116 cells compared to SW480 cells.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey.
| | - Zehragül Ergül
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Gülnihal Bozdağ
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Özge Rencüzoğulları
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Ajda Çoker-Gürkan
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pınar Obakan-Yerlikaya
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Deniz Coşkun
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Narçin Palavan-Ünsal
- Science and Literature Faculty, Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| |
Collapse
|