1
|
Xia L, Guo X, Lu D, Jiang Y, Liang X, Shen Y, Lin J, Zhang L, Chen H, Jin J, Luan X, Zhang W. S100A13-driven interaction between pancreatic adenocarcinoma cells and cancer-associated fibroblasts promotes tumor progression through calcium signaling. Cell Commun Signal 2025; 23:51. [PMID: 39871271 PMCID: PMC11773924 DOI: 10.1186/s12964-025-02049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are key components of the pancreatic adenocarcinoma (PAAD) tumor microenvironment (TME), where they promote tumor progression and metastasis through immunosuppressive functions. Although significant progress has been made in understanding the crosstalk between cancer cells and CAFs, many underlying mechanisms remain unclear. Recent studies have highlighted the importance of calcium signaling in enhancing interactions between tumor cells and the surrounding stroma, with the S100 family of proteins serving as important regulators. While the roles of some S100 proteins have been extensively studied, others, such as S100A13, remain less well understood. METHODS Bioinformatic analysis was employed to predict the pathogenic potential of CAFs and S100A13. Stable S100A13 knockdown CAFs were generated using a short hairpin RNA system. Cellular viability and apoptosis rates were evaluated through CCK-8 and flow cytometry tests, respectively. Additionally, the wound healing and migration assays were conducted to assess the invasive and metastatic capabilities. Transcriptome analysis was conducted to identify differential gene expression and associated signaling pathways in PAAD cells derived from an indirect culture system. Furthermore, the protumoral role of S100A13 in PAAD was further verified using both 3D bioprinting and cell line-based xenograft tumor models. RESULTS In this study, we identified a strong association between S100A13, a calcium-binding protein, and CAFs in PAAD. Gene expression analysis revealed that S100A13 was highly expressed in CAFs and correlated with poor prognosis. Knockdown of S100A13 in CAFs reduced the metastatic potential of PAAD cells. In addition, S100A13 depletion impaired cell motility and calcium signaling pathways within the TME. Furthermore, silencing S100A13 in CAFs markedly slowed PAAD progression in both tumor spheroids and Balb/c nude mice. CONCLUSIONS Together, our findings underscore the critical role of CAFs-derived S100A13 in PAAD progression and suggest that targeting S100A13 may offer a promising therapeutic strategy for PAAD.
Collapse
Affiliation(s)
- Liuyuan Xia
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xin Guo
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yixin Jiang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaohui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiwen Shen
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weidong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100700, China.
| |
Collapse
|
2
|
Hamade DF, Epperly MW, Fisher R, Hou W, Shields D, van Pijkeren JP, Leibowitz BJ, Coffman LG, Wang H, Huq MS, Huang Z, Rogers CJ, Vlad AM, Greenberger JS, Mukherjee A. Genetically Engineered Probiotic Limosilactobacillus reuteri Releasing IL-22 (LR-IL-22) Modifies the Tumor Microenvironment, Enabling Irradiation in Ovarian Cancer. Cancers (Basel) 2024; 16:474. [PMID: 38339228 PMCID: PMC10854600 DOI: 10.3390/cancers16030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Despite recent advances in cancer therapy, ovarian cancer remains the most lethal gynecological cancer worldwide, making it crucial and of the utmost importance to establish novel therapeutic strategies. Adjuvant radiotherapy has been assessed historically, but its use was limited by intestinal toxicity. We recently established the role of Limosilactobacillus reuteri in releasing IL-22 (LR-IL-22) as an effective radiation mitigator, and we have now assessed its effect in an ovarian cancer mouse model. We hypothesized that an LR-IL-22 gavage would enable intestinal radioprotection by modifying the tumor microenvironment and, subsequently, improving overall survival in female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer. Herein, we report that the LR-IL-22 gavage not only improved overall survival in mice when combined with a PD-L1 inhibitor by inducing differential gene expression in irradiated stem cells but also induced PD-L1 protein expression in ovarian cancer cells and mobilized CD8+ T cells in whole abdomen irradiated mice. The addition of LR-IL-22 to a combined treatment modality with fractionated whole abdomen radiation (WAI) and systemic chemotherapy and immunotherapy regimens can facilitate a safe and effective protocol to reduce tumor burden, increase survival, and improve the quality of life of a locally advanced ovarian cancer patient.
Collapse
Affiliation(s)
- Diala F. Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | | | - Brian J. Leibowitz
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Lan G. Coffman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.W.); (Z.H.)
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Ziyu Huang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.W.); (Z.H.)
| | | | - Anda M. Vlad
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| |
Collapse
|
3
|
Teraiya M, Perreault H, Chen VC. An overview of glioblastoma multiforme and temozolomide resistance: can LC-MS-based proteomics reveal the fundamental mechanism of temozolomide resistance? Front Oncol 2023; 13:1166207. [PMID: 37182181 PMCID: PMC10169742 DOI: 10.3389/fonc.2023.1166207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary type of lethal brain tumor. Over the last two decades, temozolomide (TMZ) has remained the primary chemotherapy for GBM. However, TMZ resistance in GBM constitutes an underlying factor contributing to high rates of mortality. Despite intense efforts to understand the mechanisms of therapeutic resistance, there is currently a poor understanding of the molecular processes of drug resistance. For TMZ, several mechanisms linked to therapeutic resistance have been proposed. In the past decade, significant progress in the field of mass spectrometry-based proteomics has been made. This review article discusses the molecular drivers of GBM, within the context of TMZ resistance with a particular emphasis on the potential benefits and insights of using global proteomic techniques.
Collapse
Affiliation(s)
- Milan Teraiya
- Chemistry Department, University of Manitoba, Winnipeg, MB, Canada
| | - Helene Perreault
- Chemistry Department, University of Manitoba, Winnipeg, MB, Canada
| | - Vincent C. Chen
- Chemistry Department, Brandon University, Brandon, MB, Canada
| |
Collapse
|
4
|
Teh R, Azimi A, Pupo GM, Ali M, Mann GJ, Fernández-Peñas P. Genomic and proteomic findings in early melanoma and opportunities for early diagnosis. Exp Dermatol 2023; 32:104-116. [PMID: 36373875 DOI: 10.1111/exd.14705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Overdiagnosis of early melanoma is a significant problem. Due to subtle unique and overlapping clinical and histological criteria between pigmented lesions and the risk of mortality from melanoma, some benign pigmented lesions are diagnosed as melanoma. Although histopathology is the gold standard to diagnose melanoma, there is a demand to find alternatives that are more accurate and cost-effective. In the current "omics" era, there is gaining interest in biomarkers to help diagnose melanoma early and to further understand the mechanisms driving tumor progression. Genomic investigations have attempted to differentiate malignant melanoma from benign pigmented lesions. However, genetic biomarkers of early melanoma diagnosis have not yet proven their value in the clinical setting. Protein biomarkers may be more promising since they directly influence tissue phenotype, a result of by-products of genomic mutations, posttranslational modifications and environmental factors. Uncovering relevant protein biomarkers could increase confidence in their use as diagnostic signatures. Currently, proteomic investigations of melanoma progression from pigmented lesions are limited. Studies have previously characterised the melanoma proteome from cultured cell lines and clinical samples such as serum and tissue. This has been useful in understanding how melanoma progresses into metastasis and development of resistance to adjuvant therapies. Currently, most studies focus on metastatic melanoma to find potential drug therapy targets, prognostic factors and markers of resistance. This paper reviews recent advancements in the genomics and proteomic fields and reports potential avenues, which could help identify and differentiate melanoma from benign pigmented lesions and prevent the progression of melanoma.
Collapse
Affiliation(s)
- Rachel Teh
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Ali Azimi
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Gulietta M Pupo
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Marina Ali
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia
| | - Graham J Mann
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,The John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Pablo Fernández-Peñas
- Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Westmead, New South Wales, Australia.,Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
5
|
Esimbekova AR, Palkina NV, Zinchenko IS, Belenyuk VD, Savchenko AA, Sergeeva EY, Ruksha T. Focal adhesion alterations in
G0
‐positive melanoma cells. Cancer Med 2022; 12:7294-7308. [PMID: 36533319 PMCID: PMC10067123 DOI: 10.1002/cam4.5510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Melanoma is a highly heterogeneous malignant tumor that exhibits various forms of drug resistance. Recently, reversal transition of cancer cells to the G0 phase of the cell cycle under the influence of therapeutic drugs has been identified as an event associated with tumor dissemination. In the present study, we investigated the ability of chemotherapeutic agent dacarbazine to induce a transition of melanoma cells to the G0 phase as a mechanism of chemoresistance. METHODS We used the flow cytometry to analyze cell distribution within cell cycle phases after dacarbazine treatment as well as to identifyG0 -positive cells population. Transcriptome profiling was provided to determine genes associated with dacarbazine resistance. We evaluated the activity of β-galactosidase in cells treated with dacarbazine by substrate hydrolysis. Cell adhesion strength was measured by centrifugal assay application with subsequent staining of adhesive cells with Ki-67 monoclonal antibodies. Ability of melanoma cells to metabolize dacarbazine was determined by expressional analysis of CYP1A1, CYP1A2, CYP2E1 followed by CYP1A1 protein level evaluation by the ELISA method. RESULTS The present study determined that dacarbazine treatment of melanoma cells could induce an increase in the percentage of cells in G0 phase without alterations of β-galactosidase positive cells which corresponded to the fraction of the senescent cells. Transcriptomic profiling of cells under dacarbazine induction of G0 -positive cells percentage revealed that 'VEGFA-VEGFR2 signaling pathway' and 'Cell cycle' signaling were mostly enriched by dysregulated genes. 'Focal adhesion' signaling was also found to be triggered by dacarbazine. In melanoma cells treated with dacarbazine, an increase in G0 -positive cells among adherent cells was found. CONCLUSIONS Dacarbazine induces the alteration in a percentage of melanoma cells residing in G0 phase of a cell cycle. The altered adhesive phenotype of cancer cells under transition in the G0 phase may refer to a specific intercellular communication pattern of quiescent/senescent cancer cells.
Collapse
Affiliation(s)
| | - Nadezhda V. Palkina
- Department of Pathophysiology Krasnoyarsk State Medical University Krasnoyarsk Russia
| | - Ivan S. Zinchenko
- Department of Pathophysiology Krasnoyarsk State Medical University Krasnoyarsk Russia
| | - Vasiliy D. Belenyuk
- Laboratory of Cell Molecular Physiology and Pathology Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences Krasnoyarsk Russia
| | - Andrey A. Savchenko
- Laboratory of Cell Molecular Physiology and Pathology Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences Krasnoyarsk Russia
| | - Ekaterina Yu Sergeeva
- Department of Pathophysiology Krasnoyarsk State Medical University Krasnoyarsk Russia
| | - Tatiana G. Ruksha
- Department of Pathophysiology Krasnoyarsk State Medical University Krasnoyarsk Russia
| |
Collapse
|
6
|
Faecal Proteomics and Functional Analysis of Equine Melanocytic Neoplasm in Grey Horses. Vet Sci 2022; 9:vetsci9020094. [PMID: 35202347 PMCID: PMC8875177 DOI: 10.3390/vetsci9020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Equine melanocytic neoplasm (EMN) is a common disease in older grey horses. The purpose of this study was to examine the potential proteins throughout EMN stages from faecal proteomic outlining using functional analysis. Faecal samples were collected from the rectum of 25 grey horses divided into three groups; normal group without EMN (n = 10), mild EMN (n = 6) and severe EMN (n = 9). Based on the results, 5910 annotated proteins out of 8509 total proteins were assessed from proteomic profiling. We observed differentially expressed proteins (DEPs) between the normal group and the EMN group, and 109 significant proteins were obtained, of which 28 and 81 were involved in metabolic and non-metabolic functions, respectively. We found 10 proteins that play a key role in lipid metabolism, affecting the tumour microenvironment and, consequently, melanoma progression. Interestingly, FOSL1 (FOS like 1, AP-1 transcription factor subunit) was considered as a potential highly expressed protein in a mild EMN group involved in melanocytes cell and related melanoma. Diacylglycerol kinase (DGKB), TGc domain-containing protein (Tgm2), structural maintenance of chromosomes 4 (SMC4) and mastermind-like transcriptional coactivator 2 (MAML2) were related to lipid metabolism, facilitating melanoma development in the severe-EMN group. In conclusion, these potential proteins can be used as candidate biomarkers for the monitoring of early EMN, the development of EMN, further prevention and treatment.
Collapse
|
7
|
Jia Z, Wan X. ISYNA1: An Immunomodulatory-Related Prognostic Biomarker in Colon Adenocarcinoma and Pan-Cancer. Front Cell Dev Biol 2022; 10:792564. [PMID: 35237596 PMCID: PMC8883116 DOI: 10.3389/fcell.2022.792564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Colon adenocarcinoma (COAD) is a common digestive system tumor in the world. However, the role and function of ISYNA1 (inositol-3-phosphate synthase 1) in COAD remain unclear. We aim to explore the role of ISYNA1 in pan-cancer, especially in COAD. Methods: The expression, clinical characteristic, and prognosis of ISYNA1 in pan-cancer were evaluated using the TCGA (the Cancer Genome Atlas), GTEx (the Genotype-Tissue Expression), and CCLE (Cancer Cell Line Encyclopedia). Pathway enrichment analysis of ISYNA1 was conducted using the R package “clusterProfiler.” We analyzed the correlation between the immune cell infiltration level and ISYNA1 expression using two sources of immune cell infiltration data, including the TIMER online database and ImmuCellAI database. Results: ISYNA1 was highly expressed in COAD and other cancer types compared with respective normal tissues. High ISYNA1 expression predicted poorer survival in COAD. We also found that ISYNA1 expression was positively correlated with the infiltration level of tumor-associated macrophages and tumor-associated fibroblasts in COAD. Conclusion: In conclusion, our findings revealed ISYNA1 to be a potential prognostic biomarker in COAD. High ISYNA1 expression indicates the immunosuppressive microenvironment.
Collapse
|
8
|
Role of Biomarkers in the Integrated Management of Melanoma. DISEASE MARKERS 2022; 2021:6238317. [PMID: 35003391 PMCID: PMC8739586 DOI: 10.1155/2021/6238317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022]
Abstract
Melanoma, which is an aggressive skin cancer, is currently the fifth and seventh most common cancer in men and women, respectively. The American Cancer Society reported that approximately 106,110 new cases of melanoma were diagnosed in the United States in 2021, with 7,180 people dying from the disease. This information could facilitate the early detection of possible metastatic lesions and the development of novel therapeutic techniques for melanoma. Additionally, early detection of malignant melanoma remains an objective of melanoma research. Recently, melanoma treatment has substantially improved, given the availability of targeted treatments and immunotherapy. These developments have highlighted the significance of identifying biomarkers for prognosis and predicting therapy response. Biomarkers included tissue protein expression, circulating DNA detection, and genetic alterations in cancer cells. Improved diagnostic and prognostic biomarkers are becoming increasingly relevant in melanoma treatment, with the development of newer and more targeted treatments. Here, the author discusses the aspects of biomarkers in the real-time management of patients with melanoma.
Collapse
|
9
|
Zhou S, Han Y, Li J, Pi X, Lyu J, Xiang S, Zhou X, Chen X, Wang Z, Yang R. New Prognostic Biomarkers and Drug Targets for Skin Cutaneous Melanoma via Comprehensive Bioinformatic Analysis and Validation. Front Oncol 2021; 11:745384. [PMID: 34722301 PMCID: PMC8548670 DOI: 10.3389/fonc.2021.745384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is the most aggressive and fatal type of skin cancer. Its highly heterogeneous features make personalized treatments difficult, so there is an urgent need to identify markers for early diagnosis and therapy. Detailed profiles are useful for assessing malignancy potential and treatment in various cancers. In this study, we constructed a co-expression module using expression data for cutaneous melanoma. A weighted gene co-expression network analysis was used to discover a co-expression gene module for the pathogenesis of this disease, followed by a comprehensive bioinformatics analysis of selected hub genes. A connectivity map (CMap) was used to predict drugs for the treatment of SKCM based on hub genes, and immunohistochemical (IHC) staining was performed to validate the protein levels. After discovering a co-expression gene module for the pathogenesis of this disease, we combined GWAS validation and DEG analysis to identify 10 hub genes in the most relevant module. Survival curves indicated that eight hub genes were significantly and negatively associated with overall survival. A total of eight hub genes were positively correlated with SKCM tumor purity, and 10 hub genes were negatively correlated with the infiltration level of CD4+ T cells and B cells. Methylation levels of seven hub genes in stage 2 SKCM were significantly lower than those in stage 3. We also analyzed the isomer expression levels of 10 hub genes to explore the therapeutic target value of 10 hub genes in terms of alternative splicing (AS). All 10 hub genes had mutations in skin tissue. Furthermore, CMap analysis identified cefamandole, ursolic acid, podophyllotoxin, and Gly-His-Lys as four targeted therapy drugs that may be effective treatments for SKCM. Finally, IHC staining results showed that all 10 molecules were highly expressed in melanoma specimens compared to normal samples. These findings provide new insights into SKCM pathogenesis based on multi-omics profiles of key prognostic biomarkers and drug targets. GPR143 and SLC45A2 may serve as drug targets for immunotherapy and prognostic biomarkers for SKCM. This study identified four drugs with significant potential in treating SKCM patients.
Collapse
Affiliation(s)
- Sitong Zhou
- Department of Dermatology, The First People's Hospital of Foshan, Foshan, China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Jiehua Li
- Department of Dermatology, The First People's Hospital of Foshan, Foshan, China
| | - Xiaobing Pi
- Department of Dermatology, The First People's Hospital of Foshan, Foshan, China
| | - Jin Lyu
- Department of Pathology, The First People's Hospital of Foshan, Foshan, China
| | - Shijian Xiang
- Department of Pharmacy, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xinzhu Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Chen
- Department of Burn Surgery and Skin Regeneration, The First People's Hospital of Foshan, Foshan, China
| | - Zhengguang Wang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ronghua Yang
- Department of Burn Surgery and Skin Regeneration, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
10
|
Chhabra G, Singh CK, Guzmán-Pérez G, Ndiaye MA, Iczkowski KA, Ahmad N. Anti-melanoma effects of concomitant inhibition of SIRT1 and SIRT3 in Braf V600E/Pten NULL mice. J Invest Dermatol 2021; 142:1145-1157.e7. [PMID: 34597611 PMCID: PMC9199498 DOI: 10.1016/j.jid.2021.08.434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Novel therapeutic strategies are required for the effective and lasting treatment of metastatic melanoma, one of the deadliest skin malignancies. In this study, we determined the anti-melanoma efficacy of 4'-bromo-resveratrol (4'-BR), which is a small molecule dual inhibitor of SIRT1 and SIRT3 in a BrafV600E/PtenNULL mouse model that recapitulates human disease, including metastases. Tumors were induced by topical application of 4-hydroxy-tamoxifen on shaved backs of 10-week-old mice, and the effects of 4'-BR (5-30 mg/kg b.wt.; intraperitoneally; 3d/week for 5 weeks) were assessed on melanoma development and progression. We found that 4'-BR at a dose of 30 mg/kg significantly reduced size and volume of primary melanoma tumors, as well as lung metastasis, with no adverse effects. Further, mechanistic studies on tumors showed significant modulation in markers of proliferation, survival and melanoma progression. As SIRT1 and SIRT3 are linked to immunomodulation, we performed differential gene expression analysis via NanoString PanCancer Immune Profiling panel (770 genes). Our data demonstrated that 4'-BR significantly downregulated genes related to metastasis-promotion, chemokine/cytokine-regulation, and innate/adaptive immune functions. Overall, inhibition of SIRT1 and SIRT3 by 4'-BR is a promising anti-melanoma therapy with anti-metastatic and immunomodulatory activities warranting further detailed studies, including clinical investigations.
Collapse
Affiliation(s)
- Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Chandra K Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Kenneth A Iczkowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA; William S. Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
11
|
Liu M, Wang Y, Miettinen JJ, Kumari R, Majumder MM, Tierney C, Bazou D, Parsons A, Suvela M, Lievonen J, Silvennoinen R, Anttila P, Dowling P, O'Gorman P, Tang J, Heckman CA. S100 Calcium Binding Protein Family Members Associate With Poor Patient Outcome and Response to Proteasome Inhibition in Multiple Myeloma. Front Cell Dev Biol 2021; 9:723016. [PMID: 34485305 PMCID: PMC8415228 DOI: 10.3389/fcell.2021.723016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Despite several new therapeutic options, multiple myeloma (MM) patients experience multiple relapses and inevitably become refractory to treatment. Insights into drug resistance mechanisms may lead to the development of novel treatment strategies. The S100 family is comprised of 21 calcium binding protein members with 17 S100 genes located in the 1q21 region, which is commonly amplified in MM. Dysregulated expression of S100 family members is associated with tumor initiation, progression and inflammation. However, the relationship between the S100 family and MM pathogenesis and drug response is unknown. In this study, the roles of S100 members were systematically studied at the copy number, transcriptional and protein level with patients’ survival and drug response. Copy number analysis revealed a predominant pattern of gains occurring in S100 genes clustering in the 1q21 locus. In general, gains of genes encoding S100 family members associated with worse patient survival. However, S100 gene copy number and S100 gene expression did not necessarily correlate, and high expression of S100A4 associated with poor patient survival. Furthermore, integrated analysis of S100 gene expression and ex vivo drug sensitivity data showed significant negative correlation between expression of S100 family members (S100A8, S100A9, and S100A12) and sensitivity to some drugs used in current MM treatment, including proteasome inhibitors (bortezomib, carfilzomib, and ixazomib) and histone deacetylase inhibitor panobinostat. Combined proteomic and pharmacological data exhibited significant negative association of S100 members (S100A4, S100A8, and S100A9) with proteasome inhibitors and panobinostat. Clinically, the higher expression of S100A4 and S100A10 were significantly linked to shorter progression free survival in patients receiving carfilzomib-based therapy. The results indicate an association and highlight the potential functional importance of S100 members on chromosome 1q21 in the development of MM and resistance to established myeloma drugs, including proteasome inhibitors.
Collapse
Affiliation(s)
- Minxia Liu
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Yinyin Wang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juho J Miettinen
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Romika Kumari
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Muntasir Mamun Majumder
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Ciara Tierney
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland.,Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Despina Bazou
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Alun Parsons
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Minna Suvela
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Juha Lievonen
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Raija Silvennoinen
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Pekka Anttila
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland
| | - Paul Dowling
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Peter O'Gorman
- Department of Hematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland - FIMM, HiLIFE - Helsinki Institute of Life Science, iCAN Digital Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Campagna R, Bacchetti T, Salvolini E, Pozzi V, Molinelli E, Brisigotti V, Sartini D, Campanati A, Ferretti G, Offidani A, Emanuelli M. Paraoxonase-2 Silencing Enhances Sensitivity of A375 Melanoma Cells to Treatment with Cisplatin. Antioxidants (Basel) 2020; 9:E1238. [PMID: 33297311 PMCID: PMC7762224 DOI: 10.3390/antiox9121238] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 01/10/2023] Open
Abstract
Melanoma represents the most aggressive skin cancer, being responsible for the majority of deaths related with these neoplasms. Despite chemotherapy represents a frontline approach for management of the advanced stages of the disease, it displayed poor response rates and short-term efficacy due to melanoma cell resistance. Therefore, the discovery of molecules that can be used for effective targeted therapy of melanoma is crucial. In this study, we evaluated the impact of paraoxonase-2 (PON2) silencing on proliferation, viability, and resistance to treatment of the A375 melanoma cell line with chemotherapeutic drugs dacarbazine (DTIC) and cisplatin (CDDP). Due to the enzymes ability to counteract oxidative stress, we also evaluated the effect of enzyme knockdown on reactive oxygen species (ROS) production in cells treated with CDDP. The data reported clearly demonstrated that PON2 knockdown led to a significant reduction of cell proliferation and viability, as well as to an enhancement of A375 sensitivity to CDDP treatment. Moreover, enzyme downregulation was associated with an increase of ROS production in CDDP-treated cells. Although further analyses will be necessary to understand how PON2 could influence melanoma cell metabolism and phenotype, our results seem to suggest that the enzyme may serve as an interesting molecular target for effective melanoma treatment.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
| | - Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (V.B.); (A.C.); (A.O.)
| | - Valerio Brisigotti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (V.B.); (A.C.); (A.O.)
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
| | - Anna Campanati
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (V.B.); (A.C.); (A.O.)
| | - Gianna Ferretti
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (E.M.); (V.B.); (A.C.); (A.O.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (R.C.); (E.S.); (V.P.); (G.F.); (M.E.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
13
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
14
|
Taylor EM, Byrum SD, Edmondson JL, Wardell CP, Griffin BG, Shalin SC, Gokden M, Makhoul I, Tackett AJ, Rodriguez A. Proteogenomic analysis of melanoma brain metastases from distinct anatomical sites identifies pathways of metastatic progression. Acta Neuropathol Commun 2020; 8:157. [PMID: 32891176 PMCID: PMC7487560 DOI: 10.1186/s40478-020-01029-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Melanoma brain metastases (MBM) portend a grim prognosis and can occur in up to 40% of melanoma patients. Genomic characterization of brain metastases has been previously carried out to identify potential mutational drivers. However, to date a comprehensive multi-omics approach has yet to be used to analyze brain metastases. In this case report, we present an unbiased proteogenomics analyses of a patient's primary skin cancer and three brain metastases from distinct anatomic locations. We performed molecular profiling comprised of a targeted DNA panel and full transcriptome as well as proteomics using mass spectrometry. Phylogeny demonstrated that all MBMs shared a SMARCA4 mutation and deletion of 12q. Proteogenomics identified multiple pathways upregulated in the MBMs compared to the primary tumor. The protein, PIK3CG, was present in many of these pathways and had increased gene expression in metastatic melanoma tissue from the cancer genome atlas data. Proteomics demonstrated PIK3CG levels were significantly increased in all 3 MBMs and this finding was further validated by immunohistochemistry. In summary, this case report highlights the potential role of proteogenomics in identifying pathways involved in metastatic tumor progression. Furthermore, our multi-omics approach can be considered to aid in precision oncology efforts and provide avenues for therapeutic innovation.
Collapse
Affiliation(s)
- Erin M Taylor
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Jacob L Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Christopher P Wardell
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Brittany G Griffin
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sara C Shalin
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Issam Makhoul
- Department of Medical Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
15
|
Zhou L, Sheng W, Jia C, Shi X, Cao R, Wang G, Lin Y, Zhu F, Dong Q, Dong M. Musashi2 promotes the progression of pancreatic cancer through a novel ISYNA1-p21/ZEB-1 pathway. J Cell Mol Med 2020; 24:10560-10572. [PMID: 32779876 PMCID: PMC7521282 DOI: 10.1111/jcmm.15676] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Our previous studies found overexpression of Musashi2 (MSI2) conduced to the progression and chemoresistance of pancreatic cancer (PC) by negative regulation of Numb and wild type p53 (wtp53). Now, we further investigated the novel signalling involved with MSI2 in PC. We identified inositol‐3‐phosphate synthase 1 (ISYNA1) as a novel tumour suppressor regulated by MSI2. High MSI2 and low ISYNA1 expression were prevalently observed in 91 PC tissues. ISYNA1 expression was negatively correlated with MSI2 expression, T stage, vascular permeation and poor prognosis in PC patients. What's more, patients expressed high MSI2 and low ISYNA1 level had a significant worse prognosis. And in wtp53 Capan‐2 and SW1990 cells, ISYNA1 was downregulated by p53 silencing. ISYNA1 silencing promoted cell proliferation and cell cycle by inhibiting p21 and enhanced cell migration and invasion by upregulating ZEB‐1. However, MSI2 silencing upregulated ISYNA1 and p21 but downregulated ZEB‐1, which can be rescued by ISYNA1 silencing. Moreover, reduction of cell migration and invasion resulting from MSI2 silencing was significantly reversed by ISYNA1 silencing. In summary, MSI2 facilitates the development of PC through a novel ISYNA1‐p21/ZEB‐1 pathway, which provides new gene target therapy for PC.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - WeiWei Sheng
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Chao Jia
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Xiaoyang Shi
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Rongxian Cao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Guosen Wang
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yiheng Lin
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| | - Fang Zhu
- Division of Cardiology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Qi Dong
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Hua X, Zhang H, Jia J, Chen S, Sun Y, Zhu X. Roles of S100 family members in drug resistance in tumors: Status and prospects. Biomed Pharmacother 2020; 127:110156. [PMID: 32335300 DOI: 10.1016/j.biopha.2020.110156] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy and targeted therapy can significantly improve survival rates in cancer, but multiple drug resistance (MDR) limits the efficacy of these approaches. Understanding the molecular mechanisms underlying MDR is crucial for improving drug efficacy and clinical outcomes of patients with cancer. S100 proteins belong to a family of calcium-binding proteins and have various functions in tumor development. Increasing evidence demonstrates that the dysregulation of various S100 proteins contributes to the development of drug resistance in tumors, providing a basis for the development of predictive and prognostic biomarkers in cancer. Therefore, a combination of biological inhibitors or sensitizers of dysregulated S100 proteins could enhance therapeutic responses. In this review, we provide a detailed overview of the mechanisms by which S100 family members influence resistance of tumors to cancer treatment, with a focus on the development of effective strategies for overcoming MDR.
Collapse
Affiliation(s)
- Xin Hua
- Southeast University Medical College, Nanjing, 210009, China.
| | - Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, Southeast University Medical College, Yancheng, 224000, China.
| | - Jinfang Jia
- Southeast University Medical College, Nanjing, 210009, China.
| | - Shanshan Chen
- Southeast University Medical College, Nanjing, 210009, China.
| | - Yue Sun
- Southeast University Medical College, Nanjing, 210009, China.
| | - Xiaoli Zhu
- Southeast University Medical College, Nanjing, 210009, China; Department of Respiratory Medicine, Zhongda Hospital of Southeast University Medical College, Nanjing, 210009, China.
| |
Collapse
|
17
|
S100A13 promotes senescence-associated secretory phenotype and cellular senescence via modulation of non-classical secretion of IL-1α. Aging (Albany NY) 2020; 11:549-572. [PMID: 30670674 PMCID: PMC6366962 DOI: 10.18632/aging.101760] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
Senescent cells display the senescence-associated secretory phenotype (SASP) which plays important roles in cancer, aging, etc. Cell surface-bound IL-1α is a crucial SASP factor and acts as an upstream regulator to induce NF-κB activity and subsequent SASP genes transcription. IL-1α exports to cell surface via S100A13 protein-dependent non-classical secretory pathway. However, the status of this secretory pathway during cellular senescence and its role in cellular senescence remain unknown. Here, we show that S100A13 is up-regulated in various types of cellular senescence. S100A13 overexpression increases cell surface-associated IL-1α level, NF-κB activity and subsequent multiple SASP genes induction, whereas S100A13 knockdown has an opposite role. We also exhibit that Cu2+ level is elevated during cellular senescence. Lowering Cu2+ level decreases cell surface-bound IL-1α level, NF-κB activity and SASP production. Moreover, S100A13 overexpression promotes oncogene Ras-induced cell senescence (Ras OIS), Doxorubicin-induced cancer cell senescence (TIS) and replicative senescence, while impairment of non-classical secretory pathway of IL-1α delays cellular senescence. In addition, intervention of S100A13 affects multiple SASP and cellular senescence mediators including p38, γ-H2AX, and mTORC1. Taken together, our findings unveil a critical role of the non-classical secretory pathway of IL-1α in cellular senescence and SASP regulation.
Collapse
|
18
|
Kim Y, Gil J, Pla I, Sanchez A, Betancourt LH, Lee B, Appelqvist R, Ingvar C, Lundgren L, Olsson H, Baldetorp B, Kwon HJ, Oskolás H, Rezeli M, Doma V, Kárpáti S, Szasz AM, Németh IB, Malm J, Marko-Varga G. Protein Expression in Metastatic Melanoma and the Link to Disease Presentation in a Range of Tumor Phenotypes. Cancers (Basel) 2020; 12:E767. [PMID: 32213878 PMCID: PMC7140007 DOI: 10.3390/cancers12030767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.
Collapse
Affiliation(s)
- Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Skåne University Hospital Lund, 222 42 Lund, Sweden;
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Henriett Oskolás
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Viktoria Doma
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - A. Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Department of Bioinformatics, Semmelweis University, 1091 Budapest, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary;
| | - Johan Malm
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
19
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 2019; 66:435-455. [PMID: 31378850 DOI: 10.1007/s12020-019-02030-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
Collapse
Affiliation(s)
- Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Guo X, Li HH, Hu J, Duan YX, Ren WG, Guo Q, Liu PH, Cui Y, Liu LF, Chen MF, Chen JB, Zu XB. ISYNA1 is overexpressed in bladder carcinoma and regulates cell proliferation and apoptosis. Biochem Biophys Res Commun 2019; 519:246-252. [PMID: 31495492 DOI: 10.1016/j.bbrc.2019.08.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bladder cancer (BCa) is one of the most common urological malignancies. While Inositol-3-phosphate synthase 1 (ISYNA1) expression and function were largely unknown in BCa. We aimed to study the expression and role of ISYNA1 in bladder cancer and investigate its potential mechanisms via ingenuity pathway analysis (IPA). METHODS ISYNA1 expression was quantified by qRT-PCR in bladder cancer cell lines as well as normal urothelial cell line. Knocking down ISYNA1 gene in BCa T24 cells was achieved by shRNA lentivirus transfection. MTT and Celigo assay were used to assess cell proliferation. Flow cytometry was applied to test cell cycle and apoptosis. In addition, IPA was performed using PrimeView™ Human Gene Expression Array. Imunohistochemistry (IHC) was performed in BCa patient tissue microarray to verify the association between ISYNA1 expression and patients' clinicopathological features. RESULTS ISYNA1 was significantly upregulated in BCa samples vs. para-tumor tissues. Higher expression were significantly associated with tumor T stage and lymph node metastasis of bladder cancer patients. Similarly, it was elevated in BCa cell lines (5637 and T24) compared with SVHUC cells. Knocking down ISYNA1 significantly decreased proliferation, induced apoptosis and cell cycle arrest in T24 cells. Furthermore, IPA indicated that ISYNA1 was an important regulatory factors and related networks were involved in multiple functional processes. CONCLUSION Taken together, current study suggest ISYNA1 promotes proliferation and inhibit apoptosis in bladder cancer cells, and its expression correlated with BCa patients' clinicopathological features. Thus, ISYNA1 may serve as a potential biomarker and therapeutic target for BCa patients.
Collapse
Affiliation(s)
- Xi Guo
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China; Department of Urology, Hunan Provincial People's Hospital, Changsha, 410005, PR China
| | - Hui-Huang Li
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Yi-Xing Duan
- Department of Urology, Hunan Provincial People's Hospital, Changsha, 410005, PR China
| | - Wei-Gang Ren
- Department of Urology, Hunan Provincial People's Hospital, Changsha, 410005, PR China
| | - Qiong Guo
- Department of Urology, Hunan Provincial People's Hospital, Changsha, 410005, PR China
| | - Pei-Hua Liu
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Long-Fei Liu
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Min-Feng Chen
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Jin-Bo Chen
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China.
| | - Xiong-Bing Zu
- Department of Urology, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
21
|
Xue M, Shang J, Chen B, Yang Z, Song Q, Sun X, Chen J, Yang J. Identification of Prognostic Signatures for Predicting the Overall Survival of Uveal Melanoma Patients. J Cancer 2019; 10:4921-4931. [PMID: 31598164 PMCID: PMC6775505 DOI: 10.7150/jca.30618] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/20/2019] [Indexed: 12/28/2022] Open
Abstract
Uveal melanoma (UM) is an aggressive cancer which has a high percentage of metastasis and with a poor prognosis. Identifying the potential prognostic markers of uveal melanoma may provide information for early detection of metastasis and treatment. In this work, we analyzed 80 uveal melanoma samples from The Cancer Genome Atlas (TCGA). We developed an 18-gene signature which can significantly predict the prognosis of UM patients. Firstly, we performed a univariate Cox regression analysis to identify significantly prognostic genes in uveal melanoma (P<0.01). Then the glmnet Cox analysis was used to generate a powerful prognostic gene model. Further, we established a risk score formula for every patient based on the 18-gene prognostic model with multivariate Cox regression. We stratified patients into high- and low-risk subtypes with median risk score and found that patients in high-risk group had worse prognosis than patients in low-risk group. Multivariate Cox regression analysis demonstrated that 18-gene model risk score was independent of clinical prognostic factors. We identified four genes whose mutations were closely to UM patients' prognosis or risk score. We also explored the relationship between copy number variation and risk score and found that high risk group showed more chromosome aberrations than low risk group. Gene Set Enrichment Analysis (GSEA) analysis showed that the different biological pathways and functions between low and high risk group. In summary, our findings constructed an 18-gene signature for estimating overall survival (OS) of UM. Patients were categorized into two subtypes based on the risk score and we found that high risk group showed more chromosome aberrations than low risk group.
Collapse
Affiliation(s)
- Meijuan Xue
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Shang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Binglin Chen
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zuyi Yang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Shizijie Campus: NO.188, Shizijie Road, Suzhou 215006, P. R. China
| | - Qian Song
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai 200032, China
| | - Xiaoyan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianing Chen
- Department of Hematology, The First Affiliated Hospital of Soochow University, Shizijie Campus: NO.188, Shizijie Road, Suzhou 215006, P. R. China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
|
23
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
24
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
25
|
Melanoma proteomics suggests functional differences related to mutational status. Sci Rep 2019; 9:7217. [PMID: 31076580 PMCID: PMC6510784 DOI: 10.1038/s41598-019-43512-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the most lethal cutaneous cancer. New drugs have recently appeared; however, not all patients obtain a benefit of these new drugs. For this reason, it is still necessary to characterize melanoma at molecular level. The aim of this study was to explore the molecular differences between melanoma tumor subtypes, based on BRAF and NRAS mutational status. Fourteen formalin-fixed, paraffin-embedded melanoma samples were analyzed using a high-throughput proteomics approach, combined with probabilistic graphical models and Flux Balance Analysis, to characterize these differences. Proteomics analyses showed differences in expression of proteins related with fatty acid metabolism, melanogenesis and extracellular space between BRAF mutated and BRAF non-mutated melanoma tumors. Additionally, probabilistic graphical models showed differences between melanoma subgroups at biological processes such as melanogenesis or metabolism. On the other hand, Flux Balance Analysis predicts a higher tumor growth rate in BRAF mutated melanoma samples. In conclusion, differential biological processes between melanomas showing a specific mutational status can be detected using combined proteomics and computational approaches.
Collapse
|
26
|
Abstract
The S100 protein family has attracted great interest in the field of biomarker research, and a growing number of studies reveal dysregulation of many of the 21 S100 protein isoforms in various human diseases. In cancer, S100 protein expression has been associated with tumor growth, progression, and response to treatment. Some S100 proteins are also considered candidate therapeutic targets. From an analytical perspective, multiplexed analysis of the family-wide S100 protein expression is challenging due to their relatively small size and high-sequence identity. Here we describe a mass spectrometry method using selected reaction monitoring which enables the targeted, multiplexed detection and quantitation of the entire S100 protein family in cell lines and tissue samples.
Collapse
Affiliation(s)
- Juan Martínez-Aguilar
- Red de Apoyo a la Investigación-Universidad Nacional Autónoma de México-INCMNSZ, Mexico City, Mexico
| | - Mark P Molloy
- Bowel Cancer and Biomarker Research, Kolling Institute, Royal North Shore Hospital, The University of Sydney, St. Leonards, Australia.
| |
Collapse
|
27
|
Bai Y, Li LD, Li J, Lu X. Prognostic values of S100 family members in ovarian cancer patients. BMC Cancer 2018; 18:1256. [PMID: 30558666 PMCID: PMC6296138 DOI: 10.1186/s12885-018-5170-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/02/2018] [Indexed: 01/06/2023] Open
Abstract
Objective Exhibiting high consistence in sequence and structure, S100 family members are interchangeable in function and they show a wide spectrum of biological processes, including proliferation, apoptosis, migration, inflammation and differentiation and the like. While the prognostic value of each individual S100 in ovarian cancer is still elusive. In current study, we investigated the prognostic value of S100 family members in the ovarian cancer. Methods We used the Kaplan Meier plotter (KM plotter) database, in which updated gene expression data and survival information are from 1657 ovarian cancer patients, to assess the relevance of individual S100 family mRNA expression to overall survival in various ovarian cancer subtypes and different clinicopathological features. Results It was found that high expression of S100A2 (HR = 1.18, 95%CI: 1.04–1.34, P = 0.012), S100A7A (HR = 1.3, 95%CI: 1.04–1.63, P = 0.02),S100A10 (HR = 1.2, 95%CI: 1.05–1.38, P = 0.0087),and S100A16 (HR = 1.23, 95%CI: 1–1.51, P = 0.052) were significantly correlated with worse OS in all ovarian cancer patients, while the expression of S100A1 (HR = 0.87, 95%CI: 0.77–0.99, P = 0.039), S100A3 (HR = 0.83, 95%CI: 0.71–0.96, P = 0.0011), S100A5 (HR = 0.84, 95%CI: 0.73–0.97, P = 0.017), S100A6 (HR = 0.84, 95%CI: 0.72–0.98, P = 0.024), S100A13 (HR = 0.85, 95%CI:0.75–0.97, P = 0.014) and S100G (HR = 0.86, 95%CI: 0.74–0.99, P = 0.041) were associated with better prognosis. Furthermore, we assessed the prognostic value of S100 expression in different subtypes and the clinicopathological features, including pathological grades, clinical stages and TP53 mutation status, of ovarian cancer patients. Conclusion Comprehensive understanding of the S100 family members may have guiding significance for the diagnosis and outcome of ovarian cancer patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-5170-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Bai
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Liang-Dong Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200030, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200030, China
| | - Jun Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Xin Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China. .,Present Address: Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, No.419, Fangxie Road, Shanghai, 200011, China.
| |
Collapse
|
28
|
The miR-31-SOX10 axis regulates tumor growth and chemotherapy resistance of melanoma via PI3K/AKT pathway. Biochem Biophys Res Commun 2018; 503:2451-2458. [DOI: 10.1016/j.bbrc.2018.06.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 12/22/2022]
|
29
|
Azimi A, Tuominen R, Costa Svedman F, Caramuta S, Pernemalm M, Frostvik Stolt M, Kanter L, Kharaziha P, Lehtiö J, Hertzman Johansson C, Höiom V, Hansson J, Egyhazi Brage S. Silencing FLI or targeting CD13/ANPEP lead to dephosphorylation of EPHA2, a mediator of BRAF inhibitor resistance, and induce growth arrest or apoptosis in melanoma cells. Cell Death Dis 2017; 8:e3029. [PMID: 29048432 PMCID: PMC5596587 DOI: 10.1038/cddis.2017.406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022]
Abstract
A majority of patients with BRAF-mutated metastatic melanoma respond to therapy with BRAF inhibitors (BRAFi), but relapses are common owing to acquired resistance. To unravel BRAFi resistance mechanisms we have performed gene expression and mass spectrometry based proteome profiling of the sensitive parental A375 BRAF V600E-mutated human melanoma cell line and of daughter cell lines with induced BRAFi resistance. Increased expression of two novel resistance candidates, aminopeptidase-N (CD13/ANPEP) and ETS transcription factor FLI1 was observed in the BRAFi-resistant daughter cell lines. In addition, increased levels of the previously reported resistance mediators, receptor tyrosine kinase ephrine receptor A2 (EPHA2) and the hepatocyte growth factor receptor MET were also identified. The expression of these proteins was assessed in matched tumor samples from melanoma patients obtained before BRAFi and after disease progression. MET was overexpressed in all progression samples while the expression of the other candidates varied between the individual patients. Targeting CD13/ANPEP by a blocking antibody induced apoptosis in both parental A375- and BRAFi-resistant daughter cells as well as in melanoma cells with intrinsic BRAFi resistance and led to dephosphorylation of EPHA2 on S897, previously demonstrated to cause inhibition of the migratory capacity. AKT and RSK, both reported to induce EPHA2 S897 phosphorylation, were also dephosphorylated after inhibition of CD13/ANPEP. FLI1 silencing also caused decreases in EPHA2 S897 phosphorylation and in total MET protein expression. In addition, silencing of FLI1 sensitized the resistant cells to BRAFi. Furthermore, we show that BRAFi in combination with the multi kinase inhibitor dasatinib can abrogate BRAFi resistance and decrease both EPHA2 S897 phosphorylation and total FLI1 protein expression. This is the first report presenting CD13/ANPEP and FLI1 as important mediators of resistance to BRAF inhibition with potential as drug targets in BRAFi refractory melanoma.
Collapse
Affiliation(s)
- Alireza Azimi
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rainer Tuominen
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Fernanda Costa Svedman
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stefano Caramuta
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pernemalm
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Frostvik Stolt
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Kanter
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pedram Kharaziha
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Veronica Höiom
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hansson
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Suzanne Egyhazi Brage
- Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Abstract
Although the emergence of proteomics as an independent branch of science is fairly recent, within a short period of time it has contributed substantially in various disciplines. The tool of mass spectrometry has become indispensable in the analysis of complex biological samples. Clinical applications of proteomics include detection of predictive and diagnostic markers, understanding mechanism of action of drugs as well as resistance mechanisms against them and assessment of therapeutic efficacy and toxicity of drugs in patients. Here, we have summarized the major contributions of proteomics towards the study of melanoma, which is a deadly variety of skin cancer with a high mortality rate.
Collapse
Affiliation(s)
- Deepanwita Sengupta
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA; Department of Pathology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205, USA
| |
Collapse
|
31
|
Zhong J, Liu C, Chen YJ, Zhang QH, Yang J, Kang X, Chen SR, Wen GB, Zu XY, Cao RX. The association between S100A13 and HMGA1 in the modulation of thyroid cancer proliferation and invasion. J Transl Med 2016; 14:80. [PMID: 27008379 PMCID: PMC4804518 DOI: 10.1186/s12967-016-0824-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/02/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND S100A13 and high mobility group A (HMGA1) are known to play essential roles in the carcinogenesis and progression of cancer. However, the correlation between S100A13 and HMGA1 during cancer progression is not yet well understood. In this study, we determined the effects of S100A13 on HMGA1 expression in thyroid cancer cells and examined the role of HMGA1 in thyroid cancer progression. METHODS Stable ectopic S100A13 expression TT cellular proliferation was evaluated by nude mice xenografts assays. The effect of lentivirus-mediated S100A13 knockdown on thyroid cancer cellular oncogenic properties were evaluated by MTT, colony formation assays and transwell assays in TPC1 and SW579 cells. The effect of siRNA-mediated HMGA1 knockdown on thyroid cancer cellular proliferation and invasion were evaluated by MTT, colony formation assays and transwell assays. The tissue microarray was performed to investigate the correlation between S100A13 and HMGA1 expression in tumor tissues. RESULTS The ectopic expression of S100A13 could increase tumor growth in a TT cell xenograft mouse model. Moreover, lentivirus-mediated S100A13 knockdown led to the inhibition of cellular oncogenic properties in thyroid cancer cells, and HMGA1 was found to be involved in the effect of S100A13 on thyroid cancer growth and invasion. Furthermore, siRNA-mediated HMGA1 knockdown was proved to inhibit the growth of TPC1 cells and invasive abilities of SW579 cells. Clinically, it was revealed that both S100A13 and HMGA1 showed a higher expression levels in thyroid cancer cases compared with those in matched normal thyroid cases (P = 0.007 and P = 0.000); S100A13 and HMGA1 expressions were identified to be positively correlated (P = 0.004, R = 0.316) when analyzed regardless of thyroid cancer types. CONCLUSIONS This is the first report for the association between HMGA1 and S100A13 expression in the modulation of thyroid cancer growth and invasion. Those results would provide an essential insight into the effect of S100A13 on carcinogenesis of thyroid tumor, rending S100A13 to be potential biological marker for the diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Chang Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.,Department of Metabolism and Endocrinology, The First People's Hospital of Chenzhou, Luojiajing Road, 102, 423000, Chenzhou, Hunan, People's Republic of China
| | - Ya-jun Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.,Department of Metabolism and Endocrinology, The Second Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Qing-hai Zhang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Jing Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Xuan Kang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Si-Rui Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Ge-bo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.,Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Xu-yu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| | - Ren-xian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China. .,Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
32
|
Hallums DP, Gomez R, Doyle AP, Viet CT, Schmidt BL, Jeske NA. RAF Kinase Inhibitory Protein Expression and Phosphorylation Profiles in Oral Cancers. CLINICS IN SURGERY 2016; 1:1100. [PMID: 28529999 PMCID: PMC5436720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Raf Kinase Inhibitory Protein (RKIP) expression has been profiled for a number of unique tissue cancers. However, certain tissues have not been explored, and oral and oropharyngeal cancers stand out as high priority targets, given their relatively high incidence, high morbidity rate, and in many cases, preventable nature. The purpose of this study was to examine changes in RKIP expression and phosphorylation in tissues resected from oral cancer patients, and compare to results generated from immortalized cell lines raised from primary oral cancer tissues, including oral squamous cell carcinoma line 4 (SCC4) and human squamous cell carcinoma line 3 (HSC3). Out of 4 human samples collected from male and female patients across various ages with variable risk factors, we observed an across the board reduction in RKIP expression. Two human samples demonstrated a significant increase in phosphorylated RKIP when normalized to total RKIP, however all 4 were increased when normalized to total cellular protein. The immortalized oral cancer cell culture HSC3 revealed significant increases in phosphorylated RKIP with no change in total RKIP expression, while line SCC4 demonstrated an increase in both total and phosphorylated RKIP. Results presented here indicate that oral cancers behave similarly to other cancers in terms of changes in RKIP expression and phosphorylation, although immortalized cell line expression profiles significantly differ from human tissue biopsies.
Collapse
Affiliation(s)
- DP Hallums
- Departments of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, USA
| | - R Gomez
- Departments of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, USA
| | - AP Doyle
- Departments of Pharmacology, University of Texas Health Science Center at San Antonio, USA
| | - CT Viet
- Department of Oral Maxillofacial Surgery, New York University, USA,Department of Oral Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University, USA
| | - BL Schmidt
- Department of Oral Maxillofacial Surgery, New York University, USA,Department of Oral Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University, USA
| | - NA Jeske
- Departments of Oral and Maxillofacial Surgery, University of Texas Health Science Center at San Antonio, USA,Departments of Pharmacology, University of Texas Health Science Center at San Antonio, USA,Departments of Physiology, University of Texas Health Science Center at San Antonio, USA,Correspondence: Nathaniel A. Jeske, Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center of San Antonio, Center for Biomedical Neuroscience, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA, Tel: (210) 567-3466; Fax: (210) 567-2995;
| |
Collapse
|
33
|
Karimpour-Fard A, Epperson LE, Hunter LE. A survey of computational tools for downstream analysis of proteomic and other omic datasets. Hum Genomics 2015; 9:28. [PMID: 26510531 PMCID: PMC4624643 DOI: 10.1186/s40246-015-0050-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022] Open
Abstract
Proteomics is an expanding area of research into biological systems with significance for biomedical and therapeutic applications ranging from understanding the molecular basis of diseases to testing new treatments, studying the toxicity of drugs, or biotechnological improvements in agriculture. Progress in proteomic technologies and growing interest has resulted in rapid accumulation of proteomic data, and consequently, a great number of tools have become available. In this paper, we review the well-known and ready-to-use tools for classification, clustering and validation, interpretation, and generation of biological information from experimental data. We suggest some rules of thumb for the reader on choosing the best suitable learning method for a particular dataset and conclude with pathway and functional analysis and then provide information about submitting final results to a repository.
Collapse
Affiliation(s)
- Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - L Elaine Epperson
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Lawrence E Hunter
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
34
|
Welinder C, Pawłowski K, Sugihara Y, Yakovleva M, Jönsson G, Ingvar C, Lundgren L, Baldetorp B, Olsson H, Rezeli M, Jansson B, Laurell T, Fehniger T, Döme B, Malm J, Wieslander E, Nishimura T, Marko-Varga G. A protein deep sequencing evaluation of metastatic melanoma tissues. PLoS One 2015; 10:e0123661. [PMID: 25874936 PMCID: PMC4395420 DOI: 10.1371/journal.pone.0123661] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/21/2015] [Indexed: 12/13/2022] Open
Abstract
Malignant melanoma has the highest increase of incidence of malignancies in the western world. In early stages, front line therapy is surgical excision of the primary tumor. Metastatic disease has very limited possibilities for cure. Recently, several protein kinase inhibitors and immune modifiers have shown promising clinical results but drug resistance in metastasized melanoma remains a major problem. The need for routine clinical biomarkers to follow disease progression and treatment efficacy is high. The aim of the present study was to build a protein sequence database in metastatic melanoma, searching for novel, relevant biomarkers. Ten lymph node metastases (South-Swedish Malignant Melanoma Biobank) were subjected to global protein expression analysis using two proteomics approaches (with/without orthogonal fractionation). Fractionation produced higher numbers of protein identifications (4284). Combining both methods, 5326 unique proteins were identified (2641 proteins overlapping). Deep mining proteomics may contribute to the discovery of novel biomarkers for metastatic melanoma, for example dividing the samples into two metastatic melanoma "genomic subtypes", ("pigmentation" and "high immune") revealed several proteins showing differential levels of expression. In conclusion, the present study provides an initial version of a metastatic melanoma protein sequence database producing a total of more than 5000 unique protein identifications. The raw data have been deposited to the ProteomeXchange with identifiers PXD001724 and PXD001725.
Collapse
Affiliation(s)
- Charlotte Welinder
- Oncology and Pathology, Dept. of Clinical Sciences, Lund University, Lund, Sweden
- Centre of Excellence in Biological and Medical Mass Spectrometry “CEBMMS”, Biomedical Centre D13, Lund University, Lund, Sweden
| | | | - Yutaka Sugihara
- Oncology and Pathology, Dept. of Clinical Sciences, Lund University, Lund, Sweden
| | - Maria Yakovleva
- National Korányi Institute of Pulmonology, Budapest, Hungary
- Clinical Protein Science & Imaging, Biomedical Centre, Dept. of Biomedical Engineering, Lund University, Lund, Sweden
| | - Göran Jönsson
- Oncology and Pathology, Dept. of Clinical Sciences, Lund University, Lund, Sweden
| | - Christian Ingvar
- Surgery, Dept. of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Lotta Lundgren
- Oncology and Pathology, Dept. of Clinical Sciences, Lund University, Lund, Sweden
- Skåne University Hospital, Lund, Sweden
| | - Bo Baldetorp
- Oncology and Pathology, Dept. of Clinical Sciences, Lund University, Lund, Sweden
| | - Håkan Olsson
- Oncology and Pathology, Dept. of Clinical Sciences, Lund University, Lund, Sweden
- Skåne University Hospital, Lund, Sweden
- Cancer Epidemiology, Dept. of Clinical Sciences, Lund University, Lund, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Dept. of Biomedical Engineering, Lund University, Lund, Sweden
| | - Bo Jansson
- Oncology and Pathology, Dept. of Clinical Sciences, Lund University, Lund, Sweden
| | - Thomas Laurell
- Centre of Excellence in Biological and Medical Mass Spectrometry “CEBMMS”, Biomedical Centre D13, Lund University, Lund, Sweden
- Clinical Protein Science & Imaging, Biomedical Centre, Dept. of Biomedical Engineering, Lund University, Lund, Sweden
| | - Thomas Fehniger
- Oncology and Pathology, Dept. of Clinical Sciences, Lund University, Lund, Sweden
- Centre of Excellence in Biological and Medical Mass Spectrometry “CEBMMS”, Biomedical Centre D13, Lund University, Lund, Sweden
| | - Balazs Döme
- National Korányi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Johan Malm
- Section for Clinical Chemistry, Dept. of Laboratory Medicine, Lund University, Skåne University Hospital in Malmö, Malmö, Sweden
| | - Elisabet Wieslander
- Oncology and Pathology, Dept. of Clinical Sciences, Lund University, Lund, Sweden
| | - Toshihide Nishimura
- Oncology and Pathology, Dept. of Clinical Sciences, Lund University, Lund, Sweden
- Centre of Excellence in Biological and Medical Mass Spectrometry “CEBMMS”, Biomedical Centre D13, Lund University, Lund, Sweden
- First Dept. of Surgery, Tokyo Medical University, Tokyo, Japan
| | - György Marko-Varga
- Centre of Excellence in Biological and Medical Mass Spectrometry “CEBMMS”, Biomedical Centre D13, Lund University, Lund, Sweden
- Clinical Protein Science & Imaging, Biomedical Centre, Dept. of Biomedical Engineering, Lund University, Lund, Sweden
- First Dept. of Surgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
35
|
A multiplexed, targeted mass spectrometry assay of the S100 protein family uncovers the isoform-specific expression in thyroid tumours. BMC Cancer 2015; 15:199. [PMID: 25880590 PMCID: PMC4391164 DOI: 10.1186/s12885-015-1217-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
Background Mounting evidence demonstrates a causal role for S100 proteins in tumourigenesis and several S100 isoforms have shown utility as biomarkers of several types of cancer. The S100 family is comprised of 21 small isoforms, many of them implicated in important cellular functions such as proliferation, motility and survival. Furthermore, in vivo experiments have proven the role of S100 proteins in tumour growth and disease progression, while other studies have shown their prognostic value and involvement in resistance to chemotherapy drugs. Taken together, all these aspects highlight S100 proteins as potential therapeutic targets and as a promising panel of cancer biomarkers. In this work, we have developed a mass spectrometry (MS)-based method for the multiplexed and specific analysis of the entire S100 protein family in tumour tissues and have applied it to investigate the expression of S100 isoforms in the context of thyroid cancer, the main endocrine malignancy. Methods Selected Reaction Monitoring (SRM)-MS and stable isotope labelling/label-free analysis were employed to investigate the expression of the 21 S100 protein isoforms in thyroid tissue samples. Specimens included 9 normal thyroid tissues and 27 tumour tissues consisting of 9 follicular adenomas (FA), 8 follicular carcinomas (FTC) and 10 papillary carcinomas (PTC). Results The multiplexed and targeted mass spectrometry method led to the detection of eleven S100 protein isoforms across all tissues. Label- and label-free analyses showed the same significant differences and results were confirmed by western blot. S100A6, S100A11 and its putative interaction partner annexin A1 showed the highest overexpression in PTC compared to normal thyroid. S100A13 was also elevated in PTC. Reduced S100A4 expression was observed in FA compared to all other tissues. FA and FTC showed reduction of S100A10 and annexin A2 expression. Conclusions Targeted mass spectrometry allows the multiplexed and specific analysis of S100 protein isoforms in tumour tissue specimens. It revealed S100A13 as a novel candidate PTC biomarker. Results show that S100A6, S100A11 and Annexin A1 could help discriminate follicular and papillary tumours. The diagnostic and functional significance of S100A4 and S100A10 reduction in follicular tumours requires further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1217-x) contains supplementary material, which is available to authorized users.
Collapse
|