1
|
Sun J, Hosen MB, Deng WM, Tian A. Epithelial Polarity Loss and Multilayer Formation: Insights Into Tumor Growth and Regulatory Mechanisms. Bioessays 2025; 47:e202400189. [PMID: 39737681 DOI: 10.1002/bies.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Epithelial tissues serve as critical barriers in metazoan organisms, maintaining structural integrity and facilitating essential physiological functions. Epithelial cell polarity regulates mechanical properties, signaling, and transport, ensuring tissue organization and homeostasis. However, the barrier function is challenged by cell turnover during development and maintenance. To preserve tissue integrity while removing dying or unwanted cells, epithelial tissues employ cell extrusion. This process removes both dead and live cells from the epithelial layer, typically causing detached cells to undergo apoptosis. Transformed cells, however, often resist apoptosis, leading to multilayered structures and early carcinogenesis. Malignant cells may invade neighboring tissues. Loss of cell polarity can lead to multilayer formation, cell extrusion, and invasion. Recent studies indicate that multilayer formation in epithelial cells with polarity loss involves a mixture of wild-type and mutant cells, leading to apical or basal accumulation. The directionality of accumulation is regulated by mutations in polarity complex genes. This phenomenon, distinct from traditional apical or basal extrusion, exhibits similarities to the endophytic or exophytic growth observed in human tumors. This review explores the regulation and implications of these phenomena for tissue biology and disease pathology.
Collapse
Affiliation(s)
- Jie Sun
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Md Biplob Hosen
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Aiguo Tian
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
2
|
Qu HQ, Hakonarson H. Navigating Complexity in Postural Orthostatic Tachycardia Syndrome. Biomedicines 2024; 12:1911. [PMID: 39200375 PMCID: PMC11352109 DOI: 10.3390/biomedicines12081911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/02/2024] Open
Abstract
Postural Orthostatic Tachycardia Syndrome (POTS) affects up to 1% of the US population, predominantly women, and is characterized by a complex, elusive etiology and heterogeneous phenotypes. This review delves into the intricate physiology and etiology of POTS, decoding the roles of the sinoatrial node, the autonomic nervous system, fluid dynamics, and the interplay between the immune and endocrine systems. It further examines key contributing factors such as dysautonomia, thoracic hypovolemia, autonomic neuropathies, sympathetic denervation, autoimmune responses, and associations with conditions such as small-fiber neuropathy and mast cell activation syndrome. Given the numerous mysteries surrounding POTS, we also cautiously bring attention to sinoatrial node and myocardial function, particularly in how the heart responds to stress despite exhibiting a normal cardiac phenotype at rest. The potential of genomic research in elucidating the underlying mechanisms of POTS is emphasized, suggesting this as a valuable approach that is likely to improve our understanding of the genetic underpinnings of POTS. The review introduces a tentative classification system for the etiological factors in POTS, which seeks to capture the condition's diverse aspects by categorizing various etiological factors and acknowledging co-occurring conditions. This classification, while aiming to enhance understanding and optimize treatment targets, is presented as a preliminary model needing further study and refinement. This review underscores the ongoing need for research to unravel the complexities of POTS and to develop targeted therapies that can improve patient outcomes.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Division of Human Genetics, Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191104, USA
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
3
|
Yao Z, Chen J, Wang Y, Cao L. Bioinformatics analysis and validation of HAUS6 as a key prognostic gene in squamous cell carcinoma of the tongue. Arch Oral Biol 2024; 164:106000. [PMID: 38759391 DOI: 10.1016/j.archoralbio.2024.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE To explore the expression of HAUS6 in squamous cell carcinoma of the tongue (TSCC) and its relationship with the clinicopathological features of patients, and to further provide new ideas and therapeutic targets for curing TSCC. DESIGN The Cancer Genome Atlas (TCGA) database was used to screen for differentially expressed genes (DEGs) between TSCC and normal tissues and survival analysis. DEGs of HAUS6 were screened and analyzed for GO, KEGG and GSEA enrichment. Exploring the correlation of HAUS6 with immune cell infiltration and immune checkpoint-related genes. The expression of HAUS6 in tumor and paraneoplastic tissues was confirmed by immunohistochemistry and Western Blot. RESULTS Analysis of the TCGA database results showed that expression of HAUS6 mRNA was significantly enhanced and correlated with overall survival (OS, p < 0.05) in TSCC. HAUS6 expression correlated with the level of immune cell infiltration and immune checkpoint-related genes. Immunohistochemistry and Western Blot confirmed that the expression level of HAUS6 protein was significantly higher in tumor tissues than in paraneoplastic tissues, and that tumor size and hypo-differentiation were higher in the HAUS6 high expression group than in the low expression group in TSCC (p < 0.05). CONCLUSIONS In conclusion, these analyses suggest that HAUS6 can act as an independent predictor of prognosis (p < 0.05) and high HAUS6 expression is strongly associated with poor prognosis.
Collapse
Affiliation(s)
- Zhuoyue Yao
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China
| | - Jing Chen
- Pathology Teaching and Research Laboratory, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yue Wang
- Pathology Teaching and Research Laboratory, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Liyu Cao
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; Pathology Teaching and Research Laboratory, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
4
|
Wang J, Wang H, Ding Y, Jiao X, Zhu J, Zhai Z. NET-related gene signature for predicting AML prognosis. Sci Rep 2024; 14:9115. [PMID: 38643300 PMCID: PMC11032381 DOI: 10.1038/s41598-024-59464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is a malignant blood cancer with a high mortality rate. Neutrophil extracellular traps (NETs) influence various tumor outcomes. However, NET-related genes (NRGs) in AML had not yet received much attention. This study focuses on the role of NRGs in AML and their interaction with the immunological microenvironment. The gene expression and clinical data of patients with AML were downloaded from the TCGA-LAML and GEO cohorts. We identified 148 NRGs through the published article. Univariate Cox regression was used to analyze the association of NRGs with overall survival (OS). The least absolute shrinkage and selection operator were utilized to assess the predictive efficacy of NRGs. Kaplan-Meier plots visualized survival estimates. ROC curves assessed the prognostic value of NRG-based features. A nomogram, integrating clinical information and prognostic scores of patients, was constructed using multivariate logistic regression and Cox proportional hazards regression models. Twenty-seven NRGs were found to significantly impact patient OS. Six NRGs-CFTR, ENO1, PARVB, DDIT4, MPO, LDLR-were notable for their strong predictive ability regarding patient survival. The ROC values for 1-, 3-, and 5-year survival rates were 0.794, 0.781, and 0.911, respectively. In the training set (TCGA-LAML), patients in the high NRG risk group showed a poorer prognosis (p < 0.001), which was validated in two external datasets (GSE71014 and GSE106291). The 6-NRG signature and corresponding nomograms exhibit superior predictive accuracy, offering insights for pre-immune response evaluation and guiding future immuno-oncology treatments and drug selection for AML patients.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
- Department of Hematology, Tongling People's Hospital, Tongling, 244000, Anhui, China
| | - Huiping Wang
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Yangyang Ding
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xunyi Jiao
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Jinli Zhu
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China
| | - Zhimin Zhai
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
- Center of Hematology Research, Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
5
|
Wang T, Wu Z, Bi Y, Wang Y, Zhao C, Sun H, Wu Z, Tan Z, Zhang H, Wei H, Yan W. PARVB promotes malignant melanoma progression and is enhanced by hypoxic conditions. Transl Oncol 2024; 42:101861. [PMID: 38301409 PMCID: PMC10847701 DOI: 10.1016/j.tranon.2023.101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024] Open
Abstract
Beta-Parvin (PARVB) is an actin-binding protein with functionality in extracellular matrix binding. Recent studies suggest its potential as a biomarker for various cancers, given its role in governing several malignancies. Yet, its involvement and modulatory mechanisms in malignant melanoma remain under-explored. In this research, we undertook a comprehensive pan-cancer analysis centered on PARVB. We probed its aberrant expression and prognostic implications, and assessed correlations between PARVB expression and immunocyte infiltration. This expression was subsequently corroborated using clinical samples. Both in vitro and in vivo, we discerned the functional ramifications of PARVB on melanoma. Furthermore, we scrutinized how HIF-1α/2α modulates PARVB and initiated a preliminary investigation into potential downstream pathways influenced by PARVB. Our results illuminate that elevated PARVB expression manifests across various tumors and significantly influences the prognosis of multiple cancers, emphasizing its peculiar expression and prognostic relevance in melanoma. Augmented PARVB levels were inversely proportional to immunocyte penetration in melanoma. Silencing PARVB curtailed cellular proliferation, migration, and invasion in vitro and decelerated tumor expansion in vivo. Notably, hypoxic conditions, triggering HIF-1α/2α activation, appear to elevate PARVB expression by anchoring to the hypoxia-specific responsive element within the PARVB promoter. Enhanced PARVB levels seem intertwined with the activation of cellular proliferation circuits and the damping of inflammatory trajectories. Collectively, these revelations posit PARVB as a potential prognostic indicator and therapeutic linchpin for malignant melanoma.
Collapse
Affiliation(s)
- Ting Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhiqiang Wu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yifeng Bi
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yao Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Chenglong Zhao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Haitao Sun
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhipeng Wu
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Zhen Tan
- Department of General Surgery, General Hospital of Western Theater Command PLA, Chengdu 610083, China
| | - Hao Zhang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China; Department of Orthopedics, Naval Medical Center of CPLA, Second Military Medical University, Shanghai 200052, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| |
Collapse
|
6
|
Tian A, Wang X, Xu Y, Morejon V, Huang Y, Nwapuda C, Deng W. EGFR signaling controls directionality of epithelial multilayer formation upon loss of cell polarity. EMBO J 2023; 42:e113856. [PMID: 37953688 PMCID: PMC10711663 DOI: 10.15252/embj.2023113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Apical-basal polarity is maintained by distinct protein complexes that reside in membrane junctions, and polarity loss in monolayered epithelial cells can lead to formation of multilayers, cell extrusion, and/or malignant overgrowth. Yet, how polarity loss cooperates with intrinsic signals to control directional invasion toward neighboring epithelial cells remains elusive. Using the Drosophila ovarian follicular epithelium as a model, we found that posterior follicle cells with loss of lethal giant larvae (lgl) or Discs large (Dlg) accumulate apically toward germline cells, whereas cells with loss of Bazooka (Baz) or atypical protein kinase C (aPKC) expand toward the basal side of wildtype neighbors. Further studies revealed that these distinct multilayering patterns in the follicular epithelium were determined by epidermal growth factor receptor (EGFR) signaling and its downstream target Pointed, a zinc-finger transcription factor. Additionally, we identified Rho kinase as a Pointed target that regulates formation of distinct multilayering patterns. These findings provide insight into how cell polarity genes and receptor tyrosine kinase signaling interact to govern epithelial cell organization and directional growth that contribute to epithelial tumor formation.
Collapse
Affiliation(s)
- Aiguo Tian
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
- Tulane Aging CenterTulane University School of MedicineNew OrleansLAUSA
| | - Xian‐Feng Wang
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Yuting Xu
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Virginia Morejon
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Yi‐Chun Huang
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Chidi Nwapuda
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
| | - Wu‐Min Deng
- Department of Biochemistry and Molecular BiologyTulane University School of Medicine, Louisiana Cancer Research CenterNew OrleansLAUSA
- Tulane Aging CenterTulane University School of MedicineNew OrleansLAUSA
| |
Collapse
|
7
|
Shi H, Pan Y, Xiang G, Wang M, Huang Y, He L, Wang J, Fang Q, Li L, Liu Z. A novel NET-related gene signature for predicting DLBCL prognosis. J Transl Med 2023; 21:630. [PMID: 37716978 PMCID: PMC10504796 DOI: 10.1186/s12967-023-04494-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy. Neutrophil extracellular traps (NETs) are pathogen-trapping structures in the tumor microenvironment that affect DLBCL progression. However, the predictive function of NET-related genes (NRGs) in DLBCL has received little attention. This study aimed to investigate the interaction between NRGs and the prognosis of DLBCL as well as their possible association with the immunological microenvironment. METHODS The gene expression and clinical data of patients with DLBCL were downloaded from the Gene Expression Omnibus database. We identified 148 NRGs through the manual collection of literature. GSE10846 (n = 400, GPL570) was used as the training dataset and divided into training and testing sets in a 7:3 ratio. Univariate Cox regression analysis was used to identify overall survival (OS)-related NETs, and the least absolute shrinkage and selection operator was used to evaluate the predictive efficacy of the NRGs. Kaplan-Meier plots were used to visualize survival functions. Receiver operating characteristic (ROC) curves were used to assess the prognostic predictive ability of NRG-based features. A nomogram containing the clinical information and prognostic scores of the patients was constructed using multivariate logistic regression and Cox proportional risk regression models. RESULTS We identified 36 NRGs that significantly affected patient overall survival (OS). Eight NRGs (PARVB, LYZ, PPARGC1A, HIF1A, SPP1, CDH1, S100A9, and CXCL2) were found to have excellent predictive potential for patient survival. For the 1-, 3-, and 5-year survival rates, the obtained areas under the receiver operating characteristic curve values were 0.8, 0.82, and 0.79, respectively. In the training set, patients in the high NRG risk group presented a poorer prognosis (p < 0.0001), which was validated using two external datasets (GSE11318 and GSE34171). The calibration curves of the nomogram showed that it had excellent predictive ability. Moreover, in vitro quantitative real-time PCR (qPCR) results showed that the mRNA expression levels of CXCL2, LYZ, and PARVB were significantly higher in the DLBCL group. CONCLUSIONS We developed a genetic risk model based on NRGs to predict the prognosis of patients with DLBCL, which may assist in the selection of treatment drugs for these patients.
Collapse
Affiliation(s)
- Huizhong Shi
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China
| | - Yiming Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
| | - Guifen Xiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Mingwei Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
| | - Yusong Huang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Liu He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
| | - Jue Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China
| | - Qian Fang
- Stomatology Center, Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310000, China
| | - Ling Li
- Department of Blood Transfusion, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Qingyang District, Chengdu, 610031, Sichuan, China.
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China.
- Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, 610052, Sichuan, China.
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Liu Y, Wu Z, Fu Z, Han Y, Wang J, Zhang Y, Liang B, Tao Y, Zhang Y, Shen C, Xu Y, Yin S, Chen B, Liu Y, Pan H, Liang Z, Wu K. A predictive model of immune infiltration and prognosis of head and neck squamous cell carcinoma based on cell adhesion-related genes: including molecular biological validation. Front Immunol 2023; 14:1190678. [PMID: 37691922 PMCID: PMC10484396 DOI: 10.3389/fimmu.2023.1190678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background Focal adhesion serves as a bridge between tumour cells and the extracellular matrix (ECM) and has multiple roles in tumour invasion, migration, and therapeutic resistance. However, studies on focal adhesion-related genes (FARGs) in head and neck squamous cell carcinoma (HNSCC) are limited. Methods Data on HNSCC samples were obtained from The Cancer Genome Atlas and GSE41613 datasets, and 199 FARGs were obtained from the Molecular Signatures database. The integrated datasets' dimensions were reduced by the use of cluster analysis, which was also used to classify patients with HNSCC into subclusters. A FARG signature model was developed and utilized to calculate each patient's risk score using least extreme shrinkage and selection operator regression analysis. The risk score was done to quantify the subgroups of all patients. We evaluated the model's value for prognostic prediction, immune infiltration status, and therapeutic response in HNSCC. Preliminary molecular and biological experiments were performed to verify these results. Results Two different HNSCC molecular subtypes were identified according to FARGs, and patients with C2 had a shorter overall survival (OS) than those with C1. We constructed an FARG signature comprising nine genes. We constructed a FARG signature consisting of nine genes. Patients with higher risk scores calculated from the FARG signature had a lower OS, and the FARG signature was considered an independent prognostic factor for HNSCC in univariate and multivariate analyses. FARGs are associated with immune cell invasion, gene mutation status, and chemosensitivity. Finally, we observed an abnormal overexpression of MAPK9 in HNSCC tissues, and MAPK9 knockdown greatly impeded the proliferation, migration, and invasion of HNSCC cells. Conclusion The FARG signature can provide reliable prognostic prediction for patients with HNSCC. Apart from that, the genes in this model were related to immune invasion, gene mutation status, and chemosensitivity, which may provide new ideas for targeted therapies for HNSCC.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Zhechen Wu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Ziyue Fu
- Anhui Medical University, Hefei, Anhui, China
| | - Yanxun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | | | - Yanqiang Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Bingyu Liang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Ye Tao
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Yuchen Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | | | - Yidan Xu
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Siyue Yin
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bangjie Chen
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yehai Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Haifeng Pan
- Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhang Liang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Kaile Wu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Chang C, Yang Y, Zhou L, Baiyin B, Liu Z, Guo L, Ma F, Wang J, Chai Y, Shi C, Zhang W. Candidate Genes and Gene Networks Change with Age in Japanese Black Cattle by Blood Transcriptome Analysis. Genes (Basel) 2023; 14:504. [PMID: 36833431 PMCID: PMC9956108 DOI: 10.3390/genes14020504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Age is an important physiological factor that affects the metabolism and immune function of beef cattle. While there have been many studies using the blood transcriptome to study the effects of age on gene expression, few have been reported on beef cattle. To this end, we used the blood transcriptomes of Japanese black cattle at different ages as the study subjects and screened 1055, 345, and 1058 differential expressed genes (DEGs) in the calf vs. adult, adult vs. old, and calf vs. old comparison groups, respectively. The weighted co-expression network consisted of 1731 genes. Finally, blue, brown, and yellow age-specific modules were obtained, in which genes were enriched in signaling pathways related to growth and development and immune metabolic dysfunction, respectively. Protein-protein interaction (PPI) analysis showed gene interactions in each specific module, and 20 of the highest connectivity genes were chosen as potential hub genes. Finally, we identified 495, 244, and 1007 genes by exon-wide selection signature (EWSS) analysis of different comparison groups. Combining the results of hub genes, we found that VWF, PARVB, PRKCA, and TGFB1I1 could be used as candidate genes for growth and development stages of beef cattle. CORO2B and SDK1 could be used as candidate marker genes associated with aging. In conclusion, by comparing the blood transcriptome of calves, adult cattle, and old cattle, the candidate genes related to immunity and metabolism affected by age were identified, and the gene co-expression network of different age stages was constructed. It provides a data basis for exploring the growth, development, and aging of beef cattle.
Collapse
Affiliation(s)
- Chencheng Chang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanda Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Le Zhou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Batu Baiyin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fengying Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jie Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Chai
- College of Agronomy Animal Husbandry and Bioengineering, Xing’an Vocational and Technical College, Ulanhot 137400, China
| | - Caixia Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| |
Collapse
|
10
|
Ain U, Firdaus H. Parvin: A hub of intracellular signalling pathways regulating cellular behaviour and disease progression. Acta Histochem 2022; 124:151935. [PMID: 35932544 DOI: 10.1016/j.acthis.2022.151935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
α-actinin superfamily houses the family of parvins, comprising α, β and γ isoforms in the vertebrates and a single orthologue in the invertebrates. Parvin as an adaptor protein is a member of the ternary IPP-complex including Integrin Linked Kinase (ILK) and particularly-interesting-Cys-His-rich protein (PINCH). Each of the complex proteins showed a conserved lineage and was principally used by the evolutionarily primitive integrin-adhesome machinery to regulate cellular behaviour and signalling pathways. Parvin facilitated integrin mediated integration of the extracellular matrix with cytoskeletal framework culminating in regulation of cellular adhesion and spreading, cytoskeleton reorganisation and cell survival. Studies have established role of parvin in pregnancy, lactation, matrix degradation, blood vessel formation and in several diseases such as cancer, NAFLD and cardiac diseases etc. This review narrates the history of parvin discovery, its elaborate gene structure and conservation across phyla including cellular expression, localisation and interacting partners in vertebrates as well as invertebrates. The review further discusses how parvin acts as an epicentre of signalling pathways, its associated mutants and diseased conditions.
Collapse
Affiliation(s)
- Ushashi Ain
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India.
| |
Collapse
|
11
|
Ng EFY, Kaida A, Nojima H, Miura M. Roles of IGFBP-3 in cell migration and growth in an endophytic tongue squamous cell carcinoma cell line. Sci Rep 2022; 12:11503. [PMID: 35798794 PMCID: PMC9262895 DOI: 10.1038/s41598-022-15737-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/28/2022] [Indexed: 11/20/2022] Open
Abstract
Insulin-like growth factor binding protein-3 (IGFBP-3) is a member of the IGFBP family that has high affinity for IGFs and functions as either an oncogene or tumor suppressor in various types of cancer. We previously found that IGFBP3 mRNA levels are higher in endophytic-type human tongue squamous cell carcinoma (TSCC) that is more invasive and more prone to metastasis than exophytic and superficial types. This finding prompted us to investigate the roles of IGFBP-3 in TSCC using SAS cells, which were originally derived from endophytic-type TSCC. Specifically, we used SAS cells that express a fluorescent ubiquitination-based cell-cycle indicator (Fucci). RNA-sequencing analysis indicated that IGFBP-3 is associated with cell migration and cell growth. In fact, IGFBP-3 knockdown downregulates cell migration and causes cells to arrest in G1. This migratory potential appears to be cell cycle–independent. IGFBP-3 knockdown also reduced levels of secreted IGFBP-3; however, decreased migratory potential was not rescued by exogenous recombinant human IGFBP-3. Furthermore, ERK activity was downregulated by IGFBP-3 depletion, which suggests that MEK/ERK signaling may be involved in IGFBP-3-mediated cell migration. We therefore conclude that intracellular IGFBP-3 enhances cell migration independently of the cell cycle in TSCC with a higher metastatic potential.
Collapse
Affiliation(s)
- Esther Feng Ying Ng
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical & Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical & Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Hitomi Nojima
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical & Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Masahiko Miura
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical & Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
12
|
Cao Y, Ye D, Shen Z, Li Z, Li Q, Rong H. The Expression Profile, Clinical Application and Potential Tumor Suppressing Mechanism of hsa_circ_0001675 in Head and Neck Carcinoma. Front Oncol 2022; 12:769666. [PMID: 35600372 PMCID: PMC9121769 DOI: 10.3389/fonc.2022.769666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study sought to identify circular RNAs (circRNA) that participate in the regulation of head and neck cancer (HNC), analyze their clinical application, and predict their molecular mechanism during HNC. Materials and Methods High-throughput sequencing was used to analyze circRNA expression in 18 matched HNC and adjacent normal tissues. Target circRNAs with significantly differential expression were obtained. In 103 HNC and adjacent normal tissues, real-time fluorescent quantitative PCR (qRT-PCR) was used to verify the differential expression of target circRNAs. This data was combined with clinicopathological information to analyze the diagnostic value of target circRNA. Bioinformatics was used to find target circRNAs that acted as competitive endogenous RNA (ceRNA) and construct a circRNA-miRNA-mRNA regulatory network. mRNA expression was verified by immunohistochemistry (IHC). Results A total of 714 differentially expressed circRNAs were detected in HNC, and the low expression of hsa_circ_0001675 was particularly significant (fold change [FC] = -4.85, P = 6.305E-05). hsa_circ_0001675 had significantly lower expression in HNC than in normal tissue (P < 0.01). Low hsa_circ_0001675 expression was positively associated with tumor invasion and clinical staging (P < 0.05), and its area under the ROC curve (AUC) was 0.7776. Low hsa_circ_0001675 expression also correlated with the overall survival (OS) rate and the progression-free survival (PFS) rate of HNC patients (P < 0.001). Bioinformatics was used to construct a ceRNA network of hsa_circ_0001675 with six differentially expressed miRNAs (hsa-miR-330-5p, hsa-miR-498, hsa-miR-532-3p, hsa-miR-577, hsa-miR-1248, and hsa-miR-1305) and 411 differentially expressed mRNAs and found that the neuroactive ligand-receptor interaction, and the cAMP and calcium signaling pathways were particularly enriched. Further bioinformatics and IHC analysis showed that miR577/TESC is the likely downstream signaling pathway for hsa_circ_0001675. Conclusion This study showed that hsa_circ_0001675 is downregulated in HNC and could be an effective biomarker for HNC diagnosis. In addition, hsa_circ_0001675 may have a potential ceRNA mechanism and suppress HNC disease progression through the hsa_circ_0001675-miRNA-mRNA axis.
Collapse
Affiliation(s)
- Yujie Cao
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital , Ningbo, China
- Medical School of Ningbo University, Ningbo, China
| | - Dong Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital , Ningbo, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital , Ningbo, China
- *Correspondence: Zhisen Shen, ; Zan Li,
| | - Zan Li
- The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha, China
- *Correspondence: Zhisen Shen, ; Zan Li,
| | - Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital , Ningbo, China
| | - Hao Rong
- Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Karpińska K, Gielata M, Gwiazdowska A, Boryń Ł, Kobielak A. Catulin Based Reporter System to Track and Characterize the Population of Invasive Cancer Cells in the Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 23:ijms23010140. [PMID: 35008571 PMCID: PMC8745103 DOI: 10.3390/ijms23010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with a poor prognosis due to late diagnosis and loco-regional metastasis. Partial or more complete epithelial-mesenchymal transition (EMT) plays a role in tumor progression; however, it remains a challenge to observe the EMT in vivo, due to its transient nature. Here, we developed a novel catulin promoter-based reporter system that allows us to isolate and characterize in vivo a small fraction of invasive cancer cells. The analyses of tumors revealed that Catulin-green fluorescent protein (GFP)-positive cells were enriched in clusters of cells at the tumor invasion front. A functional genomic study unveiled genes involved in cellular movement and invasion providing a molecular profile of HNSCC invasive cells. This profile overlapped partially with the expression of signature genes related to the partial EMT available from the single cell analysis of human HNSCC specimens, highlighting the relevance of our data to the clinical disease progression state. Interestingly, we also observed upregulations of genes involved in axonal guidance-L1 cell adhesion molecule (L1CAM), neuropilin-1, semaphorins, and ephrins, indicating potential interactions of cancer cells and neuronal components of the stroma. Taken together, our data indicated that the catulin reporter system marked a population of invasive HNSCC cells with a molecular profile associated with cancer invasion.
Collapse
Affiliation(s)
- Kamila Karpińska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Mateusz Gielata
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Aleksandra Gwiazdowska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Łukasz Boryń
- Laboratory of Stem Cells, Tissue Development and Regeneration, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland;
| | - Agnieszka Kobielak
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
- Correspondence: ; Tel.: +48-22-55-43-735
| |
Collapse
|
14
|
Yu W, Wu P, Wang F, Miao L, Han B, Jiang Z. Construction of Novel Methylation-Driven Gene Model and Investigation of PARVB Function in Glioblastoma. Front Oncol 2021; 11:705547. [PMID: 34568031 PMCID: PMC8461318 DOI: 10.3389/fonc.2021.705547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is characterized by widespread genetic and transcriptional heterogeneity. Aberrant DNA methylation plays a vital role in GBM progression by regulating gene expression. However, little is known about the role of methylation and its association with prognosis in GBM. Our aim was to explore DNA methylation-driven genes (DMDGs) and provide evidence for survival prediction and individualized treatment of GBM patients. Methods Use of the MethylMix R package identified DMDGs in GBM. The prognostic signature of DMDGs based on the risk score was constructed by multivariate Cox regression analysis. Receiver operating characteristics (ROC) curve and C-index were applied to assess the predictive performance of the DMDG prognostic signature. The predictive ability of the multigene signature model was validated in TCGA and CGGA cohorts. Finally, the role of DMDG β-Parvin (PARVB) was explored in vitro. Results The prognostic signature of DMDGs was constructed based on six genes (MDK, NMNAT3, PDPN, PARVB, SERPINB1, and UPP1). The low-risk cohort had significantly better survival than the high-risk cohort (p < 0.001). The area under the curve of the ROC of the six-gene signature was 0.832, 0.927, and 0.980 within 1, 2, and 3 years, respectively. The C-index of 0.704 indicated superior specificity and sensitivity. The six-gene model has been demonstrated to be an independent prognostic factor for GBM. In addition, joint survival analysis indicated that the MDK, NMNAT3, PARVB, SERPINB1, and UPP1 genes were significantly associated with prognosis and therapeutic targets for GBM. Importantly, our DMDG prognostic model was more suitable and accurate for low-grade gliomas. Finally, we verified that PARVB induced epithelial-mesenchymal transition partially through the JAK2/STAT3 pathway, which in turn promoted GBM cell proliferation, migration, and invasion. Conclusion This study demonstrated the potential value of the prognostic signature of DMDGs and provided important bioinformatic and potential therapeutic target data to facilitate individualized treatment for GBM, and to elucidate the specific mechanism by which PARVB promotes GBM progression.
Collapse
Affiliation(s)
- Wanli Yu
- Department of Neurosurgery, Gaoxin Hospital of the First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China.,Anhui Key Laboratory of Brain Function and Diseases, Hefei, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Miao
- Central Laboratory, Gaoxin Hospital of the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiqun Jiang
- Department of Neurosurgery, Gaoxin Hospital of the First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Liu J, Li G. Identification and validation of a risk signature based on extracellular matrix-related genes in gliomas. Medicine (Baltimore) 2021; 100:e25603. [PMID: 33879726 PMCID: PMC8078288 DOI: 10.1097/md.0000000000025603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT Gliomas have the highest incidence among primary brain tumors, and the extracellular matrix (ECM) plays a vital role in tumor progression. We constructed a risk signature using ECM-related genes to predict the prognosis of patients with gliomas.mRNA and clinical data from glioma patients were downloaded from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Chinese Glioma Genome Atlas (CGGA) databases. Differentially expressed ECM-related genes were screened, and a risk signature was built using least absolute shrinkage and selection operator (LASSO) Cox regression. Cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to assess immune infiltration in different risk groups. Gene set enrichment analysis (GSEA) was performed to explore the molecular mechanisms of the genes employed in the risk score.Differentially expressed ECM-related genes were identified, and their associated regulatory mechanisms were predicted via analysis of protein-protein interaction (PPI), transcription factor (TF) regulatory and TF coexpression networks. The established risk signature considered 17 ECM-related genes. The prognosis of the high-risk group was significantly worse than that of the low-risk group. We used the CGGA database to validate the signature. CIBERSORT indicated that the levels of naive B cells, activated memory CD4 T cells, regulatory T cells, gamma delta T cells, activated NK cells, monocytes, activated dendritic cells and activated mast cells were higher in the high-risk group. The levels of plasma cells, CD8 T cells, naive CD4 T cells, resting memory CD4 T cells, M0 macrophages, M1 macrophages, resting mast cells, and neutrophils were lower in the high-risk group. Ultimately, GSEA showed that the terms intestinal immune network for IgA production, primary immunodeficiency, and ECM receptor interaction were the top 3 terms enriched in the high-risk group. The terms Wnt signaling pathway, ErbB signaling pathway, mTOR signaling pathway, and calcium signaling pathway were enriched in the low-risk group.We built a risk signature to predict glioma prognosis using ECM-related genes. By evaluating immune infiltration and biofunctions, we gained a further understanding of this risk signature. This risk signature could be an effective tool for predicting glioma prognosis.This study did not require ethical approval. We will disseminate our findings by publishing results in a peer-reviewed journal.
Collapse
|
16
|
Patel KD, Vora HH, Patel PS. Transcriptional Biomarkers in Oral Cancer: An Integrative Analysis and the Cancer Genome Atlas Validation. Asian Pac J Cancer Prev 2021; 22:371-380. [PMID: 33639650 PMCID: PMC8190349 DOI: 10.31557/apjcp.2021.22.2.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE An impervious mortality rate in oral cancer (OC) to a certain extent explains the exigencies of precise biomarkers. Therefore, the study was intended to identify OC candidate biomarkers using samples of healthy normal tissues (N=335), adjacent normal tissues (N=93) and OC tissues (N=533) from online microarray data. METHODS Differentially expressed genes (DEGs) were recognised through GeneSpring software (Fold change >4.0 and 'p' value.
Collapse
Affiliation(s)
| | | | - Prabhudas S Patel
- The Gujarat Cancer & Research Institute, Civil Hospital Campus, Asarwa, Ahmedabad-380 016, Gujarat, India.
| |
Collapse
|
17
|
Nikou S, Arbi M, Dimitrakopoulos FID, Sirinian C, Chadla P, Pappa I, Ntaliarda G, Stathopoulos GT, Papadaki H, Zolota V, Lygerou Z, Kalofonos HP, Bravou V. Integrin-linked kinase (ILK) regulates KRAS, IPP complex and Ras suppressor-1 (RSU1) promoting lung adenocarcinoma progression and poor survival. J Mol Histol 2020; 51:385-400. [PMID: 32592097 DOI: 10.1007/s10735-020-09888-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
Abstract
Integrin-linked kinase (ILK) forms a heterotrimeric protein complex with PINCH and PARVIN (IPP) in Focal Adhesions (FAs) that acts as a signaling platform between the cell and its microenvironment regulating important cancer-related functions. We aimed to elucidate the role of ILK in lung adenocarcinoma (LUADC) focusing on a possible link with KRAS oncogene. We used immunohistochemistry on human tissue samples and KRAS-driven LUADC in mice, analysis of large scale publicly available RNA sequencing data, ILK overexpression and pharmacological inhibition as well as knockdown of KRAS in lung cancer cells. ILK, PINCH1 and PARVB (IPP) proteins are overexpressed in human LUADC and KRAS-driven LUADC in mice representing poor prognostic indicators. Genes implicated in ILK signaling are significantly enriched in KRAS-driven LUADC. Silencing of KRAS, as well as, overexpression and pharmacological inhibition of ILK in lung cancer cells provide evidence of a two-way association between ILK and KRAS. Upregulation of PINCH, PARVB and Ras suppressor-1 (RSU1) expression was demonstrated in ILK overexpressing lung cancer cells in addition to a significant positive correlation between these factors in tissue samples, while KRAS silencing downregulates IPP and RSU1. Pharmacological inhibition of ILK in KRAS mutant lung cancer cells suppresses cell growth, migration, EMT and increases sensitivity to platinum-based chemotherapy. ILK promotes an aggressive lung cancer phenotype with prognostic and therapeutic value through functions that involve KRAS, IPP complex and RSU1, rendering ILK a promising biomarker and therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Sofia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | | | - Chaido Sirinian
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504, Rio, Greece
| | - Panagiota Chadla
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Ioanna Pappa
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Giannoula Ntaliarda
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 2504, Rio, Achaia, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, 2504, Rio, Achaia, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Vasiliki Zolota
- Department of Pathology, University Hospital of Patras, 26504, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | - Haralabos P Kalofonos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, 26504, Rio, Greece.,Division of Oncology, Department of Internal Medicine, University Hospital of Patras, 26504, Rio, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
18
|
Clark DJ, Schnaubelt M, Hoti N, Hu Y, Zhou Y, Gooya M, Zhang H. Impact of Increased FUT8 Expression on the Extracellular Vesicle Proteome in Prostate Cancer Cells. J Proteome Res 2020; 19:2195-2205. [PMID: 32378902 DOI: 10.1021/acs.jproteome.9b00578] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Extracellular vesicles (EVs) are involved in intercellular communication, transporting proteins and nucleic acids to proximal and distal regions. There is evidence of glycosylation influencing protein routing into EVs; however, the impact of aberrant cellular glycotransferase expression on EV protein profiles has yet to be evaluated. In this study, we paired extracellular vesicle characterization and quantitative proteomics to determine the systemic impact of altered α(1,6)fucosyltranferase (FUT8) expression on prostate cancer-derived EVs. Our results showed that increased cellular expression of FUT8 could reduce the number of vesicles secreted by prostate cancer cells as well as increase the abundance of proteins associated with cell motility and prostate cancer metastasis. In addition, overexpression of FUT8 resulted in altered glycans on select EV-derived glycoproteins. This study presents the first evidence of altered cellular glycosylation impacting EV protein profiles and provides further rationale for exploring the functional role of glycosylation in EV biogenesis and biology.
Collapse
Affiliation(s)
- David J Clark
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| | - Michael Schnaubelt
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| | - Naseruddin Hoti
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| | - Yingwei Hu
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| | - Yangying Zhou
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| | - Mahta Gooya
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore 21231, Maryland, United States
| |
Collapse
|
19
|
Zhong P, Liu L, Shen A, Chen Z, Hu X, Cai Y, Lin J, Wang B, Li J, Chen Y, Peng J. Five extracellular matrix-associated genes upregulated in oral tongue squamous cell carcinoma: An integrated bioinformatics analysis. Oncol Lett 2019; 18:5959-5967. [PMID: 31788070 PMCID: PMC6865669 DOI: 10.3892/ol.2019.10982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Despite advancements in treatment regimens, the mortality rate of patients with oral tongue squamous cell carcinoma (OTSCC) is high. In addition, the signaling pathways and oncoproteins involved in OTSCC progression remain largely unknown. Therefore, the aim of the present study was to identify specific prognostic marker for patients at a high risk of developing OTSCC. The present study used four original microarray datasets to identify the key candidate genes involved in OTSCC pathogenesis. Expression profiles of 93 OTSCC tissues and 76 normal tissues from GSE9844, GSE13601, GSE31056 and GSE75538 datasets were investigated. Differentially expressed genes (DEGs) were determined, and gene ontology enrichment and gene interactions were analyzed. The four GSE datasets reported five upregulated and six downregulated DEGs. Five upregulated genes (matrix metalloproteinase 1, 3, 10 and 12 and laminin subunit gamma 2) were localized in the extracellular region of cells and were associated with extracellular matrix disassembly. Furthermore, analysis for The Cancer Genome Atlas database revealed that the aforementioned five upregulated genes were also highly expressed in OTSCC and head and neck squamous cell carcinoma tissues. These results demonstrated that the five upregulated genes may be considered as potential prognostic biomarkers of OTSCC and may serve at understanding OTSCC progression. Upregulated DEGs may therefore represent valuable therapeutic targets to prevent or control OTSCC pathogenesis.
Collapse
Affiliation(s)
- Pingping Zhong
- Department of Orthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China.,Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhongxin Chen
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoyan Hu
- Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Yichao Cai
- Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Jie Lin
- Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Bangyan Wang
- Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Jiesen Li
- Key Laboratory of Stomatology, Fujian Province University, Fuzhou, Fujian 350002, P.R. China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, Fujian 350002, P.R. China.,Institute of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
20
|
Faccin TC, Cargnelutti JF, Rodrigues FDS, de Menezes FR, Piazer JVM, de Melo SMP, Lautert BF, Flores EF, Kommers GD. Bovine upper alimentary squamous cell carcinoma associated with bracken fern poisoning: Clinical-pathological aspects and etiopathogenesis of 100 cases. PLoS One 2018; 13:e0204656. [PMID: 30256853 PMCID: PMC6157896 DOI: 10.1371/journal.pone.0204656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 09/12/2018] [Indexed: 12/23/2022] Open
Abstract
Upper digestive tract (UDT) cancer is rare in cattle, however in Southern Brazil, the UDT squamous cell carcinomas (SCCs) are relatively common and have been associated with bracken fern consumption and the presence of papillomas. Although a theory of pathogenesis considers bovine papillomavirus type 4 (BPV-4) as a cofactor in the development of these SCCs, some aspects of the etiopathogenesis of this disease need to be more investigated. In fact, detection of BPV-4 in UDT papillomas is scarce in other regions of the world and has not been performed in Brazil. Therefore, this study had two aims: 1) to analyze the epidemiological, clinical and pathological aspects of 100 natural cases of SCCs in the UDT of cattle grazing on bracken fern (Pteridium arachnoideum) highly contaminated areas, investigating the associations between these parameters; and 2) to investigate the presence of papillomavirus DNA by polymerase chain reaction (PCR) in the UDT papillomas (n = 47) from 30 cattle that also had UDT SCCs. There were statistically significant associations between clinical signs and tumor localization in the UDT; between histological grade of differentiation and tumor localization; and a trend towards significant association between histological grade of differentiation and presence of metastases. The average age of cattle with oropharyngeal SCCs was 7.39 years, with statistically significant difference comparing to cattle with esophageal SCCs (8.6 years). No statistical association was observed among other clinical-pathological parameters (growth pattern and primary site of the tumor) analyzed. No BPV DNA was detected in papillomas by PCR. Therefore, these results suggest the possibility that papillomas of the UDT are not necessarily associated with BPV infection.
Collapse
Affiliation(s)
- Tatiane Cargnin Faccin
- Departamento de Patologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Juliana Felipetto Cargnelutti
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Fernando de Souza Rodrigues
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | | | | | - Betina Fabis Lautert
- Departamento de Patologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Eduardo Furtado Flores
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Glaucia Denise Kommers
- Departamento de Patologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
21
|
Hu MB, Hu JM, Jiang LR, Yang T, Zhu WH, Hu Y, Wu XB, Jiang HW, Ding Q. Differential expressions of integrin-linked kinase, β-parvin and cofilin 1 in high-fat diet induced prostate cancer progression in a transgenic mouse model. Oncol Lett 2018; 16:4945-4952. [PMID: 30250560 PMCID: PMC6144922 DOI: 10.3892/ol.2018.9276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022] Open
Abstract
High-fat diet induced obesity was associated with more aggressive prostate cancer. Recent research has demonstrated that integrin-linked kinase (ILK), β-parvin and downstream cofilin 1 jointly affected cancer progression. Meanwhile, these proteins were also involved in energy metabolism. Therefore, the present study was conducted to investigate the potential function of ILK, β-parvin and cofilin 1 in the high-fat diet-induced progression of prostate cancer. Transgenic mice with prostate cancer were employed, fed with different diets and sacrificed at 20 and 28 weeks. Tumor differentiation, extracapsular extension and metastasis were compared between the groups. Expression levels of ILK, β-parvin and cofilin 1 in prostate were evaluated by immunohistochemical analysis and determined by an immunoreactivity score. Public databases were applied for analysis and validation. It was detected that high-fat diet feeding promoted cancer progression in transgenic mice with prostate cancer, with increased expressions of β-parvin (P=0.038) and cofilin 1 (P=0.018). Higher expressions of ILK, β-parvin and cofilin 1 were also associated with poorer cancer differentiation. Additionally, higher mRNA levels of CFL1 were correlated with a worse disease-free survival in patients of certain subgroups from The Cancer Genome Atlas database. Further studies were warranted in discussing the potential roles of ILK, β-parvin and cofilin 1 in high-fat diet feeding induced progression of prostate cancer.
Collapse
Affiliation(s)
- Meng-Bo Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ji-Meng Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Li-Ren Jiang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 201620, P.R. China
| | - Tian Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Wen-Hui Zhu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xiao-Bo Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Hao-Wen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
22
|
High PINCH1 Expression in Human Laryngeal Carcinoma Associates with Poor Prognosis. Anal Cell Pathol (Amst) 2018; 2018:2989635. [PMID: 29755929 PMCID: PMC5884441 DOI: 10.1155/2018/2989635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022] Open
Abstract
Focal adhesion signaling to actin cytoskeleton is critically implicated in cell migration and cancer invasion and metastasis. Actin-binding proteins cofilin and N-WASP regulate actin filament turnover, and focal adhesion proteins parvins and PINCH mediate integrin signaling to the actin cytoskeleton. Altered expression of these proteins has been implicated in human cancer. This study addresses their expression and prognostic significance in human laryngeal carcinoma. Protein expressions of cofilin, N-WASP, α-parvin, β-parvin, and PINCH1 were examined by immunohistochemistry in 72 human laryngeal squamous cell carcinomas. Correlations with clinicopathological data and survival were evaluated. All proteins examined were overexpressed in human laryngeal carcinomas compared to adjacent nonneoplastic epithelium. High expression of PINCH1 was associated significantly with high grade, lymph node-positive, and advanced stage disease. Moreover, high PINCH1 expression significantly associated with poor overall and disease-free survival and high cytoplasmic PINCH1 expression was shown by multivariate analysis to independently predict poor overall survival. In conclusion, we provide novel evidence that focal adhesion signaling to actin cytoskeleton is implicated in human laryngeal carcinogenesis and PINCH1 has prognostic significance in the disease.
Collapse
|
23
|
Qiu Z, Sun W, Gao S, Zhou H, Tan W, Cao M, Huang W. A 16-gene signature predicting prognosis of patients with oral tongue squamous cell carcinoma. PeerJ 2017; 5:e4062. [PMID: 29158988 PMCID: PMC5695251 DOI: 10.7717/peerj.4062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/29/2017] [Indexed: 12/25/2022] Open
Abstract
Background Oral tongue squamous cell carcinoma (OTSCC) is the most common subtype of oral cancer. A predictive gene signature is necessary for prognosis of OTSCC. Methods Five microarray data sets of OTSCC from the Gene Expression Omnibus (GEO) and one data set from The Cancer Genome Atlas (TCGA) were obtained. Differentially expressed genes (DEGs) of GEO data sets were identified by integrated analysis. The DEGs associated with prognosis were screened in the TCGA data set by univariate survival analysis to obtain a gene signature. A risk score was calculated as the summation of weighted expression levels with coefficients by Cox analysis. The signature was used to distinguish carcinoma, estimated by receiver operator characteristic curves and the area under the curve (AUC). All were validated in the GEO and TCGA data sets. Results Integrated analysis of GEO data sets revealed 300 DEGs. A 16-gene signature and a risk score were developed after survival analysis. The risk score was effective to stratify patients into high-risk and low-risk groups in the TCGA data set (P < 0.001). The 16-gene signature was valid to distinguish the carcinoma from normal samples (AUC 0.872, P < 0.001). Discussion We identified a useful 16-gene signature for prognosis of OTSCC patients, which could be applied to clinical practice. Further studies were needed to prove the findings.
Collapse
Affiliation(s)
- Zeting Qiu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Sun
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Huaqiang Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wulin Tan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
24
|
Canaz E, Ozyurek ES, Erdem B, Aldikactioglu Talmac M, Yildiz Ozaydin I, Akbayir O, Numanoglu C, Ulker V. Preoperatively Assessable Clinical and Pathological Risk Factors for Parametrial Involvement in Surgically Treated FIGO Stage IB-IIA Cervical Cancer. Int J Gynecol Cancer 2017; 27:1722-1728. [PMID: 28617687 DOI: 10.1097/igc.0000000000001060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Determining the risk factors associated with parametrial involvement (PMI) is of paramount importance to decrease the multimodality treatment in early-stage cervical cancer. We investigated the preoperatively assessable clinical and pathological risk factors associated with PMI in surgically treated stage IB1-IIA2 cervical cancer. METHODS A retrospective cohort study of women underwent Querleu-Morrow type C hysterectomy for cervical cancer stage IB1-IIA2 from 2001 to 2015. All patients underwent clinical staging examination under anesthesia by the same gynecological oncologists during the study period. Evaluated variables were age, menopausal status, body mass index, smoking status, FIGO (International Federation of Obstetrics and Gynecology) stage, clinically measured maximal tumor diameter, clinical presentation (exophytic or endophytic tumor), histological type, tumor grade, lymphovascular space invasion, clinical and pathological vaginal invasion, and uterine body involvement. Endophytic clinical presentation was defined for ulcerative tumors and barrel-shaped morphology. Two-dimensional transvaginal ultrasonography was used to measure tumor dimensions. RESULTS Of 127 eligible women, 37 (29.1%) had PMI. On univariate analysis, endophytic clinical presentation (P = 0.01), larger tumor size (P < 0.001), lymphovascular space invasion (P < 0.001), pathological vaginal invasion (P = 0.001), and uterine body involvement (P < 0.001) were significantly different among the groups with and without PMI. In multivariate analysis endophytic clinical presentation (odds ratio, 11.34; 95% confidence interval, 1.34-95.85; P = 0.02) and larger tumor size (odds ratio, 32.31; 95% confidence interval, 2.46-423.83; P = 0.008) were the independent risk factors for PMI. Threshold of 31 mm in tumor size predicted PMI with 71% sensitivity and 75% specificity. We identified 18 patients with tumor size of more than 30 mm and endophytic presentation; 14 (77.7%) of these had PMI. CONCLUSIONS Endophytic clinical presentation and larger clinical tumor size (>3 cm) are independent risk factors for PMI in stage IB-IIA cervical cancer. Approximately 78% of the patients with a tumor size of more than 3 cm and endophytic presentation will require adjuvant chemoradiation for PMI following radical surgery. Considering clinical tumor presentation along with tumor size can enhance the physician's prediction of PMI in early-stage cervical cancer.
Collapse
Affiliation(s)
- Emel Canaz
- *Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Istanbul Kanuni Sultan Suleyman Training and Research Hospital; †Department of Obstetrics and Gynecology, Bagcilar Training and Research Hospital; and Departments of ‡Obstetrics and Gynecology and §Pathology, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Davis LS, Reimold AM. Transcriptional profiling of leukocytes from rheumatoid arthritis patients before and after anti-tumor necrosis factor therapy: A comparison of anti-nuclear antibody positive and negative subsets. Exp Ther Med 2017; 13:2183-2192. [PMID: 28565826 PMCID: PMC5443193 DOI: 10.3892/etm.2017.4265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Anti-nuclear antibodies (ANAs) may be induced in patients with rheumatoid arthritis (RA) receiving anti-tumor necrosis factor (TNF) therapy with TNF inhibitors (TNFi), etanercept, infliximab or adalimumab. In the present study, 11 patients who were TNFi drug naive were started on TNFi at a time of high disease activity. Of these, all cases were positive for rheumatoid factor and 9 cases tested were positive for anti-citrullinated peptide (anti-CCP) antibodies prior to TNFi treatment. Peripheral blood mononuclear cells (PBMCs) and serum were collected from all patients before and after TNFi therapy. Serum was assayed for ANAs over time. Total cellular RNA was extracted from PBMCs and assessed using Illumina arrays. Gene expression profiles were examined for alterations in key effector pathways. After 3 or more months on TNFi, 6 patients converted to ANA-positivity. Analysis of transcripts from patients with RA who converted to ANA-positivity after 3 months on TNFi identified complex gene expression profiles that reflected a reduction in cell adhesion, cell stress and lipid metabolism transcripts. In summary, unique transcriptional profiles in PBMCs from patients with RA were observed after TNFi therapy. This pilot study suggests that transcriptional profiling is a precise method of measuring the impact of TNFi therapies and reveals novel pathways that likely influence the immune response.
Collapse
Affiliation(s)
- Laurie S Davis
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA
| | - Andreas M Reimold
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, USA.,Rheumatology Section, Dallas VA Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
26
|
Mining for Candidate Genes Related to Pancreatic Cancer Using Protein-Protein Interactions and a Shortest Path Approach. BIOMED RESEARCH INTERNATIONAL 2015; 2015:623121. [PMID: 26613085 PMCID: PMC4647023 DOI: 10.1155/2015/623121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly malignant tumor derived from pancreas tissue and is one of the leading causes of death from cancer. Its molecular mechanism has been partially revealed by validating its oncogenes and tumor suppressor genes; however, the available data remain insufficient for medical workers to design effective treatments. Large-scale identification of PC-related genes can promote studies on PC. In this study, we propose a computational method for mining new candidate PC-related genes. A large network was constructed using protein-protein interaction information, and a shortest path approach was applied to mine new candidate genes based on validated PC-related genes. In addition, a permutation test was adopted to further select key candidate genes. Finally, for all discovered candidate genes, the likelihood that the genes are novel PC-related genes is discussed based on their currently known functions.
Collapse
|
27
|
Wang ZM, Yang DS, Liu J, Liu HB, Ye M, Zhang YF. ROCK inhibitor Y-27632 inhibits the growth, migration, and invasion of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma. Tumour Biol 2015; 37:3757-64. [PMID: 26468018 DOI: 10.1007/s13277-015-4115-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/20/2015] [Indexed: 01/01/2023] Open
Abstract
The objective of this study is to determine the effects of Rho-associated coiled-coil containing protein kinase (ROCK) inhibitor Y-27632 on the growth, invasion, and migration of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma (TSCC). The methods of the study are as follows: After being routinely cultured for 24 h, Tca8113 and CAL-27 cells were treated with Y-27632 solution. The morphological change of Y-27632-treated cells was observed under an optical microscope and an inverted microscope; MTT assay was performed to measure the optical density (OD) of cells and calculate cell growth inhibition rate; the change of apoptosis was detected by AnnexinV-FITC/PI assay; cell invasion and migration were measured by Transwell assay. The results were as follows: (1) With increasing concentration of Y-27632, cell morphology changed and cell apoptosis appeared; (2) MTT assay showed that inhibition effect of Y-27632 on Tca8113 and CAL-27 cells was enhanced with increasing concentrations and time (all P < 0.01); (3) Apoptosis showed that, compared with controls, the number of apoptosis cells in experimental groups was significantly increased (all P < 0.01). Apoptosis rate was elevated with increasing concentrations of Y-27632; (4) Transwell assay showed, after a treatment with Y-27632, the number of migrated and invaded Tca8113 and CAL-27 cells in each group was statistically different (all P < 0.01); compared with controls, the number of migrated cell in groups treated with Y-27632 was decreased and less Tca8113 and CAL-27 cells in experimental groups passed through polycarbonate membrane (all P < 0.05). The study concludes that Y-27632 can inhibit the growth, invasion, and migration of Tca8113 and CAL-27 cells, suggesting that Y-27632 may be therapeutically useful in TSCC.
Collapse
Affiliation(s)
- Zhi-Ming Wang
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Dong-Sheng Yang
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Jie Liu
- Experimental Technology Center of China Medical University, No. 77 Puhe Road, Shenbeixin District, Shenyang, 110122, China
| | - Hong-Bo Liu
- Department of Statistics, School of Public Health, China Medical University, No. 77 Puhe Road, Shenbeixin District, Shenyang, 110122, China
| | - Ming Ye
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yu-Fei Zhang
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| |
Collapse
|