1
|
Lv M, Yang X, Xu C, Song Q, Zhao H, Sun T, Liu J, Zhang Y, Sun G, Xue Y, Zhang Z. SIRT4 Promotes Pancreatic Cancer Stemness by Enhancing Histone Lactylation and Epigenetic Reprogramming Stimulated by Calcium Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412553. [PMID: 40298941 PMCID: PMC12120773 DOI: 10.1002/advs.202412553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/13/2025] [Indexed: 04/30/2025]
Abstract
Mitochondria Sirtuins including SIRT4 erase a variety of posttranslational modifications from mitochondria proteins, leading to metabolic reprogramming that acts as a tumor suppressor, oncogenic promotor, or both. However, the factors and the underlying mechanisms that stimulate and relay such a signaling cascade are poorly understood. Here, we reveal that the voltage-gated calcium channel subunit α2δ1-mediated calcium signaling can upregulate the expression of SIRT4, which is highly expressed in α2δ1-positive pancreatic tumor-initiating cells (TICs). Furthermore, SIRT4 is functionally sufficient and indispensable to promote TIC properties of pancreatic cancer cells by directly deacetylating ENO1 at K358, leading to attenuated ENO1's RNA-binding capacity, enhanced glycolytic substrate 2-PG affinity, and subsequently robust catalytic activity with boosted glycolytic ability and increased production of lactate acid. Interestingly, both SIRT4 and deacetylated mimetic of ENO1-K358 can increase the lactylation of histones at multiple sites including H3K9 and H3K18 sites, which resulted in epigenetic reprogramming to directly activate a variety of pathways that are essential for stemness. Hence, the study links α2δ1-mediated calcium signaling to SIRT4-mediated histone lactylation epigenetic reprogramming in promoting the stem cell-like properties of pancreatic cancer, which holds significant potential for the development of novel therapeutic strategies by targeting TICs of pancreatic cancer.
Collapse
Affiliation(s)
- Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell BiologyPeking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Xiaodan Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell BiologyPeking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Congcong Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell BiologyPeking University Cancer Hospital & InstituteBeijing100142P. R. China
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal CancerThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052P. R. China
| | - Qingru Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell BiologyPeking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Hailian Zhao
- Key Laboratory of RNA Biology, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
| | - Tianjiao Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell BiologyPeking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of PharmacyPeking University Cancer Hospital and InstituteBeijing100142P. R. China
| | - Yuan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell BiologyPeking University Cancer Hospital & InstituteBeijing100142P. R. China
| | - Guogui Sun
- Department of ChemoradiationAffiliated Hospital of North China University of Science and TechnologyTangshanHebei063000P.R. China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
| | - Zhiqian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell BiologyPeking University Cancer Hospital & InstituteBeijing100142P. R. China
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal CancerThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052P. R. China
| |
Collapse
|
2
|
Zhou Y, Luo Q, Gu L, Tian X, Zhao Y, Zhang Y, Wang F. Histone Deacetylase Inhibitors Promote the Anticancer Activity of Cisplatin: Mechanisms and Potential. Pharmaceuticals (Basel) 2025; 18:563. [PMID: 40283998 PMCID: PMC12030095 DOI: 10.3390/ph18040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Cisplatin is a widely used DNA-targeting anticancer drug. Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation, changing chromatin structure and accessibility of genomic DNA by the genotoxic drug. As a consequence, HDACi could promote cisplatin cytotoxicity. Hence, the underlying mechanisms by which HDACi alter the action pathways of cisplatin to promote its anticancer activity have attracted increasing attention during the past decades. It has been commonly accepted that HDACi elevate the acetylation level of histones to release genomic DNA to cisplatin attack, increasing the level of cisplatin-induced DNA lesions to promote cisplatin cytotoxicity. However, how the HDACi-enhanced cisplatin lesion on DNA impacts the downstream biological processes, and whether the promotion of HDACi to cisplatin activity is attributed to their inherent anticancer activity or to their induced elevation of histone acetylation, have been in debate. Several studies showed that HDACi-enhanced DNA lesion could promote cisplatin-induced apoptosis, cell cycle arrest, and reactive oxygen species (ROS) generation, subsequently promoting cisplatin efficiency. In contrast, HDACi-induced elimination of ROS and inhibition of ferroptosis were thought to be the main ways by which HDACi protect kidneys from acute injury caused by cisplatin. Based on our recent research, we herein review and discuss the advances in research on the mechanisms of HDACi-induced enhancement in cisplatin cytotoxicity. Given that histone acetyltransferase (HAT) inhibitors also show an effect enhancing cisplatin cytotoxicity, we will discuss the diverse roles of histone acetylation in cancer therapy in addition to the synergistic anticancer effect and potential of HDACi with genotoxic drugs and radiotherapy.
Collapse
Affiliation(s)
- Yang Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhen Gu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Tian
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- National Centre for Mass Spectrometry in Beijing, Beijing 100190, China
| |
Collapse
|
3
|
Li J, Zhao M, Fan W, Na N, Chen H, Liang M, Tai S, Yu S. SIRT4 is associated with microvascular infiltration, immune cell infiltration, and epithelial mesenchymal transition in hepatocellular carcinoma. Histol Histopathol 2025; 40:523-540. [PMID: 39082202 DOI: 10.14670/hh-18-794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
AIMS Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. In the present study, we evaluated SIRT4 expression levels in HCC specimens and investigated the relationships between SIRT4 expression levels, clinicopathological factors, and microvascular infiltration (MVI) in HCC. METHODS The expression levels of SIRT4 in 108 HCC specimens were examined by immunohistochemical staining. MVI in HCC specimens was divided into three subtypes: M0, M1, and M2. Comprehensive bioinformatics analysis was carried out to demonstrate SIRT4's biological functions and expression-related prognostic value. RESULTS The diffuse cytoplasmic expression pattern of SIRT4 was observed in all adjacent nonneoplastic liver tissues. The levels of SIRT4 were higher in HCC than in any other type of cancer and normal tissues. In addition, the expression levels of SIRT4 were significantly decreased in HCC tissues when MVI was M1 or M2 (p=0.003) but were not related to the overall clinical outcome. To explain MVI regulated by SIRT4, we also found that SIRT4 expression correlated with epithelial-mesenchymal transition (EMT) markers and CD4+ T/NK cells and downregulated cancer-associated fibroblast cells. Also, there was a significant relationship between MVI and degree of cell differentiation (p=0.003), tumor size (p<0.001), alpha fetoprotein (AFP) (p=0.001), alanine aminotransferase (ALT) (p=0.024), and γ-glutamyl transferase (γ-GT) (p=0.024). However, SIRT4 was not an independent prognostic marker of HCC. CONCLUSIONS Our results demonstrated an association between SIRT4 expression levels, MVI, immune cell infiltration, and potential biological functions, including EMT in the progression of HCC.
Collapse
Affiliation(s)
- Juan Li
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Sichuan, PR China
| | - Weiwei Fan
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
- Department of Infectious Medicine, Heilongjiang Provincial Hospital, Harbin, PR China
| | - Na Na
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hui Chen
- Department of Finance, Harbin Finance University, Harbin, PR China
| | - Ming Liang
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Sheng Tai
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| |
Collapse
|
4
|
Zhang J, Liu C, Luo W, Sun B. Role of SIRT7 in Prostate Cancer Progression: New Insight Into Potential Therapeutic Target. Cancer Med 2025; 14:e70786. [PMID: 40165597 PMCID: PMC11959159 DOI: 10.1002/cam4.70786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men worldwide, and understanding its molecular mechanisms is crucial for developing effective treatment strategies. SIRT7, a NAD+-dependent histone deacetylase, has emerged as a key regulator in PCa progression due to its roles in chromatin remodeling, DNA repair, and transcriptional regulation. Analysis of 492 PCa samples from The Cancer Genome Atlas (TCGA) via cBioPortal revealed that high SIRT7 expression is associated with poor prognosis in PCa patients. Mechanistically, SIRT7 deacetylates histone H3 at lysine 18 (H3K18Ac), a marker associated with aggressive tumors, suppressing tumor suppressor genes and promoting cancer cell proliferation and survival. Epithelial-mesenchymal transition (EMT) is a cellular biological process in which epithelial cells undergo specific molecular and morphological changes to transform into cells with characteristics of mesenchymal cells. SIRT7 also regulates EMT, and inhibiting SIRT7 in PCa cell lines reduces cell migration and invasion, highlighting its potential as a therapeutic target. In summary, the clinical significance of SIRT7 expression in PCa requires further research to elucidate its mechanisms. Developing specific inhibitors targeting SIRT7's deacetylase activity is a promising therapeutic strategy. SIRT7 plays a crucial role in regulating biological processes such as cell proliferation, cell cycle, and apoptosis in PCa through its epigenetic control of gene expression and maintenance of genomic stability. Therefore, SIRT7 may be a potential therapeutic target for PCa, and its expression could have prognostic value for PCa patients, providing important guidance for clinical monitoring and diagnosis by physicians.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| | - Chenxin Liu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| | - Wenting Luo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory DiseaseGuangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
- Guangzhou LaboratoryGuangzhouChina
| |
Collapse
|
5
|
Donisi I, Balestrieri A, Del Vecchio V, Bifulco G, Balestrieri ML, Campanile G, D’Onofrio N. l-Carnitine and Acetyl-l-Carnitine Induce Metabolism Alteration and Mitophagy-Related Cell Death in Colorectal Cancer Cells. Nutrients 2025; 17:1010. [PMID: 40290068 PMCID: PMC11946136 DOI: 10.3390/nu17061010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Colorectal cancer (CRC) remains one of the most common and deadly malignancies worldwide, driven by metabolic reprogramming and mitochondrial dysfunction, which support tumor growth and progression. Several studies showed that nutrition is a contributing factor in the prevention and management of CRC. In this context, carnitines, amino acid derivatives abundant in food of animal origin, such as meat and milk, are crucial for mitochondrial function. Recently, l-carnitine and acetyl-l-carnitine have received particular attention due to their antioxidant, anti-inflammatory, and antitumor properties. However, to date, there is no conclusive evidence on the effects of l-carnitine and acetyl-l-carnitine in CRC or the underlying molecular mechanism. Methods: In this study, we investigated in HCT 116 and HT-29 CRC cells the effects of l-carnitine and acetyl-l-carnitine on mitochondrial homeostasis by XF HS Seahorse Bioanalyzer and cell death pathways by flow cytometry and western blot assays. Results: Data showed that l-carnitine and acetyl-l-carnitine reduced cell viability (p < 0.001), modulated cellular bioenergetics, and induced oxidative stress (p < 0.001). These phenomena promoted autophagic flux and the mitophagy process via PINK1 and Parkin modulation after 72 h of treatment. Of note, the combined treatment with l-carnitine and acetyl-l-carnitine showed a synergistic effect and enhanced the effect of single carnitines on tumor cell growth and metabolic dysfunction (p < 0.05). Moreover, exposure to l-carnitine and acetyl-l-carnitine promoted CRC cell apoptosis, suggesting a mechanism involving mitophagy-related cell death. These data were associated with increased SIRT4 expression levels (p < 0.01) and the activation of AMPK signaling (p < 0.01). Conclusions: Overall, the results, by supporting the importance of nutritional factors in CRC management, highlight l-carnitine and acetyl-l-carnitine as promising agents to target CRC metabolic vulnerabilities.
Collapse
Affiliation(s)
- Isabella Donisi
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi De Crecchio 7, 80138 Naples, Italy; (I.D.); (N.D.)
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Vitale Del Vecchio
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138 Naples, Italy;
| | - Giovanna Bifulco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (G.B.); (G.C.)
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi De Crecchio 7, 80138 Naples, Italy; (I.D.); (N.D.)
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (G.B.); (G.C.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via Luigi De Crecchio 7, 80138 Naples, Italy; (I.D.); (N.D.)
| |
Collapse
|
6
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2025; 45:484-560. [PMID: 39215785 PMCID: PMC11796339 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| | - Antonello Mai
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
- Pasteur Institute, Cenci‐Bolognetti FoundationSapienza University of RomeRomeItaly
| | - Dante Rotili
- Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly
| |
Collapse
|
7
|
Ke Z, Shen K, Wang L, Xu H, Pan X, Qian Z, Wen Y, Lv T, Zhang X, Song Y. Emerging roles of mitochondrial sirtuin SIRT5 in succinylation modification and cancer development. Front Immunol 2025; 16:1531246. [PMID: 39944690 PMCID: PMC11814216 DOI: 10.3389/fimmu.2025.1531246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/13/2025] [Indexed: 05/09/2025] Open
Abstract
Succinylation represents an emerging class of post-translational modifications (PTMs), characterized by the enzymatic or non-enzymatic transfer of a negatively charged four-carbon succinyl group to the ϵ-amino group of lysine residues, mediated by succinyl-coenzyme A. Recent studies have highlighted the involvement of succinylation in various diseases, particularly cancer progression. Sirtuin 5 (SIRT5), a member of the sirtuin family, has been extensively studied for its robust desuccinylase activity, alongside its deacetylase function. To date, only a limited number of SIRT5 substrates have been identified. These substrates mediate diverse physiological processes such as glucose oxidation, fatty acid oxidation, ammonia detoxification, reactive oxygen species scavenging, anti-apoptosis, and inflammatory responses. The regulation of these activities can occur through either the same enzymatic activity acting on different substrates or distinct enzymatic activities targeting the same substrate. Aberrant expression of SIRT5 has been closely linked to tumorigenesis and disease progression; however, its role remains controversial. SIRT5 exhibits dual functionalities: it can promote tumor proliferation, metastasis, drug resistance, and metabolic reprogramming, thereby acting as an oncogene; conversely, it can also inhibit tumor cell growth and induce apoptosis, functioning as a tumor suppressor gene. This review aims to provide a comprehensive overview of the current research status of SIRT5. We discuss its structural characteristics and regulatory mechanisms, compare its functions with other sirtuin family members, and elucidate the mechanisms regulating SIRT5 activity. Specifically, we focus on the role of succinylation modification mediated by SIRT5 in tumor progression, highlighting how desuccinylation by SIRT5 modulates tumor development and delineating the underlying mechanisms involved.
Collapse
Affiliation(s)
- Zhangmin Ke
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Kaikai Shen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
| | - Hao Xu
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, China
| | - Xia Pan
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
| | - Zhenjue Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
| | - Yuting Wen
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Jiangning Hospital of Nanjing Medicine University, Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Kamal S, Babar S, Ali W, Rehman K, Hussain A, Akash MSH. Sirtuin insights: bridging the gap between cellular processes and therapeutic applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9315-9344. [PMID: 38976046 DOI: 10.1007/s00210-024-03263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
The greatest challenges that organisms face today are effective responses or detection of life-threatening environmental changes due to an obvious semblance of stress and metabolic fluctuations. These are associated with different pathological conditions among which cancer is most important. Sirtuins (SIRTs; NAD+-dependent enzymes) are versatile enzymes with diverse substrate preferences, cellular locations, crucial for cellular processes and pathological conditions. This article describes in detail the distinct roles of SIRT isoforms, unveiling their potential as either cancer promoters or suppressors and also explores how both natural and synthetic compounds influence the SIRT function, indicating promise for therapeutic applications. We also discussed the inhibitors/activators tailored to specific SIRTs, holding potential for diseases lacking effective treatments. It may uncover the lesser-studied SIRT isoforms (e.g., SIRT6, SIRT7) and their unique functions. This article also offers a comprehensive overview of SIRTs, linking them to a spectrum of diseases and highlighting their potential for targeted therapies, combination approaches, disease management, and personalized medicine. We aim to contribute to a transformative era in healthcare and innovative treatments by unraveling the intricate functions of SIRTs.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Sharon Babar
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Waqas Ali
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | | |
Collapse
|
9
|
Shen H, Qi X, Hu Y, Wang Y, Zhang J, Liu Z, Qin Z. Targeting sirtuins for cancer therapy: epigenetics modifications and beyond. Theranostics 2024; 14:6726-6767. [PMID: 39479446 PMCID: PMC11519805 DOI: 10.7150/thno.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
Sirtuins (SIRTs) are well-known as nicotinic adenine dinucleotide+(NAD+)-dependent histone deacetylases, which are important epigenetic enzymes consisting of seven family members (SIRT1-7). Of note, SIRT1 and SIRT2 are distributed in the nucleus and cytoplasm, while SIRT3, SIRT4 and SIRT5 are localized in the mitochondria. SIRT6 and SIRT7 are distributed in the nucleus. SIRTs catalyze the deacetylation of various substrate proteins, thereby modulating numerous biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Notably, accumulating evidence has recently underscored the multi-faceted roles of SIRTs in both the suppression and progression of various types of human cancers. Crucially, SIRTs have been emerging as promising therapeutic targets for cancer therapy. Thus, in this review, we not only present an overview of the molecular structure and function of SIRTs, but elucidate their intricate associations with oncogenesis. Additionally, we discuss the current landscape of small-molecule activators and inhibitors targeting SIRTs in the contexts of cancer and further elaborate their combination therapies, especially highlighting their prospective utility for future cancer drug development.
Collapse
Affiliation(s)
- Hui Shen
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xinyi Qi
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhongyu Liu
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Zheng Qin
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
10
|
Lee HJ, Hah YS, Cheon SY, Won SJ, Yim CD, Ryu S, Lee SJ, Seo JH, Park JJ. Decreased sirtuin 4 levels promote cellular proliferation and invasion in papillary thyroid carcinoma. Eur Thyroid J 2024; 13:e240079. [PMID: 39121020 PMCID: PMC11466257 DOI: 10.1530/etj-24-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/09/2024] [Indexed: 08/11/2024] Open
Abstract
Objective This study examined the effect of sirtuin 4 (SIRT4), a NAD+-dependent deacetylase, on the proliferation and progression of papillary thyroid carcinoma (PTC). Methods Data from The Cancer Genome Atlas (TCGA) were analyzed to identify SIRT4 expression in thyroid cancer. Subsequently, the correlation between SIRT4 expression and clinical characteristics was examined in 205 PTC tissue samples. In vitro assays using three human thyroid cancer cell lines (B-CPAP, TPC-1, and SNU-790) were conducted to assess the effects of regulated SIRT4 expression on cell growth, apoptosis, invasion, and migration. Furthermore, in vivo experiments were performed in a xenograft mouse model. Results Gene Expression Omnibus (GEO) and TCGA data indicated that SIRT4 expression is lower in thyroid cancer and SIRT4 downregulation is associated with poor overall survival. In PTC tissues, positive SIRT4 expression was associated with decreased extracapsular extension. In in vitro experiments using three human thyroid cancer cell lines, overexpression of SIRT4 decreased cell survival, clonogenic potential, and invasion and migratory capabilities, as well as inducing apoptosis and increasing reactive oxygen species levels. SIRT4 overexpression upregulated E-cadherin and downregulated N-cadherin, suggesting its potential involvement in the regulation of epithelial-mesenchymal transition. These findings were confirmed in vivo using a xenograft mouse model. Conclusion This study provides novel insight into the potential contribution of SIRT4 to the regulation of the pathological progression of PTC. The data suggest that SIRT4 plays a tumor-suppressive role in PTC by inhibiting growth, survival, and invasive potential. Future research should investigate the molecular mechanisms underlying these effects of SIRT4.
Collapse
Affiliation(s)
- Hyun-Jin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University College of Medicine, Jinju, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Young-Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, South Korea
| | - So Young Cheon
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, South Korea
| | - Seong Jun Won
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University College of Medicine, Jinju, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University Hospital, Jinju, South Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
| | - Chae Dong Yim
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University College of Medicine, Jinju, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University Hospital, Jinju, South Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
| | - Somi Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University College of Medicine, Jinju, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University Hospital, Jinju, South Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
| | - Seung-Jun Lee
- Department of Convergence of Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Ji Hyun Seo
- Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
- Department of Pediatrics, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Jung Je Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University College of Medicine, Jinju, South Korea
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Gyeongsang National University Hospital, Jinju, South Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
11
|
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC, Tan M. Protein lipoylation: mitochondria, cuproptosis, and beyond. Trends Biochem Sci 2024; 49:729-744. [PMID: 38714376 DOI: 10.1016/j.tibs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yeh Chin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School and Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Jiang H, He K, Tan J, Zhu D, Yang N, Wang Y, Zhang J, Li X, Ren Y, Lu Y. In vitro modeling of recurrent Dermatofibrosarcoma Protuberans: Assessment of 5-aminolevulinic acid photodynamic therapy efficacy. Photodiagnosis Photodyn Ther 2024; 47:104093. [PMID: 38641030 DOI: 10.1016/j.pdpdt.2024.104093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Dermatofibrosarcoma Protuberans (DFSP) is a rare, low-grade malignant tumor of the dermis with a high recurrence rate post-surgery. Current treatments, including surgery, radiotherapy, and targeted therapy, have limitations. Photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) is a promising non-invasive approach, but its efficacy in DFSP treatment remains underexplored. METHODS This study aimed to evaluate the anti-tumor efficacy of 5-ALA PDT using an in vitro model derived from a recurrent DFSP patient. The cells were treated with varying concentrations of 5-ALA and exposed to red light, followed by assessments of cell viability, proliferation, apoptosis, migration, invasion, angiogenesis, and expression of DFSP-related genes and proteins. RESULTS 5-ALA PDT significantly reduced DFSP cell viability in a dose-dependent manner and induced apoptosis. It also effectively inhibited cell proliferation, migration, and invasion, as well as suppressed angiogenic activity in conditioned media. Furthermore, 5-ALA PDT downregulated the expression of COL1A1 and PDGFRB, key genes in DFSP pathogenesis. CONCLUSIONS The findings provide the first evidence of 5-ALA PDT's in vitro anti-tumor efficacy against DFSP, suggesting its potential as a novel therapeutic approach for DFSP. Further studies are warranted to explore the clinical utility of 5-ALA PDT in preventing DFSP recurrence.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Kunqian He
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Tan
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ding Zhu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Nan Yang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuanyuan Wang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Junbo Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xinying Li
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuan Ren
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yuangang Lu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
13
|
Shen H, Ma W, Hu Y, Liu Y, Song Y, Fu L, Qin Z. Mitochondrial Sirtuins in Cancer: A Revisited Review from Molecular Mechanisms to Therapeutic Strategies. Theranostics 2024; 14:2993-3013. [PMID: 38773972 PMCID: PMC11103492 DOI: 10.7150/thno.97320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
The sirtuin (SIRT) family is well-known as a group of deacetylase enzymes that rely on nicotinamide adenine dinucleotide (NAD+). Among them, mitochondrial SIRTs (SIRT3, SIRT4, and SIRT5) are deacetylases located in mitochondria that regulate the acetylation levels of several key proteins to maintain mitochondrial function and redox homeostasis. Mitochondrial SIRTs are reported to have the Janus role in tumorigenesis, either tumor suppressive or oncogenic functions. Although the multi-faceted roles of mitochondrial SIRTs with tumor-type specificity in tumorigenesis, their critical functions have aroused a rising interest in discovering some small-molecule compounds, including inhibitors and activators for cancer therapy. Herein, we describe the molecular structures of mitochondrial SIRTs, focusing on elucidating their regulatory mechanisms in carcinogenesis, and further discuss the recent advances in developing their targeted small-molecule compounds for cancer therapy. Together, these findings provide a comprehensive understanding of the crucial roles of mitochondrial SIRTs in cancer and potential new therapeutic strategies.
Collapse
Affiliation(s)
- Hui Shen
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Ma
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yaowen Song
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zheng Qin
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
14
|
Tucker SA, Hu SH, Vyas S, Park A, Joshi S, Inal A, Lam T, Tan E, Haigis KM, Haigis MC. SIRT4 loss reprograms intestinal nucleotide metabolism to support proliferation following perturbation of homeostasis. Cell Rep 2024; 43:113975. [PMID: 38507411 PMCID: PMC11639042 DOI: 10.1016/j.celrep.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/03/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
The intestine is a highly metabolic tissue, but the metabolic programs that influence intestinal crypt proliferation, differentiation, and regeneration are still emerging. Here, we investigate how mitochondrial sirtuin 4 (SIRT4) affects intestinal homeostasis. Intestinal SIRT4 loss promotes cell proliferation in the intestine following ionizing radiation (IR). SIRT4 functions as a tumor suppressor in a mouse model of intestinal cancer, and SIRT4 loss drives dysregulated glutamine and nucleotide metabolism in intestinal adenomas. Intestinal organoids lacking SIRT4 display increased proliferation after IR stress, along with increased glutamine uptake and a shift toward de novo nucleotide biosynthesis over salvage pathways. Inhibition of de novo nucleotide biosynthesis diminishes the growth advantage of SIRT4-deficient organoids after IR stress. This work establishes SIRT4 as a modulator of intestinal metabolism and homeostasis in the setting of DNA-damaging stress.
Collapse
Affiliation(s)
- Sarah A Tucker
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sejal Vyas
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert Park
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aslihan Inal
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tiffany Lam
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Tan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Lee H, Yoon H. Mitochondrial sirtuins: Energy dynamics and cancer metabolism. Mol Cells 2024; 47:100029. [PMID: 38331199 PMCID: PMC10960136 DOI: 10.1016/j.mocell.2024.100029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Mitochondria are pivotal for energy regulation and are linked to cancer. Mitochondrial sirtuins, (Sirtuin) SIRT3, SIRT4, and SIRT5, play crucial roles in cancer metabolism. This review explores their impact on cellular processes, with a focus on the NAD+ interplay and the modulation of their enzymatic activities. The varied roles of SIRT3, SIRT4, and SIRT5 in metabolic adaptation and cancer are outlined, emphasizing their tumor suppressor or oncogenic nature. We propose new insights into sirtuin biology, and cancer therapeutics, suggesting an integrated proteomics and metabolomics approach for a comprehensive understanding of mitochondrial sirtuins in cancer.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
16
|
Tan YK, Castillo-Corea BRDJ, Kumar R, Lai PH, Lin SS, Wang HC. Shrimp SIRT4 promotes white spot syndrome virus replication. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109328. [PMID: 38142022 DOI: 10.1016/j.fsi.2023.109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
In WSSV pathogenesis, the molecular mechanisms and the key host factors that regulate the viral replication and morphogenesis remain unclear. However, like most viruses, WSSV is known to induce metabolic reprogramming in several metabolic pathways including the host glutamine metabolism, and several recent reports have suggested that the sirtuins SIRT3, SIRT4, and SIRT5, which belong to a family of NAD+-dependent deacetylases, play an important role in this regulation. Here we focus on characterizing LvSIRT4 from Litopenaeus vannamei and investigate its role in regulating glutamine dehydrogenase (GDH), an important enzyme that promotes glutaminolysis and viral replication. We found that LvSIRT4 silencing led to significant decreases in both WSSV gene expression and the number of viral genome copies. Conversely, overexpression of LvSIRT4 led to significant increases in the expression of WSSV genes and the WSSV genome copy number. Immunostaining in Sf9 insect cells confirmed the presence of LvSIRT4 in the mitochondria and the co-localization of LvSIRT4 and LvGDH in the same cellular locations. In vivo gene silencing of LvSIRT4 significantly reduced the gene expression of LvGDH whereas LvSIRT4 overexpression had no effect. However, neither silencing nor overexpression had any effect on the protein expression levels of LvGDH. Lastly, although GDH activity in uninfected shrimp was unchanged, the GDH enzyme activity in WSSV-infected shrimp was significantly increased after both LvSIRT4 silencing and overexpression. This suggests that although there may be no direct regulation, LvSIRT4 might still be able to indirectly regulate LvGDH via the mediation of one or more WSSV proteins that have yet to be identified.
Collapse
Affiliation(s)
- Yu Kent Tan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| | - Ping-Hung Lai
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
17
|
Bhatt V, Tiwari AK. Sirtuins, a key regulator of ageing and age-related neurodegenerative diseases. Int J Neurosci 2023; 133:1167-1192. [PMID: 35549800 DOI: 10.1080/00207454.2022.2057849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Sirtuins are Nicotinamide Adenine Dinucleotide (NAD+) dependent class ІΙΙ histone deacetylases enzymes (HDACs) present from lower to higher organisms such as bacteria (Sulfolobus solfataricus L. major), yeasts (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), humans (Homo sapiens sapiens), even in plants such as rice (Oryza sativa), thale cress (Arabidopsis thaliana), vine (Vitis vinifera L.) tomato (Solanum lycopersicum). Sirtuins play an important role in the regulation of various vital cellular functions during metabolism and ageing. It also plays a neuroprotective role by modulating several biological pathways such as apoptosis, DNA repair, protein aggregation, and inflammatory processes associated with ageing and neurodegenerative diseases. In this review, we have presented an updated Sirtuins and its role in ageing and age-related neurodegenerative diseases (NDDs). Further, this review also describes the therapeutic potential of Sirtuins and the use of Sirtuins inhibitor/activator for altering the NDDs disease pathology.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| |
Collapse
|
18
|
Erisik D, Ozdil B, Acikgoz E, Asker Abdikan CS, Yesin TK, Aktug H. Differences and Similarities between Colorectal Cancer Cells and Colorectal Cancer Stem Cells: Molecular Insights and Implications. ACS OMEGA 2023; 8:30145-30157. [PMID: 37636966 PMCID: PMC10448492 DOI: 10.1021/acsomega.3c02681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
Malignant tumors are formed by diverse groups of cancer cells. Cancer stem cells (CSCs) are a subpopulation of heterogeneous cells identified in tumors that have the ability to self-renew and differentiate. Colorectal cancer (CRC), the third most frequent malignant tumor, is progressively being supported by evidence suggesting that CSCs are crucial in cancer development. We aim to identify molecular differences between CRC cells and CRC CSCs, as well as the effects of those differences on cell behavior in terms of migration, EMT, pluripotency, morphology, cell cycle/control, and epigenetic characteristics. The HT-29 cell line (human colorectal adenocarcinoma) and HT-29 CSCs (HT-29 CD133+/CD44+ cells) were cultured for 72 h. The levels of E-cadherin, KLF4, p53, p21, p16, cyclin D2, HDAC9, and P300 protein expression were determined using immunohistochemistry staining. The migration of cells was assessed by employing the scratch assay technique. Additionally, the scanning electron microscopy method was used to examine the morphological features of the cells, and their peripheral/central elemental ratios were compared with the help of EDS. Furthermore, a Muse cell cycle kit was utilized to determine the cell cycle analysis. The HT-29 CSC group exhibited high levels of expression for E-cadherin, p53, p21, p16, cyclin D2, HDAC9, and P300, whereas KLF4 was found to be high in the HT-29. The two groups did not exhibit any statistically significant differences in the percentages of cell cycle phases. The identification of specific CSC characteristics will allow for earlier cancer detection and the development of more effective precision oncology options.
Collapse
Affiliation(s)
- Derya Erisik
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Berrin Ozdil
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
- Department
of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta 32260, Turkey
| | - Eda Acikgoz
- Department
of Histology and Embryology, Faculty of Medicine, Yuzuncu Yil University, Van 65080, Turkey
| | | | - Taha Kadir Yesin
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| | - Huseyin Aktug
- Department
of Histology and Embryology, Faculty of Medicine, Ege University, Izmir 35100, Turkey
| |
Collapse
|
19
|
Yin J, Cai G, Wang H, Chen W, Liu S, Huang G. SIRT4 is an independent prognostic factor in bladder cancer and inhibits bladder cancer growth by suppressing autophagy. Cell Div 2023; 18:9. [PMID: 37301821 DOI: 10.1186/s13008-023-00091-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Nucleosome-localized sirtuin 4 (SIRT4) was found to function as an oncogene and tumor suppressor gene in different tumors. However, the clinical significance of SIRT4 in bladder urothelial carcinoma (BLCA) has not been assessed, nor has the function of SIRT4 in BLCA been analyzed. METHODS In this study, we assessed the levels of SIRT4 protein in BLCA tissues and its association with clinicopathological parameters and overall survival time of BLCA patients by immunohistochemical staining of tissue microarrays containing 59 BLCA patients. Then, we constructed BLCA cell lines (T24) with overexpression or interference of SIRT4 by lentiviral infection. The effects of SIRT4 on the proliferation, migration and invasive ability of T24 cells were investigated using cell counting kit-8 (CCK-8) assays, wound healing assays, and migration and invasion assays. Moreover, we also investigated the effect of SIRT4 on the cell cycle and apoptosis of T24 cells. Mechanistically, we explored the relationship between SIRT4 and autophagy and its role in the inhibition of BLCA. RESULTS We found by immunohistochemistry that SIRT4 protein levels were reduced in BLCA and that lower SIRT4 levels were associated with larger tumor volumes, later T-staging and later AJCC staging in BLCA patients and were an independent prognostic factor in BLCA patients. Overexpression of SIRT4 significantly inhibited the proliferative viability, scratch healing capacity, migratory capacity, and invasive capacity of T24 cells, while interference with SIRT4 had the opposite effect. Moreover, overexpression of SIRT4 significantly inhibited the cell cycle and increased the apoptosis rate of T24 cells. Mechanistically, SIRT4 inhibits BLCA growth by suppressing autophagic flow. CONCLUSIONS Our study suggests that SIRT4 is an independent prognostic factor for BLCA and that SIRT4 plays a tumor suppressor role in BLCA. This suggests a potential target for SIRT4 in the diagnosis and treatment of BLCA.
Collapse
Affiliation(s)
- Jie Yin
- Department of Anorectal Surgery, Suzhou Ninth People's Hospital, Suzhou, 215200, China
| | - Guohao Cai
- Department of Anorectal Surgery, Hainan General Hospital, Haikou, 570100, China
| | - Huaiwen Wang
- Department of Anorectal Surgery, Hainan General Hospital, Haikou, 570100, China
| | - Weijia Chen
- Department of Anorectal Surgery, Hainan General Hospital, Haikou, 570100, China
| | - Shan Liu
- Department of Anorectal Surgery, Hainan General Hospital, Haikou, 570100, China
| | - Guoyu Huang
- Department of Anorectal Surgery, Hainan General Hospital, Haikou, 570100, China.
| |
Collapse
|
20
|
Ping D, Pu X, Ding G, Zhang C, Jin J, Xu C, Liu J, Jia S, Cao L. Sirtuin4 impacts mitochondrial homeostasis in pancreatic cancer cells by reducing the stability of AlkB homolog 1 via deacetylation of the HRD1-SEL1L complex. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194941. [PMID: 37146713 DOI: 10.1016/j.bbagrm.2023.194941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a poor prognosis. As a tumor inhibitor, the specific tumor suppressor mechanism of Sirtuin4(SIRT4) in PDAC remains elusive. In this study, SIRT4 was found to inhibit PDAC by impacting mitochondrial homeostasis. SIRT4 deacetylated lysine 547 of SEL1L and increased the protein level of an E3 ubiquitin ligase HRD1. As a central member of ER-associated protein degradation (ERAD), HRD1-SEL1L complex is recently reported to regulate the mitochondria, though the mechanism is not fully delineated. Here, we found the increase in SEL1L-HRD1 complex decreased the stability of a mitochondrial protein, ALKBH1. Downregulation of ALKBH1 subsequently blocked the transcription of mitochondrial DNA-coded genes, and resulted in mitochondrial damage. Lastly, a putative SIRT4 stimulator, Entinostat, was identified, which upregulated the expression of SIRT4 and effectively inhibited pancreatic cancer in vivo and in vitro.
Collapse
Affiliation(s)
- Dongnan Ping
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Xiaofan Pu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Junbin Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China
| | - Jiazheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macao
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China; Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun Road, Hangzhou, China; Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
21
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
22
|
Hsieh YY, Lee KC, Cheng KC, Lee KF, Yang YL, Chu HT, Lin TW, Chen CC, Hsieh MC, Huang CY, Kuo HC, Teng CC. Antrodin C Isolated from Antrodia Cinnamomea Induced Apoptosis through ROS/AKT/ERK/P38 Signaling Pathway and Epigenetic Histone Acetylation of TNFα in Colorectal Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12030764. [PMID: 36979011 PMCID: PMC10045953 DOI: 10.3390/antiox12030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Antrodin C, a maleimide derivative compound isolated from the ethanol extract of the mycelium of Antrodia cinnamomea, is an endemic fungus of Taiwan and a potential chemoprotective agent. However, the molecular mechanisms underlying the mode of action of antrodin C on cancer cells, especially in human colorectal cancer (CRC), remain unclear. METHODS The cell death and ROS of the antrodin-C-treated HCT-116 cells were measured by annexin V-FITC/propidium iodide staining, DCFDA, and Fluo-3 fluorescence staining assays. Moreover, signaling molecules regulating TNFα cell death pathways and ROS/AKT/ERK/P38 pathways were also detected in cells treated with antrodin C by Western blotting and chromatin immunoprecipitation. The effects of antrodin C were determined in HCT-116 cell xenograft animal models in terms of tumor volumes and histopathological evaluation. RESULTS Treatment with antrodin C triggered the activation of extrinsic apoptosis pathways (TNFα, Bax, caspase-3, and -9), and also suppressed the expression of anti-apoptotic molecules Bcl-2 in HCT-116 cells in a time-dependent manner. Antrodin C also decreased cell proliferation and growth through the inactivation of cyclin D1/cyclin for the arrest of the cell cycle at the G1 phase. The activation of the ROS/AKT/ERK/P38 pathways was involved in antrodin-C-induced transcriptional activation, which implicates the role of the histone H3K9K14ac (Acetyl Lys9/Lys14) of the TNFα promoters. Immunohistochemical analyses revealed that antrodin C treatment significantly induced TNFα levels, whereas it decreased the levels of PCNA, cyclin D1, cyclin E, and MMP-9 in an in vivo xenograft mouse model. Thus, antrodin C induces cell apoptosis via the activation of the ROS/AKT/ERK/P38 signaling modules, indicating a new mechanism for antrodin C to treat CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Yung-Yu Hsieh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833401, Taiwan
- College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Kung-Chuan Cheng
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 833401, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Hsin-Tung Chu
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Ting-Wei Lin
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Meng-Chiao Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Cheng-Yi Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| |
Collapse
|
23
|
Li J, Zhan H, Ren Y, Feng M, Wang Q, Jiao Q, Wang Y, Liu X, Zhang S, Du L, Wang Y, Wang C. Sirtuin 4 activates autophagy and inhibits tumorigenesis by upregulating the p53 signaling pathway. Cell Death Differ 2023; 30:313-326. [PMID: 36209169 PMCID: PMC9950374 DOI: 10.1038/s41418-022-01063-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022] Open
Abstract
The role of autophagy in cancer is context-dependent. In the present study, we aimed to investigate the regulator and underlying mechanism of autophagy. We found that a sirtuin (SIRT) family member, SIRT4, was significantly associated autophagy pathway in pancreatic ductal adenocarcinoma (PDAC). Specifically, in vitro cell culture experiments and in vivo transgenic and xenografted animal models revealed that SIRT4 could inhibit tumor growth and promote autophagy in PDAC. In terms of the mechanism, we demonstrated that SIRT4 activated the phosphorylation of p53 protein by suppressing glutamine metabolism, which was crucial in SIRT4-induced autophagy. AMPKα was implicated in the regulation of autophagy and phosphorylation of p53 mediated by SIRT4, contributing to the suppression of pancreatic tumorigenesis. Notably, the clinical significance of the SIRT4/AMPKα/p53/autophagy axis was demonstrated in human PDAC specimens. Collectively, these findings suggested that SIRT4-induced autophagy further inhibited tumorigenesis and progression of PDAC, highlighting the potential of SIRT4 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Maoxiao Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Qinlian Jiao
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, 15166 Century Avenue, Jinan, Shandong, 250101, China
| | - Yuli Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Shujun Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China.
| |
Collapse
|
24
|
Sharma A, Mahur P, Muthukumaran J, Singh AK, Jain M. Shedding light on structure, function and regulation of human sirtuins: a comprehensive review. 3 Biotech 2023; 13:29. [PMID: 36597461 PMCID: PMC9805487 DOI: 10.1007/s13205-022-03455-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/25/2022] [Indexed: 01/01/2023] Open
Abstract
Sirtuins play an important role in signalling pathways associated with various metabolic regulations. They possess mono-ADP-ribosyltransferase or deacylase activity like demalonylase, deacetylase, depalmitoylase, demyristoylase and desuccinylase activity. Sirtuins are histone deacetylases which depends upon nicotinamide adenine dinucleotide (NAD) that deacetylate lysine residues. There are a total of seven human sirtuins that have been identified namely, SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6 and SIRT7. The subcellular location of mammalian sirtuins, SIRT1, SIRT6, and SIRT7 are in the nucleus; SIRT3, SIRT4, and SIRT5 are in mitochondria, and SIRT2 is in cytoplasm. Structurally sirtuins contains a N-terminal, a C-terminal and a Zn+ binding domain. The sirtuin family has been found to be crucial for maintaining lipid and glucose homeostasis, and also for regulating insulin secretion and sensitivity, DNA repair pathways, neurogenesis, inflammation, and ageing. Based on the literature, sirtuins are overexpressed and play an important role in tumorigenicity in various types of cancer such as non-small cell lung cancer, colorectal cancer, etc. In this review, we have discussed about the different types of human sirtuins along with their structural and functional features. We have also discussed about the various natural and synthetic regulators of sirtuin activities like resveratrol. Our overall study shows that the correct regulation of sirtuins can be a good target for preventing and treating various diseases for improving the human lifespan. To investigate the true therapeutic potential of sirtuin proteins and their efficacy in a variety of pathological diseases, a better knowledge of the link between the structure and function of sirtuin proteins would be necessary.
Collapse
Affiliation(s)
- Abhishek Sharma
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Pragati Mahur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh India
| |
Collapse
|
25
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 355] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Yin X, Peng J, Gu L, Liu Y, Li X, Wu J, Xu B, Zhuge Y, Zhang F. Targeting glutamine metabolism in hepatic stellate cells alleviates liver fibrosis. Cell Death Dis 2022; 13:955. [PMID: 36376267 PMCID: PMC9663710 DOI: 10.1038/s41419-022-05409-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Glutamine metabolism plays an essential role in cell growth, and glutamate dehydrogenase (GDH) is a key enzyme. GDH promotes the metabolism of glutamate and glutamine to generate ATP, which is profoundly increased in multiple human cancers. Through in vitro and in vivo experiments, we verified that the small-molecule GDH inhibitor EGCG slowed the progression of fibrosis by inhibiting GDH enzyme activity and glutamine metabolism. SIRT4 is a mitochondrial enzyme with NAD that promotes ADP ribosylation and downregulates GDH activity. The role of SIRT4 in liver fibrosis and the related mechanisms are unknown. In this study, we measured the expression of SIRT4 and found that it was downregulated in liver fibrosis. Modest overexpression of SIRT4 protected the liver from fibrosis by inhibiting the transformation of glutamate to 2-ketoglutaric acid (α-KG) in the tricarboxylic acid cycle (TCA), thereby reducing the proliferative activity of hepatic stellate cells (HSCs). Collectively, our study reveals that SIRT4 controls GDH enzyme activity and expression, targeting glutamine metabolism in HSCs and alleviating liver fibrosis.
Collapse
Affiliation(s)
- Xiaochun Yin
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jin Peng
- Hepatobiliary and Pancreatic Center & Liver Transplantation Center, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lihong Gu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yan Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xihan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, 210093, China
| | - Bing Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Feng Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| |
Collapse
|
27
|
Onyiba CI, Scarlett CJ, Weidenhofer J. The Mechanistic Roles of Sirtuins in Breast and Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205118. [PMID: 36291902 PMCID: PMC9600935 DOI: 10.3390/cancers14205118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary There are diverse reports of the dual role of sirtuin genes and proteins in breast and prostate cancers. This review discusses the current information on the tumor promotion or suppression roles of SIRT1–7 in breast and prostate cancers. Precisely, we highlight that sirtuins regulate various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of both breast and prostate cancer. We also provide evidence of the direct regulation of sirtuins by miRNAs, highlighting the consequences of this regulation in breast and prostate cancer. Overall, this review reveals the potential value of sirtuins as biomarkers and/or targets for improved treatment of breast and prostate cancers. Abstract Mammalian sirtuins (SIRT1–7) are involved in a myriad of cellular processes, including apoptosis, proliferation, differentiation, epithelial-mesenchymal transition, aging, DNA repair, senescence, viability, survival, and stress response. In this review, we discuss the current information on the mechanistic roles of SIRT1–7 and their downstream effects (tumor promotion or suppression) in cancers of the breast and prostate. Specifically, we highlight the involvement of sirtuins in the regulation of various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of breast and prostate cancer. Additionally, we highlight the available information regarding SIRT1–7 regulation by miRNAs, laying much emphasis on the consequences in the progression of breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Correspondence:
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
28
|
Elucidation of an mTORC2-PKC-NRF2 pathway that sustains the ATF4 stress response and identification of Sirt5 as a key ATF4 effector. Cell Death Dis 2022; 8:357. [PMID: 35963851 PMCID: PMC9376072 DOI: 10.1038/s41420-022-01156-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Proliferating cancer cells are dependent on glutamine metabolism for survival when challenged with oxidative stresses caused by reactive oxygen species, hypoxia, nutrient deprivation and matrix detachment. ATF4, a key stress responsive transcription factor, is essential for cancer cells to sustain glutamine metabolism when challenged with these various types of stress. While it is well documented how the ATF4 transcript is translated into protein as a stress response, an important question concerns how the ATF4 message levels are sustained to enable cancer cells to survive the challenges of nutrient deprivation and damaging reactive oxygen species. Here, we now identify the pathway in triple negative breast cancer cells that provides a sustained ATF4 response and enables their survival when encountering these challenges. This signaling pathway starts with mTORC2, which upon sensing cellular stresses arising from glutamine deprivation or an acute inhibition of glutamine metabolism, initiates a cascade of events that triggers an increase in ATF4 transcription. Surprisingly, this signaling pathway is not dependent on AKT activation, but rather requires the mTORC2 target, PKC, which activates the transcription factor Nrf2 that then induces ATF4 expression. Additionally, we identify a sirtuin family member, the NAD+-dependent de-succinylase Sirt5, as a key transcriptional target for ATF4 that promotes cancer cell survival during metabolic stress. Sirt5 plays fundamental roles in supporting cancer cell metabolism by regulating various enzymatic activities and by protecting an enzyme essential for glutaminolysis, glutaminase C (GAC), from degradation. We demonstrate that ectopic expression of Sirt5 compensates for knockdowns of ATF4 in cells exposed to glutamine deprivation-induced stress. These findings provide important new insights into the signaling cues that lead to sustained ATF4 expression as a general stress-induced regulator of glutamine metabolism, as well as highlight Sirt5 an essential effector of the ATF4 response to metabolic stress.
Collapse
|
29
|
SIRT4 functions as a tumor suppressor during prostate cancer by inducing apoptosis and inhibiting glutamine metabolism. Sci Rep 2022; 12:12208. [PMID: 35842463 PMCID: PMC9288510 DOI: 10.1038/s41598-022-16610-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Localized in the mitochondria, SIRT4 is a nicotinamide adenine dinucleotide (NAD +) -dependent adenosine diphosphate (ADP) -ribosyltransferase and is one of the least characterized members of the sirtuin family. Although it is well known that it shows deacetylase activity for energy metabolism, little is understood about its function in tumorigenesis. Recent research suggests that SIRT4 may work as both a tumor suppressor gene and an oncogene. However, the clinical significance of SIRT4 in prostate cancer remains unknown. In this study, we evaluated SIRT4 protein levels in cancerous prostate tissue and corresponding non-tumor prostate tissue via immunohistochemical staining on a tissue microarray including tissues from 89 prostate cancer patients. The association between SIRT4 expression and Gleason score was also determined. Further, shSIRT4 or stable prostate cancer cell lines (22RV1) overexpressing SIRT4 were constructed via lentiviral infection. Using Cell-Counting Kit-8 (CCK-8) assay, wound healing assay, migration, and invasion and apoptosis assays, the effects of SIRT4 on the migration, invasion ability, and proliferation of prostate cancer cells were investigated. We also determined the effect of SIRT4 on glutamine metabolism in 22RV1 cells. We found the protein levels of SIRT4 in prostate cancer tissues were significantly lower than those in their non-neoplastic tissue counterparts (P < 0.01); a lower SIRT4 level was also significantly associated with a higher Gleason score (P < 0.01). SIRT4 suppressed the migration, invasion capabilities, and proliferation of prostate cancer cells and induced cellular apoptosis. Furthermore, the invasion and migration of 22RV1 cells were mechanistically inhibited by SIRT4 via glutamine metabolism inhibition. In conclusion, the present study’s findings showed that SIRT4 protein levels are significantly associated with the Gleason score in patients with prostate cancer, and SIRT4 exerts a tumor-suppressive effect on prostate cancer cells by inhibiting glutamine metabolism. Thus, SIRT4 may serve as a potential novel therapeutic target for prostate cancer.
Collapse
|
30
|
Chen Y, Zhou D, Feng Y, Li B, Cui Y, Chen G, Li N. Association of sirtuins (SIRT1-7) with lung and intestinal diseases. Mol Cell Biochem 2022; 477:2539-2552. [PMID: 35594000 DOI: 10.1007/s11010-022-04462-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
"Exterior-interior correlation between the lung and large intestine" is one of the important contents of traditional Chinese medicine. This theory describes the role of the lung and the intestine in association with disease treatment. The "lung-gut" axis is a modern extension of the "exterior-interior correlation between lung and large intestine" theory in TCM. Sirtuin (SIRT) is a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme family with deacetylase properties, which is highly conserved from bacteria to humans. The sirtuin defines seven silencing regulatory proteins (SIRT1-7) in human cells. It can regulate aging, metabolism, and certain diseases. Current studies have shown that sirtuins have dual characteristics, acting as both tumor promoters and tumor inhibitors in cancers. This paper provides a comparative summary of the roles of SIRT1-7 in the intestine and lung (both inflammatory diseases and tumors), and the promoter/suppressor effects of targeting SIRT family microRNAs and modulators of inflammation or tumors. Sirtuins have great potential as drug targets for the treatment of intestinal and respiratory diseases. Meanwhile, it may provide new ideas of future drug target research.
Collapse
Affiliation(s)
- Yuhan Chen
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Di Zhou
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Yuan Feng
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Bingxin Li
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China
| | - Yong Cui
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
- School of Medical Device, Shenyang Pharmaceutical University, Shenyang, China.
| | - Gang Chen
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China.
| | - Ning Li
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
31
|
Abstract
Sirtuins are NAD+-dependent protein lysine deacylase and mono-ADP ribosylases present in both prokaryotes and eukaryotes. The sirtuin family comprises seven isoforms in mammals, each possessing different subcellular localization and biological functions. Sirtuins have received increasing attention in the past two decades given their pivotal functions in a variety of biological contexts, including cytodifferentiation, transcriptional regulation, cell cycle progression, apoptosis, inflammation, metabolism, neurological and cardiovascular physiology and cancer. Consequently, modulation of sirtuin activity has been regarded as a promising therapeutic option for many pathologies. In this review, we provide an up-to-date overview of sirtuin biology and pharmacology. We examine the main features of the most relevant inhibitors and activators, analyzing their structure-activity relationships, applications in biology, and therapeutic potential.
Collapse
|
32
|
Su R, Wu X, Tao L, Wang C. The role of epigenetic modifications in Colorectal Cancer Metastasis. Clin Exp Metastasis 2022; 39:521-539. [PMID: 35429301 PMCID: PMC9338907 DOI: 10.1007/s10585-022-10163-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
Abstract
Distant metastasis is the major contributor to the high mortality rate of colorectal cancer (CRC). To overcome the poor prognosis caused by distant metastasis, the mechanisms of CRC metastasis should be further explored. Epigenetic events are the main mediators of gene regulation and further affect tumor progression. Recent studies have found that some epigenetic enzymes are often dysregulated or mutated in multiple tumor types, which prompted us to study the roles of these enzymes in CRC metastasis. In this review, we summarized the alteration of enzymes related to various modifications, including histone modification, nonhistone modification, DNA methylation, and RNA methylation, and their epigenetic mechanisms during the progression of CRC metastasis. Existing data suggest that targeting epigenetic enzymes is a promising strategy for the treatment of CRC metastasis.
Collapse
Affiliation(s)
- Riya Su
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinlin Wu
- Department of General Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Liang Tao
- Department of pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Changshan Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
33
|
Otsuka R, Hayano K, Matsubara H. Role of sirtuins in esophageal cancer: Current status and future prospects. World J Gastrointest Oncol 2022; 14:794-807. [PMID: 35582109 PMCID: PMC9048530 DOI: 10.4251/wjgo.v14.i4.794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer (EC) is a malignant cancer that still has a poor prognosis, although its prognosis has been improving with the development of multidisciplinary treatment modalities such as surgery, chemotherapy and radiotherapy. Therefore, identifying specific molecular markers that can be served as biomarkers for the prognosis and treatment response of EC is highly desirable to aid in the personalization and improvement of the precision of medical treatment. Sirtuins are a family of nicotinamide adenine dinucleotide (NAD+)-dependent proteins consisting of seven members (SIRT1-7). These proteins have been reported to be involved in the regulation of a variety of biological functions including apoptosis, metabolism, stress response, senescence, differentiation and cell cycle progression. Given the variety of functions of sirtuins, they are speculated to be associated in some manner with cancer progression. However, while the role of sirtuins in cancer progression has been investigated over the past few years, their precise role remains difficult to characterize, as they have both cancer-promoting and cancer-suppressing properties, depending on the type of cancer. These conflicting characteristics make research into the nature of sirtuins all the more fascinating. However, the role of sirtuins in EC remains unclear due to the limited number of reports concerning sirtuins in EC. We herein review the current findings and future prospects of sirtuins in EC.
Collapse
Affiliation(s)
- Ryota Otsuka
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
34
|
Afzaal A, Rehman K, Kamal S, Akash MSH. Versatile role of sirtuins in metabolic disorders: From modulation of mitochondrial function to therapeutic interventions. J Biochem Mol Toxicol 2022; 36:e23047. [PMID: 35297126 DOI: 10.1002/jbt.23047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/11/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
Sirtuins (SIRT1-7) are distinct histone deacetylases (HDACs) whose activity is determined by cellular metabolic status andnicotinamide adenine dinucleotide (NAD+ ) levels. HDACs of class III are the members of the SIRT's protein family. SIRTs are the enzymes that modulate mitochondrial activity and energy metabolism. SIRTs have been linked to a number of clinical and physiological operations, such as energy responses to low-calorie availability, aging, stress resistance, inflammation, and apoptosis. Mammalian SIRT2 orthologs have been identified as SIRT1-7 that are found in several subcellular sections, including the cytoplasm (SIRT1, 2), mitochondrial matrix (SIRT3, 4, 5), and the core (SIRT1, 2, 6, 7). For their deacetylase or ADP-ribosyl transferase action, all SIRTs require NAD+ and are linked to cellular energy levels. Evolutionarily, SIRT1 is related to yeast's SIRT2 as well as received primary attention in the circulatory system. An endogenous protein, SIRT1 is involved in the development of heart failure and plays a key role in cell death and survival. SIRT2 downregulation protects against ischemic-reperfusion damage. Increase in human longevity is caused by an increase in SIRT3 expression. Cardiomyocytes are also protected by SIRT3 from oxidative damage and aging, as well as suppressing cardiac hypertrophy. SIRT4 and SIRT5 perform their roles in the heart. SIRT6 has also been linked to a reduction in heart hypertrophy. SIRT7 is known to be involved in the regulation of stress responses and apoptosis in the heart.
Collapse
Affiliation(s)
- Ammara Afzaal
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
35
|
Colloca A, Balestrieri A, Anastasio C, Balestrieri ML, D’Onofrio N. Mitochondrial Sirtuins in Chronic Degenerative Diseases: New Metabolic Targets in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23063212. [PMID: 35328633 PMCID: PMC8949044 DOI: 10.3390/ijms23063212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/23/2022] Open
Abstract
Sirtuins (SIRTs) are a family of class III histone deacetylases (HDACs) consisting of seven members, widely expressed in mammals. SIRTs mainly participate in metabolic homeostasis, DNA damage repair, cell survival, and differentiation, as well as other cancer-related biological processes. Growing evidence shows that SIRTs have pivotal roles in chronic degenerative diseases, including colorectal cancer (CRC), the third most frequent malignant disease worldwide. Metabolic alterations are gaining attention in the context of CRC development and progression, with mitochondrion representing a crucial point of complex and intricate molecular mechanisms. Mitochondrial SIRTs, SIRT2, SIRT3, SIRT4 and SIRT5, control mitochondrial homeostasis and dynamics. Here, we provide a comprehensive review on the latest advances on the role of mitochondrial SIRTs in the initiation, promotion and progression of CRC. A deeper understanding of the pathways by which mitochondrial SIRTs control CRC metabolism may provide new molecular targets for future innovative strategies for CRC prevention and therapy.
Collapse
Affiliation(s)
- Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| | - Anna Balestrieri
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, U.O.C. Food Control and Food Safety, 80055 Portici, Italy;
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
- Correspondence: ; Tel.: +39-081-566-5865
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. de Crecchio 7, 80138 Naples, Italy; (A.C.); (C.A.); (N.D.)
| |
Collapse
|
36
|
Zhou Y, Pei Z, Maimaiti A, Zheng L, Zhu Z, Tian M, Zhou Z, Tan F, Pei Q, Li Y, Liu W. m 6A methyltransferase KIAA1429 acts as an oncogenic factor in colorectal cancer by regulating SIRT1 in an m 6A-dependent manner. Cell Death Dis 2022; 8:83. [PMID: 35217651 PMCID: PMC8881457 DOI: 10.1038/s41420-022-00878-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/13/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
N6-methyladenosine (m6A) modifications of RNAs are involved in various aspects of colorectal carcinogenesis via regulation of mRNA stability, splicing, and translation. KIAA1429, an m6A methyltransferase, was found deregulated in multiple cancer types. However, its role in colorectal cancer remains elusive. By analyzing TCGA and GEPIA database, we found that KIAA1429 in colorectal cancer was highly expressed. In addition, we used immunohistochemistry, western blotting, and QRT-PCR to detect the expression of KIAA1429 in colorectal cancer samples and cell lines, and we found that KIAA1429 was overexpressed in colorectal cancer sample and cell line. Functionally, silencing of KIAA1429 by shRNA in colorectal cancer cell lines resulted in decreased cell proliferation, colony formation, and migration. On the contrary, overexpression of KIAA1429 increased cell proliferation, colony formation, and migration. Further mechanism analysis demonstrated that KIAA1429 increased the expression of SIRT1 via regulating its mRNA stability in an m6A-dependent manner. More importantly, in vivo experiment showed that depletion of KIAA1429 significantly inhibited colorectal tumor growth. In conclusion, our results suggested that the m6A methyltransferase KIAA1429 promotes the growth and motility of colorectal cancer and could be a potent therapeutic target.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengda Pei
- Clinical College, Xiangnan University, Chenzhou, China
| | - Aizezi Maimaiti
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linyi Zheng
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongcheng Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyi Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Wenxue Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China. .,Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China. .,Department of Rheumatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
37
|
Ul Haq MF, Kayani MA, Arshad T, Hadi Anwar RA, Saeed N, Shafique R, Abbasi SF, Ahmed MW, Mahjabeen I. Genetic interactions of mitochondrial sirtuins in brain tumorigenesis. Future Oncol 2022; 18:597-611. [PMID: 35034477 DOI: 10.2217/fon-2021-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purpose: The present study was designed to understand the role of expression variations of mitochondrial imported sirtuins in brain tumorigenesis. The expression levels of mitochondrial imported sirtuins were further analyzed for biomarker potential. Methods: Samples from 200 brain tumors and 200 healthy control tissues were used for expression analysis using qPCR and for DNA damage using LORD-Q analysis. Results: Significant deregulation of SIRT3 (p = 0.002), SIRT4 (p = 0.03) and SIRT5 (p = 0.006) was observed in brain tumors versus controls. Co-expression analysis showed a significant correlation between the mitochondrial imported sirtuins versus apoptotic genes. LORD-Q analysis showed a significantly increased frequency of lesions/10 kb of mitochondrial imported sirtuins (p < 0.0001) in brain tumor tissue versus controls. Conclusion: The present study showed a correlation between variations of mitochondrial imported sirtuins and increased brain tumor risk.
Collapse
Affiliation(s)
- Maria Fazal Ul Haq
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Taaha Arshad
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Raja Abdul Hadi Anwar
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Nadia Saeed
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Rabia Shafique
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Sumaira Fidda Abbasi
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Malik Waqar Ahmed
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan.,Pakistan Institute of Rehabilitation Sciences (PIRS), Isra University Islamabad Campus, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Islamabad, Pakistan
| |
Collapse
|
38
|
Raghu S, Prabhashankar AB, Shivanaiah B, Tripathi E, Sundaresan NR. Sirtuin 6 Is a Critical Epigenetic Regulator of Cancer. Subcell Biochem 2022; 100:337-360. [PMID: 36301499 DOI: 10.1007/978-3-031-07634-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sirtuin 6 (SIRT6) is a member of the mammalian sirtuin family with deacetylase, deacylase, and mono-ADP-ribosyl-transferase activities. It is a multitasking chromatin-associated protein regulating different cellular and physiological functions in cells. Specifically, SIRT6 dysfunction is implicated in several aging-related human diseases, including cancer. Studies indicate that SIRT6 has a tumor-specific role, and it is considered a tumor suppressor as well as a tumor growth inducer, depending on the type of cancer. In this chapter, we review the role of SIRT6 in metabolism, genomic stability, and cancer. Further, we provide an insight into the interplay of the tumor-suppressing and oncogenic roles of SIRT6 in cancer. Additionally, we discuss the use of small-molecule SIRT6 modulators as potential therapeutics.
Collapse
Affiliation(s)
- Sukanya Raghu
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Arathi Bangalore Prabhashankar
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Bhoomika Shivanaiah
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Ekta Tripathi
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, India.
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Nagalingam Ravi Sundaresan
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| |
Collapse
|
39
|
Hussain MZ, Haris MS, Khan MS, Mahjabeen I. Role of mitochondrial sirtuins in rheumatoid arthritis. Biochem Biophys Res Commun 2021; 584:60-65. [PMID: 34768083 DOI: 10.1016/j.bbrc.2021.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
AIM Current study is intended to evaluate the expression and epigenetic variations of mitochondrial situins in 306 rheumatoid arthritis (RA) cases and compared with age/gender matched controls. MATERIALS AND METHODS The expression level was measured using the quantitative Real time PCR (qPCR) and epigenetic analysis was performed by measuring deacetylation activity. Oxidative stress was also measured in present study using the enzyme linked immunoassay (ELISA). The obtained results were evaluated by means of the student t-test, spearman correlation and ROC curve analysis. RESULTS Expression analysis showed the significant downregulation of SIRT3 (p < 0.0001), SIRT4 (p < 0.0001) and SIRT5 (p < 0.0001) in RA cases when compared with controls. Downregulation of mitochondrial sirtuins was significantly associated with positive anti-CCP status, increased ESR level and with increased CRP levels. Epigenetic analysis showed significant increased histone deacetylation in RA patients compared to controls. Co-expression analysis showed the significant negative association between expression level of mitochondrial sirtuins and deacytylation level (SIRT3 r = -0.438, p < 0.0001; SIRT4 r = -0.424, p < 0.0001; SIRT5 r = -0.282, p < 0.0001). ROC curve analysis exhibited that downregulation of mitochondrial sirtuins (SIRT3 AUC = 0.91, p < 0.001; SIRT4 AUC = 0.92, p < 0.001; SIRT5 AUC = 0.85, p < 0.001) was act as the good diagnostic marker for detection/diagnosis of arthritis. CONCLUSIONS The results show that significant deregulation of mitochondrial sirtuins was associated with increased arthritis risk and can be act as an indicator of advance clinical outcome.
Collapse
Affiliation(s)
- Muhmmad Zahid Hussain
- Department of Rheumatology, National University of Medical Sciences, Rawalpindi, Pakistan; Department of Rheumatology, Pak Emirates Military Hospital, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Haris
- Cancer Genetics and Epigenetics Lab, Department of Biosciences COMSATS University, Islamabad, Pakistan
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences COMSATS University, Islamabad, Pakistan.
| |
Collapse
|
40
|
Colombo G, Gelardi ELM, Balestrero FC, Moro M, Travelli C, Genazzani AA. Insight Into Nicotinamide Adenine Dinucleotide Homeostasis as a Targetable Metabolic Pathway in Colorectal Cancer. Front Pharmacol 2021; 12:758320. [PMID: 34880756 PMCID: PMC8645963 DOI: 10.3389/fphar.2021.758320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tumour cells modify their cellular metabolism with the aim to sustain uncontrolled proliferation. Cancer cells necessitate adequate amounts of NAD and NADPH to support several enzymes that are usually overexpressed and/or overactivated. Nicotinamide adenine dinucleotide (NAD) is an essential cofactor and substrate of several NAD-consuming enzymes, such as PARPs and sirtuins, while NADPH is important in the regulation of the redox status in cells. The present review explores the rationale for targeting the key enzymes that maintain the cellular NAD/NADPH pool in colorectal cancer and the enzymes that consume or use NADP(H).
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | | | | | - Marianna Moro
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Drug Sciences, Università Degli Studi di Pavia, Pavia, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| |
Collapse
|
41
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
42
|
Jakoube P, Cutano V, González-Morena JM, Keckesova Z. Mitochondrial Tumor Suppressors-The Energetic Enemies of Tumor Progression. Cancer Res 2021; 81:4652-4667. [PMID: 34183354 PMCID: PMC9397617 DOI: 10.1158/0008-5472.can-21-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Tumor suppressors represent a critical line of defense against tumorigenesis. Their mechanisms of action and the pathways they are involved in provide important insights into cancer progression, vulnerabilities, and treatment options. Although nuclear and cytosolic tumor suppressors have been extensively investigated, relatively little is known about tumor suppressors localized within the mitochondria. However, recent research has begun to uncover the roles of these important proteins in suppressing tumorigenesis. Here, we review this newly developing field and summarize available information on mitochondrial tumor suppressors.
Collapse
Affiliation(s)
- Pavel Jakoube
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valentina Cutano
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Juan M. González-Morena
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Keckesova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Corresponding Author: Zuzana Keckesova, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 16000, Czech Republic. Phone: 420-2201-83584; E-mail:
| |
Collapse
|
43
|
Xu L, Xu K, Xiang L, Yan J. Circular RNA OMA1 regulates the progression of breast cancer via modulation of the miR‑1276/SIRT4 axis. Mol Med Rep 2021; 24:728. [PMID: 34414449 PMCID: PMC8383036 DOI: 10.3892/mmr.2021.12367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
Mounting evidence has indicated that circular RNAs (circRNAs) serve essential roles in the tumorigenesis and development of various types of cancer. However, the biological functions and the underlying mechanisms of circRNAs in breast cancer (BC) remain largely elusive. In the present study, the expression pattern of circRNAs in three pairs of BC tissues and adjacent normal tissues was determined using a circRNA microarray. The expression and prognostic value of circOMA1 were evaluated by reverse transcription‑quantitative PCR in 64 pairs of BC tissues and adjacent normal tissues. Survival curves were generated by the Kaplan‑Meier method, and statistical significance was estimated using the log‑rank test. A series of in vitro functional experiments were then performed to investigate the role of circOMA1 in the tumorigenesis of BC. The results revealed that the expression levels of circOMA1 were upregulated in BC tissues, and its expression was markedly associated with tumor size and lymph node metastasis. Receiver operating characteristic analysis demonstrated that the expression of circOMA1 could be used to discriminate between BC tissues and adjacent normal tissues. Functionally, overexpression of circOMA1 promoted the viability, migration and invasion of BC cells, whereas circOMA1 knockdown had the opposite effect. Mechanistic investigations showed that circOMA1 promoted the progression of BC by sponging microRNA (miR)‑1276 and upregulating sirtuin 4 (SIRT4) expression. In conclusion, circOMA1 may act as an oncogenic circRNA in BC via regulation of the miR‑1276/SIRT4 axis.
Collapse
Affiliation(s)
- Lingli Xu
- Department of Ultrasound, Ningbo Zhenghai Longsai Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Ke Xu
- Department of Radiology, Ningbo Zhenghai Traditional Chinese Medicine Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Lijun Xiang
- Department of Ultrasound, Ningbo Zhenghai Longsai Hospital, Ningbo, Zhejiang 315200, P.R. China
| | - Jiamei Yan
- Department of Ultrasound, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
44
|
Wang C, Piao C, Liu J, Zhang Z, Zhu Y, Kong C. Mammalian SIRT4 is a tumor suppressor of clear cell renal cell carcinoma by inhibiting cancer proliferation, migration and invasion. Cancer Biomark 2021; 29:453-462. [PMID: 32675395 DOI: 10.3233/cbm-191253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Sirtuins family are defined as class III histone deacetylases (HDACs). Recently, mammalian silent information regulator two 4 (SIRT4) has been reported to be a tumor suppressor gene in multiple cancers. The objective of the present study was to explore the potential role of SIRT4 in clear cell renal cell carcinoma (ccRCC). METHODS We estimated SIRT4 expression levels in ccRCC and its adjacent non-neoplastic tissue by Western blotting (WB), quantitative real-time polymerase chain reaction (qRT-PCR) and bioinformatics data, the clinical and survival data were also collected and analyzed. In vitro study, ccRCC cell lines were transfected with SIRT4-siRNA or lentivirus to downregulate or overexpress the expression level of SIRT4. Then, the proliferation capacity of tumor cell was assessed by 5-Ethynyl-2'-deoxyuridine (EDU) assay, cell migration and invasion capacity were assessed by Transwell assays. RESULTS Our results indicated that the expression level of SIRT4 in ccRCC was significantly lower than the corresponding normal tissues (P< 0.001). Meanwhile, bioinformatics data and the result of WB showed that low SIRT4 expression level was obviously involved with poor overall survival and advanced tumor stage in ccRCC patients. Biological experiments demonstrated that overexpression of SIRT4 significantly reduced the proliferation, migration and invasion ability of ccRCC cells. Conversely, downregulation of SIRT4 enhanced the proliferation, migration and invasion ability of ccRCC cells. CONCLUSIONS These findings support that SIRT4 acts as a tumor suppressor in ccRCC and might be a novel biomarker and new therapeutic target for ccRCC.
Collapse
|
45
|
Xu C, Ding YH, Wang K, Hao M, Li H, Ding L. Claudin-7 deficiency promotes stemness properties in colorectal cancer through Sox9-mediated Wnt/β-catenin signalling. J Transl Med 2021; 19:311. [PMID: 34281572 PMCID: PMC8287764 DOI: 10.1186/s12967-021-02983-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumour of the digestive tract that is characterized by high patient morbidity and mortality rates. Claudin-7 (Cldn7), a tight junction protein, was recently reported to function as a candidate tumour suppressor gene in CRC. Our previous study demonstrated that the large intestine of C57/BL6 mice showed intestinal adenomas and abnormal Ki67 expression and distribution in the intestinal crypt when Cldn7 was knocked out. The aim of this study was to further investigate whether Cldn7 deficiency has non-tight junction functions, affects intestinal stemness properties, promotes CRC and to determine the specific mechanism. METHODS Cell proliferation assays, migration assays, apoptosis assays, tumour sphere formation assays in vitro, and subcutaneous xenograft models in vivo were used to determine the effects of Cldn7 knockdown on the biological characteristics of CRC stem cells. Western blotting, qPCR and immunofluorescence staining were performed to identify the epithelial-mesenchymal transition and the activation of Wnt/β-catenin pathway in CRC stem cells. Cldn7 inducible conditional gene knockout mice and immunohistochemical staining further verified this hypothesis in vivo. The mechanism and target of Cldn7 were determined by performing a chromatin immunoprecipitation (ChIP) assay and coimmunoprecipitation (CoIP) assay. RESULTS Cldn7 knock down in CRC stem cells promoted cell proliferation, migration, and globular growth in serum-free medium and the ability to form xenograft tumours; cell apoptosis was inhibited, while the cellular epithelial-mesenchymal transition was also observed. These changes in cell characteristics were achieved by activating the Wnt/β-catenin pathway and promoting the expression of downstream target genes after β-catenin entry into the nucleus, as observed in CRC cell lines and Cldn7 gene knockout mouse experiments. Using ChIP and CoIP experiments, we initially found that Cldn7 and Sox9 interacted at the protein level to activate the Wnt/β-catenin pathway. CONCLUSIONS Based on our research, Cldn7 deficiency confers stemness properties in CRC through Sox9-mediated Wnt/β-catenin signalling. This result clarifies that Cldn7 plays an inhibitory role in CRC and reveals a possible molecular mechanism, which is conducive to further research on Cldn7 and cancer stem cells.
Collapse
Affiliation(s)
- Chang Xu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
- Department of Hepato-Pancreato-Biliary Surgery, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing
, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu-han Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| |
Collapse
|
46
|
Cui Y, Bai Y, Yang J, Yao Y, Zhang C, Liu C, Shi J, Li Q, Zhang J, Lu X, Zhang Y. SIRT4 is the molecular switch mediating cellular proliferation in colorectal cancer through GLS mediated activation of AKT/GSK3β/CyclinD1 pathway. Carcinogenesis 2021; 42:481-492. [PMID: 33315089 DOI: 10.1093/carcin/bgaa134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 01/11/2023] Open
Abstract
Mitochondria-localized sirtuin 4 (SIRT4) is associated with malignant phenotypes in colorectal cancer (CRC). However, the molecular mechanisms that drive SIRT4-mediated carcinogenesis are unclear. Initially, we confirmed expression of SIRT4 in CRC through public database and in CRC patient tissues using quantitative real-time reverse transcription PCR. We established HCT116 colorectal cells that overexpressed SIRT4 and HT29 cells were transfected with plasmids bearing a small interfering RNA construct to silence SIRT4. Assays to determine the malignant phenotypes (proliferation, invasion and migration) were performed. Xenograft in vivo models were also constructed. A protein interactome network was built using differentially expressed proteins identified using the liquid chromatography/tandem mass spectrophotometry, the findings of which were confirmed using co-immunoprecipitation, western blotting and phenotype rescue experiments. Decreased SIRT4 expression was associated with malignant phenotypes in vitro and in vivo. The ribosomal biogenesis pathway was enriched in the interactome network. SIRT4 suppression activated glutaminase, thereby initiating AKT activation. Our research provided novel insights into the molecular mechanisms underlying CRC, and identified that SIRT4 exerts its antitumor activity in CRC possibly dependent on glutaminase to inhibit proliferation, migration and invasion via the AKT/GSK3β/CyclinD1 pathway.
Collapse
Affiliation(s)
- Ying Cui
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yibing Bai
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiani Yang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanfei Yao
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunhui Zhang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiaqi Shi
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - QingWei Li
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingchun Zhang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaolin Lu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
47
|
Jaiswal A, Xudong Z, Zhenyu J, Saretzki G. Mitochondrial sirtuins in stem cells and cancer. FEBS J 2021; 289:3393-3415. [PMID: 33866670 DOI: 10.1111/febs.15879] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
The mammalian sirtuin family consists of seven proteins, three of which (SIRT3, SIRT4, and SIRT5) localise specifically within mitochondria and preserve mitochondrial function and homeostasis. Mitochondrial sirtuins are involved in diverse functions such as deacetylation, ADP-ribosylation, demalonylation and desuccinylation, thus affecting various aspects of cell fate. Intriguingly, mitochondrial sirtuins are able to manage these delicate processes with accuracy mediated by crosstalk between the nucleus and mitochondria. Previous studies have provided ample information about their substrates and targets, whereas less is known about their role in cancer and stem cells. Here, we review and discuss recent advances in our understanding of the structural and functional properties of mitochondrial sirtuins, including their targets in cancer and stem cells. These advances could help to improve the understanding of their interplay with signalling cascades and pathways, leading to new avenues for developing novel drugs for sirtuin-related disease treatments. We also highlight the complex network of mitochondrial sirtuins in cancer and stem cells, which may be important in deciphering the molecular mechanism for their activation and inhibition.
Collapse
Affiliation(s)
- Amit Jaiswal
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Zhu Xudong
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Ju Zhenyu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Gabriele Saretzki
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
48
|
Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Int J Mol Sci 2021; 22:ijms22020630. [PMID: 33435263 PMCID: PMC7827102 DOI: 10.3390/ijms22020630] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs), enzymes from the family of NAD+-dependent histone deacetylases, play an important role in the functioning of the body at the cellular level and participate in many biochemical processes. The multi-directionality of SIRTs encourages scientists to undertake research aimed at understanding the mechanisms of their action and the influence that SIRTs have on the organism. At the same time, new substances are constantly being sought that can modulate the action of SIRTs. Extensive research on the expression of SIRTs in various pathological conditions suggests that regulation of their activity may have positive results in supporting the treatment of certain metabolic, neurodegenerative or cancer diseases or this connected with oxidative stress. Due to such a wide spectrum of activity, SIRTs may also be a prognostic markers of selected pathological conditions and prove helpful in assessing their progression, especially by modulating their activity. The article presents and discusses the activating or inhibiting impact of individual SIRTs modulators. The review also gathered selected currently available information on the expression of SIRTs in individual disease cases as well as the biological role that SIRTs play in the human organism, also in connection with oxidative stress condition, taking into account the progress of knowledge about SIRTs over the years, with particular reference to the latest research results.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-(71)-784-01-52
| | - Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| |
Collapse
|
49
|
Bai Y, Yang J, Cui Y, Yao Y, Wu F, Liu C, Fan X, Zhang Y. Research Progress of Sirtuin4 in Cancer. Front Oncol 2021; 10:562950. [PMID: 33585187 PMCID: PMC7874138 DOI: 10.3389/fonc.2020.562950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
Sirtuins (SIRTs) are members of the silent information regulator-2 family. They are a conserved family of nicotinamide adenine dinucleotide-dependent protein lysine deacylases. SIRTS are involved in intricate cellular processes. There are seven subtypes of SIRTs (1–7) in mammals. SIRT4 is located mainly in mitochondria and has various catalytic activities. These enzyme activities give it a diverse range of important biologic functions, such as energy metabolism, oxidative stress, and aging. Cancer is characterized as reprogramming of energy metabolism and redox imbalance, and SIRT4 can affect tumorigenesis. Here, we review the structure, localization, and enzyme activity of SIRT4 and its role in various neoplasms.
Collapse
Affiliation(s)
- Yibing Bai
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Ying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Feng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaona Fan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
50
|
Brockmueller A, Sameri S, Liskova A, Zhai K, Varghese E, Samuel SM, Büsselberg D, Kubatka P, Shakibaei M. Resveratrol's Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism. Cancers (Basel) 2021; 13:cancers13020188. [PMID: 33430318 PMCID: PMC7825813 DOI: 10.3390/cancers13020188] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prevention and treatment of cancer is an ongoing medical challenge. In the context of personalized medicine, the well-studied polyphenol resveratrol could complement classical tumor therapy. It may affect key processes such as inflammation, angiogenesis, proliferation, metastasis, glucose metabolism, and apoptosis in various cancers because resveratrol acts as a multi-targeting agent by modulating multiple signal transduction pathways. This review article focuses on resveratrol’s ability to modify tumor glucose metabolism and its associated therapeutic capacity. Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway. It also inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM. In addition, resveratrol induces apoptosis by targeting integrin, p53, LDH, and FAK. In conclusion, resveratrol has many potentials to intervene in tumor processes if bioavailability can be increased and this natural compound can be used selectively. Abstract Tumor cells develop several metabolic reprogramming strategies, such as increased glucose uptake and utilization via aerobic glycolysis and fermentation of glucose to lactate; these lead to a low pH environment in which the cancer cells thrive and evade apoptosis. These characteristics of tumor cells are known as the Warburg effect. Adaptive metabolic alterations in cancer cells can be attributed to mutations in key metabolic enzymes and transcription factors. The features of the Warburg phenotype may serve as promising markers for the early detection and treatment of tumors. Besides, the glycolytic process of tumors is reversible and could represent a therapeutic target. So-called mono-target therapies are often unsafe and ineffective, and have a high prevalence of recurrence. Their success is hindered by the ability of tumor cells to simultaneously develop multiple chemoresistance pathways. Therefore, agents that modify several cellular targets, such as energy restriction to target tumor cells specifically, have therapeutic potential. Resveratrol, a natural active polyphenol found in grapes and red wine and used in many traditional medicines, is known for its ability to target multiple components of signaling pathways in tumors, leading to the suppression of cell proliferation, activation of apoptosis, and regression in tumor growth. Here, we describe current knowledge on the various mechanisms by which resveratrol modulates glucose metabolism, its potential as an imitator of caloric restriction, and its therapeutic capacity in tumors.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Saba Sameri
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, 6517838678 Hamadan, Iran;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
- Correspondence: ; Tel.: +49-892-1807-2624; Fax: +49-892-1807-2625
| |
Collapse
|