1
|
Nater M, Brügger M, Cecconi V, Pereira P, Forni G, Köksal H, Dimakou D, Herbst M, Calvanese AL, Lucchiari G, Schneider C, Valenta T, van den Broek M. Hepatic iNKT cells facilitate colorectal cancer metastasis by inducing a fibrotic niche in the liver. iScience 2025; 28:112364. [PMID: 40292307 PMCID: PMC12032931 DOI: 10.1016/j.isci.2025.112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
The liver is an important metastatic organ that contains many innate immune cells, yet little is known about their role in anti-metastatic defense. We investigated how invariant natural killer T (iNKT) cells influence colorectal cancer-derived liver metastasis using different models in immunocompetent mice. We found that hepatic iNKT cells promote metastasis by creating a supportive niche for disseminated cancer cells. Mechanistically, iNKT cells respond to disseminating cancer cells by producing the fibrogenic cytokines interleukin-4 (IL-4) and IL-13 in a T cell receptor-independent manner. Selective abrogation of IL-4 and IL-13 sensing in hepatic stellate cells prevented their transdifferentiation into extracellular matrix-producing myofibroblasts, which hindered metastatic outgrowth of disseminated cancer cells. This study highlights a novel tumor-promoting axis driven by iNKT cells in the initial stages of metastasis.
Collapse
Affiliation(s)
- Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Michael Brügger
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Geo Forni
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Hakan Köksal
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Despoina Dimakou
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Michael Herbst
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Giulia Lucchiari
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Akabane M, Kawashima J, Woldesenbetm S, Macedo AB, Altaf A, Aucejo F, Popescu I, Kitago M, Poultsides GA, Sasaki K, Imaoka Y, Ruzzenente A, Endo I, Pawlik TM. Enhancing outcome prediction in patients with colorectal liver metastases undergoing hepatectomy: the synergistic impact of FIB-4 index and tumor burden score across KRAS profiles. HPB (Oxford) 2025:S1365-182X(25)00546-5. [PMID: 40287297 DOI: 10.1016/j.hpb.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The prognostic value of Fibrosis-4 (FIB-4) index, concerning KRAS status (wild-type [wtKRAS] vs. mutated [mutKRAS]) remains unclear in post-hepatectomy colorectal liver metastases (CRLM). We evaluated the combined impact of FIB-4 and Tumor Burden Score (TBS) on overall survival (OS)/recurrence-free survival (RFS), stratified by KRAS status. METHODS CRLM patients undergoing hepatectomy (2000-2020) were analyzed, grouped by TBS/FIB-4. RESULTS Among 828 patients, 196 had high FIB-4. High TBS had worse 5-year OS (P < 0.001). In wtKRAS, high TBS correlated with worse OS (P < 0.001), but not in mutKRAS. High FIB-4 correlated with worse OS (P = 0.01). Sub-stratification showed no OS difference by FIB-4 in wtKRAS, but a difference in mutKRAS (P = 0.03). Multivariable analysis identified mutKRAS (HR: 1.90), high TBS (HR: 1.62), and FIB-4 (HR: 1.15) as mortality risk factors. The TBS-FIB-4-KRAS index had highest predictive accuracy. For RFS, TBS and FIB-4 independently stratified outcomes. High TBS was associated with worse RFS in wtKRAS (P < 0.001) but not in mutKRAS. High FIB-4 decreased RFS in mutKRAS (P = 0.001) but not in wtKRAS. FIB-4 was associated with a 10% increased recurrence risk. CONCLUSION TBS and FIB-4, alongside KRAS status, should be considered to improve outcome predictions.
Collapse
Affiliation(s)
- Miho Akabane
- Department of Surgery, The Ohio State University, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Jun Kawashima
- Department of Surgery, The Ohio State University, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Selamawit Woldesenbetm
- Department of Surgery, The Ohio State University, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Amanda B Macedo
- Department of Surgery, The Ohio State University, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Abdullah Altaf
- Department of Surgery, The Ohio State University, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Federico Aucejo
- Department of General Surgery, Cleveland Clinic Foundation, OH, USA
| | - Irinel Popescu
- Department of Surgery, Fundeni Clinical Institute, Bucharest, Romania
| | - Minoru Kitago
- Department of Surgery, Keio University, Tokyo, Japan
| | | | - Kazunari Sasaki
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Yuki Imaoka
- Department of Surgery, Stanford University, Stanford, CA, USA
| | | | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Nagayama Y, Hokamura M, Taguchi N, Yokota Y, Osaki T, Ogasawara K, Shiraishi S, Yoshida R, Harai R, Kidoh M, Oda S, Nakaura T, Hirai T. Liver function estimation using multiphase hepatic CT: diagnostic performance of iodine-uptake and volumetric parameters. Eur Radiol 2025:10.1007/s00330-025-11497-1. [PMID: 40080190 DOI: 10.1007/s00330-025-11497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/28/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025]
Abstract
OBJECTIVES To investigate whether multiphase hepatic CT can predict liver function measured with indocyanine-green-retention test (ICG-R15) and identify patients with severe liver dysfunction contraindicating major hepatectomy, defined as ICG-R15 ≥ 20%, compared to technetium-99m-galactosyl serum albumin (99mTc-GSA) scintigraphy. MATERIALS AND METHODS This retrospective study included 118 patients (84 men, mean age, 69.4 ± 11.3 years) who underwent ICG-R15, 99mTc-GSA, and multi-phase CT including early portal-venous-phase and 3-min delayed-phase. CT-derived extracellular volume fraction (ECV), iodine washout rate (IWR), liver and spleen volumes normalized by body-surface-area (LV/BSA and SpV/BSA, respectively), and 99mTc-GSA-derived blood clearance index (HH15) and liver receptor index (LHL15) were quantified. Each parameter was compared between ICG-R15 ≥ 20% (n = 22) and ICG-R15 < 20% (n = 96) groups. Correlations with ICG-R15 were analyzed. The diagnostic performance to predict ICG-R15 ≥ 20% was assessed with areas under the receiver operating characteristic curve (AUC). Multivariable logistic regression analysis was used to identify independent CT predictors, and combined performance was determined. RESULTS In the ICG-R15 ≥ 20% group, IWR (p < 0.001), LV/BSA (p = 0.026), LHL15 (p < 0.001) were lower and ECV (p = 0.001), SpV/BSA (p = 0.005), and HH15 (p < 0.001) were higher compared to ICG-R15 < 20% group. ICG-R15 showed positive correlations with ECV (r = 0.355), SpV/BSA (r = 0.248), and HH15 (r = 0.385), while negative correlations with IWR (r = -0.523), LV/BSA (r = -0.123, not statistically significant), and LHL15 (r = -0.504). The AUC of ECV, IWR, LV/BSA, SpV/BSA, HH15, and LHL15 were 0.719, 0.845, 0.653, 0.694, 0.844, and 0.878, respectively. IWR, SpV/BSA, and LV/BSA were independent predictors, with a combined AUC of 0.924. CONCLUSION IWR predicted liver function better than ECV and hepatosplenic volumetry. The combined IWR and volumetry yielded an accurate prediction of severe liver dysfunction. KEY POINTS Question Despite the widespread use of multiphase CT in patients with hepatobiliary diseases, its potential role in assessing liver function has been scarcely evaluated. Findings Iodine washout rate (IWR), liver volume indexed by body surface area, and spleen volume indexed by body surface area were independent predictors for severe liver dysfunction. Clinical relevance Combined IWR and hepatosplenic volumetry on routine hepatic CT may help assess hepatic function for optimizing treatment strategies and predicting patient prognosis.
Collapse
Affiliation(s)
- Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan.
| | - Masamichi Hokamura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| | - Narumi Taguchi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| | - Yasuhiro Yokota
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| | - Takumi Osaki
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| | - Koji Ogasawara
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| | - Shinya Shiraishi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| | - Ryuya Yoshida
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| | - Ryota Harai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Chuo-ku, Japan
| |
Collapse
|
4
|
Akabane M, Kawashima J, Woldesenbet S, Macedo AB, Cauchy F, Shen F, Maithel SK, Groot Koerkamp B, Alexandrescu S, Kitago M, Weiss M, Martel G, Pulitano C, Aldrighetti L, Poultsides GA, Imaoka Y, Guglielmi A, Bauer TW, Endo I, Gleisner A, Marques HP, Pawlik TM. Improving Recurrence Prediction in Intrahepatic Cholangiocarcinoma: The Synergistic Impact of the FIB-4 Index and Tumor Burden Score on Post-hepatectomy Outcomes. Ann Surg Oncol 2024:10.1245/s10434-024-16455-7. [PMID: 39511008 DOI: 10.1245/s10434-024-16455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND The prognostic role of the fibrosis-4 (FIB-4) index relative to intrahepatic cholangiocarcinoma (ICC) after hepatectomy remains unclear. This study sought to characterize the impact of the FIB-4 index and tumor burden score (TBS) on recurrence and overall survival (OS). METHODS ICC patients undergoing hepatectomy (2000-2020) were identified using a multi-institutional database. Patients were categorized as low (low TBS/low FIB-4 index), intermediate (low TBS/high FIB-4 index or high TBS/low FIB-4 index), and high (high TBS/high FIB-4 index). RESULTS Among 1168 patients in different TBS and FIB-4 index cohorts, 3-year recurrence varied considerably. For instance, among the patients with low TBS, individuals with a high FIB-4 index had a greater risk of recurrence than patients with a low FIB-4 index (59.9 vs. 47.7%; P = 0.01). Among patients with a high TBS, individuals with a high versus a low FIB-4 index had a higher incidence of recurrence (76.8 vs. 69.0%; P = 0.04). A similar pattern was observed among patients with both a low FIB-4 index (low [47.7%] vs. high [69.0%] TBS) and a high FIB-4 index (low [59.9%] vs. high [76.8%] TBS; both P < 0.001). Patients with a high [27.5%] versus a low [48.8%] TBS; P < 0.001) and patients with a high [34.2%] versus a low [43.5%] FIB-4 index; P = 0.01) had a worse OS. The multivariable analysis demonstrated an increasing risk of recurrence in the intermediate-index (hazard ratio [HR], 1.61; 95% confidence interval [CI], 1.20-2.16; P = 0.001) and high-index (HR, 2.13; 95% CI 1.45-3.13; P < 0.001) groups versus the low-index group. CONCLUSIONS Both tumor-related and non-tumorous characteristics should be used to predict risk of recurrence and survival more accurately among patients with ICC following hepatic resection.
Collapse
Affiliation(s)
- Miho Akabane
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Selamawit Woldesenbet
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Amanda B Macedo
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA
| | - François Cauchy
- Department of Hepatobiliopancreatic Surgery, APHP, Beaujon Hospital, Clichy, France
| | - Feng Shen
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | | | - Bas Groot Koerkamp
- Department of Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Minoru Kitago
- Department of Surgery, Keio University, Tokyo, Japan
| | - Matthew Weiss
- Department of Surgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Guillaume Martel
- Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Carlo Pulitano
- Department of Surgery, Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | | | | | - Yuki Imaoka
- Department of Surgery, Stanford University, Stanford, CA, USA
| | | | - Todd W Bauer
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Ana Gleisner
- Department of Surgery, University of Colorado, Denver, CO, USA
| | - Hugo P Marques
- Department of Surgery, Curry Cabral Hospital, Lisbon, Portugal
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
- Department of Surgery, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, Oncology, Health Services Management and Policy, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Ni X, Wei Y, Li X, Pan J, Fang B, Zhang T, Lu Y, Ye D, Zhu Y. From biology to the clinic - exploring liver metastasis in prostate cancer. Nat Rev Urol 2024; 21:593-614. [PMID: 38671281 DOI: 10.1038/s41585-024-00875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Liver metastases from prostate cancer are associated with an aggressive disease course and poor prognosis. Results from autopsy studies indicate a liver metastasis prevalence of up to 25% in patients with advanced prostate cancer. Population data estimate that ~3-10% of patients with metastatic castration-resistant prostate cancer harbour liver metastases at the baseline, rising to 20-30% in post-treatment cohorts, suggesting that selective pressure imposed by novel therapies might promote metastatic spread to the liver. Liver metastases are associated with more aggressive tumour biology than lung metastases. Molecular profiling of liver lesions showed an enrichment of low androgen receptor, neuroendocrine phenotypes and high genomic instability. Despite advancements in molecular imaging modalities such as prostate-specific membrane antigen PET-CT, and liquid biopsy markers such as circulating tumour DNA, early detection of liver metastases from prostate cancer remains challenging, as both approaches are hampered by false positive and false negative results, impeding the accurate identification of early liver lesions. Current therapeutic strategies showed limited efficacy in this patient population. Emerging targeted radionuclide therapies, metastasis-directed therapy, and novel systemic agents have shown preliminary activity against liver metastases, but require further validation. Treatment with various novel prostate cancer therapies might lead to an increase in the prevalence of liver metastasis, underscoring the urgent need for coordinated efforts across preclinical and clinical researchers to improve characterization, monitoring, and management of liver metastases from prostate cancer. Elucidating molecular drivers of liver tropism and interactions with the liver microenvironment might ultimately help to identify actionable targets to enhance survival in this high-risk patient group.
Collapse
Affiliation(s)
- Xudong Ni
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Tingwei Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, China.
| |
Collapse
|
6
|
Andryszkiewicz W, Misiąg P, Karwowska A, Resler Z, Wojno A, Kulbacka J, Szewczyk A, Rembiałkowska N. Cancer Metastases to the Liver: Mechanisms of Tumor Cell Colonization. Pharmaceuticals (Basel) 2024; 17:1251. [PMID: 39338413 PMCID: PMC11434846 DOI: 10.3390/ph17091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The liver is one of the most common sites for metastasis, which involves the spread from primary tumors to surrounding organs and tissues in the human body. There are a few steps in cancer expansion: invasion, inflammatory processes allowing the hepatic niche to be created, adhesions to ECM, neovascularization, and secretion of enzymes. The spread of tumor cells depends on the microenvironment created by the contribution of many biomolecules, including proteolytic enzymes, cytokines, growth factors, and cell adhesion molecules that enable tumor cells to interact with the microenvironment. Moreover, the microenvironment plays a significant role in tumor growth and expansion. The secreted enzymes help cancer cells facilitate newly formed hepatic niches and promote migration and invasion. Our study discusses pharmacological methods used to prevent liver metastasis by targeting the tumor microenvironment and cancer cell colonization in the liver. We examine randomized studies focusing on median survival duration and median overall survival in patients administered placebo compared with those treated with bevacizumab, ramucirumab, regorafenib, and ziv-aflibercept in addition to current chemotherapy. We also include research on mice and their responses to these medications, which may suppress metastasis progression. Finally, we discuss the significance of non-pharmacological methods, including surgical procedures, radiotherapy, cryotherapy, radiofrequency ablation (RFA), and transarterial embolization (TAE). In conclusion, the given methods can successfully prevent metastases to the liver and prolong the median survival duration and median overall survival in patients suffering from cancer.
Collapse
Affiliation(s)
- Wiktoria Andryszkiewicz
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Piotr Misiąg
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Anna Karwowska
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Zofia Resler
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Aleksandra Wojno
- The Students' Research Group, No. 148., Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
7
|
Sahin C, Inan MA, Bilezikci B, Bostanci H, Taneri F, Kozan R. Interstitial Fibrosis as a Common Counterpart of Histopathological Risk Factors in Papillary Thyroid Microcarcinoma: A Retrospective Analysis. Diagnostics (Basel) 2024; 14:1624. [PMID: 39125500 PMCID: PMC11311513 DOI: 10.3390/diagnostics14151624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
PURPOSE Interstitial fibrosis in papillary thyroid microcarcinoma is a subject which is under-investigated. The aim of this study is to determine the relationship between interstitial fibrosis, the subtypes of papillary microcarcinoma, and the established prognostic factors. MATERIAL AND METHODS A total of 75 patients diagnosed with papillary microcarcinoma of the thyroid from January 2011 to December 2020 have been evaluated retrospectively, using demographic features, tumor size, subtype of the tumor, surgical margin status, unifocality, lymphovascular invasion, extracapsular spread and lymph node metastasis as parameters. Hematoxylin and eosin slides were reviewed for interstitial fibrosis. RESULTS The study includes 13 males and 62 females, in a total of 75 patients. There were 51 patients (68%) with interstitial fibrosis and 24 (32%) patients without interstitial fibrosis. Among them, 45 (60%) were classic, 27 (36%) were follicular variant and 3 (4%) were other subtypes. Interstitial fibrosis is significantly associated with bilaterality (p = 0.023), multifocality (p = 0.004), capsule invasion (p < 0.001) and lymph node metastasis (p = 0.043). Evaluation of tumor sub groups showed significant increased risk of lymphovascular invasion in the follicular variant (p = 0.019). CONCLUSION Although the relationship of interstitial fibrosis and prognosis of other cancer types has been discussed, there are few studies in the literature regarding its effect on the prognosis of papillary microcarcinoma. Our results show that interstitial fibrosis can be used as a risk factor. However, new studies are needed to clearly reveal the physiopathology of interstitial fibrosis and its effect on tumorigenesis.
Collapse
Affiliation(s)
- Can Sahin
- Department of General Surgery, Yenimahalle Training and Research Hospital, Ankara 06370, Türkiye
| | - Mehmet Arda Inan
- Department of Pathology, Gazi University Faculty of Medicine, Ankara 06500, Türkiye;
| | - Banu Bilezikci
- Department of Pathology, Guven Hospital, Ankara 06540, Türkiye;
| | - Hasan Bostanci
- Department of General Surgery, Gazi University Faculty of Medicine, Ankara 06500, Türkiye; (H.B.); (F.T.); (R.K.)
| | - Ferit Taneri
- Department of General Surgery, Gazi University Faculty of Medicine, Ankara 06500, Türkiye; (H.B.); (F.T.); (R.K.)
| | - Ramazan Kozan
- Department of General Surgery, Gazi University Faculty of Medicine, Ankara 06500, Türkiye; (H.B.); (F.T.); (R.K.)
| |
Collapse
|
8
|
Yang Y, Chen Y, Liu Z, Chang Z, Sun Z, Zhao L. Concomitant NAFLD Facilitates Liver Metastases and PD-1-Refractory by Recruiting MDSCs via CXCL5/CXCR2 in Colorectal Cancer. Cell Mol Gastroenterol Hepatol 2024; 18:101351. [PMID: 38724007 PMCID: PMC11227024 DOI: 10.1016/j.jcmgh.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND & AIMS Both nonalcoholic fatty liver disease (NAFLD) and colorectal cancer (CRC) are prevalent worldwide. The effects of concomitant NAFLD on the risk of colorectal liver metastasis (CRLM) and its mechanisms have not been definitively elucidated. METHODS We observed the effect of concomitant NAFLD on CRLM in the mouse model and explored the underlying mechanisms of specific myeloid-derived suppressor cells (MDSCs) recruitment and then tested the therapeutic application based on the mechanisms. Finally we validated our findings in the clinical samples. RESULTS Here we prove that in different mouse models, NAFLD induces F4/80+ Kupffer cells to secret chemokine CXCL5 and then recruits CXCR2+ MDSCs to promote the growth of CRLM. CRLM with NAFLD background is refractory to the anti-PD-1 monoclonal antibody treatment, but when combined with Reparixin, an inhibitor of CXCR1/2, dual therapy cures the established CRLM in mice with NAFLD. Our clinical studies also indicate that fatty liver diseases increase the infiltration of CXCR2+ MDSCs, as well as the hazard of liver metastases in CRC patients. CONCLUSIONS Collectively, our findings highlight the significance of selective CXCR2+/CD11b+/Gr-1+ subset myeloid cells in favoring the development of CRLM with NAFLD background and identify a pharmaceutical medicine that is already available for the clinical trials and potential treatment.
Collapse
Affiliation(s)
- Yue Yang
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| | - Yunsong Chen
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| | - Zhaogang Liu
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| | - Zhibin Chang
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| | - Zhicheng Sun
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China
| | - Lei Zhao
- Department of Hepatobiliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Huaiyin District, Jinan, China.
| |
Collapse
|
9
|
Dai S, Liu C, Chen L, Jiang K, Kong X, Li X, Chen H, Ding K. Hepatic steatosis predicts metachronous liver metastasis in colorectal cancer patients: a nested case-control study and systematic review. Am J Cancer Res 2024; 14:1292-1305. [PMID: 38590410 PMCID: PMC10998736 DOI: 10.62347/jhms4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Nearly twenty-five percent of colorectal cancer (CRC) patients develop metachronous colorectal liver metastasis (CRLM) after curative surgery. Hepatosteatosis is the most prevalent liver condition worldwide, but its impact on the incidence of metachronous CRLM is understudied. In the present study, we aimed to investigate the predictive value of hepatic steatosis on the development of metachronous CRLM. First, a nested case-control study was conducted, enrolling stage I to III CRC patients in the National Colorectal Cancer Cohort (NCRCC) database. Metachronous CRLM patients and recurrence-free patients were matched via propensity-score matching. Fatty liver was identified based on treatment-naïve CT scans and the degree of hepatic fibrosis was scored. Multivariable analysis was conducted to investigate the association between fatty liver and metachronous CRLM. In our database, a total of 414 patients were included. Metachronous CRLM patients had considerably higher rates of hepatic steatosis (30.9% versus 15.9%, P<0.001) and highly fibrotic liver (11.6% versus 2.9%, P=0.001) compared to recurrence-free patients. Multivariable analysis showed that fatty liver (odds ratios [OR]=1.99, 95% confidence interval [CI] 1.19-3.30, P=0.008) and fibrotic liver (OR=4.27, 95% CI 1.54-11.81, P=0.005) were associated with high risk of metachronous CRLM. Further, a systematic literature review was performed to assess available evidence on the association between hepatosteatosis and development of metachronous CRLM. In the systematic review, 1815 patients were pooled from eligible studies, and hepatic steatosis remained a significant risk factor for metachronous CRLM (OR=1.90, 95% CI 1.35-2.66, P<0.001, I2=25.3%). In conclusion, our data suggest that patients with a steatotic liver and a high fibrosis score at CRC diagnosis have elevated risk of developing metachronous CRLM.
Collapse
Affiliation(s)
- Siqi Dai
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine300 Yuanju Street, Hangzhou 310000, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Cancer Center of Zhejiang University88 Jiefang Street, Hangzhou 310000, Zhejiang, China
| | - Chengcheng Liu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine300 Yuanju Street, Hangzhou 310000, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Cancer Center of Zhejiang University88 Jiefang Street, Hangzhou 310000, Zhejiang, China
| | - Lihao Chen
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine300 Yuanju Street, Hangzhou 310000, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Cancer Center of Zhejiang University88 Jiefang Street, Hangzhou 310000, Zhejiang, China
| | - Kai Jiang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine300 Yuanju Street, Hangzhou 310000, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Cancer Center of Zhejiang University88 Jiefang Street, Hangzhou 310000, Zhejiang, China
| | - Xiangxing Kong
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine300 Yuanju Street, Hangzhou 310000, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Cancer Center of Zhejiang University88 Jiefang Street, Hangzhou 310000, Zhejiang, China
| | - Xiangyuan Li
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine300 Yuanju Street, Hangzhou 310000, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Cancer Center of Zhejiang University88 Jiefang Street, Hangzhou 310000, Zhejiang, China
| | - Haiyan Chen
- Center for Medical Research and Innovation in Digestive System Tumors88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine88 Jiefang Street, Hangzhou 310000, Zhejiang, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine300 Yuanju Street, Hangzhou 310000, Zhejiang, China
- Center for Medical Research and Innovation in Digestive System Tumors88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER88 Jiefang Street, Hangzhou 310000, Zhejiang, China
- Cancer Center of Zhejiang University88 Jiefang Street, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
10
|
Rao H, Wang Q, Zeng X, Wen X, Huang L. Analysis of the prognostic value of uric acid on the efficacy of immunotherapy in patients with primary liver cancer. Clin Transl Oncol 2024; 26:774-785. [PMID: 37646984 PMCID: PMC10869365 DOI: 10.1007/s12094-023-03314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE Uric acid (UA) plays a dual role as an antioxidant and a prooxidant in patients with malignant tumors; however, the relationship between serum UA and malignancy is currently unclear. This study aims to investigate the prognostic value of serum uric acid level before immunotherapy on the efficacy of primary liver cancer (PLC) immunotherapy, which might provide a basis for optimizing the comprehensive treatment scheme. METHODS Patients with PLC who were admitted to the First Affiliated Hospital of Gannan Medical College from January 2019 to June 2022 and underwent immunotherapy were collected retrospectively. The difference between serum UA levels in patients with PLC, the correlation between serum UA levels, and the clinical characteristics of patients with PLC were analyzed using the chi-square test, and the survival was estimated using the Kaplan-Meier analysis. To further assess the prognostic significance of UA concentrations, univariate and multivariate Cox regression analyses were performed. RESULTS Ninety-nine patients were included in this study cohort. The median follow-up was 7 months (range: 1-29 months), and 76 (76.8%) of the 99 patients with PLC died as of December 31, 2022. Serum UA concentrations ranged from 105 to 670 μmol/l, with a median of 269 μmol/l. The results showed that the serum UA level of patients with PLC was higher than that of healthy subjects (P < 0.001). After subgroup analyses, only male patients with liver cancer had higher serum UA levels than healthy men (P = 0.001). The results of the Kaplan-Meier analysis showed that higher UA levels were associated with poor overall survival (OS) (P = 0.005). In univariate analysis, the OS rate of patients with elevated serum UA levels was significantly lower than the cut-off value (hazard ratio [HR]: 3.191, 95% confidence interval [CI]: 1.456-6.993, P = 0.004), with a median survival time of 151 and 312 days in the high and low serum UA groups, respectively. The results of multivariate analysis showed that the UA level was an independent prognostic factor for immunotherapy in patients with PLC (HR: 3.131, 95% CI: 1.766-5.553, P < 0.001). CONCLUSIONS The serum UA level is a reliable biomarker for predicting the prognosis of patients undergoing immunotherapy for PLC, and might provide a basis for the individualized treatment of these patients. Dynamic monitoring of the serum UA level may compensate for the deficiency of the current liver cancer staging system.
Collapse
Affiliation(s)
- Hui Rao
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Hematology and Oncology, The First People's Hospital of Nankang, Ganzhou, Jiangxi, China
| | - Qi Wang
- Department of Health Statistics, School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoli Zeng
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
- Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, Jiangxi, China
| | - Xuejiao Wen
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Li Huang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, No. 128, Jinling Road, Zhanggong District, Ganzhou, 341000, Jiangxi, China.
- Jiangxi Clinical Medical Research Center for Cancer, Ganzhou, Jiangxi, China.
| |
Collapse
|
11
|
Kim SJ, Hyun J. Altered lipid metabolism as a predisposing factor for liver metastasis in MASLD. Mol Cells 2024; 47:100010. [PMID: 38237744 PMCID: PMC10960132 DOI: 10.1016/j.mocell.2024.100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/22/2023] [Accepted: 12/09/2023] [Indexed: 02/12/2024] Open
Abstract
Recently, the incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing due to the high prevalence of metabolic conditions, such as obesity and type 2 diabetes mellitus. Steatotic liver is a hotspot for cancer metastasis in MASLD. Altered lipid metabolism, a hallmark of MASLD, remodels the tissue microenvironment, making it conducive to the growth of metastatic liver cancer. Tumors exacerbate the dysregulation of hepatic metabolism by releasing extracellular vesicles and particles into the liver. Altered lipid metabolism influences the proliferation, differentiation, and functions of immune cells, contributing to the formation of an immunosuppressive and metastasis-prone liver microenvironment in MASLD. This review discusses the mechanisms by which the steatotic liver promotes liver metastasis progression, focusing on its role in fostering an immunosuppressive microenvironment in MASLD. Furthermore, this review highlights lipid metabolism manipulation strategies for the therapeutic management of metastatic liver cancer.
Collapse
Affiliation(s)
- So Jung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
12
|
Zhang C, Zhang Y, Dong Y, Zi R, Wang Y, Chen Y, Liu C, Wang J, Wang X, Li J, Liang H, Ou J. Non-alcoholic fatty liver disease promotes liver metastasis of colorectal cancer via fatty acid synthase dependent EGFR palmitoylation. Cell Death Discov 2024; 10:41. [PMID: 38263401 PMCID: PMC10805926 DOI: 10.1038/s41420-023-01770-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024] Open
Abstract
Liver metastasis is the major reason for most of colorectal cancer (CRC) related deaths. Accumulating evidence indicates that CRC patients with non-alcoholic fatty liver disease (NAFLD) are at a greater risk of developing liver metastasis. With the growing prevalence of NAFLD, a better understanding of the molecular mechanism in NAFLD-driven CRC liver metastasis is needed. In this study, we demonstrated that NAFLD facilitated CRC liver metastasis as a metabolic disorder and promoted the stemness of metastatic CRC cells for their colonization and outgrowth in hepatic niches. Metabolically, the lipid-rich microenvironment in NAFLD activated de novo palmitate biosynthesis in metastatic CRC cells via upregulating fatty acid synthase (FASN). Moreover, increased intracellular palmitate bioavailability promoted EGFR palmitoylation to enhance its protein stability and plasma membrane localization. Furthermore, we demonstrated that the FDA-approved FASN inhibitor orlistat could reduce NAFLD-activated endogenous palmitate production, thus inhibiting palmitoylation of EGFR to suppress CRC cell stemness and restrict liver metastasis in synergy with conventional chemotherapy. These findings reveal that the NAFLD metabolic microenvironment boosts endogenous palmitate biosynthesis in metastatic CRC cells and promotes cell stemness via EGFR palmitoylation, and FASN inhibitor orlistat could be a candidate adjuvant drug to suppress liver metastasis in CRC patients with NAFLD.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yue Zhang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yan Dong
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Ruiyang Zi
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yijie Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yanrong Chen
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chengxiang Liu
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Junyi Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Xuesong Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China.
- Jinfeng Laboratory, 401329, Chongqing, China.
| |
Collapse
|
13
|
Morawska I, Cieszanowski A. Assessment of the response to systemic treatment of colorectal liver metastases on cross-sectional imaging - a systematic review. Pol J Radiol 2023; 88:e512. [PMID: 38125815 PMCID: PMC10731444 DOI: 10.5114/pjr.2023.132884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/03/2023] [Indexed: 12/23/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the world. Nowadays many treatments are available to help control CRC, including surgery, radiation therapy, interventional radiology, and drug treatments. A multidisciplinary approach and the role of radiologists is needed to assist the surgeon in the management thanks to emerging technology and strategies. The Response Evaluation Criteria in Solid Tumours (RECIST) has been created to objectify and standardize cancer response assessment. Thus, in this article specific presumptions and practical aspects of evaluating responses according to the RECIST 1.1 are discussed. Furthermore, examples of possible response to systemic treatment of colorectal liver metastases (CRLM), including tumour necrosis, apparent diffusion coefficient (ADC) values, tumour calcification, tumour fibrosis and intratumoural fat deposition observed on cross-sectional imaging, are described. Disappearing liver metastases (DLM) presents a therapeutic dilemma. The optimal management of DLM remains controversial due to the uncertainty of residual microscopic disease and effective long-term outcomes. The article provides an overview of the CRLM phenomenon and current possible assessment methods of the response to systemic treatment.
Collapse
Affiliation(s)
- Irmina Morawska
- Department of Radiology I, The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Poland
| | - Andrzej Cieszanowski
- Department of Radiology I, The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Poland
| |
Collapse
|
14
|
Chouari T, Merali N, La Costa F, Santol J, Chapman S, Horton A, Aroori S, Connell J, Rockall TA, Mole D, Starlinger P, Welsh F, Rees M, Frampton AE. The Role of the Multiparametric MRI LiverMultiScan TM in the Quantitative Assessment of the Liver and Its Predicted Clinical Applications in Patients Undergoing Major Hepatic Resection for Colorectal Liver Metastasis. Cancers (Basel) 2023; 15:4863. [PMID: 37835557 PMCID: PMC10571783 DOI: 10.3390/cancers15194863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/05/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Liver biopsy remains the gold standard for the histological assessment of the liver. With clear disadvantages and the rise in the incidences of liver disease, the role of neoadjuvant chemotherapy in colorectal liver metastasis (CRLM) and an explosion of surgical management options available, non-invasive serological and imaging markers of liver histopathology have never been more pertinent in order to assess liver health and stratify patients considered for surgical intervention. Liver MRI is a leading modality in the assessment of hepatic malignancy. Recent technological advancements in multiparametric MRI software such as the LiverMultiScanTM offers an attractive non-invasive assay of anatomy and histopathology in the pre-operative setting, especially in the context of CRLM. This narrative review examines the evidence for the LiverMultiScanTM in the assessment of hepatic fibrosis, steatosis/steatohepatitis, and potential applications for chemotherapy-associated hepatic changes. We postulate its future role and the hurdles it must surpass in order to be implemented in the pre-operative management of patients undergoing hepatic resection for colorectal liver metastasis. Such a role likely extends to other hepatic malignancies planned for resection.
Collapse
Affiliation(s)
- Tarak Chouari
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Nabeel Merali
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Francesca La Costa
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Jonas Santol
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, 1090 Vienna, Austria
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Shelley Chapman
- Department of Radiology, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Alex Horton
- Department of Radiology, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Somaiah Aroori
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery and Transplant Surgery, Derriford Hospital, Plymouth PL6 8DH, UK
| | | | - Timothy A. Rockall
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Damian Mole
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh EH10 5HF, UK
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH105HF, UK
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Surgery, Medical University of Vienna, General Hospital, 1090 Vienna, Austria
| | - Fenella Welsh
- Hepato-Biliary Unit, Hampshire Hospitals Foundation Trust, Basingstoke, Hampshire RG24 9NA, UK
| | - Myrddin Rees
- Hepato-Biliary Unit, Hampshire Hospitals Foundation Trust, Basingstoke, Hampshire RG24 9NA, UK
| | - Adam E. Frampton
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|
15
|
Wang Z, Kim SY, Tu W, Kim J, Xu A, Yang YM, Matsuda M, Reolizo L, Tsuchiya T, Billet S, Gangi A, Noureddin M, Falk BA, Kim S, Fan W, Tighiouart M, You S, Lewis MS, Pandol SJ, Di Vizio D, Merchant A, Posadas EM, Bhowmick NA, Lu SC, Seki E. Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab 2023; 35:1209-1226.e13. [PMID: 37172577 PMCID: PMC10524732 DOI: 10.1016/j.cmet.2023.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Liver metastasis is a major cause of death in patients with colorectal cancer (CRC). Fatty liver promotes liver metastasis, but the underlying mechanism remains unclear. We demonstrated that hepatocyte-derived extracellular vesicles (EVs) in fatty liver enhanced the progression of CRC liver metastasis by promoting oncogenic Yes-associated protein (YAP) signaling and an immunosuppressive microenvironment. Fatty liver upregulated Rab27a expression, which facilitated EV production from hepatocytes. In the liver, these EVs transferred YAP signaling-regulating microRNAs to cancer cells to augment YAP activity by suppressing LATS2. Increased YAP activity in CRC liver metastasis with fatty liver promoted cancer cell growth and an immunosuppressive microenvironment by M2 macrophage infiltration through CYR61 production. Patients with CRC liver metastasis and fatty liver had elevated nuclear YAP expression, CYR61 expression, and M2 macrophage infiltration. Our data indicate that fatty liver-induced EV-microRNAs, YAP signaling, and an immunosuppressive microenvironment promote the growth of CRC liver metastasis.
Collapse
Affiliation(s)
- Zhijun Wang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - So Yeon Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Tu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 China
| | - Jieun Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander Xu
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yoon Mee Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pharmacy, Kangwon National University, Chuncheon 24341, South Korea
| | - Michitaka Matsuda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lien Reolizo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Takashi Tsuchiya
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandrine Billet
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexandra Gangi
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Houston Methodist Hospital, Houston Research Institute, Houston, TX 77030, USA
| | - Ben A Falk
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungjin Kim
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mourad Tighiouart
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael S Lewis
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pathology, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| | - Stephen J Pandol
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dolores Di Vizio
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Akil Merchant
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edwin M Posadas
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Neil A Bhowmick
- Division of Hematology and Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
16
|
Ibrahim MK, Simon TG, Rinella ME. Extrahepatic Outcomes of Nonalcoholic Fatty Liver Disease: Nonhepatocellular Cancers. Clin Liver Dis 2023; 27:251-273. [PMID: 37024206 DOI: 10.1016/j.cld.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses the entire spectrum of fatty liver disease in individuals without significant alcohol consumption, including isolated steatosis, steatohepatitis, and cirrhosis. The overall global prevalence of NAFLD is estimated to be 30%, and the associated clinical and economic burden will continue to increase. NAFLD is a multisystemic disease with established links to cardiovascular disease, type 2 diabetes, metabolic syndrome, chronic kidney disease, polycystic ovarian syndrome, and intra- and extrahepatic malignancies. In this article the authors review the potential mechanisms and current evidence for the association between NAFLD and extrahepatic cancers and the resultant impact on clinical outcomes.
Collapse
Affiliation(s)
- Maryam K Ibrahim
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Tracey G Simon
- Harvard Medical School, Boston, MA, USA; Division of Gastroenterology and Hepatology, Massachusetts General Hospital, Boston, MA, USA; Clinical and Translational Epidemiology Unit (CTEU), Massachusetts General Hospital, Boston, MA, USA
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine; University of Chicago Hospitals.
| |
Collapse
|
17
|
Möller K, Safai Zadeh E, Görg C, Dong Y, Cui XW, Faiss S, Dietrich CF. Prevalence of benign focal liver lesions and non-hepatocellular carcinoma malignant lesions in liver cirrhosis. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:526-535. [PMID: 36413993 DOI: 10.1055/a-1890-5818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Liver cirrhosis is associated with an increased risk of developing hepatocellular carcinoma (HCC). However, other benign and malignant liver lesions may co-exist or may be the only focal liver lesion (FLL) detected. Compared to HCC, comparatively little is known about the frequency and natural history of benign FLL in patients with established liver cirrhosis.This review analyses the prevalence and frequency of benign and malignant FLL others than hepatocellular carcinoma (HCC) in liver cirrhosis including imaging and autopsy studies. Understanding these data should be helpful in avoiding misdiagnoses.
Collapse
Affiliation(s)
| | - Ehsan Safai Zadeh
- Interdisciplinary Centre of Ultrasound Diagnostics, Gastroenterology, Endocrinology, Metabolism and Clinical Infectiology, Philipps University Marburg, Marburg, Germany
| | - Christian Görg
- Interdisciplinary Centre of Ultrasound Diagnostics, Gastroenterology, Endocrinology, Metabolism and Clinical Infectiology, Philipps University Marburg, Marburg, Germany
| | - Yi Dong
- Zhongshan Hospital Fudan University, Shanghai, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Christoph F Dietrich
- Allgemeine Innere Medizin (DAIM) Kliniken Beau Site, Salem und Permanence, Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland
| |
Collapse
|
18
|
Sumiyoshi S, Kiuchi J, Kuriu Y, Arita T, Shimizu H, Takaki W, Ohashi T, Yamamoto Y, Konishi H, Morimura R, Shiozaki A, Ikoma H, Kubota T, Fujiwara H, Okamoto K, Otsuji E. Postoperative liver dysfunction is associated with poor long-term outcomes in patients with colorectal cancer: a retrospective cohort study. BMC Gastroenterol 2023; 23:128. [PMID: 37072727 PMCID: PMC10114433 DOI: 10.1186/s12876-023-02762-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/09/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Postoperative hepatobiliary enzyme abnormalities often present as postoperative liver dysfunction in patients with colorectal cancer. This study aimed to clarify the risk factors of postoperative liver dysfunction and its prognostic impact following colorectal cancer surgery. METHODS We retrospectively analyzed data from 360 consecutive patients who underwent radical resection for Stage I-IV colorectal cancer between 2015 and 2019. A subset of 249 patients with Stage III colorectal cancer were examined to assess the prognostic impact of liver dysfunction. RESULTS Forty-eight (13.3%) colorectal cancer patients (Stages I-IV) developed postoperative liver dysfunction (Common Terminology Criteria for Adverse Events version 5.0 CTCAE v5.0 ≥ Grade 2). Univariate and multivariate analyses identified the liver-to-spleen ratio on preoperative plain computed tomography (L/S ratio; P = 0.002, Odds ratio 2.66) as an independent risk factor for liver dysfunction. Patients with postoperative liver dysfunction showed significantly poorer disease-free survival than patients without liver dysfunction (P < 0.001). Univariate and multivariate analyses using Cox's proportional hazards model revealed that postoperative liver dysfunction independently was a poor prognostic factor (P = 0.001, Hazard ratio 2.75, 95% CI: 1.54-4.73). CONCLUSIONS Postoperative liver dysfunction was associated with poor long-term outcomes in patients with Stage III colorectal cancer. A low liver-to-spleen ratio on preoperative plain computed tomography images was an independent risk factor of postoperative liver dysfunction.
Collapse
Affiliation(s)
- Shutaro Sumiyoshi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan.
| | - Yoshiaki Kuriu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Wataru Takaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kyoto, Kawaramachihirokoji, Kamigyo-Ku, Japan
| |
Collapse
|
19
|
Yamada S, Morine Y, Ikemoto T, Saito Y, Miyazaki K, Shimizu M, Tsuneyama K, Shimada M. Inhibitory effect of non-alcoholic steatohepatitis on colon cancer liver metastasis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:410-415. [PMID: 36371329 DOI: 10.1016/j.ejso.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The incidence of non-alcoholic steatohepatitis (NASH) is dramatically increasing, but the effect of NASH on colon cancer liver metastasis (CLM) is controversial. The aim of this study was to investigate the impact and mechanism of action of NASH on CLM using a western diet (WD)-fed mouse model. METHODS Six-week-old male C57BL/6 J mice were used. They were divided into the WD group and control group with normal diet. MC38 colon cancer cells were injected into the spleen at 2, 6, 8 and 16 weeks, and mice were killed at 2 weeks after injection to evaluate hepatic steatosis, fibrosis, metastasis and mRNA/protein expression in the liver. RESULTS Only mice fed a WD for 16 weeks showed hepatic fibrosis. These mice showed significantly higher alanine aminotransferase and total cholesterol levels compared with the control group (p < 0.05). The WD group showed significantly lower tumor number and smaller tumor diameter (p < 0.05). In the WD group, expression of SAA1, IL6, STAT3 and MMP9 mRNA in the liver was significantly lower than in the control group (p < 0.05). Serum amyloid A1 protein expression was also lower in the WD group. CONCLUSIONS The WD-fed NASH mouse model showed an inhibitory effect on CLM. Suppressed interleukin-6/signal transducer and activator of transcription 3 signaling and serum amyloid A/matrix metalloproteinase 9 expression may affect this phenomenon.
Collapse
Affiliation(s)
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Yu Saito
- Department of Surgery, Tokushima University, Tokushima, Japan
| | | | - Mayuko Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
20
|
Imaoka K, Shimomura M, Shimizu W, Akabane S, Ohira M, Imaoka Y, Yoshinaka H, Ono K, Mochizuki T, Matsubara K, Bekki T, Hattori M, Ohdan H. Effect of abdominal aortic calcification on the prognosis and recurrence of colorectal cancer stages II-III: A retrospective cohort study. Int J Colorectal Dis 2023; 38:21. [PMID: 36680603 DOI: 10.1007/s00384-023-04321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
PURPOSE Abdominal aortic calcification (AAC) is a well-known risk marker for cardiovascular disease. However, its clinical effect on patients who underwent radical surgery for colorectal cancer (CRC) stages II-III is unclear. This study aimed to analyze the associations between AAC and prognosis of patients with stage II-III CRC. METHODS To evaluate the effect of AAC on clinical outcomes, prognosis, and metastatic patterns of CRC, we analyzed 362 patients who underwent radical surgery for stage II-III CRC between 2010 and 2018. RESULTS The high AAC group had significantly worse overall survival (OS), cancer-specific survival (CSS), and recurrence-free survival (RFS) after propensity score matching to adjust for differences in baseline characteristics of patients and tumors. In the multivariate Cox regression analyses, a high AAC was an independent risk factor for poor OS (hazard ratio [HR], 2.38; 95% confidence interval [CI], 1.23-4.59; p = 0.01), poor CSS (HR, 5.22; 95% CI, 1.74-15.6; p < 0.01), and poor RFS (HR, 1.83; 95% CI, 1.19-2.83; p < 0.01). A high AAC was not associated with a risk of lung metastasis or local or peritoneal recurrence, but a risk for liver metastasis of CRC. CONCLUSION A high AAC showed a strong relationship with poor OS, CSS, and RFS after curative resection for stage II-III CRC. A high AAC was also associated with a risk for liver metastasis, which may worsen the prognosis in stage II-III CRC. AAC could be a new clinical tool for predicting the prognosis for patients in stage II-III CRC.
Collapse
Affiliation(s)
- Kouki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Manabu Shimomura
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan.
| | - Wataru Shimizu
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Shintaro Akabane
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Yuki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Hisaaki Yoshinaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Kosuke Ono
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Tetsuya Mochizuki
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Keiso Matsubara
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Tomoaki Bekki
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Minoru Hattori
- Advanced Medical Skills Training Center, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, 734-8551, Hiroshima, Japan
| |
Collapse
|
21
|
Buxton AK, Abbasova S, Bevan CL, Leach DA. Liver Microenvironment Response to Prostate Cancer Metastasis and Hormonal Therapy. Cancers (Basel) 2022; 14:6189. [PMID: 36551674 PMCID: PMC9777323 DOI: 10.3390/cancers14246189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer-associated deaths arise from disease progression and metastasis. Metastasis to the liver is associated with the worst clinical outcomes for prostate cancer patients, and these metastatic tumors can be particularly resistant to the currently widely used chemotherapy and hormonal therapies, such as anti-androgens which block androgen synthesis or directly target the androgen receptor. The incidence of liver metastases is reportedly increasing, with a potential correlation with use of anti-androgen therapies. A key player in prostate cancer progression and therapeutic response is the microenvironment of the tumor(s). This is a dynamic and adaptive collection of cells and proteins, which impart signals and stimuli that can alter biological processes within prostate cancer cells. Investigation in the prostate primary site has demonstrated that cells of the microenvironment are also responsive to hormones and hormonal therapies. In this review, we collate information about what happens when cancer moves to the liver: the types of prostate cancer cells that metastasize there, the response of resident mesenchymal cells of the liver, and how the interactions between the cancer cells and the microenvironment may be altered by hormonal therapy.
Collapse
Affiliation(s)
| | | | - Charlotte L. Bevan
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Damien A. Leach
- Division of Cancer, Imperial Centre for Translational & Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
22
|
Piquet L, Coutant K, Mitchell A, Ben Anes A, Bollmann E, Schoonjans N, Bérubé J, Bordeleau F, Brisson A, Landreville S. Extracellular Vesicles from Ocular Melanoma Have Pro-Fibrotic and Pro-Angiogenic Properties on the Tumor Microenvironment. Cells 2022; 11:cells11233828. [PMID: 36497088 PMCID: PMC9736613 DOI: 10.3390/cells11233828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumor and often spreads to the liver. Intercellular communication though extracellular vesicles (EVs) plays an important role in several oncogenic processes, including metastasis, therapeutic resistance, and immune escape. This study examines how EVs released by UM cells modify stellate and endothelial cells in the tumor microenvironment. The surface markers, and the concentration and size of EVs derived from UM cells or choroidal melanocytes were characterized by high-resolution flow cytometry, electron microscopy, and Western blotting. The selective biodistribution of EVs was studied in mice by fluorescence imaging. The activation/contractility of stellate cells and the tubular organization of endothelial cells after exposure to melanomic EVs were determined by traction force microscopy, collagen gel contraction, or endothelial tube formation assays. We showed that large EVs from UM cells and healthy melanocytes are heterogenous in size, as well as their expression of phosphatidylserine, tetraspanins, and Tsg101. Melanomic EVs mainly accumulated in the liver and lungs of mice. Hepatic stellate cells with internalized melanomic EVs had increased contractility, whereas EV-treated endothelial cells developed more capillary-like networks. Our study demonstrates that the transfer of EVs from UM cells leads to a pro-fibrotic and pro-angiogenic phenotype in hepatic stellate and endothelial cells.
Collapse
Affiliation(s)
- Léo Piquet
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Kelly Coutant
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Andrew Mitchell
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Amel Ben Anes
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Enola Bollmann
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Nathan Schoonjans
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Julie Bérubé
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - François Bordeleau
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Alain Brisson
- UMR-CBMN, CNRS-Université de Bordeaux-IPB, 33600 Pessac, France
| | - Solange Landreville
- Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche sur le Cancer de l’Université Laval, Quebec City, QC G1R 3S3, Canada
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Correspondence: ; Tel.: +1-418-682-7693
| |
Collapse
|
23
|
Tran NL, Ferreira LM, Alvarez-Moya B, Buttiglione V, Ferrini B, Zordan P, Monestiroli A, Fagioli C, Bezzecchi E, Scotti GM, Esposito A, Leone R, Gnasso C, Brendolan A, Guidotti LG, Sitia G. Continuous sensing of IFNα by hepatic endothelial cells shapes a vascular antimetastatic barrier. eLife 2022; 11:e80690. [PMID: 36281643 PMCID: PMC9596162 DOI: 10.7554/elife.80690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.
Collapse
Affiliation(s)
- Ngoc Lan Tran
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Lorena Maria Ferreira
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Blanca Alvarez-Moya
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Valentina Buttiglione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Barbara Ferrini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Paola Zordan
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Andrea Monestiroli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Claudio Fagioli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| | | | | | - Antonio Esposito
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Riccardo Leone
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Chiara Gnasso
- Vita-Salute San Raffaele UniversityMilanItaly
- Experimental Imaging Center, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Andrea Brendolan
- Division of Experimental Oncology, IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita-Salute San Raffaele UniversityMilanItaly
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
24
|
Yang S, Peng R, Zhou L. The impact of hepatic steatosis on outcomes of colorectal cancer patients with liver metastases: A systematic review and meta-analysis. Front Med (Lausanne) 2022; 9:938718. [PMID: 36160137 PMCID: PMC9498207 DOI: 10.3389/fmed.2022.938718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background It is unclear how hepatic steatosis impacts patient prognosis in the case of colorectal cancer with liver metastases (CRLM). The purpose of this review was to assess the effect of hepatic steatosis on patient survival and disease-free survival (DFS) in the case of CRLM. Methods We examined the databases of PubMed, CENTRAL, Embase, Google Scholar, and ScienceDirect for studies reporting outcomes of CRLM patients with and without hepatic steatosis. We performed a random-effects meta-analysis using multivariable adjusted hazard ratios (HR). Results Nine studies reporting data of a total of 14,197 patients were included. All patients had undergone surgical intervention. Pooled analysis of seven studies indicated that hepatic steatosis had no statistically significant impact on patient survival in CRLM (HR: 0.92 95% CI: 0.82, 1.04, I2 = 82%, p = 0.18). Specifically, we noted that there was a statistically significant improvement in cancer-specific survival amongst patients with hepatic steatosis (two studies; HR: 0.85 95% CI: 0.76, 0.95, I2 = 41%, p = 0.005) while there was no difference in overall survival (five studies; HR: 0.97 95% CI: 0.83, 1.13, I2 = 78%, p = 0.68). On meta-analysis of four studies, we noted that the presence of hepatic steatosis resulted in statistically significant reduced DFS in patients with CRLM (HR: 1.32 95% CI: 1.08, 1.62, I2 = 67%, p = 0.007). Conclusion The presence of hepatic steatosis may not influence patient survival in CRLM. However, scarce data is suggestive of poor DFS in CRLM patients with hepatic steatosis. Further prospective studies taking into account different confounding variables are needed to better assess the effect of hepatic steatosis on outcomes of CRLM. Systematic review registration [https://www.crd.york.ac.uk/prospero/#searchadvanced], identifier [CRD42022320665].
Collapse
|
25
|
Lee SB, Hwang SJ, Son CG. CGX, a standardized herbal syrup, inhibits colon-liver metastasis by regulating the hepatic microenvironments in a splenic injection mouse model. Front Pharmacol 2022; 13:906752. [PMID: 36105183 PMCID: PMC9465806 DOI: 10.3389/fphar.2022.906752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Colon-liver metastasis is observed in approximately 50% of patients with colorectal cancer and is a critical risk factor for a low survival rate. Several clinical studies have reported that colon-liver metastasis is accelerated by pathological hepatic microenvironments such as hepatic steatosis or fibrosis. Chunggan syrup (CGX), a standardized 13-herbal mixture, has been prescribed to patients with chronic liver diseases, including fatty liver, inflammation and fibrotic change, based on preclinical and clinical evidence. Aim of the study: In the present study, we investigated anti-liver metastatic the effects of CGX in a murine colon carcinoma (MC38)-splenic injection mouse model. Materials and methods: C57BL/6N mice were administered with CGX (100, 200 or 400 mg/kg) for 14 days before or after MC38-splenic injection under normal and high-fat diet (HFD) fed conditions. Also, above experiment was repeated without MC38-splenic injection to explore underlying mechanism. Results: The number of tumor nodules and liver weight with tumors were sup-pressed by preadministration of CGX in both normal and HFD fed mice. Regarding its mechanisms, we found that CGX administration significantly activated epithelial-cadherin (E-cadherin), but decreased vascular endothelial-cadherin (VE-cadherin) in hepatic tissues under MC38-free conditions. In addition, CGX administration significantly reduced hepatic steatosis, via modulation of lipolytic and lipogenic molecules, including activated adenosine monophosphate activated protein kinase (AMPK) and peroxisome proliferator activated receptor-alpha (PPARα). Conclusion: The present data indicate that CGX exerts an anti-colon-liver metastatic property via modulation of hepatic lipid related microenvironments.
Collapse
Affiliation(s)
| | | | - Chang-Gue Son
- Institute of Bioscience and Integrative Medicine, Daejeon University, Daejeon, Korea
| |
Collapse
|
26
|
The Hepatic Pre-Metastatic Niche. Cancers (Basel) 2022; 14:cancers14153731. [PMID: 35954395 PMCID: PMC9367402 DOI: 10.3390/cancers14153731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The pre-metastatic niche is a recently established concept that could lead to targeted therapies that prevent metastasis before ever occurring. Considering that 90% of cancer mortality results from metastasis, the PMN is thus a salient opportunity for intervention. The purpose of the current review is to cover what is known specifically about the hepatic pre-metastatic niche, a topic that has garnered increasing research focus within the last decade. We discuss the methods of communication between primary tumors and the liver, the involved cell populations, the key changes within liver tissue, and perspectives on the future of the field. Abstract Primary tumors can communicate with the liver to establish a microenvironment that favors metastatic colonization prior to dissemination, forming what is termed the “pre-metastatic niche” (PMN). Through diverse signaling mechanisms, distant malignancies can both influence hepatic cells directly as well as recruit immune cells into the PMN. The result is a set of changes within the hepatic tissue that increase susceptibility of tumor cell invasion and outgrowth upon dissemination. Thus, the PMN offers a novel step in the traditional metastatic cascade that could offer opportunities for clinical intervention. The involved signaling molecules also offer promise as biomarkers. Ultimately, while the existence of the hepatic PMN is well-established, continued research effort and use of innovative models are required to reach a functional knowledge of PMN mechanisms that can be further targeted.
Collapse
|
27
|
Li Y, Hu J, Wang M, Yuan Y, Zhou F, Zhao H, Qiu T, Liang L. Exosomal circPABPC1 promotes colorectal cancer liver metastases by regulating HMGA2 in the nucleus and BMP4/ADAM19 in the cytoplasm. Cell Death Discov 2022; 8:335. [PMID: 35871166 PMCID: PMC9308786 DOI: 10.1038/s41420-022-01124-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Liver metastasis is the leading cause of death in colorectal carcinoma (CRC). However, little is known about the mechanisms of transferring effector messages between the primary tumor and the site of metastasis. Exosomes provide a novel transfer message method, and exosomal circular RNAs (circRNAs) play critical regulatory roles in cancer biology. In this study, the results showed that the expression of circPABPC1 was aberrantly upregulated in CRC tissues and exosomes. Exosomal circPABPC1 was considered an oncogene by functional experimental analysis in vitro and in vivo. Mechanistically, circPABPC1 recruited KDM4C to the HMGA2 promoter, reduced its H3K9me3 modification and initiated the transcription process in the nucleus. Moreover, cytoplasmic circPABPC1 promoted CRC progression by protecting ADAM19 and BMP4 from miR-874-/miR-1292-mediated degradation. Our findings indicated that exosomal circPABPC1 is an essential regulator in CRC liver metastasis progression by promoting HMGA2 and BMP4/ADAM19 expression. CircPABPC1 is expected to be a novel biomarker and antimetastatic therapeutic target in CRC.
Collapse
Affiliation(s)
- Yang Li
- Department of Laboratory Medicine, the Affiliated Hospital of Jinzhou Medical University, 121001, Jinzhou, China.
| | - Jialei Hu
- Clinical Laboratory, Yiwu Maternal and Child Health Hospital, 321000, Jinhua, China
| | - Meng Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yihang Yuan
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200336, Shanghai, China
| | - Fangyuan Zhou
- Department of Laboratory Medicine, the Affiliated Hospital of Jinzhou Medical University, 121001, Jinzhou, China
| | - Haosen Zhao
- Department of Orthopedic, the Affiliated Hospital of Jinazhou Medical University, 121001, Jinzhou, China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, 116044, Dalian, China
| | - Leilei Liang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| |
Collapse
|
28
|
Zeng Y, Cao R, Tao Z, Gao Y. Association between the severity of metabolic dysfunction-associated fatty liver disease and the risk of colorectal neoplasm: a systematic review and meta-analysis. Lipids Health Dis 2022; 21:52. [PMID: 35668493 PMCID: PMC9172084 DOI: 10.1186/s12944-022-01659-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background The severity of metabolic dysfunction-associated fatty liver disease (MAFLD) reportedly plays a part in the etiology of colorectal tumors. However, there is no consensus. Methods Studies relevant with the impact of MAFLD severity on the risk of colorectal neoplasms published before 24th April 2022 were screened. The pooled odds ratio (OR) with corresponding 95% confidence intervals (95% CI) was obtained using standard and cumulative meta-analyses. Subgroup, meta-regression, and sensitivity analyses were carried out to identify heterogeneity. Results Fourteen studies with data from 37,824 MAFLD patients were included. The prevalence of colorectal neoplasms escalated with the progression of MAFLD compared to simple steatosis (OR = 1.93; 95% CI = 1.42–2.62). The magnitude and direction of the effect on these outcomes remained largely constant over time. Even after limiting the meta-analysis to 8 studies with available adjusted OR (aOR), the findings still suggested that MAFLD severity was positively related to colorectal neoplasms (aOR = 3.03; 95% CI = 2.02–4.53). Severe MAFLD was more likely to cause left colon tumors (OR = 3.86, 95% CI = 2.16–6.91) than right colon neoplasms (OR = 1.94, 95% CI = 1.15–3.28). Conclusion The severity of MAFLD was independently related to colorectal neoplasms and severe MAFLD was more likely to cause left colon tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01659-1.
Collapse
Affiliation(s)
- Yunqing Zeng
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, Shandong, China
| | - Ruyue Cao
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, Shandong, China
| | - Ziwen Tao
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, Shandong, China
| | - Yanjing Gao
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 West Wen Hua Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
29
|
Yu Y, Cai Y, Yang B, Xie S, Shen W, Wu Y, Sui Z, Cai J, Ni C, Ye J. High-Fat Diet Enhances the Liver Metastasis Potential of Colorectal Cancer through Microbiota Dysbiosis. Cancers (Basel) 2022; 14:cancers14112573. [PMID: 35681554 PMCID: PMC9179364 DOI: 10.3390/cancers14112573] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary High-fat diet (HFD) is hypothesized to induce gut dysbiosis and promote colorectal cancer (CRC). However, the specific mechanisms involved require investigation. In this study, we established an animal model and utilized 16S sequencing to determine the effects of HFD on gut microbiota, as well as on the colon and liver. Furthermore, due to the abundance of Desulfovibrio (DSV) in the faecal samples of HFD-fed rats and CRC hepatic metastasis patients, we also conducted a DSV gavage animal experiment to determine the role of DSV in CRC development. Our study confirmed that HFD could cause microbiota dysbiosis, especially DSV enrichment, and may promote CRC initiation and metastasis. Abstract Obesity, metabolic changes, and intestinal microbiota disruption significantly affect tumorigenesis and metastasis in colorectal cancer (CRC). However, the relationships among these factors remain poorly understood. In this study, we found that a high-fat diet (HFD) promoted gut barrier dysfunction and inflammation in the colorectum and liver. We further investigated gut microbiota changes through 16S rRNA sequencing of faecal samples from HFD-fed rats and CRC hepatic metastasis patients and found an abundance of Desulfovibrio (DSV). DSV could also induce barrier dysfunction in the colorectum and inflammation in the colorectum and liver, suggesting that it contributes to the formation of a microenvironment conducive to CRC tumorigenesis and metastasis. These findings highlight that HFD-induced microbiota dysbiosis, especially DSV abundance, could promote CRC initiation and metastasis.
Collapse
Affiliation(s)
- Yina Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Yangke Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Bin Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Siyuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Wenjuan Shen
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Yaoyi Wu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Ziqi Sui
- Department of Gastroenterology, The First People’s Hospital of Linping District, Hangzhou 310009, China;
| | - Jianting Cai
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
| | - Chao Ni
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Correspondence: (C.N.); (J.Y.); Tel.: +86-571-87784642 (C.N. & J.Y.); Fax: +86-571-87022776 (C.N. & J.Y.)
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.Y.); (Y.C.); (B.Y.); (S.X.); (W.S.); (Y.W.); (J.C.)
- Correspondence: (C.N.); (J.Y.); Tel.: +86-571-87784642 (C.N. & J.Y.); Fax: +86-571-87022776 (C.N. & J.Y.)
| |
Collapse
|
30
|
Sakai N, Hayano K, Mishima T, Furukawa K, Takayashiki T, Kuboki S, Takano S, Kawasaki Y, Matsubara H, Ohtsuka M. Fat signal fraction assessed with MRI predicts hepatic recurrence following hepatic resection for colorectal liver metastases. Langenbecks Arch Surg 2022; 407:1981-1989. [PMID: 35362752 DOI: 10.1007/s00423-022-02482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/20/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE The effect of hepatic steatosis on the development of colorectal liver metastases (CRLM) remains unknown. This study evaluated the usefulness of fat signal fraction assessed with magnetic resonance imaging (MRI) and the effect of hepatic steatosis on hepatic recurrences following initial hepatectomy for CRLM. METHODS Between January 2013 and December 2019, 64 patients underwent initial hepatectomy for CRLM. The medical records of these patients were reviewed to evaluate the recurrence and survival outcomes. RESULTS The fat signal fraction was positively correlated with the nonalcoholic fatty liver disease activity score and liver-spleen ratio. Recurrence following the initial hepatectomy was observed in 48/64 patients, and hepatic recurrence was observed in 30/64 patients. The fat signal fraction was significantly higher in patients with hepatic recurrence after initial hepatectomy. The hepatic recurrence rate was 69.2% in patients with fat signal fraction ≥ 0.0258, which was significantly higher than that in patients with fat signal fraction < 0.0258. Hepatic recurrence-free survival rate was significantly higher in patients with fat signal fraction < 0.0258 than in those with fat signal fraction ≥ 0.0258. Multivariate analyses revealed that fat signal fraction ≥ 0.0258 was an independent risk factor for hepatic recurrence. CONCLUSION The fat signal fraction assessed with MRI was significantly associated with hepatic recurrence following initial hepatectomy for CRLM.
Collapse
Affiliation(s)
- Nozomu Sakai
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Mishima
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yohei Kawasaki
- Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
31
|
Bai L, Yan XL, Lu YX, Meng Q, Rong YM, Ye LF, Pan ZZ, Xing BC, Wang DS. Circulating Lipid- and Inflammation-Based Risk (CLIR) Score: A Promising New Model for Predicting Outcomes in Complete Colorectal Liver Metastases Resection. Ann Surg Oncol 2022; 29:10.1245/s10434-021-11234-0. [PMID: 35254582 PMCID: PMC9174322 DOI: 10.1245/s10434-021-11234-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Colorectal cancer liver metastasis (CRLM) is a determining factor affecting the survival of colorectal cancer (CRC) patients. This study aims at developing a novel prognostic stratification tool for CRLM resection. METHODS In this retrospective study, 666 CRC patients who underwent complete CRLM resection from two Chinese medical institutions between 2001 and 2016 were classified into the training (341 patients) and validation (325 patients) cohorts. The primary endpoint was overall survival (OS). Associations between clinicopathological variables, circulating lipid and inflammation biomarkers, and OS were explored. The five most significant prognostic factors were incorporated into the Circulating Lipid- and Inflammation-based Risk (CLIR) score. The predictive ability of the CLIR score and Fong's Clinical Risk Score (CRS) was compared by time-dependent receiver operating characteristic (ROC) analysis. RESULTS Five independent predictors associated with worse OS were identified in the training cohort: number of CRLMs >4, maximum diameter of CRLM >4.4 cm, primary lymph node-positive, serum lactate dehydrogenase (LDH) level >250.5 U/L, and serum low-density lipoprotein-cholesterol (LDL-C)/high-density lipoprotein-cholesterol (HDL-C) ratio >2.9. These predictors were included in the CLIR score and each factor was assigned one point. Median OS for the low (score 0-1)-, intermediate (score 2-3)-, and high (score 4-5)-risk groups was 134.0 months, 39.9 months, and 18.7 months in the pooled cohort. The CLIR score outperformed the Fong score with superior discriminatory capacities for OS and RFS, both in the training and validation cohorts. CONCLUSIONS The CLIR score demonstrated a promising ability to predict the long-term survival of CRC patients after complete hepatic resection.
Collapse
Affiliation(s)
- Long Bai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiao-Luan Yan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Beijing, 100142, People's Republic of China
- Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Yun-Xin Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center/Cancer Hospital, Guangzhou, People's Republic of China
| | - Qi Meng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center/Cancer Hospital, Guangzhou, People's Republic of China
| | - Yu-Ming Rong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Liu-Fang Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center/Cancer Hospital, Guangzhou, People's Republic of China
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China.
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center/Cancer Hospital, Guangzhou, Guangdong, 510060, People's Republic of China.
| | - Bao-Cai Xing
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), Beijing, 100142, People's Republic of China.
- Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China.
| | - De-Shen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, People's Republic of China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center/Cancer Hospital, Guangzhou, People's Republic of China.
| |
Collapse
|
32
|
Jonas JP, Hackl H, Pereyra D, Santol J, Ortmayr G, Rumpf B, Najarnia S, Schauer D, Brostjan C, Gruenberger T, Starlinger P. Circulating metabolites as a concept beyond tumor biology determining disease recurrence after resection of colorectal liver metastasis. HPB (Oxford) 2022; 24:116-129. [PMID: 34257019 DOI: 10.1016/j.hpb.2021.06.415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Micro-metastatic growth is considered the main source of early cancer recurrence. Nutritional and microenvironmental components are increasingly recognized to play a significant role in the liver. We explored the predictive potential of preoperative plasma metabolites for postoperative disease recurrence in colorectal cancer liver metastasis (CRCLM) patients. METHODS All included patients (n = 71) had undergone R0 liver resection for colorectal cancer liver metastasis in the years between 2012 and 2018. Preoperative blood samples were collected and assessed for 180 metabolites using a preconfigured mass-spectrometry kit (Biocrates Absolute IDQ p180 kit). Postoperative disease-free (DFS) and overall survival (OS) were prospectively recorded. Patients that recurred within 6 months after surgery were defined as "high-risk" and, subsequently, a three-metabolite model was created which can assess DFS in our collective. RESULTS Multiple lysophosphatidylcholines (lysoPCs) and phosphatidylcholines (PCs) significantly predicted disease recurrence within 6 months (strongest: PC aa C36:1 AUC = 0.83, p = 0.003, PC ae C34:0 AUC = 0.83, p = 0.004 and lysoPC a C18:1 AUC = 0.8, p = 0.006). High-risk patients had a median DFS of 183 days versus 522 days in low-risk population (p = 0.016, HR = 1.98 95% CI 1.16-4.35) with a 6 months recurrence rate of 47.6% versus 4.7%, outperforming routine predictors of oncological outcome. CONCLUSION Circulating metabolites identified CRCLM patients at highest risk for 6 months disease recurrence after surgery. Our data also suggests that circulating metabolites might play a significant pathophysiological role in micro-metastatic growth and concomitant early tumor recurrences after liver resection. However, the clinical applicability and performance of this proposed metabolomic concept needs to be independently validated in future studies.
Collapse
Affiliation(s)
- Jan P Jonas
- Department of Surgery, Hepatico-Pancreato-Biliary Center, Clinicum Favoriten, Vienna, Austria; Department of Visceral and Transplant Surgery, University Hospital of Zurich, Switzerland
| | - Hubert Hackl
- Department of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - David Pereyra
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Jonas Santol
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Gregor Ortmayr
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Benedikt Rumpf
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Sina Najarnia
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Dominic Schauer
- Department of Radiology, Clinicum Landstrasse, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria
| | - Thomas Gruenberger
- Department of Surgery, Hepatico-Pancreato-Biliary Center, Clinicum Favoriten, Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna, Austria; Department of Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
34
|
Akkoc Y, Gozuacik D. Autophagy and Hepatic Tumor Microenvironment Associated Dormancy. J Gastrointest Cancer 2021; 52:1277-1293. [PMID: 34921672 DOI: 10.1007/s12029-021-00774-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
The goal of successful cancer treatment is targeting the eradication of cancer cells. Although surgical removal of the primary tumors and several rounds of chemo- and radiotherapy reduce the disease burden, in some cases, asymptomatic dormant cancer cells may still exist in the body. Dormant cells arise from the disseminated tumor cells (DTCs) from the primary lesion. DTCs escape from immune system and cancer therapy and reside at the secondary organ without showing no sign of proliferation. However, under some conditions. dormant cells can be re-activated and enter a proliferative state even after decades. As a stress response mechanism, autophagy may help the adaptation of DTCs at this futile foreign microenvironment and may control the survival and re-activation of dormant cells. Studies indicate that hepatic microenvironment serves a favorable condition for cancer cell dormancy. Although, no direct study was pointing out the role of autophagy in liver-assisted dormancy, involvement of autophagy in both liver microenvironment, health, and disease conditions has been indicated. Therefore, in this review article, we will summarize cancer dormancy and discuss the role and importance of autophagy and hepatic microenvironment in this context.
Collapse
Affiliation(s)
- Yunus Akkoc
- Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, 34010, Turkey.
| | - Devrim Gozuacik
- Koç University Research Centre for Translational Medicine (KUTTAM), Istanbul, 34010, Turkey.,Koç University School of Medicine, Istanbul, 34010, Turkey
| |
Collapse
|
35
|
Lim YS, Lee YS, Lee JC, Son SM, Shin DH, Kim SS, Kim IJ, Lee BJ. Ultrasound Echogenicity of Papillary Thyroid Cancer Is Affected by Tumor Growth Patterns and Tumor Fibrosis. In Vivo 2021; 35:1633-1640. [PMID: 33910846 DOI: 10.21873/invivo.12421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The association between preoperative ultrasound (US) echogenicity and histopathological characteristics of papillary thyroid cancer (PTC) has been rarely investigated is not well characterized. This study evaluated a relationship between the clinical characteristics of PTC, histopathological phenomena including tumor growth patterns (TGPs) and tumor fibrosis (TF), and US echogenicity. PATIENTS AND METHODS In total, 170 patients with PTC (<2 cm) underwent total thyroidectomy with central neck dissection. Demographics, US echogenicity, tumor size, extra-thyroidal extension (ETE), lymph node metastasis (LNM) within the central and lateral neck, TGPs, and TF percentage were reviewed. RESULTS Patients with TGP II (encapsulated growth with partial pericapsular extension) and III (infiltrative growth) were more frequently burdened by ETE and lateral neck LNM compared to patients with TGP I (encapsulated growth with a well-defined cystic or solid characteristic). Older age was significantly deterministic of TGP III, and male gender and higher TF percentage were independent risk factors for lateral neck LNM. TGP III and TF were independent determining factors for marked hypoechogenicity on US. CONCLUSION PTC with TGP II and III and higher tumor fibrosis exhibited more aggressive clinicopathologic behaviors. TGP III and TF were determinants for marked hypoechogenicity.
Collapse
Affiliation(s)
- Yun-Sung Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Ilsan Hospital, Dongguk University, Goyang, Republic of Korea
| | - Yoon Se Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Choon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Seok-Man Son
- Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Dong-Hoon Shin
- Pathology, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea;
| | - Sang Soo Kim
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Republic of Korea
| | - In-Ju Kim
- Department of Internal Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Republic of Korea
| | - Byung-Joo Lee
- Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Busan, Republic of Korea
| |
Collapse
|
36
|
Monelli F, Besutti G, Djuric O, Bonvicini L, Farì R, Bonfatti S, Ligabue G, Bassi MC, Damato A, Bonelli C, Pinto C, Pattacini P, Giorgi Rossi P. The Effect of Diffuse Liver Diseases on the Occurrence of Liver Metastases in Cancer Patients: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:2246. [PMID: 34067076 PMCID: PMC8124499 DOI: 10.3390/cancers13092246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
This systematic review with meta-analysis aimed to assess the effect of diffuse liver diseases (DLD) on the risk of synchronous (S-) or metachronous (M-) liver metastases (LMs) in patients with solid neoplasms. Relevant databases were searched for systematic reviews and cross-sectional or cohort studies published since 1990 comparing the risk of LMs in patients with and without DLD (steatosis, viral hepatitis, cirrhosis, fibrosis) in non-liver solid cancer patients. Outcomes were prevalence of S-LMs, cumulative risk of M-LMs and LM-free survival. Risk of bias (ROB) was assessed using the Newcastle-Ottawa Scale. We report the pooled relative risks (RR) for S-LMs and hazard ratios (HR) for M-LMs. Subgroup analyses included DLD, primary site and continent. Nineteen studies were included (n = 37,591 patients), the majority on colorectal cancer. ROB appraisal results were mixed. Patients with DLD had a lower risk of S-LMs (RR 0.50, 95% CI 0.34-0.76), with a higher effect for cirrhosis and a slightly higher risk of M-LMs (HR 1.11 95% CI, 1.03-1.19), despite a lower risk of M-LMs in patients with vs without viral hepatitis (HR 0.57, 95% CI 0.40-0.82). There may have been a publication bias in favor of studies reporting a lower risk for patients with DLD. DLD are protective against S-LMs and slightly protective against M-LMs for viral hepatitis only.
Collapse
Affiliation(s)
- Filippo Monelli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giulia Besutti
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Olivera Djuric
- Epidemiology Unit, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (O.D.); (L.B.); (P.G.R.)
- Center for Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Laura Bonvicini
- Epidemiology Unit, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (O.D.); (L.B.); (P.G.R.)
| | - Roberto Farì
- Radiology Unit, AOU Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.F.); (S.B.); (G.L.)
| | - Stefano Bonfatti
- Radiology Unit, AOU Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.F.); (S.B.); (G.L.)
| | - Guido Ligabue
- Radiology Unit, AOU Policlinico di Modena, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.F.); (S.B.); (G.L.)
| | - Maria Chiara Bassi
- Medical Library, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Angela Damato
- Oncology Department, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.D.); (C.B.); (C.P.)
| | - Candida Bonelli
- Oncology Department, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.D.); (C.B.); (C.P.)
| | - Carmine Pinto
- Oncology Department, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.D.); (C.B.); (C.P.)
| | - Pierpaolo Pattacini
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Paolo Giorgi Rossi
- Epidemiology Unit, AUSL- IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (O.D.); (L.B.); (P.G.R.)
| |
Collapse
|
37
|
Drew J, Machesky LM. The liver metastatic niche: modelling the extracellular matrix in metastasis. Dis Model Mech 2021; 14:dmm048801. [PMID: 33973625 PMCID: PMC8077555 DOI: 10.1242/dmm.048801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dissemination of malignant cells from primary tumours to metastatic sites is a key step in cancer progression. Disseminated tumour cells preferentially settle in specific target organs, and the success of such metastases depends on dynamic interactions between cancer cells and the microenvironments they encounter at secondary sites. Two emerging concepts concerning the biology of metastasis are that organ-specific microenvironments influence the fate of disseminated cancer cells, and that cancer cell-extracellular matrix interactions have important roles at all stages of the metastatic cascade. The extracellular matrix is the complex and dynamic non-cellular component of tissues that provides a physical scaffold and conveys essential adhesive and paracrine signals for a tissue's function. Here, we focus on how extracellular matrix dynamics contribute to liver metastases - a common and deadly event. We discuss how matrix components of the healthy and premetastatic liver support early seeding of disseminated cancer cells, and how the matrix derived from both cancer and liver contributes to the changes in niche composition as metastasis progresses. We also highlight the technical developments that are providing new insights into the stochastic, dynamic and multifaceted roles of the liver extracellular matrix in permitting and sustaining metastasis. An understanding of the contribution of the extracellular matrix to different stages of metastasis may well pave the way to targeted and effective therapies against metastatic disease.
Collapse
Affiliation(s)
- James Drew
- CRUK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Laura M. Machesky
- CRUK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
38
|
Chen H, Dai S, Fang Y, Chen L, Jiang K, Wei Q, Ding K. Hepatic Steatosis Predicts Higher Incidence of Recurrence in Colorectal Cancer Liver Metastasis Patients. Front Oncol 2021; 11:631943. [PMID: 33767997 PMCID: PMC7986714 DOI: 10.3389/fonc.2021.631943] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose: Colorectal liver metastasis (CRLM) is the major cause of death due to colorectal cancer. Although great efforts have been made in treatment of CRLM, about 60–70% of patients will develop hepatic recurrence. Hepatic steatosis was reported to provide fertile soil for metastasis. However, whether hepatic steatosis predicts higher incidence of CRLM recurrence is not clear. Therefore, we aimed to determine the role of hepatic steatosis in CRLM recurrence in the present study. Methods: Consecutive CRLM patients undergoing curative treatment were retrospectively enrolled and CT liver-spleen attenuation ratio was used to detect the presence of hepatic steatosis. In patients with hepatic steatosis, we also detected the presence of fibrosis. Besides, a systematic literature search was performed to do meta-analysis to further analyze the association between hepatic steatosis and CRLM recurrence. Results: A total of 195 eligible patients were included in our center. Patients with hepatic steatosis had a significantly worse overall (P = 0.0049) and hepatic recurrence-free survival (RFS) (P = 0.0012). Univariate and multivariate analysis confirmed its essential role in prediction of RFS. Besides, hepatic fibrosis is associated with worse overall RFS (P = 0.039) and hepatic RFS (P = 0.048). In meta-analysis, we included other four studies, with a total of 1,370 patients in the case group, and 3,735 patients in the control group. The odds ratio was 1.98 (95% CI: 1.25–3.14, P = 0.004), indicating that patients with steatosis had a significantly higher incidence of CRLM recurrence. Conclusion: In summary, patients with hepatic steatosis had a significantly worse overall and hepatic RFS and it's associated with higher incidence of CRLM recurrence.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Siqi Dai
- Zhejiang University Cancer Center, Hangzhou, China.,Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yimin Fang
- Zhejiang University Cancer Center, Hangzhou, China.,Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liubo Chen
- Zhejiang University Cancer Center, Hangzhou, China.,Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Jiang
- Zhejiang University Cancer Center, Hangzhou, China.,Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Kefeng Ding
- Zhejiang University Cancer Center, Hangzhou, China.,Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Mahdi Z, Ettel MG, Gonzalez RS, Hart J, Alpert L, Fang J, Liu N, Hammer ST, Panarelli N, Cheng J, Greenson JK, Swanson PE, Westerhoff M. Metastases can occur in cirrhotic livers with patent portal veins. Diagn Pathol 2021; 16:18. [PMID: 33639984 PMCID: PMC7913426 DOI: 10.1186/s13000-021-01076-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives Metastases are common in non-cirrhotic livers but are considered unlikely in the setting of cirrhosis. However, the degree of fibrosis in cirrhosis may vary; thus metastases may still access the liver vasculature and present as a mass in cirrhotic livers. This possibility may affect pathologists’ diagnostic algorithms when faced with a liver mass biopsy. Methods We hypothesized that metastases can occur in cirrhotic livers if fibrous remodeling is not severe or abnormal veno-arterial shunting exists to override an obstructed portal system. We searched departmental archives for cirrhotic livers with masses, categorizing fibrosis by Laennec staging: 4A = mild cirrhosis, 4B = moderate, 4 C = severe. Results Of 1453 cirrhotic livers with masses, 1429 were primary tumors and 24 were metastases (1.7 %). Of livers with metastases, most had 4A or 4B cirrhosis by Laennec staging (n = 17; 71 %). Eleven patients were evaluated by ultrasound Doppler; 2 of 5 with Laennec 4 C had reversal of portal vein flow, but all 4A & 4B patients had patent portal veins without reversed flow. Echocardiograms (13 patients) showed no ventricular or atrial septal defects or arteriovenous shunts. Conclusions Metastases are uncommon in cirrhotic livers, accounting for 1.7 % of masses. Most involved livers had mild or moderate cirrhosis (Laennec 4A/4B) and patent portal veins; however, as some Laennec 4 C cases also contained metastases, obstructed portal access may not be enough to deter metastatic access.
Collapse
Affiliation(s)
- Zaid Mahdi
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mark G Ettel
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Raul S Gonzalez
- Department of Pathology, Beth Israel Deaconness Medical Center, Boston, MA, USA
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Lindsay Alpert
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Jiayun Fang
- Department of Pathology, University of Michigan, Faculty Suite Rm. 36-1221-65 2800 Plymouth Rd, Building 35, 48109, Ann Arbor, MI, USA
| | - Natalia Liu
- Department of Pathology, University of Michigan, Faculty Suite Rm. 36-1221-65 2800 Plymouth Rd, Building 35, 48109, Ann Arbor, MI, USA
| | - Suntrea T Hammer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Panarelli
- Department of Pathology, Montefiore Medical Center, Bronx, NY, USA
| | - Jerome Cheng
- Department of Pathology, University of Michigan, Faculty Suite Rm. 36-1221-65 2800 Plymouth Rd, Building 35, 48109, Ann Arbor, MI, USA
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Faculty Suite Rm. 36-1221-65 2800 Plymouth Rd, Building 35, 48109, Ann Arbor, MI, USA
| | - Paul E Swanson
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Maria Westerhoff
- Department of Pathology, University of Michigan, Faculty Suite Rm. 36-1221-65 2800 Plymouth Rd, Building 35, 48109, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Apraiz A, Benedicto A, Marquez J, Agüera-Lorente A, Asumendi A, Olaso E, Arteta B. Innate Lymphoid Cells in the Malignant Melanoma Microenvironment. Cancers (Basel) 2020; 12:cancers12113177. [PMID: 33138017 PMCID: PMC7692065 DOI: 10.3390/cancers12113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Innate lymphoid cells (ILCs) are the innate counterparts of adaptive immune cells. Emerging data indicate that they are also key players in the progression of multiple tumors. In this review we briefly describe ILCs’ functions in the skin, lungs and liver. Next, we analyze the role of ILCs in primary cutaneous melanoma and in its most frequent and deadly metastases, those in liver and lung. We focus on their dual anti– and pro-tumoral functions, depending on the cross-interactions among them and with the surrounding stromal cells that form the tumor microenvironment (TME) in each organ. Next, we detail the role of extracellular vesicles secreted to the TME by ILCs and melanoma on both cell populations. We conclude that the identification of markers and tools to allow the modulation of individual ILC subsets, in addition to the development of standardized protocols, is essential for addressing the therapeutic modulation of ILCs. Abstract The role of innate lymphoid cells (ILCs) in cancer progression has been uncovered in recent years. ILCs are classified as Type 1, Type 2, and Type 3 ILCs, which are characterized by the transcription factors necessary for their development and the cytokines and chemokines they produce. ILCs are a highly heterogeneous cell population, showing both anti– and protumoral properties and capable of adapting their phenotypes and functions depending on the signals they receive from their surrounding environment. ILCs are considered the innate counterparts of the adaptive immune cells during physiological and pathological processes, including cancer, and as such, ILC subsets reflect different types of T cells. In cancer, each ILC subset plays a crucial role, not only in innate immunity but also as regulators of the tumor microenvironment. ILCs’ interplay with other immune and stromal cells in the metastatic microenvironment further dictates and influences this dichotomy, further strengthening the seed-and-soil theory and supporting the formation of more suitable and organ-specific metastatic environments. Here, we review the present knowledge on the different ILC subsets, focusing on their interplay with components of the tumor environment during the development of primary melanoma as well as on metastatic progression to organs, such as the liver or lung.
Collapse
|
41
|
Zeng X, Zhou J, Xiong Z, Sun H, Yang W, Mok MTS, Wang J, Li J, Liu M, Tang W, Feng Y, Wang HKS, Tsang SW, Chow KL, Yeung PC, Wong J, Lai PBS, Chan AWH, To KF, Chan SL, Xia Q, Xue J, Chen X, Yu J, Peng S, Sung JJY, Kuang M, Cheng ASL. Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis. Cell Mol Immunol 2020; 18:1005-1015. [PMID: 32879468 DOI: 10.1038/s41423-020-00534-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/09/2022] Open
Abstract
The liver is an immunologically tolerant organ and a common metastatic site of multiple cancer types. Although a role for cancer cell invasion programs has been well characterized, whether and how liver-intrinsic factors drive metastatic spread is incompletely understood. Here, we show that aberrantly activated hepatocyte-intrinsic cell cycle-related kinase (CCRK) signaling in chronic liver diseases is critical for cancer metastasis by reprogramming an immunosuppressive microenvironment. Using an inducible liver-specific transgenic model, we found that CCRK overexpression dramatically increased both B16F10 melanoma and MC38 colorectal cancer (CRC) metastasis to the liver, which was highly infiltrated by polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs) and lacking natural killer T (NKT) cells. Depletion of PMN-MDSCs in CCRK transgenic mice restored NKT cell levels and their interferon gamma production and reduced liver metastasis to 2.7% and 0.7% (metastatic tumor weights) in the melanoma and CRC models, respectively. Mechanistically, CCRK activated nuclear factor-kappa B (NF-κB) signaling to increase the PMN-MDSC-trafficking chemokine C-X-C motif ligand 1 (CXCL1), which was positively correlated with liver-infiltrating PMN-MDSC levels in CCRK transgenic mice. Accordingly, CRC liver metastasis patients exhibited hyperactivation of hepatic CCRK/NF-κB/CXCL1 signaling, which was associated with accumulation of PMN-MDSCs and paucity of NKT cells compared to healthy liver transplantation donors. In summary, this study demonstrates that immunosuppressive reprogramming by hepatic CCRK signaling undermines antimetastatic immunosurveillance. Our findings offer new mechanistic insights and therapeutic targets for liver metastasis intervention.
Collapse
Affiliation(s)
- Xuezhen Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Zhewen Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hanyong Sun
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Myth T S Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jingqing Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenshu Tang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hector Kwong-Sang Wang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shun-Wa Tsang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - King-Lau Chow
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Philip Chun Yeung
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - John Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul Bo-San Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Clinical Trial Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Joseph Jao-Yiu Sung
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ming Kuang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
42
|
Ma B, Wells A, Wei L, Zheng J. Prostate cancer liver metastasis: Dormancy and resistance to therapy. Semin Cancer Biol 2020; 71:2-9. [PMID: 32663571 DOI: 10.1016/j.semcancer.2020.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022]
Abstract
Liver metastasis causes nearly half of death from solid tumors. Metastatic lesions, to the liver in particular, can become detectable years or decades after primary tumor removal, leaving an uncertain long-term prognosis in patients. Prostate cancer (PCa), a prominent metastatic dormant cancer, has the worst prognosis when found in the liver compared to other metastatic sites. These metastatic nodules display a therapy resistance in the liver pro-metastatic microenvironment; the resistance appears to be conferred by both dormancy and independent of dormancy when the nodules emerge. Within the review, the molecular underpinnings of how the liver aids and protects PCa cells seeding, colonization and resistance will be discussed.
Collapse
Affiliation(s)
- Bo Ma
- Cancer Institute, Xuzhou Medical University, 84 Huaihai Xi Road, Quanshan, Xuzhou, Jiangsu 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, S713 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA; Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Liang Wei
- Cancer Institute, Xuzhou Medical University, 84 Huaihai Xi Road, Quanshan, Xuzhou, Jiangsu 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
43
|
Akiyama T, Miyamoto Y, Imai K, Yamashita Y, Nomoto D, Daitoku N, Sakamoto Y, Kiyozumi Y, Tokunaga R, Eto K, Harada K, Hiyoshi Y, Iwatsuki M, Nagai Y, Iwagami S, Baba Y, Yoshida N, Baba H. Fibrosis-4 Index, a Noninvasive Fibrosis Marker, Predicts Survival Outcomes After Hepatectomy for Colorectal Cancer Liver Metastases. Ann Surg Oncol 2020; 27:3534-3541. [PMID: 32648180 DOI: 10.1245/s10434-020-08828-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Liver fibrosis influences liver regeneration and surgical outcomes, and several noninvasive models based on laboratory data have been developed to predict liver fibrosis. This study was performed to determine whether the Fibrosis-4 (FIB-4) index, a noninvasive fibrosis marker, can predict the prognosis in patients with colorectal liver metastases (CRLM) undergoing hepatectomy. METHODS This retrospective study involved 193 consecutive patients with CRLM who underwent hepatectomy. The FIB-4 index was calculated by laboratory data and age before hepatectomy and before preoperative chemotherapy. The FIB-4 cut-off was determined using survival classification and regression tree analysis. Patients were divided into two groups (high and low FIB-4 index), and post-hepatectomy overall survival (OS) and recurrence-free survival (RFS) were investigated. RESULTS In total, 193 patients were evaluated. Chemotherapy before hepatectomy was performed in 105 (54.4%) patients. A high FIB-4 index (> 2.736) was found in 39 (20.2%) patients. OS was significantly shorter in patients with a high FIB-4 index than those with a low FIB-4 index in the univariate (45.9 vs. 74.4 months, log-rank p = 0.007) and multivariate analysis (hazard ratio 2.28, 95% confidence interval 1.39-3.74; p = 0.001). Among patients who received chemotherapy before hepatectomy, those with a high FIB-4 index had significantly shorter RFS (6.9 vs. 45.3 months, log-rank p = 0.047) and OS (23.9 vs. 55.0 months, log-rank p = 0.003) than those with a low FIB-4 index. This association was also confirmed by multivariate analysis (hazard ratio 4.28, 95% confidence interval 1.46-12.6; p = 0.008). CONCLUSION Both the preoperative and prechemotherapy FIB-4 index can predict long-term outcomes after hepatectomy in patients with CRLM.
Collapse
Affiliation(s)
- Takahiko Akiyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yoichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Daichi Nomoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Nobuya Daitoku
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuki Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Ryuma Tokunaga
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kojiro Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yohei Nagai
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
| |
Collapse
|
44
|
Mi S, Gong L, Sui Z. Friend or Foe? An Unrecognized Role of Uric Acid in Cancer Development and the Potential Anticancer Effects of Uric Acid-lowering Drugs. J Cancer 2020; 11:5236-5244. [PMID: 32742469 PMCID: PMC7378935 DOI: 10.7150/jca.46200] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, metabolic syndrome (Mets) has been a hot topic among medical scientists. Mets has an intimate relationship with the incidence and development of various cancers. As a contributory factor of Mets, hyperuricemia actually plays an inseparable role in the formation of various metabolic disorders. Although uric acid is classically considered an antioxidant with beneficial effects, mounting evidence indicates that a high serum uric acid (SUA) level may serve as a pro-oxidant to generate inflammatory reactions and oxidative stress. In this review, we describe the unrecognized role of hyperuricemia in cancer development and summarize major mechanisms linking uric acid to carcinogenesis. Furthermore, we also discuss the potential mechanism of liver metastasis of cancer and list some types of uric acid-lowering agents, which may exert anticancer effects.
Collapse
Affiliation(s)
- Shuyi Mi
- Department of Gastroenterology, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang Province, China.,School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, China
| | - Liang Gong
- Department of Otolaryngology, Cixi People's Hospital, Ningbo, Zhejiang Province, China
| | - Ziqi Sui
- Department of Gastroenterology, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang Province, China.,Department of Pathophysiology, College of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, China
| |
Collapse
|
45
|
Bustamante P, Piquet L, Landreville S, Burnier JV. Uveal melanoma pathobiology: Metastasis to the liver. Semin Cancer Biol 2020; 71:65-85. [PMID: 32450140 DOI: 10.1016/j.semcancer.2020.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Uveal melanoma (UM) is a type of intraocular tumor with a propensity to disseminate to the liver. Despite the identification of the early driver mutations during the development of the pathology, the process of UM metastasis is still not fully comprehended. A better understanding of the genetic, molecular, and environmental factors participating to its spread and metastatic outgrowth could provide additional approaches for UM treatment. In this review, we will discuss the advances made towards the understanding of the pathogenesis of metastatic UM, summarize the current and prospective treatments, and introduce some of the ongoing research in this field.
Collapse
Affiliation(s)
- Prisca Bustamante
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montréal, Canada
| | - Léo Piquet
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Quebec City, Canada; CUO-Recherche and Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Quebec City, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Canada
| | - Solange Landreville
- Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Quebec City, Canada; CUO-Recherche and Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Quebec City, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec City, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Canada; Experimental Pathology Unit, Department of Pathology, McGill University, Montréal, Canada; Gerald Bronfman Department Of Oncology, McGill University, Montréal, Canada.
| |
Collapse
|
46
|
Wang L, Sun Y, Yi M, Zhao W, Yuan X. IEO model: A novel concept describing the complete metastatic process in the liver microenvironment. Oncol Lett 2020; 19:3627-3633. [PMID: 32391088 DOI: 10.3892/ol.2020.11525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/16/2020] [Indexed: 11/06/2022] Open
Abstract
Metastasis is a characteristic behavior of malignant tumor cells. It is determined by the mutual interaction between primary tumor cells and the state of the microenvironment at sites of metastasis, particularly the liver, bone, lungs and brain. In the present review, a novel pattern is defined and termed the IEO model (prI-, prE- and pOst-metastatic niche), for the hepatic metastatic microenvironment which characterizes the complete metastatic process. In the IEO model, the components of the hepatic metastatic niche, including the extracellular matrix, hepatocytes, mesenchymal cells, Kupffer cells, hepatic sinusoidal endothelial cells, hepatic stellate cells and immunocytes are continually remodelled by tumor cells to form various microenvironments during different stages of hepatic metastasis. The IEO model explains the plasticity of the hepatic microenvironment and provides novel insights into the role of different stages of the metastatic niche. This novel concept may provide a basis for advances in theoretical cancer research and for improvements in the complete course management of malignant tumors.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yinan Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Minxiao Yi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
47
|
Wang S, Feng Y, Swinnen J, Oyen R, Li Y, Ni Y. Incidence and prognosis of liver metastasis at diagnosis: a pan-cancer population-based study. Am J Cancer Res 2020; 10:1477-1517. [PMID: 32509393 PMCID: PMC7269791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023] Open
Abstract
Metastasis is a major cause of cancer-related death and liver metastasis (LM) is a distinct type for its relatively good prognosis after timely treatment for selected patients. However, a generalizable estimation of incidence and prognosis of LM is lacking. Cancer patients with known LM status in the Surveillance, Epidemiology and End Results database were enrolled in the present study. The incidence and prognosis of LM were calculated by primary cancer type and clinicopathological factors. Among 1,630,725 cases, 105,329 (6.46%) cases present LM at diagnosis, with a median survival of 4 months. LM presents at diagnosis in 39.96% of pancreatic cancer, 16.00% of colorectal cancer (CRC) and 12.68% of lung cancer. Of all LM cases, 25.58% originated from lung cancer, with 24.76% from CRC and 17.55% from pancreatic cancer. LM originated from small intestine cancer shows the best prognosis (median survival: 30 months), followed by testis cancer (25 months) and breast cancer (15 months). Subgroup analyses demonstrated disparities in incidence and prognosis of LM, with higher incidence and poorer prognosis in the older population, African American, male, and patients with inferior socioeconomic status. The current study provides a generalizable data resource for the epidemiology of LM, which may help tailor screening protocol, design clinical trials and estimate disease burden.
Collapse
Affiliation(s)
- Shuncong Wang
- KU Leuven, Campus Gasthuisberg, Faculty of MedicineLeuven 3000, Belgium
| | - Yuanbo Feng
- KU Leuven, Campus Gasthuisberg, Faculty of MedicineLeuven 3000, Belgium
| | - Johan Swinnen
- KU Leuven, Campus Gasthuisberg, Faculty of MedicineLeuven 3000, Belgium
| | - Raymond Oyen
- KU Leuven, Campus Gasthuisberg, Faculty of MedicineLeuven 3000, Belgium
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health SciencesShanghai 201318, China
| | - Yicheng Ni
- KU Leuven, Campus Gasthuisberg, Faculty of MedicineLeuven 3000, Belgium
| |
Collapse
|
48
|
Kus T, Cinkir HY, Aktas G, Abali H. Recurrence pattern in the presence of hepatosteatosis in breast cancer: does it facilitate liver metastasis? Future Oncol 2020; 16:1257-1267. [PMID: 32356676 DOI: 10.2217/fon-2019-0634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We aimed to investigate the impact of hepatosteatosis (HS) severity on the recurrence pattern of breast cancer and to clarify whether HS causes affinity to recurrence with liver metastasis. Materials & methods: The median follow-up was 80.0 (4-217) months and the mean age was 47.9 ± 11.3 years. Among all, 181 (39.9%) patients were diagnosed with grades 2 and 3 HS. Of total, 158 (34.8%) patients have experienced recurrence. Results: While higher degree of HS was more common in patients presented with liver recurrence (odds ratio; 95% CI: 2.50; 1.27-4.92; p = 0.007), it was lesser in those with other metastatic sites (all were >0.05). Liver-recurrence-free survival was significantly worse in the group with higher degree of HS (hazard ratio; 95% CI: 2.46; 1.4-4.3; p = 0.002) together with younger age (hazard ratio; 95% CI: 2.44; 1.4-4.3; p = 0.002) in multivariate analysis. Conclusion: HS might have produced an affinity for liver metastasis in common types of breast cancer patients in remission independent from metabolic disorders or clinicopathologic features.
Collapse
Affiliation(s)
- Tulay Kus
- Department of Medical Oncology, Adıyaman University, Training & Research Hospital, TR 02040, Adıyaman, Turkey
| | - Havva Yesil Cinkir
- Department of Medical Oncology, School of Medicine, Gaziantep University, TR 27310, Gaziantep, Turkey
| | - Gokmen Aktas
- Department of Medical Oncology, School of Medicine, Kahramanmaras Sütçü İmam University, TR 46100, Kahramanmaraş, Turkey
| | - Huseyin Abali
- Department of Medical Oncology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Adana, Turkey
| |
Collapse
|
49
|
Inflammation in Primary and Metastatic Liver Tumorigenesis-Under the Influence of Alcohol and High-Fat Diets. Nutrients 2020; 12:nu12040933. [PMID: 32230953 PMCID: PMC7230665 DOI: 10.3390/nu12040933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
The liver plays an outsized role in oncology. Liver tumors are one of the most frequently found tumors in cancer patients and these arise from either primary or metastatic disease. Hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer and the 6th most common cancer type overall, is expected to become the 3rd leading cause of cancer mortality in the US by the year 2030. The liver is also the most common site of distant metastasis from solid tumors. For instance, colorectal cancer (CRC) metastasizes to the liver in two-thirds of cases, and CRC liver metastasis is the leading cause of mortality in these patients. The interplay between inflammation and cancer is unmistakably evident in the liver. In nearly every case, HCC is diagnosed in chronic liver disease (CLD) and cirrhosis background. The consumption of a Western-style high-fat diet is a major risk factor for the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), both of which are becoming more prevalent in parallel with the obesity epidemic. Excessive alcohol intake also contributes significantly to the CLD burden in the form of alcoholic liver disease (ALD). Inflammation is a key component in the development of all CLDs. Additionally, during the development of liver metastasis, pro-inflammatory signaling is crucial in eliminating invading cancer cells but ironically also helps foster a pro-metastatic environment that supports metastatic seeding and colonization. Here we review how Westernized high-fat diets and excessive alcohol intake can influence inflammation within the liver microenvironment, stimulating both primary and metastatic liver tumorigenesis.
Collapse
|
50
|
Divella R, Daniele A, DE Luca R, Mazzocca A, Ruggieri E, Savino E, Casamassima P, Simone M, Sabba C, Paradiso A. Synergism of Adipocytokine Profile and ADIPOQ/TNF-α Polymorphisms in NAFLD-associated MetS Predict Colorectal Liver Metastases Outgrowth. Cancer Genomics Proteomics 2020; 16:519-530. [PMID: 31659105 DOI: 10.21873/cgp.20154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIM The aim of this study was to evaluate whether the altered profile of adipocytokine and genetic fingerprint in NAFLD-associated metabolic syndrome "cluster" represents synergistic risk factors predicting onset of liver colorectal cancer metastases. MATERIALS AND METHODS A total of 165 colorectal cancer patients were enrolled, 56,3% were with metabolic syndrome/NAFLD. Serum samples were assayed for ADIPOQ, leptin and TNF-a levels by ELISA. ADIPOQ rs266729 C/G and TNF-308 A/G genotypes were analyzed in DNA isolated from whole blood. RESULTS Reduction in adiponectin levels and increase in leptin and TNF-α was shown in patients with liver metastases. This trend was influenced by BMI, MetS/NAFLD, and insulin resistance. ADIPOQ G rs266729 and TNF- 308 A allele are associated with obesity, MetS/NAFLD and insulin resistance. ADIPOQ CG/GG and GA/AA TNF-alpha genotypes confer susceptibility to liver metastases. CONCLUSION Obesity and hepatic steatosis significantly favor the development of colorectal cancer liver metastases and the individual adipocytokines genetic profile may play an important predictive role.
Collapse
Affiliation(s)
- Rosa Divella
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Antonella Daniele
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Raffaele DE Luca
- Department of Surgery Oncology, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| | - Eustachio Ruggieri
- Department of Surgery Oncology, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Eufemia Savino
- Clinical Pathology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Porzia Casamassima
- Clinical Pathology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Michele Simone
- Department of Surgery Oncology, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Carlo Sabba
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| | - Angelo Paradiso
- Institutional BioBank, Experimental Oncology and Biobank Management Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| |
Collapse
|