1
|
DeJongh J, Cadogan E, Davies M, Ramos-Montoya A, Smith A, van Steeg T, Richards R. Defining preclinical efficacy with the DNAPK inhibitor AZD7648 in combination with olaparib: a minimal systems pharmacokinetic-pharmacodynamic model. J Pharmacokinet Pharmacodyn 2025; 52:17. [PMID: 39961902 PMCID: PMC11832700 DOI: 10.1007/s10928-025-09962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
AZD7648 is a potent inhibitor of DNA-dependent protein kinase (DNA-PK), which is part of the non-homologous end-joining DNA repair pathway. When combined with the PARP inhibitor olaparib, AZD7648 shows robust combination activity in pre-clinical ATM-knockout mouse xenograft models. To understand the combination activity of AZD7648 and olaparib, we developed a semi-mechanistic pharmacokinetic/pharmacodynamic (PK-PD) model that incorporates the mechanism of action for each drug which links to proliferating, quiescent, and dying cell states with an additional Allee effect-like term to account for the non-linear growth and regression observed at low cell densities. Model parameters were fitted to training data sets that contained continuous treatment of either monotherapy or the combination. The observed interaction of AZD7648 on olaparib PK was incorporated in the PK-PD model by an effect function specific for each of the drug's MoA and was found essential to quantify drug effects at high dose levels of combination treatments. The model was able to adequately describe the observed efficacy for both monotherapy and sustained regressions in combination groups, mainly driven by maintaining a > 2:1 AUC ratio of apoptotic:proliferating cell fractions. We found that this model was suitable for forecasting intermittent dosing schedules a priori and resulted in accurate predictions when compared to xenograft efficacy data, without the need for extra, descriptive terms to describe supra-additive effects under combined dose regimes. This model provides quantitative understanding on the combination effect of AZD7648 and olaparib and allows for the exploration of the full exposure landscape without the need to experimentally test all scenarios. Furthermore, the model can be utilized to assess what exposures would be necessary in the clinic by linking it to observed or predicted human PK exposures. The model suggests 64.9 uM olaparib is sufficient to achieve tumor stasis in the absence of AZD7648, while the combination of AZD7648 and olaparib only requires plasma concentrations of 20.2 uM AZD7648 and 19.9 uM olaparib at steady-state to achieve the same effect.
Collapse
Affiliation(s)
| | - Elaine Cadogan
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Aaron Smith
- DMPK, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Ryan Richards
- DMPK, Early Oncology R&D, AstraZeneca, Waltham, MA, USA.
| |
Collapse
|
2
|
Abdelmalak M, Singh R, Anwer M, Ivanchenko P, Randhawa A, Ahmed M, Ashton AW, Du Y, Jiao X, Pestell R. The Renaissance of CDK Inhibitors in Breast Cancer Therapy: An Update on Clinical Trials and Therapy Resistance. Cancers (Basel) 2022; 14:cancers14215388. [PMID: 36358806 PMCID: PMC9655989 DOI: 10.3390/cancers14215388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Cyclin-dependent kinase inhibitors (palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio)), targeting aberrant cell-cycle activity have been evaluated extensively in clinical trials. Significant delays in progression free survival and overall survival are now documented with each agent in estrogen receptor positive and human epidermal growth factor receptor two negative advanced breast cancer including luminal B breast cancer. Therapy resistance, driven by chromosomal instability, results in genomic rearrangements, activation of cell-cycle components (cyclin E/cdk2 in Rb− tumors, cyclin D1 in growth factor activated pathways), and the immune response. Molecular analysis of therapy resistant tumors may provide the rational basis for new therapies (brivanib, CYC065, WEE1 kinase and other inhibitors). Luminal B breast cancer is enriched for cyclin D1 overexpression and the chromosomal instability gene signature. The molecular mechanisms governing chromosomal instability in luminal B breast cancer remain poorly understood. Co-targeting of chromosomal instability may potentially reduce the prevalent escape mechanisms that reduce the effectiveness of cyclin-dependent kinase inhibitors. Abstract Cyclin-dependent kinases (CDKs) govern cell-cycle checkpoint transitions necessary for cancer cell proliferation. Recent developments have illustrated nuanced important differences between mono CDK inhibitor (CDKI) treatment and the combination therapies of breast cancers. The CDKIs that are currently FDA-approved for breast cancer therapy are oral agents that selectively inhibit CDK4 and CDK6, include palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio). CDKI therapy is effective in hormone receptor positive (HR+), and human epidermal growth factor receptor two negative (HER2−) advanced breast cancers (ABC) malignancies, but remains susceptible due to estrogen and progesterone receptor overexpression. Adding a CDK4/6I to endocrine therapy increases efficacy and delays disease progression. Given the side effects of CDKI, identifying potential new treatments to enhance CDKI effectiveness is essential. Recent long-term studies with Palbociclib, including the PALLAS and PENELOPE B, which failed to meet their primary endpoints of influencing progression-free survival, suggest a deeper mechanistic understanding of cyclin/CDK functions is required. The impact of CDKI on the anti-tumor immune response represents an area of great promise. CDKI therapy resistance that arises provides the opportunity for specific types of new therapies currently in clinical trials.
Collapse
Affiliation(s)
- Mary Abdelmalak
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Rajanbir Singh
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Mohammed Anwer
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Pavel Ivanchenko
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Amritdeep Randhawa
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Myra Ahmed
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
| | - Anthony W. Ashton
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- Lankenau Institute for Medical Research Philadelphia, 100 East Lancaster Ave., Wynnewood, PA 19069, USA
| | - Yanming Du
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- Correspondence: (X.J.); (R.P.)
| | - Richard Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA
- Xavier University School of Medicine, #23, Santa Helenastraat, Oranjestad, Aruba
- The Wistar Cancer Center, Philadelphia, PA 19107, USA
- Correspondence: (X.J.); (R.P.)
| |
Collapse
|
3
|
Wright GM, Gimbrone NT, Sarcar B, Percy TR, Gordián ER, Kinose F, Sumi NJ, Rix U, Cress WD. CDK4/6 inhibition synergizes with inhibition of P21-Activated Kinases (PAKs) in lung cancer cell lines. PLoS One 2021; 16:e0252927. [PMID: 34138895 PMCID: PMC8211232 DOI: 10.1371/journal.pone.0252927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Theoretically, small molecule CDK4/6 inhibitors (CDK4/6is) represent a logical therapeutic option in non-small cell lung cancers since most of these malignancies have wildtype RB, the key target of CDKs and master regulator of the cell cycle. Unfortunately, CDK4/6is are found to have limited clinical activity as single agents in non-small cell lung cancer. To address this problem and to identify effective CDK4/6i combinations, we screened a library of targeted agents for efficacy in four non-small cell lung cancer lines treated with CDK4/6 inhibitors Palbociclib or Abemaciclib. The pan-PAK (p21-activated kinase) inhibitor PF03758309 emerged as a promising candidate with viability ratios indicating synergy in all 4 cell lines and for both CDK4/6is. It is noteworthy that the PAKs are downstream effectors of small GTPases Rac1 and Cdc42 and are overexpressed in a wide variety of cancers. Individually the compounds primarily induced cell cycle arrest; however, the synergistic combination induced apoptosis, accounting for the synergy. Surprisingly, while the pan-PAK inhibitor PF03758309 synergizes with CDK4/6is, no synergy occurs with group I PAK inhibitors FRAX486 or FRAX597. Cell lines treated only with Ribociclib, FRAX486 or FRAX597 underwent G1/G0 arrest, whereas combination treatment with these compounds predominantly resulted in autophagy. Combining high concentrations of FRAX486, which weakly inhibits PAK4, and Ribociclib, mimics the autophagy and apoptotic effect of PF03758309 combined with Ribociclib. FRAX597, a PAKi that does not inhibit PAK4 did not reduce autophagy in combination with Ribociclib. Our results suggest that a unique combination of PAKs plays a crucial role in the synergy of PAK inhibitors with CDK4/6i. Targeting this unique PAK combination, could greatly improve the efficacy of CDK4/6i and broaden the spectrum of cancer treatment.
Collapse
Affiliation(s)
- Gabriela M. Wright
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Nick T. Gimbrone
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Bhaswati Sarcar
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Trent R. Percy
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Edna R. Gordián
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Fumi Kinose
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Natália J. Sumi
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida, United States of America
| | - Uwe Rix
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - W. Douglas Cress
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
4
|
Physiologically-Based Pharmacokinetic/Pharmacodynamic Model of MBQ-167 to Predict Tumor Growth Inhibition in Mice. Pharmaceutics 2020; 12:pharmaceutics12100975. [PMID: 33076517 PMCID: PMC7602742 DOI: 10.3390/pharmaceutics12100975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 01/01/2023] Open
Abstract
MBQ-167 is a dual inhibitor of the Rho GTPases Rac and Cdc42 that has shown promising results as an anti-cancer therapeutic at the preclinical stage. This drug has been tested in vitro and in vivo in metastatic breast cancer mouse models. The aim of this study is to develop a physiologically based pharmacokinetic/pharmacodynamic (PBPK-PD) model of MBQ-167 to predict tumor growth inhibition following intraperitoneal (IP) administration in mice bearing Triple Negative and HER2+ mammary tumors. PBPK and Simeoni tumor growth inhibition (TGI) models were developed using the Simcyp V19 Animal Simulator. Our developed PBPK framework adequately describes the time course of MBQ-167 in each of the mouse tissues (e.g., lungs, heart, liver, kidneys, spleen, plasma) and tumor, since the predicted results were consistent with the experimental data. The developed PBPK-PD model successfully predicts tumor shrinkage in HER2+ and triple-negative breast tumors after the intraperitoneal administration of 1 and 10 mg/kg body weight (BW) dose level of MBQ-167 three times a week. The findings from this study suggest that MBQ-167 has a higher net effect and potency inhibiting Triple Negative mammary tumor growth compared to HER2+ and that liver metabolism is the major route of elimination of this drug.
Collapse
|
5
|
Algazi AP, Othus M, Daud AI, Lo RS, Mehnert JM, Truong TG, Conry R, Kendra K, Doolittle GC, Clark JI, Messino MJ, Moore DF, Lao C, Faller BA, Govindarajan R, Harker-Murray A, Dreisbach L, Moon J, Grossmann KF, Ribas A. Continuous versus intermittent BRAF and MEK inhibition in patients with BRAF-mutated melanoma: a randomized phase 2 trial. Nat Med 2020; 26:1564-1568. [PMID: 33020646 PMCID: PMC8063889 DOI: 10.1038/s41591-020-1060-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/13/2020] [Indexed: 11/08/2022]
Abstract
Preclinical modeling suggests that intermittent BRAF inhibitor therapy may delay acquired resistance when blocking oncogenic BRAFV600 in melanoma1,2. We conducted S1320, a randomized, open-label, phase 2 clinical trial (NCT02196181) evaluating whether intermittent dosing of the BRAF inhibitor dabrafenib and the MEK inhibitor trametinib improves progression-free survival in patients with metastatic and unresectable BRAFV600 melanoma. Patients were enrolled at 68 academic and community sites nationally. All patients received continuous dabrafenib and trametinib during an 8-week lead-in period, after which patients with non-progressing tumors were randomized to either continuous or intermittent dosing of both drugs on a 3-week-off, 5-week-on schedule. The trial has completed accrual and 206 patients with similar baseline characteristics were randomized 1:1 to the two study arms (105 to continuous dosing, 101 to intermittent dosing). Continuous dosing yielded a statistically significant improvement in post-randomization progression-free survival compared with intermittent dosing (median 9.0 months versus 5.5 months, P = 0.064, pre-specified two-sided α = 0.2). Therefore, contrary to the initial hypothesis, intermittent dosing did not improve progression-free survival in patients. There were no differences in the secondary outcomes, including overall survival and the overall incidence of treatment-associated toxicity, between the two groups.
Collapse
Affiliation(s)
- Alain P Algazi
- University of California, San Francisco, San Francisco, CA, USA.
| | - Megan Othus
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Adil I Daud
- University of California, San Francisco, San Francisco, CA, USA
| | - Roger S Lo
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Robert Conry
- University of Alabama, Birmingham, Birmingham, AL, USA
| | | | - Gary C Doolittle
- University of Kansas Hospital-Westwood Cancer Center, Westwood, KS, USA
| | | | - Michael J Messino
- Messino Cancer Centers-Asheville/ Southeast COR NCORP/Asheville, Asheville, NC, USA
| | | | | | - Bryan A Faller
- Missouri Baptist Medical Center Cancer Center/Heartland NCORP, St Louis, MO, USA
| | | | | | | | - James Moon
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Antoni Ribas
- University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Dhir T, Schultz CW, Jain A, Brown SZ, Haber A, Goetz A, Xi C, Su GH, Xu L, Posey J, Jiang W, Yeo CJ, Golan T, Pishvaian MJ, Brody JR. Abemaciclib Is Effective Against Pancreatic Cancer Cells and Synergizes with HuR and YAP1 Inhibition. Mol Cancer Res 2019; 17:2029-2041. [PMID: 31383722 DOI: 10.1158/1541-7786.mcr-19-0589] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Mutation or promoter hypermethylation of CDKN2A is found in over 90% of pancreatic ductal adenocarcinomas (PDAC) and leads to loss of function of cell-cycle inhibitors p16 (INK4A) and p14 (ARF) resulting in unchecked proliferation. The CDK4/6 inhibitor, abemaciclib, has nanomolar IC50s in PDAC cell lines and decreases growth through inhibition of phospho-Rb (pRb), G1 cell-cycle arrest, apoptosis, and the senescent phenotype detected with β-galactosidase staining and relevant mRNA elevations. Daily abemaciclib treatments in mouse PDAC xenograft studies were safe and demonstrated a 3.2-fold decrease in tumor volume compared with no treatment (P < 0.0001) accompanying a decrease in both pRb and Ki67. We determined that inhibitors of HuR (ELAVL1), a prosurvival mRNA stability factor that regulates cyclin D1, and an inhibitor of Yes-Associated Protein 1 (YAP1), a pro-oncogenic, transcriptional coactivator important for CDK6 and cyclin D1, were both synergistic with abemaciclib. Accordingly, siRNA oligonucleotides targeted against HuR, YAP1, and their common target cyclin D1, validated the synergy studies. In addition, we have seen increased sensitivity to abemaciclib in a PDAC cell line that harbors a loss of the ELAVL1 gene via CRISP-Cas9 technology. As an in vitro model for resistance, we investigated the effects of long-term abemaciclib exposure. PDAC cells chronically cultured with abemaciclib displayed a reduction in cellular growth rates (GR) and coresistance to gemcitabine and 5-fluorouracil (5-FU), but not to HuR or YAP1 inhibitors as compared with no treatment controls. We believe that our data provide compelling preclinical evidence for an abemaciclib combination-based clinical trial in patients with PDAC. IMPLICATIONS: Our data suggest that abemaciclib may be therapeutically relevant for the treatment in PDAC, especially as part of a combination regimen inhibiting YAP1 or HuR.
Collapse
Affiliation(s)
- Teena Dhir
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher W Schultz
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Aditi Jain
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samantha Z Brown
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Alex Haber
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Austin Goetz
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Chunhua Xi
- The Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Gloria H Su
- The Department of Pathology & Cell Biology, Columbia University Medical Center, New York, New York
| | - Liang Xu
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - James Posey
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Wei Jiang
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles J Yeo
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Talia Golan
- Oncology institute, Chaim Sheba Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Jonathan R Brody
- Department of Surgery, Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Jaeger AM, Stopfer L, Lee S, Gaglia G, Sandel D, Santagata S, Lin NU, Trepel JB, White F, Jacks T, Lindquist S, Whitesell L. Rebalancing Protein Homeostasis Enhances Tumor Antigen Presentation. Clin Cancer Res 2019; 25:6392-6405. [PMID: 31213460 DOI: 10.1158/1078-0432.ccr-19-0596] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/18/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Despite the accumulation of extensive genomic alterations, many cancers fail to be recognized as "foreign" and escape destruction by the host immune system. Immunotherapies designed to address this problem by directly stimulating immune effector cells have led to some remarkable clinical outcomes, but unfortunately, most cancers fail to respond, prompting the need to identify additional immunomodulatory treatment options.Experimental Design: We elucidated the effect of a novel treatment paradigm using sustained, low-dose HSP90 inhibition in vitro and in syngeneic mouse models using genetic and pharmacologic tools. Profiling of treatment-associated tumor cell antigens was performed using immunoprecipitation followed by peptide mass spectrometry. RESULTS We show that sustained, low-level inhibition of HSP90 both amplifies and diversifies the antigenic repertoire presented by tumor cells on MHC-I molecules through an IFNγ-independent mechanism. In stark contrast, we find that acute, high-dose exposure to HSP90 inhibitors, the only approach studied in the clinic to date, is broadly immunosuppressive in cell culture and in patients with cancer. In mice, chronic non-heat shock-inducing HSP90 inhibition slowed progression of colon cancer implants, but only in syngeneic animals with intact immune function. Addition of a single dose of nonspecific immune adjuvant to the regimen dramatically increased efficacy, curing a subset of mice receiving combination therapy. CONCLUSIONS These highly translatable observations support reconsideration of the most effective strategy for targeting HSP90 to treat cancers and suggest a practical approach to repurposing current orally bioavailable HSP90 inhibitors as a new immunotherapeutic strategy.See related commentary by Srivastava and Callahan, p. 6277.
Collapse
Affiliation(s)
- Alex M Jaeger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, Massachusetts.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Lauren Stopfer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sunmin Lee
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland
| | - Giorgio Gaglia
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Demi Sandel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, Massachusetts
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.,Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts.,Laboratory for Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Nancy U Lin
- Department of Oncologic Pathology, Harvard Medical School, Massachusetts.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland
| | - Forest White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.
| |
Collapse
|
8
|
Abstract
<b/> Greatest fitness of tumor cell subclones in patients undergoing MAPK-targeting therapies requires just-right levels of MAPK pathway signaling. New therapeutic approaches induce tumor cell death by intensifying MAPK signaling induced by inhibitor withdrawal in combination with DNA damage, or prevent selection of resistant clones with a steep fitness barrier imposed by triple combination of BRAF, MEK, and ERK inhibitors. Cancer Discov; 8(1); 20-3. ©2018 AACRSee related article by Hong et al., p. 74.
Collapse
Affiliation(s)
- David F Stern
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
9
|
Kim S, Tiedt R, Loo A, Horn T, Delach S, Kovats S, Haas K, Engstler BS, Cao A, Pinzon-Ortiz M, Mulford I, Acker MG, Chopra R, Brain C, di Tomaso E, Sellers WR, Caponigro G. The potent and selective cyclin-dependent kinases 4 and 6 inhibitor ribociclib (LEE011) is a versatile combination partner in preclinical cancer models. Oncotarget 2018; 9:35226-35240. [PMID: 30443290 PMCID: PMC6219668 DOI: 10.18632/oncotarget.26215] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/15/2018] [Indexed: 01/18/2023] Open
Abstract
Inhibition of cyclin-dependent kinases 4 and 6 (CDK4/6) is associated with robust antitumor activity. Ribociclib (LEE011) is an orally bioavailable CDK4/6 inhibitor that is approved for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer, in combination with an aromatase inhibitor, and is currently being evaluated in several additional trials. Here, we report the preclinical profile of ribociclib. When tested across a large panel of kinase active site binding assays, ribociclib and palbociclib were highly selective for CDK4, while abemaciclib showed affinity to several other kinases. Both ribociclib and abemaciclib showed slightly higher potency in CDK4-dependent cells than in CDK6-dependent cells, while palbociclib did not show such a difference. Profiling CDK4/6 inhibitors in large-scale cancer cell line screens in vitro confirmed that RB1 loss of function is a negative predictor of sensitivity. We also found that routinely used cellular viability assays measuring adenosine triphosphate levels as a proxy for cell numbers underestimated the effects of CDK4/6 inhibition, which contrasts with assays that assess cell number more directly. Robust antitumor efficacy and combination benefit was detected when ribociclib was added to encorafenib, nazartinib, or endocrine therapies in patient-derived xenografts.
Collapse
Affiliation(s)
- Sunkyu Kim
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Ralph Tiedt
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Basel, Switzerland, USA
| | - Alice Loo
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Thomas Horn
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Scott Delach
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Steven Kovats
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Kristy Haas
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | | | - Alexander Cao
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Maria Pinzon-Ortiz
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Iain Mulford
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Michael G Acker
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Rajiv Chopra
- Novartis Institutes for BioMedical Research, Chemical Biology & Therapeutics, Cambridge, MA, USA
| | - Christopher Brain
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, Cambridge, MA, USA
| | - Emmanuelle di Tomaso
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - William R Sellers
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| | - Giordano Caponigro
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, MA, USA
| |
Collapse
|
10
|
Parra-Guillen ZP, Mangas-Sanjuan V, Garcia-Cremades M, Troconiz IF, Mo G, Pitou C, Iversen PW, Wallin JE. Systematic Modeling and Design Evaluation of Unperturbed Tumor Dynamics in Xenografts. J Pharmacol Exp Ther 2018; 366:96-104. [PMID: 29691287 DOI: 10.1124/jpet.118.248286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/16/2018] [Indexed: 12/21/2022] Open
Abstract
Xenograft mice are largely used to evaluate the efficacy of oncological drugs during preclinical phases of drug discovery and development. Mathematical models provide a useful tool to quantitatively characterize tumor growth dynamics and also optimize upcoming experiments. To the best of our knowledge, this is the first report where unperturbed growth of a large set of tumor cell lines (n = 28) has been systematically analyzed using a previously proposed model of nonlinear mixed effects (NLME). Exponential growth was identified as the governing mechanism in the majority of the cell lines, with constant rate values ranging from 0.0204 to 0.203 day-1 No common patterns could be observed across tumor types, highlighting the importance of combining information from different cell lines when evaluating drug activity. Overall, typical model parameters were precisely estimated using designs in which tumor size measurements were taken every 2 days. Moreover, reducing the number of measurements to twice per week, or even once per week for cell lines with low growth rates, showed little impact on parameter precision. However, a sample size of at least 50 mice is needed to accurately characterize parameter variability (i.e., relative S.E. values below 50%). This work illustrates the feasibility of systematically applying NLME models to characterize tumor growth in drug discovery and development, and constitutes a valuable source of data to optimize experimental designs by providing an a priori sampling window and minimizing the number of samples required.
Collapse
Affiliation(s)
- Zinnia P Parra-Guillen
- Pharmacometrics and Systems Pharmacology Research Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Navarra Institute for Health Research, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Global PK/PD & Pharmacometrics (G.M., C.P., J.E.W.) and Lilly Research Laboratories (P.W.I.), Eli Lilly and Company, Indianapolis, USA Solna, Sweden
| | - Victor Mangas-Sanjuan
- Pharmacometrics and Systems Pharmacology Research Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Navarra Institute for Health Research, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Global PK/PD & Pharmacometrics (G.M., C.P., J.E.W.) and Lilly Research Laboratories (P.W.I.), Eli Lilly and Company, Indianapolis, USA Solna, Sweden
| | - Maria Garcia-Cremades
- Pharmacometrics and Systems Pharmacology Research Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Navarra Institute for Health Research, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Global PK/PD & Pharmacometrics (G.M., C.P., J.E.W.) and Lilly Research Laboratories (P.W.I.), Eli Lilly and Company, Indianapolis, USA Solna, Sweden
| | - Iñaki F Troconiz
- Pharmacometrics and Systems Pharmacology Research Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Navarra Institute for Health Research, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Global PK/PD & Pharmacometrics (G.M., C.P., J.E.W.) and Lilly Research Laboratories (P.W.I.), Eli Lilly and Company, Indianapolis, USA Solna, Sweden
| | - Gary Mo
- Pharmacometrics and Systems Pharmacology Research Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Navarra Institute for Health Research, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Global PK/PD & Pharmacometrics (G.M., C.P., J.E.W.) and Lilly Research Laboratories (P.W.I.), Eli Lilly and Company, Indianapolis, USA Solna, Sweden
| | - Celine Pitou
- Pharmacometrics and Systems Pharmacology Research Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Navarra Institute for Health Research, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Global PK/PD & Pharmacometrics (G.M., C.P., J.E.W.) and Lilly Research Laboratories (P.W.I.), Eli Lilly and Company, Indianapolis, USA Solna, Sweden
| | - Philip W Iversen
- Pharmacometrics and Systems Pharmacology Research Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Navarra Institute for Health Research, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Global PK/PD & Pharmacometrics (G.M., C.P., J.E.W.) and Lilly Research Laboratories (P.W.I.), Eli Lilly and Company, Indianapolis, USA Solna, Sweden
| | - Johan E Wallin
- Pharmacometrics and Systems Pharmacology Research Unit, Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Navarra Institute for Health Research, Pamplona, Spain (Z.P.P.-G.,V.M.-S.,M.G.-C., I.F.T.); Global PK/PD & Pharmacometrics (G.M., C.P., J.E.W.) and Lilly Research Laboratories (P.W.I.), Eli Lilly and Company, Indianapolis, USA Solna, Sweden
| |
Collapse
|
11
|
Vijayaraghavan S, Moulder S, Keyomarsi K, Layman RM. Inhibiting CDK in Cancer Therapy: Current Evidence and Future Directions. Target Oncol 2017; 13:21-38. [DOI: 10.1007/s11523-017-0541-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Postow MA, Chapman PB. A step forward for patients with NRAS-mutant melanoma. Lancet Oncol 2017; 18:414-415. [PMID: 28284558 DOI: 10.1016/s1470-2045(17)30172-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Michael A Postow
- Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Paul B Chapman
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
Bauer D, Werth F, Nguyen HA, Kiecker F, Eberle J. Critical role of reactive oxygen species (ROS) for synergistic enhancement of apoptosis by vemurafenib and the potassium channel inhibitor TRAM-34 in melanoma cells. Cell Death Dis 2017; 8:e2594. [PMID: 28151482 PMCID: PMC5386497 DOI: 10.1038/cddis.2017.6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/11/2016] [Accepted: 12/27/2016] [Indexed: 12/13/2022]
Abstract
Inhibition of MAP kinase pathways by selective BRAF inhibitors, such as vemurafenib and dabrafenib, have evolved as key therapies of BRAF-mutated melanoma. However, tumor relapse and therapy resistance have remained as major problems, which may be addressed by combination with other pathway inhibitors. Here we identified the potassium channel inhibitor TRAM-34 as highly effective in combination with vemurafenib. Thus apoptosis was significantly enhanced and cell viability was decreased. The combination vemurafenib/TRAM-34 was also effective in vemurafenib-resistant cells, suggesting that acquired resistance may be overcome. Vemurafenib decreased ERK phosphorylation, suppressed antiapoptotic Mcl-1 and enhanced proapoptotic Puma and Bim. The combination resulted in enhancement of proapoptotic pathways as caspase-3 and loss of mitochondrial membrane potential. Indicating a special mechanism of vemurafenib-induced apoptosis, we found strong enhancement of intracellular ROS levels already at 1 h of treatment. The critical role of ROS was demonstrated by the antioxidant vitamin E (α-tocopherol), which decreased intracellular ROS as well as apoptosis. Also caspase activation and loss of mitochondrial membrane potential were suppressed, proving ROS as an upstream effect. Thus ROS represents an initial and independent apoptosis pathway in melanoma cells that is of particular importance for vemurafenib and its combination with TRAM-34.
Collapse
Affiliation(s)
- Daniel Bauer
- Department of Dermatology, Venerology und Allergology, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Molecular Medicine Master's Program, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Werth
- Department of Dermatology, Venerology und Allergology, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute for Biochemistry and Biology, Faculty of Science, University of Potsdam, Potsdam, Germany
| | - Ha An Nguyen
- Department of Dermatology, Venerology und Allergology, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Molecular Medicine Master's Program, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Kiecker
- Department of Dermatology, Venerology und Allergology, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology und Allergology, Skin Cancer Center Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|