1
|
Kang JH, Toita R, Kawano T, Murata M, Kano A. Phospholipids and their metabolites as diagnostic biomarkers of human diseases. Prog Lipid Res 2025; 99:101340. [PMID: 40409729 DOI: 10.1016/j.plipres.2025.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/03/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
Phospholipids that occur predominantly in the plasma membrane of mammalian cells are phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), sphingomyelin (SM), and phosphatidylinositol (or phosphoinositide; PI). These membrane phospholipids are a promising source of disease-related biomarkers. Phospholipids and their metabolites are altered by the type of disease or disease progression. Metabolomics has shown that increased or decreased levels of altered phospholipids and their metabolites can be useful indicators for the diagnosis of various human diseases. In this review, we discuss the utility of the five major membrane phospholipids (PC, PS, PE, and SM, and PI) and their metabolites as diagnostic biomarkers of human diseases.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Arihiro Kano
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, 6-1 Kasuga-kouen, Kasuga, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Wang X, Liu Y, Jiang Y, Li Q. Tumor-derived exosomes as promising tools for cancer diagnosis and therapy. Front Pharmacol 2025; 16:1596217. [PMID: 40444049 PMCID: PMC12119533 DOI: 10.3389/fphar.2025.1596217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 05/06/2025] [Indexed: 06/02/2025] Open
Abstract
Mounting evidences indicated that cancer cell-derived exosomes (TDEs) contribute to cancer progression and metastasis by reshaping the tumor microenvironment (TME) and interfering immunity response. TDEs contain unique biomolecular cargo, consisting of protein, nucleic acid, and lipids. In recent years, TDEs have been used as potential disease therapeutics and diagnosis biomarkers and prime candidates as delivery tools for cancer treatment. In the present review, we firstly summarized TDEs biogenesis and characteristic. Also, the role of TDEs in cancer cell metastasis and invasiveness, drug resistance, and immunosuppression was mentioned via cell-cell communication. Additionally, we concluded the current strategies for TDE-based cancer therapy, including TDEs inhibition and clearance, usage as therapeutic drug delivery vector and cancer vaccines. Furthermore, combination therapy with engineered TDEs were summarized, such as radiotherapy, photodynamic therapy, photothermal therapy, and sonodynamic therapy. Consequently, the above opens up novel and interesting opportunities for cancer diagnosis and prognosis based on TDEs, which is prospective to accelerate the clinical translation of TDEs for cancer therapy.
Collapse
Affiliation(s)
- Xirui Wang
- Department of Biomedical Engineering, School of Medical Imaging Xuzhou Medical University, Xuzhou, China
| | - Yanfang Liu
- Department of Central Laboratory, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Yaowen Jiang
- Department of Biomedical Engineering, School of Medical Imaging Xuzhou Medical University, Xuzhou, China
| | - Qinghua Li
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Madhan S, Dhar R, Devi A. Clinical Impact of Exosome Chemistry in Cancer. ACS APPLIED BIO MATERIALS 2025; 8:1862-1876. [PMID: 39936581 DOI: 10.1021/acsabm.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As we progress into the 21st century, cancer stands as one of the most dreaded diseases. With approximately one in every four individuals facing a lifetime risk of developing cancer, cancer remains one of the most serious health challenges worldwide. Its multifaceted nature makes it an arduous and tricky problem to diagnose and treat. Over the years, researchers have explored plenty of approaches and avenues to improve cancer management. One notable strategy includes the study of extracellular vesicles (EVs) as potential biomarkers and therapeutics. Among these EVs, exosomes have emerged as particularly promising candidates due to their unique characteristic properties and functions. They are small membrane-bound vesicles secreted by cells carrying a cargo of biomolecules such as proteins, nucleic acids, and lipids. These vesicles play crucial roles in intercellular communication, facilitating the transfer of biological information between cell-to-cell communication. Exosomes transport cargoes such as DNA, RNA, proteins, and lipids involved in cellular reprogramming and promoting cancer. In this review, we explore the molecular composition of exosomes, significance of exosomes chemistry in cancer development, and its theranostic application as well as exosomes research complications and solutions.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu-603203, India
| |
Collapse
|
4
|
Ramu D, Kim E. Exosomal Lipids in Cancer Progression and Metastasis. Cancer Med 2025; 14:e70687. [PMID: 40111100 PMCID: PMC11924287 DOI: 10.1002/cam4.70687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Metastasis is the primary cause of cancer mortality. It is responsible for 90% of all cancer-related deaths. Intercellular communication is a crucial feature underlying cancer metastasis and progression. Cancerous tumors secrete membrane-derived small extracellular vesicles (30-150 nm) into their extracellular milieu. These tiny organelles, known as exosomes, facilitate intercellular communication by transferring bioactive molecules. These exosomes harbor different cargos, such as proteins, nucleic acids, and lipids, that mediate multifaceted functions in various oncogenic processes. Of note, the amount of lipids in exosomes is multifold higher than that of other cargos. Most studies have investigated the role of exosomes' protein and nucleic acid content in various oncogenic processes, while the role of lipid cargo in cancer pathophysiology remains largely obscure. MATERIALS AND METHODS We conducted an extensive literature review on the role of exosomes and lipids in cancer progression, specifically addressing the topic of exosomal lipids and their involvement in cancer metastasis and progression. CONCLUSIONS This review aims to shed light on the lipid contents of exosomes in cancer metastasis. In this context, the role of exosomal lipids in signaling pathways, immunomodulation, and energy production for cancer cell survival provides insights into overcoming cancer progression and metastasis.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Division of ABB ResearchDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
| | - Eunjoo Kim
- Division of ABB ResearchDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
| |
Collapse
|
5
|
Yang K, Fu W, Ma Y, Wu M, Li X, Wang Y. A simple capillary isoelectric focusing method as the novel strategy for the isoelectric point measurement of exosomes and its application in disease diagnosis. Mikrochim Acta 2024; 192:8. [PMID: 39636339 DOI: 10.1007/s00604-024-06864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
A straightforward capillary isoelectric focusing (cIEF) method is established with a isoelectric point (pI) range spanning from 3.5 to 7.0, exhibiting excellent linearity and repeatability, with an R2 value of 0.9937 and migration time RSDs for all standard proteins below 0.3%. Subsequently, this method was applied to model exosomes derived from cell lines and healthy human serum, and the peak attributions of exosomes were identified using DiI labeled exosomes and lysed exosomes. The reproducibility of this method in exosome detection was also validated, as the RSDs of all pI values were less than 1%. Then, we observed a significant increase in the pI of exosomes with higher cholesterol content, irrespective of whether they originated from cell culture medium or mouse plasma. Notably, serum exosomes from healthy volunteers exhibited higher pI values compared to those from hepatocellular carcinoma patients, suggesting a potential diagnostic perspective for cancer. These findings underscore the significance of pI measurement in reflecting modifications in exosomal lipid membrane composition and their implications in biological functions mediated by exosomes.
Collapse
Affiliation(s)
- Kaige Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenchang Fu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinjie Ma
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingyuan Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Tsering T, Nadeau A, Wu T, Dickinson K, Burnier JV. Extracellular vesicle-associated DNA: ten years since its discovery in human blood. Cell Death Dis 2024; 15:668. [PMID: 39266560 PMCID: PMC11393322 DOI: 10.1038/s41419-024-07003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
Extracellular vesicles (EVs) have emerged as key players in intercellular communication, facilitating the transfer of crucial cargo between cells. Liquid biopsy, particularly through the isolation of EVs, has unveiled a rich source of potential biomarkers for health and disease, encompassing proteins and nucleic acids. A milestone in this exploration occurred a decade ago with the identification of extracellular vesicle-associated DNA (EV-DNA) in the bloodstream of a patient diagnosed with pancreatic cancer. Subsequent years have witnessed substantial advancements, deepening our insights into the molecular intricacies of EV-DNA emission, detection, and analysis. Understanding the complexities surrounding the release of EV-DNA and addressing the challenges inherent in EV-DNA research are pivotal steps toward enhancing liquid biopsy-based strategies. These strategies, crucial for the detection and monitoring of various pathological conditions, particularly cancer, rely on a comprehensive understanding of why and how EV-DNA is released. In our review, we aim to provide a thorough summary of a decade's worth of research on EV-DNA. We will delve into diverse mechanisms of EV-DNA emission, its potential as a biomarker, its functional capabilities, discordant findings in the field, and the hurdles hindering its clinical application. Looking ahead to the next decade, we envision that advancements in EV isolation and detection techniques, coupled with improved standardization and data sharing, will catalyze the development of novel strategies exploiting EV-DNA as both a source of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Tad Wu
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Phinney NZ, Huang X, Toombs JE, Brekken RA. Development of betabodies: The next generation of phosphatidylserine targeting agents. J Biol Chem 2024; 300:107681. [PMID: 39159812 PMCID: PMC11416255 DOI: 10.1016/j.jbc.2024.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Externalized phosphatidylserine (PS) is a phospholipid and a selective marker of the tumor microenvironment (TME). It is exposed on the outer leaflet of the plasma membrane of tumor-associated endothelial cells, apoptotic tumor cells, and some viable tumor cells, where it functions in part to suppress immune responses by binding to PS receptors expressed on tumor-infiltrating myeloid cells. PS has been targeted with antibodies, such as bavituximab, that bind the phospholipid via a cofactor, β2-glycoprotein 1 (β2GP1); these antibodies showed excellent specificity for tumor vasculature and induce an immune stimulatory environment. We have advanced this concept by developing the next generation of PS targeting agent, a fusion protein (betabody) constructed by linking PS-binding domain V of β2GP1 to the Fc of an IgG2a. Betabodies bind to externalized PS with high affinity (∼1 nM), without the requirement of a co-factor and localize robustly to the TME. We demonstrate that betabodies are a direct PS-targeting agent that has the potential to be used as anti-tumor therapy, drug delivery vehicles, and tools for imaging the TME.
Collapse
Affiliation(s)
- Natalie Z Phinney
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Cancer Biology Graduate Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xianming Huang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jason E Toombs
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rolf A Brekken
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Cancer Biology Graduate Program, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
9
|
Çetinel ZÖ, Bilge D. Investigation of miltefosine-model membranes interactions at the molecular level for two different PS levels modeling cancer cells. J Bioenerg Biomembr 2024; 56:461-473. [PMID: 38833041 PMCID: PMC11217121 DOI: 10.1007/s10863-024-10025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024]
Abstract
Miltefosine (MLT) is a broad-spectrum drug included in the alkylphospholipids (APL) used against leishmania and various types of cancer. The most crucial feature of APLs is that they are thought to only kill cancerous cells without harming normal cells. However, the molecular mechanism of action of APLs is not completely understood. The increase in the phosphatidylserine (PS) ratio is a marker showing the stage of cancer and even metastasis. The goal of this research was to investigate the molecular effects of miltefosine at the molecular level in different PS ratios. The effects of MLT on membrane phase transition, membrane orders, and dynamics were studied using DPPC/DPPS (3:1) and DPPC/DPPS (1:1) multilayer (MLV) vesicles mimicking DPPS ratio variation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared spectroscopy (FTIR). Our findings indicate that miltefosine is evidence at the molecular level that it is directed towards the tumor cell and that the drug's effect increases with the increase of anionic lipids in the membrane depending on the stage of cancer.
Collapse
Affiliation(s)
| | - Duygu Bilge
- Department of Physics, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey.
| |
Collapse
|
10
|
Gupta R, Gupta J, Roy S. Exosomes: Key Players for Treatment of Cancer and Their Future Perspectives. Assay Drug Dev Technol 2024; 22:118-147. [PMID: 38407852 DOI: 10.1089/adt.2023.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suchismita Roy
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
11
|
Kalele K, Nyahatkar S, Mirgh D, Muthuswamy R, Adhikari MD, Anand K. Exosomes: A Cutting-Edge Theranostics Tool for Oral Cancer. ACS APPLIED BIO MATERIALS 2024; 7:1400-1415. [PMID: 38394624 DOI: 10.1021/acsabm.3c01243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) secreted by cells. In cancer, they are key cellular messengers during cancer development and progression. Tumor-derived exosomes (TEXs) promote cancer progression. In oral cancer, the major complication is oral squamous cell carcinoma (OSCC). Exosomes show strong participation in several OSCC-related activities such as uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and drug and therapeutic resistance. It is also a potential biomarker source for oral cancer. Some therapeutic exosome sources such as stem cells, plants (it is more effective compared to others), and engineered exosomes reduce oral cancer development. This therapeutic approach is effective because of its specificity, biocompatibility, and cell-free therapy (it reduced side effects in cancer treatment). This article highlights exosome-based theranostics signatures in oral cancer, clinical trials, challenges of exosome-based oral cancer research, and future improvements. In the future, exosomes may become an effective and affordable solution for oral cancer.
Collapse
Affiliation(s)
- Ketki Kalele
- Neuron Institute of Applied Research, Rajapeth-Irwin Square Flyover, Amravati, Maharashtra 444601, India
| | - Sidhanti Nyahatkar
- VYWS Dental College & Hospital, WQMV+7X6, Tapovan-Wadali Road, Camp Rd, SRPF Colony, Amravati, Maharashtra 444602, India
| | - Divya Mirgh
- Department of Infectious Diseases, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Raman Muthuswamy
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
12
|
Zhang C, Qin C, Dewanjee S, Bhattacharya H, Chakraborty P, Jha NK, Gangopadhyay M, Jha SK, Liu Q. Tumor-derived small extracellular vesicles in cancer invasion and metastasis: molecular mechanisms, and clinical significance. Mol Cancer 2024; 23:18. [PMID: 38243280 PMCID: PMC10797874 DOI: 10.1186/s12943-024-01932-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
The production and release of tumor-derived small extracellular vesicles (TDSEVs) from cancerous cells play a pivotal role in the propagation of cancer, through genetic and biological communication with healthy cells. TDSEVs are known to orchestrate the invasion-metastasis cascade via diverse pathways. Regulation of early metastasis processes, pre-metastatic niche formation, immune system regulation, angiogenesis initiation, extracellular matrix (ECM) remodeling, immune modulation, and epithelial-mesenchymal transition (EMT) are among the pathways regulated by TDSEVs. MicroRNAs (miRs) carried within TDSEVs play a pivotal role as a double-edged sword and can either promote metastasis or inhibit cancer progression. TDSEVs can serve as excellent markers for early detection of tumors, and tumor metastases. From a therapeutic point of view, the risk of cancer metastasis may be reduced by limiting the production of TDSEVs from tumor cells. On the other hand, TDSEVs represent a promising approach for in vivo delivery of therapeutic cargo to tumor cells. The present review article discusses the recent developments and the current views of TDSEVs in the field of cancer research and clinical applications.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Moumita Gangopadhyay
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, 700126, West Bengal, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, Delhi, 110008, India.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China.
| |
Collapse
|
13
|
Maqsood Q, Sumrin A, Saleem Y, Wajid A, Mahnoor M. Exosomes in Cancer: Diagnostic and Therapeutic Applications. Clin Med Insights Oncol 2024; 18:11795549231215966. [PMID: 38249520 PMCID: PMC10799603 DOI: 10.1177/11795549231215966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024] Open
Abstract
Small extracellular vesicles called exosomes are produced by cells and contain a range of biomolecules, including proteins, lipids, and nucleic acids. Exosomes have been implicated in the development and spread of cancer, and recent studies have shown that their contents may be exploited as biomarkers for early detection and ongoing surveillance of the disease. In this review article, we summarize the current knowledge on exosomes as biomarkers of cancer. We discuss the various methods used for exosome isolation and characterization, as well as the different types of biomolecules found within exosomes that are relevant for cancer diagnosis and prognosis. We also highlight recent studies that have demonstrated the utility of exosomal biomarkers in different types of cancer, such as lung cancer, breast cancer, and pancreatic cancer. Overall, exosomes show great promise as noninvasive biomarkers for cancer detection and monitoring. Exosomes have the ability to transform cancer diagnostic and therapeutic paradigms, providing promise for more efficient and individualized. This review seeks to serve as an inspiration for new ideas and research in the never-ending fight against cancer. Moreover, further studies are needed to validate their clinical utility and establish standardized protocols for their isolation and analysis. With continued research and development, exosomal biomarkers have the potential to revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Yasar Saleem
- Department of Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex Lahore, Lahore, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Science, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
14
|
Hánělová K, Raudenská M, Masařík M, Balvan J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun Signal 2024; 22:25. [PMID: 38200509 PMCID: PMC10777590 DOI: 10.1186/s12964-023-01408-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are pathologically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exosome biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their protein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exosome biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological conditions. Video Abstract.
Collapse
Affiliation(s)
- Klára Hánělová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
15
|
Dietz L, Oberländer J, Mateos‐Maroto A, Schunke J, Fichter M, Krämer‐Albers E, Landfester K, Mailänder V. Uptake of extracellular vesicles into immune cells is enhanced by the protein corona. J Extracell Vesicles 2023; 12:e12399. [PMID: 38124271 PMCID: PMC10733601 DOI: 10.1002/jev2.12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The influence of a protein corona on the uptake of nanoparticles in cells has been demonstrated in various publications over the last years. Extracellular vesicles (EVs), can be seen as natural nanoparticles. However, EVs are produced under different cell culture conditions and little is known about the protein corona forming on EVs and its influence on their uptake by target cells. Here, we use a proteomic approach in order to analyze the protein composition of the EVs themselves and the protein composition of a human blood plasma protein corona around EVs. Moreover, we analyze the influence of the protein corona on EV uptake into human monocytes and compare it with the influence on the uptake of engineered liposomes. We show that the presence of a protein corona increases the uptake of EVs in human monocytes. While for liposomes this seems to be triggered by the presence of immunoglobulins in the protein corona, for EVs blocking the Fc receptors on monocytes did not show an influence of uptake. Therefore, other mechanisms of docking to the cell membrane and uptake are most like involved, demonstrating a clear difference between EVs and liposomes as technically produced nanocarriers.
Collapse
Affiliation(s)
- Laura Dietz
- Department of DermatologyUniversity Medical Center MainzMainzGermany
- Max Planck Institute for Polymer ResearchMainzGermany
| | - Jennifer Oberländer
- Department of DermatologyUniversity Medical Center MainzMainzGermany
- Max Planck Institute for Polymer ResearchMainzGermany
| | | | - Jenny Schunke
- Department of DermatologyUniversity Medical Center MainzMainzGermany
- Max Planck Institute for Polymer ResearchMainzGermany
| | - Michael Fichter
- Department of DermatologyUniversity Medical Center MainzMainzGermany
- Max Planck Institute for Polymer ResearchMainzGermany
| | - Eva‐Maria Krämer‐Albers
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg University of MainzMainzGermany
| | | | - Volker Mailänder
- Department of DermatologyUniversity Medical Center MainzMainzGermany
- Max Planck Institute for Polymer ResearchMainzGermany
| |
Collapse
|
16
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
17
|
DeRyckere D, Huelse JM, Earp HS, Graham DK. TAM family kinases as therapeutic targets at the interface of cancer and immunity. Nat Rev Clin Oncol 2023; 20:755-779. [PMID: 37667010 DOI: 10.1038/s41571-023-00813-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
Novel treatment approaches are needed to overcome innate and acquired mechanisms of resistance to current anticancer therapies in cancer cells and the tumour immune microenvironment. The TAM (TYRO3, AXL and MERTK) family receptor tyrosine kinases (RTKs) are potential therapeutic targets in a wide range of cancers. In cancer cells, TAM RTKs activate signalling pathways that promote cell survival, metastasis and resistance to a variety of chemotherapeutic agents and targeted therapies. TAM RTKs also function in innate immune cells, contributing to various mechanisms that suppress antitumour immunity and promote resistance to immune-checkpoint inhibitors. Therefore, TAM antagonists provide an unprecedented opportunity for both direct and immune-mediated therapeutic activity provided by inhibition of a single target, and are likely to be particularly effective when used in combination with other cancer therapies. To exploit this potential, a variety of agents have been designed to selectively target TAM RTKs, many of which have now entered clinical testing. This Review provides an essential guide to the TAM RTKs for clinicians, including an overview of the rationale for therapeutic targeting of TAM RTKs in cancer cells and the tumour immune microenvironment, a description of the current preclinical and clinical experience with TAM inhibitors, and a perspective on strategies for continued development of TAM-targeted agents for oncology applications.
Collapse
Affiliation(s)
- Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - H Shelton Earp
- Department of Medicine, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Department of Paediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
18
|
Rani S, Lai A, Nair S, Sharma S, Handberg A, Carrion F, Möller A, Salomon C. Extracellular vesicles as mediators of cell-cell communication in ovarian cancer and beyond - A lipids focus. Cytokine Growth Factor Rev 2023; 73:52-68. [PMID: 37423866 DOI: 10.1016/j.cytogfr.2023.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Extracellular vesicles (EVs) are messengers that carry information in the form of proteins, lipids, and nucleic acids and are not only essential for intercellular communication but also play a critical role in the progression of various pathologies, including ovarian cancer. There has been recent substantial research characterising EV cargo, specifically, the lipid profile of EVs. Lipids are involved in formation and cargo sorting of EVs, their release and cellular uptake. Numerous lipidomic studies demonstrated the enrichment of specific classes of lipids in EVs derived from cancer cells suggesting that the EV associated lipids can potentially be employed as minimally invasive biomarkers for early diagnosis of various malignancies, including ovarian cancer. In this review, we aim to provide a general overview of the heterogeneity of EV, biogenesis, their lipid content, and function in cancer progression focussing on ovarian cancer.
Collapse
Affiliation(s)
- Shikha Rani
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Soumya Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Shayna Sharma
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Andreas Möller
- Department of Otorhinolaryngology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia; Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
19
|
Kashani SA, Navabi R, Amini A, Hajinasrollah M, Jenab Y, Rabbani S, Nazari A, Pakzad M, Moazenchi M, Atrabi MJ, Samsonchi Z, Hezavehei M, Hosseini-Beheshti E, Shekari F, Hajizadeh-Saffar E, Baharvand H. Immunomodulatory potential of human clonal mesenchymal stem cells and their extracellular vesicle subpopulations in an inflammatory-mediated diabetic Rhesus monkey model. Life Sci 2023; 329:121950. [PMID: 37473804 DOI: 10.1016/j.lfs.2023.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
AIMS This study aimed to investigate the therapeutic potential of a homogenous clonal population of mesenchymal stem cells (cMSC) and their extracellular vesicles (cMSC-EV) subpopulations on isolated rat islets in vitro and in inflammatory-mediated type 1 diabetes (T1D) non-human primate models. MAIN METHODS EV subpopulations were isolated from human bone marrow-derived cMSC supernatant by low- and high-speed ultracentrifuge (EV-20K and EV-U110K) and sucrose density gradient (EV-S110K). The EVs were characterized generally and for the level of albumin, acetylcholinesterase (AChE) activity, co-isolate apoptotic markers, and expression of CD63+/annexin V+. Rat islet-derived single cells (iSCs) proliferation was measured using a Ki-67 proliferation assay. Diabetes was induced by multiple low-dose administrations of streptozotocin in rhesus monkeys. The diabetic monkeys were divided into three groups: the cMSC group, received two injections of 1.5 × 106 cMSC/kg body weight; the EV group received two injections of EVs isolated from 1.5 × 106 cMSC/kg, and the vehicle group received phosphate-buffered saline. KEY FINDINGS EV-S110K showed higher AChE activity, lower expression of CD63+/annexin V+, and lower apoptotic co-isolates. EV-S110K induced β-cell proliferation in vitro in a dose-dependent manner. The administration of EV-S110K and/or cMSC in diabetic monkeys demonstrated no significant changes in general diabetic indices and β-cell mass in the pancreas of the monkeys. Both treatments demonstrated a lowering trend in blood glucose levels and reduced pro-inflammatory cytokines. In contrast, regulatory T cells and anti-inflammatory cytokines were increased. SIGNIFICANCE cMSC and cMSC-EV provided initial evidence to attenuate clinical symptoms in inflammatory-mediated T1D non-human primates through immunomodulation.
Collapse
Affiliation(s)
- Sara Assar Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roghayeh Navabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Amini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Hajinasrollah
- Animal Core Facility, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Jenab
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdoreza Nazari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maedeh Moazenchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Jafari Atrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zakieh Samsonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
20
|
Ghadami S, Dellinger K. The lipid composition of extracellular vesicles: applications in diagnostics and therapeutic delivery. Front Mol Biosci 2023; 10:1198044. [PMID: 37520326 PMCID: PMC10381967 DOI: 10.3389/fmolb.2023.1198044] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, with nanoscale sizes, biological origins, various functions, and unique lipid and protein compositions have been introduced as versatile tools for diagnostic and therapeutic medical applications. Numerous studies have reported the importance of the lipid composition of EVs and its influence on their mechanism of action. For example, changes in the lipidomic profile of EVs have been shown to influence the progression of various diseases, including ovarian malignancies and prostate cancer. In this review, we endeavored to examine differences in the lipid content of EV membranes derived from different cell types to characterize their capabilities as diagnostic tools and treatments for diseases like cancer and Alzheimer's disease. We additionally discuss designing functionalized vesicles, whether synthetically by hybrid methods or by changing the lipid composition of natural EVs. Lastly, we provide an overview of current and potential biomedical applications and perspectives on the future of this growing field.
Collapse
Affiliation(s)
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
21
|
Hanelova K, Raudenska M, Kratochvilova M, Navratil J, Vicar T, Bugajova M, Gumulec J, Masarik M, Balvan J. Autophagy modulators influence the content of important signalling molecules in PS-positive extracellular vesicles. Cell Commun Signal 2023; 21:120. [PMID: 37226246 DOI: 10.1186/s12964-023-01126-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. Many studies suggest that cancer cells release higher amounts of EVs exposing phosphatidylserine (PS) at the surface. There are lots of interconnections between EVs biogenesis and autophagy machinery. Modulation of autophagy can probably affect not only the quantity of EVs but also their content, which can deeply influence the resulting pro-tumourigenic or anticancer effect of autophagy modulators. In this study, we found that autophagy modulators autophinib, CPD18, EACC, bafilomycin A1 (BAFA1), 3-hydroxychloroquine (HCQ), rapamycin, NVP-BEZ235, Torin1, and starvation significantly alter the composition of the protein content of phosphatidylserine-positive EVs (PS-EVs) produced by cancer cells. The greatest impact had HCQ, BAFA1, CPD18, and starvation. The most abundant proteins in PS-EVs were proteins typical for extracellular exosomes, cytosol, cytoplasm, and cell surface involved in cell adhesion and angiogenesis. PS-EVs protein content involved mitochondrial proteins and signalling molecules such as SQSTM1 and TGFβ1 pro-protein. Interestingly, PS-EVs contained no commonly determined cytokines, such as IL-6, IL-8, GRO-α, MCP-1, RANTES, and GM-CSF, which indicates that secretion of these cytokines is not predominantly mediated through PS-EVs. Nevertheless, the altered protein content of PS-EVs can still participate in the modulation of the fibroblast metabolism and phenotype as p21 was accumulated in fibroblasts influenced by EVs derived from CPD18-treated FaDu cells. The altered protein content of PS-EVs (data are available via ProteomeXchange with identifier PXD037164) also provides information about the cellular compartments and processes that are affected by the applied autophagy modulators. Video Abstract.
Collapse
Affiliation(s)
- Klara Hanelova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomas Vicar
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic
| | - Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- First Faculty of Medicine, Charles University, Katerinska 32, 12108, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
22
|
Alter CL, Detampel P, Schefer RB, Lotter C, Hauswirth P, Puligilla RD, Weibel VJ, Schenk SH, Heusermann W, Schürz M, Meisner-Kober N, Palivan C, Einfalt T, Huwyler J. High efficiency preparation of monodisperse plasma membrane derived extracellular vesicles for therapeutic applications. Commun Biol 2023; 6:478. [PMID: 37137966 PMCID: PMC10156699 DOI: 10.1038/s42003-023-04859-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
Extracellular vesicles (EVs) are highly interesting for the design of next-generation therapeutics. However, their preparation methods face challenges in standardization, yield, and reproducibility. Here, we describe a highly efficient and reproducible EV preparation method for monodisperse nano plasma membrane vesicles (nPMVs), which yields 10 to 100 times more particles per cell and hour than conventional EV preparation methods. nPMVs are produced by homogenizing giant plasma membrane vesicles following cell membrane blebbing and apoptotic body secretion induced by chemical stressors. nPMVs showed no significant differences compared to native EVs from the same cell line in cryo-TEM analysis, in vitro cellular interactions, and in vivo biodistribution studies in zebrafish larvae. Proteomics and lipidomics, on the other hand, suggested substantial differences consistent with the divergent origin of these two EV types and indicated that nPMVs primarily derive from apoptotic extracellular vesicles. nPMVs may provide an attractive source for developing EV-based pharmaceutical therapeutics.
Collapse
Affiliation(s)
- Claudio L Alter
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056, Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland
| | - Pascal Detampel
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roman B Schefer
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Claudia Lotter
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Patrick Hauswirth
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Ramya D Puligilla
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Vera J Weibel
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Susanne H Schenk
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Wolf Heusermann
- Imaging Core Facility, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Melanie Schürz
- Department of Biosciences & Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Nicole Meisner-Kober
- Department of Biosciences & Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland
| | - Tomaž Einfalt
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
23
|
Sancho-Albero M, Martín-Pardillos A, Irusta S, Sebastián V, Cebolla VL, Pazo-Cid R, Martín-Duque P, Santamaría J. X-ray Photoelectron Spectroscopy (XPS) Analysis of Nitrogen Environment in Small Extracellular Vesicle Membranes: A Potential Novel Technique with Application for Cancer Screening. Cancers (Basel) 2023; 15:cancers15092479. [PMID: 37173946 PMCID: PMC10177571 DOI: 10.3390/cancers15092479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Small extracellular vesicle (EV) membranes display characteristic protein-lipidic composition features that are related to their cell of origin, providing valuable clues regarding their parental cell composition and real-time state. This could be especially interesting in the case of cancer cell-derived EVs, as their membranes could serve as valuable tools in liquid biopsy applications and to detect changes in the tumor malignancy. X-Ray Photoelectron Spectroscopy (XPS) is a powerful surface analysis technique able to detect every chemical element present, being also sensitive to their chemical environment. Here we explore the use of XPS as a fast technique to characterize EV membrane composition, with possible application in cancer research. Notably, we have focused on the nitrogen environment as an indicator of the relative abundance of pyridine-type bonding, primary, secondary and tertiary amines. Specifically, we have analyzed how tumoral and healthy cells have different nitrogen chemical environments that can indicate the presence or absence of malignancy. In addition, a collection of human serum samples from cancer patients and healthy donors was also analyzed. The differential XPS analysis of EVs collected from patients confirmed that the patterns of amine evolution could be related to markers of cancer disease, opening the possibility of their use as a non-invasive blood biomarker.
Collapse
Affiliation(s)
- María Sancho-Albero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50018 Zaragoza, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Ana Martín-Pardillos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50018 Zaragoza, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Silvia Irusta
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50018 Zaragoza, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Víctor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50018 Zaragoza, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Laboratorio de Miscroscopia Avanzadas, University of Zaragoza, 50018 Zaragoza, Spain
| | | | - Roberto Pazo-Cid
- Medical Oncology Service, Miguel Servet Hospital, 50009 Zaragoza, Spain
| | - Pilar Martín-Duque
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Instituto Aragonés de Ciencias de la Salud, 50009 Zaragoza, Spain
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| | - Jesús Santamaría
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50018 Zaragoza, Spain
- Department of Chemical Engineering and Environmental Technologies, University of Zaragoza, 50018 Zaragoza, Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Instituto de Investigaciones Sanitarias de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
24
|
Zheng F, Wang J, Wang D, Yang Q. Clinical Application of Small Extracellular Vesicles in Gynecologic Malignancy Treatments. Cancers (Basel) 2023; 15:cancers15071984. [PMID: 37046644 PMCID: PMC10093031 DOI: 10.3390/cancers15071984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are the key mediators of intercellular communication. They have the potential for clinical use as diagnostic or therapeutic biomarkers and have been explored as vectors for drug delivery. Identification of reliable and noninvasive biomarkers, such as sEVs, is important for early diagnosis and precise treatment of gynecologic diseases to improve patient prognosis. Previous reviews have summarized routine sEVs isolation and identification methods; however, novel and unconventional methods have not been comprehensively described. This review summarizes a convenient method of isolating sEVs from body fluids and liquid biopsy-related sEV markers for early, minimally invasive diagnosis of gynecologic diseases. In addition, the characteristics of sEVs as drug carriers and in precision treatment and drug resistance are introduced, providing a strong foundation for identifying novel and potential therapeutic targets for sEV therapy. We propose potential directions for further research on the applications of sEVs in the diagnosis and treatment of gynecologic diseases.
Collapse
|
25
|
Jing H, Wu X, Xiang M, Wang C, Novakovic VA, Shi J. Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:cancers15071957. [PMID: 37046617 PMCID: PMC10093313 DOI: 10.3390/cancers15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02132, USA
| |
Collapse
|
26
|
Perez GI, Bernard MP, Vocelle D, Zarea AA, Saleh NA, Gagea MA, Schneider D, Bauzon M, Hermiston T, Kanada M. Phosphatidylserine-Exposing Annexin A1-Positive Extracellular Vesicles: Potential Cancer Biomarkers. Vaccines (Basel) 2023; 11:639. [PMID: 36992223 PMCID: PMC10059271 DOI: 10.3390/vaccines11030639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/11/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Under physiological conditions, phosphatidylserine (PS) predominantly localizes to the cytosolic leaflet of the plasma membrane of cells. During apoptosis, PS is exposed on the cell surface and serves as an "eat-me" signal for macrophages to prevent releasing self-immunogenic cellular components from dying cells which could potentially lead to autoimmunity. However, increasing evidence indicates that viable cells can also expose PS on their surface. Interestingly, tumor cell-derived extracellular vesicles (EVs) externalize PS. Recent studies have proposed PS-exposing EVs as a potential biomarker for the early detection of cancer and other diseases. However, there are confounding results regarding subtypes of PS-positive EVs, and knowledge of PS exposure on the EV surface requires further elucidation. In this study, we enriched small EVs (sEVs) and medium/large EVs (m/lEVs) from conditioned media of breast cancer cells (MDA-MB-231, MDA-MB-468) and non-cancerous cells (keratinocytes, fibroblasts). Since several PS-binding molecules are available to date, we compared recombinant proteins of annexin A5 and the carboxylated glutamic acid domain of Protein S (GlaS), also specific for PS, to detect PS-exposing EVs. Firstly, PS externalization in each EV fraction was analyzed using a bead-based EV assay, which combines EV capture using microbeads and analysis of PS-exposing EVs by flow cytometry. The bulk EV assay showed higher PS externalization in m/lEVs derived from MDA-MB-468 cells but not from MDA-MB-231 cells, while higher binding of GlaS was also observed in m/lEVs from fibroblasts. Second, using single EV flow cytometry, PS externalization was also analyzed on individual sEVs and m/lEVs. Significantly higher PS externalization was detected in m/lEVs (annexin A1+) derived from cancer cells compared to m/lEVs (annexin A1+) from non-cancerous cells. These results emphasize the significance of PS-exposing m/lEVs (annexin A1+) as an undervalued EV subtype for early cancer detection and provide a better understanding of PS externalization in disease-associated EV subtypes.
Collapse
Affiliation(s)
- Gloria I. Perez
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew P. Bernard
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Vocelle
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Ahmed A. Zarea
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
- College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| | - Najla A. Saleh
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
| | - Matthew A. Gagea
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Lyman Briggs College, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | - Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
27
|
Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, Sun J, Zhang L, Sun R, Bain DJ, Conway JF, Lu B, Li S. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. NATURE NANOTECHNOLOGY 2023; 18:193-204. [PMID: 36424448 PMCID: PMC9974593 DOI: 10.1038/s41565-022-01266-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/19/2022] [Indexed: 05/14/2023]
Abstract
Activation of scramblases is one of the mechanisms that regulates the exposure of phosphatidylserine to the cell surface, a process that plays an important role in tumour immunosuppression. Here we show that chemotherapeutic agents induce overexpression of Xkr8, a scramblase activated during apoptosis, at the transcriptional level in cancer cells, both in vitro and in vivo. Based on this finding, we developed a nanocarrier for co-delivery of Xkr8 short interfering RNA and the FuOXP prodrug to tumours. Intravenous injection of our nanocarrier led to significant inhibition of tumour growth in colon and pancreatic cancer models along with increased antitumour immune response. Targeting Xkr8 in combination with chemotherapy may represent a novel strategy for the treatment of various types of cancers.
Collapse
Affiliation(s)
- Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinzhe Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - LinXinTian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Runzi Sun
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel J Bain
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Modified lipidomic profile of cancer-associated small extracellular vesicles facilitates tumorigenic behaviours and contributes to disease progression. Adv Biol Regul 2023; 87:100935. [PMID: 36443198 DOI: 10.1016/j.jbior.2022.100935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Metabolic rewiring is a key feature of cancer cells, which involves the alteration of amino acids, glucose and lipids to support aggressive cancer phenotypes. Changes in lipid metabolism alter cancer growth characteristics, membrane integrity and signalling pathways. Small extracellular vesicles (sEVs) are membrane-bound vesicles secreted by cells into the extracellular environment, where they participate in cell-to-cell communication. Lipids are involved in the formation and cargo assortment of sEVs, resulting in their selective packaging in these vesicles. Further, sEVs participate in different aspects of cancer development, such as proliferation, migration and angiogenesis. Various lipidomic studies have indicated the enrichment of specific lipids in sEVs derived from tumour cells, which aid in their pathological functioning. This paper summarises how the modified lipid profile of sEVs contributes to carcinogenesis and disease progression.
Collapse
|
29
|
Duong DST, Jang CH. Detection of phosphatidylserine by using liquid crystal supported on the gold-deposited waveform surfaces with the annexin V-based signal enhancement. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Dittmar T, Hass R. Extracellular Events Involved in Cancer Cell-Cell Fusion. Int J Mol Sci 2022; 23:16071. [PMID: 36555709 PMCID: PMC9784959 DOI: 10.3390/ijms232416071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Fusion among different cell populations represents a rare process that is mediated by both intrinsic and extracellular events. Cellular hybrid formation is relayed by orchestrating tightly regulated signaling pathways that can involve both normal and neoplastic cells. Certain important cell merger processes are often required during distinct organismal and tissue development, including placenta and skeletal muscle. In a neoplastic environment, however, cancer cell fusion can generate new cancer hybrid cells. Following survival during a subsequent post-hybrid selection process (PHSP), the new cancer hybrid cells express different tumorigenic properties. These can include elevated proliferative capacity, increased metastatic potential, resistance to certain therapeutic compounds, and formation of cancer stem-like cells, all of which characterize significantly enhanced tumor plasticity. However, many parts within this multi-step cascade are still poorly understood. Aside from intrinsic factors, cell fusion is particularly affected by extracellular conditions, including an inflammatory microenvironment, viruses, pH and ionic stress, hypoxia, and exosome signaling. Accordingly, the present review article will primarily highlight the influence of extracellular events that contribute to cell fusion in normal and tumorigenic tissues.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
31
|
Wu Y, Chen W, Guo M, Tan Q, Zhou E, Deng J, Li M, Chen J, Yang Z, Jin Y. Metabolomics of Extracellular Vesicles: A Future Promise of Multiple Clinical Applications. Int J Nanomedicine 2022; 17:6113-6129. [PMID: 36514377 PMCID: PMC9741837 DOI: 10.2147/ijn.s390378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) can contain DNA, RNA, proteins and metabolic molecules from primary origins; they are coated with a phospholipid bilayer membrane and released by cells into the extracellular matrix. EVs can be obtained from various body liquids, including the blood, saliva, cerebrospinal fluid, and urine. As has been proved, EVs-mediated transfer of biologically active molecules is crucial for various physiological and pathological processes. Extensive investigations have already begun to explore the diagnosis and prognosis potentials for EVs. Furthermore, research has continued to recognize the critical role of nucleic acids and proteins in EVs. However, our understanding of the comprehensive effects of metabolites in these nanoparticles is currently limited and in its infancy. Therefore, we have attempted to summarize the recent research into the metabolomics of EVs in relation to potential clinical applications and discuss the problems and challenges that have occurred, to provide more guidance for the future development in this field.
Collapse
Affiliation(s)
- YaLi Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - WenJuan Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - E Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jingjing Deng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Minglei Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Clinical Research Center for Major Respiratory Diseases in Hubei Province, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Correspondence: Yang Jin, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, Email
| |
Collapse
|
32
|
Quesnel A, Broughton A, Karagiannis GS, Filippou PS. Message in the bottle: regulation of the tumor microenvironment via exosome-driven proteolysis. Cancer Metastasis Rev 2022; 41:789-801. [PMID: 35394580 DOI: 10.1007/s10555-022-10030-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/29/2022] [Indexed: 01/25/2023]
Abstract
Exosomes comprise a subtype of extracellular vesicles involved in cell-to-cell communication, specifically by transporting biological molecules, such as proteins and nucleic acids, to either local or more distant recipient cells, thus triggering distinct biological behaviors. Included in the exosome cargo is frequently a wide range of proteolytic enzymes, such as the matrix metalloproteinases (MMPs), the disintegrin and metalloproteinases (ADAMs), and the ADAM with thrombospondin-like motifs (ADAMTSs), whose functions contribute to the development and progression of cancer. In recent years, extensive research on the potential use of exosomes in diagnostic and therapeutic applications for personalized medicine has emerged, but the targeting of the proteolytic cargo of exosomes has not been fully exploited in this direction. In this review, we aim to explore both the mechanistic and the translational importance of proteolytic enzymes carried by the tumor cell-derived exosomes, as well as their role in the acquisition and support of certain hallmarks of cancer.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.,National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Amy Broughton
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK
| | - George S Karagiannis
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA.,Albert Einstein Cancer Center, Tumor Microenvironment and Metastasis Program, Bronx, NY, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK. .,National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
33
|
Zhang S, Deng J, Li J, Tian F, Liu C, Fang L, Sun J. Advanced microfluidic technologies for isolating extracellular vesicles. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Kholodenko IV, Kholodenko RV, Majouga AG, Yarygin KN. Apoptotic MSCs and MSC-Derived Apoptotic Bodies as New Therapeutic Tools. Curr Issues Mol Biol 2022; 44:5153-5172. [PMID: 36354663 PMCID: PMC9688732 DOI: 10.3390/cimb44110351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Over the past two decades, mesenchymal stem cells (MSCs) have shown promising therapeutic effects both in preclinical studies (in animal models of a wide range of diseases) and in clinical trials. However, the efficacy of MSC-based therapy is not always predictable. Moreover, despite the large number of studies, the mechanisms underlying the regenerative potential of MSCs are not fully elucidated. Recently, it has been reliably established that transplanted MSCs can undergo rapid apoptosis and clearance from the recipient's body, still exhibiting therapeutic effects, especially those associated with their immunosuppressive/immunomodulating properties. The mechanisms underlying these effects can be mediated by the efferocytosis of apoptotic MSCs by host phagocytic cells. In this concise review, we briefly describe three types of MSC-generated extracellular vesicles, through which their therapeutic functions can potentially be carried out; we focused on reviewing recent data on apoptotic MSCs and MSC-derived apoptotic bodies (MSC-ApoBDs), their functions, and the mechanisms of their therapeutic effects.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
35
|
Zhang W, Campbell DH, Walsh BJ, Packer NH, Liu D, Wang Y. Cancer-derived small extracellular vesicles: emerging biomarkers and therapies for pancreatic ductal adenocarcinoma diagnosis/prognosis and treatment. J Nanobiotechnology 2022; 20:446. [PMID: 36242076 PMCID: PMC9563798 DOI: 10.1186/s12951-022-01641-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal cancers worldwide with high mortality, which is mainly due to the lack of reliable biomarkers for PDAC diagnosis/prognosis in the early stages and effective therapeutic strategies for the treatment. Cancer-derived small extracellular vesicles (sEVs), which carry various messages and signal biomolecules (e.g. RNAs, DNAs, proteins, lipids, and glycans) to constitute the key features (e.g. genetic and phenotypic status) of cancer cells, are regarded as highly competitive non-invasive biomarkers for PDAC diagnosis/prognosis. Additionally, new insights on the biogenesis and molecular functions of cancer-derived sEVs pave the way for novel therapeutic strategies based on cancer-derived sEVs for PDAC treatment such as inhibition of the formation or secretion of cancer-derived sEVs, using cancer-derived sEVs as drug carriers and for immunotherapy. This review provides a comprehensive overview of the most recent scientific and clinical research on the discovery and involvement of key molecules in cancer-derived sEVs for PDAC diagnosis/prognosis and strategies using cancer-derived sEVs for PDAC treatment. The current limitations and emerging trends toward clinical application of cancer-derived sEVs in PDAC diagnosis/prognosis and treatment have also been discussed.
Collapse
Affiliation(s)
- Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia
| | | | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, 2113, Sydney, NSW, Australia
| | - Nicolle H Packer
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia.
| |
Collapse
|
36
|
Makler A, Narayanan R, Asghar W. An Exosomal miRNA Biomarker for the Detection of Pancreatic Ductal Adenocarcinoma. BIOSENSORS 2022; 12:831. [PMID: 36290970 PMCID: PMC9599289 DOI: 10.3390/bios12100831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a difficult tumor to diagnose and treat. To date, PDAC lacks routine screening with no markers available for early detection. Exosomes are 40-150 nm-sized extracellular vesicles that contain DNA, RNA, and proteins. These exosomes are released by all cell types into circulation and thus can be harvested from patient body fluids, thereby facilitating a non-invasive method for PDAC detection. A bioinformatics analysis was conducted utilizing publicly available miRNA pancreatic cancer expression and genome databases. Through this analysis, we identified 18 miRNA with strong potential for PDAC detection. From this analysis, 10 (MIR31, MIR93, MIR133A1, MIR210, MIR330, MIR339, MIR425, MIR429, MIR1208, and MIR3620) were chosen due to high copy number variation as well as their potential to differentiate patients with chronic pancreatitis, neoplasms, and PDAC. These 10 were examined for their mature miRNA expression patterns, giving rise to 18 mature miRs for further analysis. Exosomal RNA from cell culture media was analyzed via RTqPCR and seven mature miRs exhibited statistical significance (miR-31-5p, miR-31-3p, miR-210-3p, miR-339-5p, miR-425-5p, miR-425-3p, and miR-429). These identified biomarkers can potentially be used for early detection of PDAC.
Collapse
Affiliation(s)
- Amy Makler
- Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Ramaswamy Narayanan
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
37
|
Hallal S, Tűzesi Á, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical molecular biology. J Extracell Vesicles 2022; 11:e12260. [PMID: 36239734 PMCID: PMC9563386 DOI: 10.1002/jev2.12260] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid-membrane enclosed nanoparticles that play significant roles in health and disease. EVs are abundant in body fluids and carry an array of molecules (proteins, lipids, nucleic acids and glycans) that reflect the identity and activity of their cell-of-origin. While the advent of high throughput omics technologies has allowed in-depth characterisation of EV compositions, how these molecular species are spatially distributed within EV structures is not well appreciated. This is particularly true of the EV surface where a plethora of molecules are reported to be both integral and peripherally associated to the EV membrane. This coronal layer or 'atmosphere' that surrounds the EV membrane contributes to a large, highly interactive and dynamic surface area that is responsible for facilitating EV interactions with the extracellular environment. The EV coronal layer harbours surface molecules that reflect the identity of parent cells, which is likely a highly valuable property in the context of diagnostic liquid biopsies. In this review, we describe the current understanding of the mechanical, electrostatic and molecular properties of the EV surface that offer significant biomarker potential and contribute to a highly dynamic interactome.
Collapse
Affiliation(s)
- Susannah Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
| | - Ágota Tűzesi
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Georges E. Grau
- School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Michael E. Buckland
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
38
|
Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 2022; 11:54. [PMID: 36109501 PMCID: PMC9477829 DOI: 10.1038/s41389-022-00431-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractExosomes belong to a subpopulation of extracellular vesicles secreted by the dynamic multistep endocytosis process and carry diverse functional molecular cargoes, including proteins, lipids, nucleic acids (DNA, messenger and noncoding RNA), and metabolites to promote intercellular communication. Proteins and noncoding RNA are among the most abundant contents in exosomes; they have biological functions and are selectively packaged into exosomes. Exosomes derived from tumor, stromal and immune cells contribute to the multiple stages of cancer progression as well as resistance to therapy. In this review, we will discuss the biogenesis of exosomes and their roles in cancer development. Since specific contents within exosomes originate from their cells of origin, this property allows exosomes to function as valuable biomarkers. We will also discuss the potential use of exosomes as diagnostic and prognostic biomarkers or predictors for different therapeutic strategies for multiple cancers. Furthermore, the applications of exosomes as direct therapeutic targets or engineered vehicles for drugs are an important field of exosome study. Better understanding of exosome biology may pave the way to promising exosome-based clinical applications.
Collapse
|
39
|
Yi X, Chen J, Huang D, Feng S, Yang T, Li Z, Wang X, Zhao M, Wu J, Zhong T. Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis. Front Oncol 2022; 12:966981. [PMID: 36119470 PMCID: PMC9472136 DOI: 10.3389/fonc.2022.966981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that biogenesis from endosomes. Besides, exosomes contain a variety of molecular cargoes including proteins, lipids and nucleic acids, which play a key role in the mechanism of exosome formation. Meanwhile, exosomes are involved with physiological and pathological conditions. The molecular profile of exosomes reflects the type and pathophysiological status of the originating cells so could potentially be exploited for diagnostic of cancer. This review aims to describe important molecular cargoes involved in exosome biogenesis. In addition, we highlight exogenous factors, especially autophagy, hypoxia and pharmacology, that regulate the release of exosomes and their corresponding cargoes. Particularly, we also emphasize exosome molecular cargoes as potential biomarkers in liquid biopsy for diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuo Feng
- English Teaching and Research Section, Gannan Healthcare Vocational College, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
40
|
Lee M, Kim J, Jang M, Park C, Lee JH, Lee T. Introduction of Nanomaterials to Biosensors for Exosome Detection: Case Study for Cancer Analysis. BIOSENSORS 2022; 12:648. [PMID: 36005042 PMCID: PMC9405681 DOI: 10.3390/bios12080648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Exosomes have been gaining attention for early cancer diagnosis owing to their biological functions in cells. Several studies have reported the relevance of exosomes in various diseases, including pancreatic cancer, retroperitoneal fibrosis, obesity, neurodegenerative diseases, and atherosclerosis. Particularly, exosomes are regarded as biomarkers for cancer diagnosis and can be detected in biofluids, such as saliva, urine, peritoneal fluid, and blood. Thus, exosomes are advantageous for cancer liquid biopsies as they overcome the current limitations of cancer tissue biopsies. Several studies have reported methods for exosome isolation, and analysis for cancer diagnosis. However, further clinical trials are still required to determine accurate exosome concentration quantification methods. Recently, various biosensors have been developed to detect exosomal biomarkers, including tumor-derived exosomes, nucleic acids, and proteins. Among these, the exact quantification of tumor-derived exosomes is a serious obstacle to the clinical use of liquid biopsies. Precise detection of exosome concentration is difficult because it requires clinical sample pretreatment. To solve this problem, the use of the nanobiohybrid material-based biosensor provides improved sensitivity and selectivity. The present review will discuss recent progress in exosome biosensors consisting of nanomaterials and biomaterial hybrids for electrochemical, electrical, and optical-based biosensors.
Collapse
Affiliation(s)
- Myoungro Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|
41
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
42
|
Liu H, Huang Y, Huang M, Huang Z, Wang Q, Qing L, Li L, Xu S, Jia B. Current Status, Opportunities, and Challenges of Exosomes in Oral Cancer Diagnosis and Treatment. Int J Nanomedicine 2022; 17:2679-2705. [PMID: 35733418 PMCID: PMC9208818 DOI: 10.2147/ijn.s365594] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Oral cancer is one of the most common cancers in the world, with more than 300,000 cases diagnosed each year, of which oral squamous cell carcinoma accounts for more than 90%, with a 5-year survival rate of only 40–60%, and poor prognosis. Exploring new strategies for the early diagnosis and treatment of oral cancer is key to improving the survival rate. Exosomes are nanoscale lipid bilayer membrane vesicles that are secreted by almost all cell types. During the development of oral cancer, exosomes can transport their contents (DNA, RNA, proteins, etc) to target cells and promote or inhibit the proliferation, invasion, and metastasis of oral cancer cells by influencing the host immune response, drug-resistant metastasis, and tumour angiogenesis. Therefore, exosomes have great potential and advantages as biomarkers for oral cancer diagnosis, and as drug delivery vehicles or targets for oral cancer therapy. In this review, we first describe the biogenesis, biological functions, and isolation methods of exosomes, followed by their relationship with oral cancer. Here, we focused on the potential of exosomes as oral cancer biomarkers, drug carriers, and therapeutic targets. Finally, we provide an insightful discussion of the opportunities and challenges of exosome application in oral cancer diagnosis and treatment, intending to offer new ideas for the clinical management of oral cancer.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ling Qing
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Li Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
43
|
Nik Ibrahim NNI, Abdul Rahman R, Azlan M, Abd Aziz A, Ghulam Rasool AH. Endothelial Microparticles as Potential Biomarkers in the Assessment of Endothelial Dysfunction in Hypercholesterolemia. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060824. [PMID: 35744087 PMCID: PMC9229814 DOI: 10.3390/medicina58060824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/27/2022]
Abstract
Background and Objectives: Endothelial microparticles (EMP) particularly CD31+/42−/AV+, CD144+/AV+ and CD62e+/AV+ have been reported as having increased in cardiovascular-related diseases, making them potential biomarkers for endothelial dysfunction. This study aimed to compare these EMPs in patients with hypercholesterolemia and healthy controls and to correlate their levels with endothelium-dependent vasodilation (EDV) assessed via pulse wave analysis (PWA); an established method of assessing endothelial function. Materials and Methods: EMPs from 88 subjects (44 hypercholesterolemia patients and 44 controls) were quantified from whole blood using flow cytometry analysis. Endothelial function was determined using PWA combined with pharmacological challenge. Results: CD31+/42−/AV+ (3.45 ± 4.74 count/µL vs. 1.33 ± 4.40 count/µL; p = 0.03), CD144+/AV+ (7.37 ± 12.66 count/µL vs. 1.42 ± 1.71 count/µL; p = 0.003) and CD62e+/AV+ (57.16 ± 56.22 count/µL vs. 20.78 ± 11.04 count/µL; p < 0.001) were significantly elevated in the hypercholesterolemic group compared with the controls, respectively. There was a significant inverse moderate correlation between all circulating EMPs and EDV: CD31+/42−/AV+ (r = −0.36, p = 0.001), CD144+/AV+ (r = −0.37, p = 0.001) and CD62e+/AV+ (r = −0.35, p = 0.002). Conclusions: All EMPs were raised in the patients with hypercholesterolemia, and these values correlated with the established method of assessing endothelial function.
Collapse
Affiliation(s)
- Nik Nor Izah Nik Ibrahim
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-9767-6141
| | - Razlina Abdul Rahman
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Department of Family Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Maryam Azlan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Aniza Abd Aziz
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia;
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
44
|
Exogenous loading of extracellular vesicles, virus-like particles, and lentiviral vectors with supercharged proteins. Commun Biol 2022; 5:485. [PMID: 35590035 PMCID: PMC9120435 DOI: 10.1038/s42003-022-03440-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/03/2022] [Indexed: 12/19/2022] Open
Abstract
Cell membrane-based biovesicles (BVs) are important candidate drug delivery vehicles and comprise extracellular vesicles, virus-like particles, and lentiviral vectors. Here, we introduce a non-enzymatic assembly of purified BVs, supercharged proteins, and plasmid DNA called pDNA-scBVs. This multicomponent vehicle results from the interaction of negative sugar moieties on BVs and supercharged proteins that contain positively charged amino acids on their surface to enhance their affinity for pDNA. pDNA-scBVs were demonstrated to mediate floxed reporter activation in culture by delivering a Cre transgene. We introduced pDNA-scBVs containing both a CRE-encoding plasmid and a BV-packaged floxed reporter into the brains of Ai9 mice. Successful delivery of both payloads by pDNA-scBVs was confirmed with reporter signal in the striatal brain region. Overall, we developed a more efficient method to load isolated BVs with cargo that functionally modified recipient cells. Augmenting the natural properties of BVs opens avenues for adoptive extracellular interventions using therapeutic loaded cargo.
Collapse
|
45
|
Lin AA, Nimgaonkar V, Issadore D, Carpenter EL. Extracellular Vesicle-Based Multianalyte Liquid Biopsy as a Diagnostic for Cancer. Annu Rev Biomed Data Sci 2022; 5:269-292. [PMID: 35562850 DOI: 10.1146/annurev-biodatasci-122120-113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liquid biopsy is the analysis of materials shed by tumors into circulation, such as circulating tumor cells, nucleic acids, and extracellular vesicles (EVs), for the diagnosis and management of cancer. These assays have rapidly evolved with recent FDA approvals of single biomarkers in patients with advanced metastatic disease. However, they have lacked sensitivity or specificity as a diagnostic in early-stage cancer, primarily due to low concentrations in circulating plasma. EVs, membrane-enclosed nanoscale vesicles shed by tumor and other cells into circulation, are a promising liquid biopsy analyte owing to their protein and nucleic acid cargoes carried from their mother cells, their surface proteins specific to their cells of origin, and their higher concentrations over other noninvasive biomarkers across disease stages. Recently, the combination of EVs with non-EV biomarkers has driven improvements in sensitivity and accuracy; this has been fueled by the use of machine learning (ML) to algorithmically identify and combine multiple biomarkers into a composite biomarker for clinical prediction. This review presents an analysis of EV isolation methods, surveys approaches for and issues with using ML in multianalyte EV datasets, and describes best practices for bringing multianalyte liquid biopsy to clinical implementation. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrew A Lin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; .,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vivek Nimgaonkar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica L Carpenter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
46
|
Pirisinu M, Pham TC, Zhang DX, Hong TN, Nguyen LT, Le MT. Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Semin Cancer Biol 2022; 80:340-355. [PMID: 32977006 DOI: 10.1016/j.semcancer.2020.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
As cancer poses a significant threat to the well-being of humans on a global scale, many researchers have embarked on the search for effective anticancer therapeutic agents. In recent years, many drugs have been shown to have extraordinary anticancer effects. However, in a lot of cases the treatment is accompanied by undesirable side effects due to some intrinsic properties linked to the therapeutic agents, such as poor targeting selectivity and short half-life in the circulation. In this regard, extracellular vesicles (EVs), a diverse family of natural cell-derived vesicles, steal the show as potential anticancer immunotherapy or delivery vectors of anticancer agents since they are an innate mechanism of intercellular communication. Here, we describe some of the most hotly-debated issues regarding the use of EVs as anticancer therapeutics. First, we review the biology of EVs providing the most up-to-date definition of EVs as well as highlighting their circulation kinetics and homing properties. Next, we share our views on popular methods reported for EV isolation, characterization, and functional analysis. Pioneering and innovative reports along with emerging challenges in the field of EV imaging and EV drug loading strategies are then discussed. Finally, we examine in detail the therapeutic application of EVs in cancer treatment, including their role in cancer immunotherapy and as natural delivery systems for anticancer agents including natural compounds such as paclitaxel and doxorubicin. We consider standardised protocols and proper analytical approaches to be crucial in improving the reproducibility and rigor in EV research and ensuring the successful translation of EVs as anticancer therapeutics.
Collapse
Affiliation(s)
- Marco Pirisinu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China
| | - Tin Chanh Pham
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China
| | - Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tran Nguyen Hong
- Department of Pharmacology and Biochemistry, Vietnam Institute of Medicinal Materials, Hanoi, Vietnam
| | - Lap Thi Nguyen
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Minh Tn Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR of China, China.
| |
Collapse
|
47
|
Ferguson S, Yang KS, Zelga P, Liss AS, Carlson JCT, del Castillo CF, Weissleder R. Single-EV analysis (sEVA) of mutated proteins allows detection of stage 1 pancreatic cancer. SCIENCE ADVANCES 2022; 8:eabm3453. [PMID: 35452280 PMCID: PMC9032977 DOI: 10.1126/sciadv.abm3453] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/07/2022] [Indexed: 05/02/2023]
Abstract
Tumor cell-derived extracellular vesicles (EVs) are being explored as circulating biomarkers, but it is unclear whether bulk measurements will allow early cancer detection. We hypothesized that a single-EV analysis (sEVA) technique could potentially improve diagnostic accuracy. Using pancreatic cancer (PDAC), we analyzed the composition of putative cancer markers in 11 model lines. In parental PDAC cells positive for KRASmut and/or P53mut proteins, only ~40% of EVs were also positive. In a blinded study involving 16 patients with surgically proven stage 1 PDAC, KRASmut and P53mut protein was detectable at much lower levels, generally in <0.1% of vesicles. These vesicles were detectable by the new sEVA approach in 15 of the 16 patients. Using a modeling approach, we estimate that the current PDAC detection limit is at ~0.1-cm3 tumor volume, below clinical imaging capabilities. These findings establish the potential for sEVA for early cancer detection.
Collapse
Affiliation(s)
- Scott Ferguson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
| | - Katherine S. Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
| | - Piotr Zelga
- Department of Surgery, Massachusetts General Hospital, 32 Fruit St, Boston, MA 02114, USA
| | - Andrew S. Liss
- Department of Surgery, Massachusetts General Hospital, 32 Fruit St, Boston, MA 02114, USA
| | - Jonathan C. T. Carlson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Carlos Fernandez del Castillo
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
- Department of Surgery, Massachusetts General Hospital, 32 Fruit St, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
48
|
Abreu CM, Costa-Silva B, Reis RL, Kundu SC, Caballero D. Microfluidic platforms for extracellular vesicle isolation, analysis and therapy in cancer. LAB ON A CHIP 2022; 22:1093-1125. [PMID: 35253032 DOI: 10.1039/d2lc00006g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are small lipidic particles packed with proteins, DNA, messenger RNA and microRNAs of their cell of origin that act as critical players in cell-cell communication. These vesicles have been identified as pivotal mediators in cancer progression and the formation of metastatic niches. Hence, their isolation and analysis from circulating biofluids is envisioned as the next big thing in the field of liquid biopsies for early non-invasive diagnosis and patient follow-up. Despite the promise, current benchtop isolation strategies are not compatible with point-of-care testing in a clinical setting. Microfluidic platforms are disruptive technologies capable of recovering, analyzing, and quantifying EVs within clinical samples with limited volume, in a high-throughput manner with elevated sensitivity and multiplexing capabilities. Moreover, they can also be employed for the controlled production of synthetic EVs and effective drug loading to produce EV-based therapies. In this review, we explore the use of microfluidic platforms for the isolation, characterization, and quantification of EVs in cancer, and compare these platforms with the conventional methodologies. We also highlight the state-of-the-art in microfluidic approaches for EV-based cancer therapeutics. Finally, we analyze the currently active or recently completed clinical trials involving EVs for cancer diagnosis, treatment or therapy monitoring and examine the future of EV-based point-of-care testing platforms in the clinic and EV-based therapy production by the industry.
Collapse
Affiliation(s)
- Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, Av. Brasília, 1400-038, Lisbon, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
49
|
Muraoka S, Hirano M, Isoyama J, Nagayama S, Tomonaga T, Adachi J. Comprehensive proteomic profiling of plasma and serum phosphatidylserine-positive extracellular vesicles reveals tissue-specific proteins. iScience 2022; 25:104012. [PMID: 35340435 PMCID: PMC8941215 DOI: 10.1016/j.isci.2022.104012] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) are ubiquitously secreted by almost all tissues and carry many cargoes, including proteins, RNAs, and lipids, which are related to various biological processes. EVs are shed from tissues into the blood and expected to be used as biomarkers for diseases. Here, we isolated EVs from EDTA plasma and serum of six healthy subjects by an affinity capture isolation method, and a total of 4,079 proteins were successfully identified by comprehensive EV proteomics. Our reliable and detailed catalog of the differential expression profiles of EV proteins in plasma and serum between healthy individuals could be useful as a reference for biomarker discovery. Furthermore, tissue-specific protein groups co-regulated between blood EVs from healthy individuals were identified. These EV proteins are expected to be used for more specific and sensitive enrichment of tissue-specific EVs and for screening and monitoring of disease without diagnostic imaging in patient blood in the future. Catalog of EV proteome created by state-of-the-art proteome analysis technologies Plasma and serum EV proteome profiles showed a difference in healthy individuals Novel standard reference proteins in plasma and serum EVs were identified Tissue-specific EV marker candidates were presented by the informatics approach
Collapse
Affiliation(s)
- Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Masayo Hirano
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Corresponding author
| |
Collapse
|
50
|
Gonias SL, Banki MA, Azmoon P, Romero HK, Sigurdson CJ, Mantuano E, Campana WM. Cellular prion protein in human plasma-derived extracellular vesicles promotes neurite outgrowth via the NMDA receptor-LRP1 receptor system. J Biol Chem 2022; 298:101642. [PMID: 35090893 PMCID: PMC8861162 DOI: 10.1016/j.jbc.2022.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
Exosomes and other extracellular vesicles (EVs) participate in cell-cell communication. Herein, we isolated EVs from human plasma and demonstrated that these EVs activate cell signaling and promote neurite outgrowth in PC-12 cells. Analysis of human plasma EVs purified by sequential ultracentrifugation using tandem mass spectrometry indicated the presence of multiple plasma proteins, including α2-macroglobulin, which is reported to regulate PC-12 cell physiology. We therefore further purified EVs by molecular exclusion or phosphatidylserine affinity chromatography, which reduced plasma protein contamination. EVs subjected to these additional purification methods exhibited unchanged activity in PC-12 cells, even though α2-macroglobulin was reduced to undetectable levels. Nonpathogenic cellular prion protein (PrPC) was carried by human plasma EVs and essential for the effects of EVs on PC-12 cells, as EV-induced cell signaling and neurite outgrowth were blocked by the PrPC-specific antibody, POM2. In addition, inhibitors of the N-methyl-d-aspartate (NMDA) receptor (NMDA-R) and low-density lipoprotein receptor-related protein-1 (LRP1) blocked the effects of plasma EVs on PC-12 cells, as did silencing of Lrp1 or the gene encoding the GluN1 NMDA-R subunit (Grin1). These results implicate the NMDA-R-LRP1 complex as the receptor system responsible for mediating the effects of EV-associated PrPC. Finally, EVs harvested from rat astrocytes carried PrPC and replicated the effects of human plasma EVs on PC-12 cell signaling. We conclude that interaction of EV-associated PrPC with the NMDA-R-LRP1 complex in target cells represents a novel mechanism by which EVs may participate in intercellular communication in the nervous system.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California, USA.
| | - Michael A Banki
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Haylie K Romero
- Department of Anesthesiology and Program in Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Christina J Sigurdson
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Elisabetta Mantuano
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Wendy M Campana
- Department of Anesthesiology and Program in Neurosciences, University of California San Diego, La Jolla, California, USA; San Diego Veterans Administration Healthcare System, San Diego, California, USA
| |
Collapse
|