1
|
Baker JG, Summers RJ. Adrenoceptors: Receptors, Ligands and Their Clinical Uses, Molecular Pharmacology and Assays. Handb Exp Pharmacol 2024; 285:55-145. [PMID: 38926158 DOI: 10.1007/164_2024_713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The nine G protein-coupled adrenoceptor subtypes are where the endogenous catecholamines adrenaline and noradrenaline interact with cells. Since they are important therapeutic targets, over a century of effort has been put into developing drugs that modify their activity. This chapter provides an outline of how we have arrived at current knowledge of the receptors, their physiological roles and the methods used to develop ligands. Initial studies in vivo and in vitro with isolated organs and tissues progressed to cell-based techniques and the use of cloned adrenoceptor subtypes together with high-throughput assays that allow close examination of receptors and their signalling pathways. The crystal structures of many of the adrenoceptor subtypes have now been determined opening up new possibilities for drug development.
Collapse
Affiliation(s)
- Jillian G Baker
- Cell Signalling, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Docherty JR. The pharmacology of α 1-adrenoceptor subtypes. Eur J Pharmacol 2019; 855:305-320. [PMID: 31067439 DOI: 10.1016/j.ejphar.2019.04.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 01/30/2023]
Abstract
This review examines the functions of α1-adrenoceptor subtypes, particularly in terms of contraction of smooth muscle. There are 3 subtypes of α1-adrenoceptor, α1A- α1B- and α1D-adrenoceptors. Evidence is presented that the postulated α1L-adrenoceptor is simply the native α1A-adrenoceptor at which prazosin has low potency. In most isolated tissue studies, smooth muscle contractions to exogenous agonists are mediated particularly by α1A-, with a lesser role for α1D-adrenoceptors, but α1B-adrenoceptors are clearly involved in contractions of some tissues, for example, the spleen. However, nerve-evoked responses are the most crucial physiologically, so that these studies of exogenous agonists may overestimate the importance of α1A-adrenoceptors. The major α1-adrenoceptors involved in blood pressure control by sympathetic nerves are the α1D- and the α1A-adrenoceptors, mediating peripheral vasoconstrictor actions. As noradrenaline has high potency at α1D-adrenceptors, these receptors mediate the fastest response and seem to be targets for neurally released noradrenaline especially to low frequency stimulation, with α1A-adrenoceptors being more important at high frequencies of stimulation. This is true in rodent vas deferens and may be true in vasopressor nerves controlling peripheral resistance and tissue blood flow. The αlA-adrenoceptor may act mainly through Ca2+ entry through L-type channels, whereas the α1D-adrenoceptor may act mainly through T-type channels and exhaustable Ca2+ stores. α1-Adrenoceptors may also act through non-G-protein linked second messenger systems. In many tissues, multiple subtypes of α-adrenoceptor are present, and this may be regarded as the norm rather than exception, although one receptor subtype is usually predominant.
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
3
|
White CW, da Silva Junior ED, Lim L, Ventura S. What makes the α 1A -adrenoceptor gene product assume an α 1L -adrenoceptor phenotype? Br J Pharmacol 2019; 176:2358-2365. [PMID: 30719698 DOI: 10.1111/bph.14599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/19/2018] [Accepted: 01/05/2019] [Indexed: 02/05/2023] Open
Abstract
The α1A -adrenoceptor is abundantly expressed in the lower urinary tract and is the principal therapeutic target for the symptomatic treatment of lower urinary tract symptoms in men. Prazosin has a lower affinity for the lower urinary tract α1A -adrenoceptor than α1A -adrenoceptors found in other parts of the body. This has led to the lower urinary tract α1A -adrenoceptor being subclassified as an α1L -adrenoceptor. It was demonstrated that this pharmacologically distinct α1L -adrenoceptor is a product of the α1A -adrenoceptor gene, but the mechanism by which this altered phenotype is achieved remains a mystery. Hypotheses for this altered pharmacology include the presence of an interacting protein such as cysteine-rich with EGF-like domain (CRELD) 1 or other GPCRs such as the CXCR2 chemokine or 5-HT1B receptor. Alternatively, the influence of breast cancer resistance protein (BCRP) efflux transporters on the pharmacology of α1A -adrenoceptors has also been investigated. These and other hypotheses will be described and discussed in this review. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Carl W White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Linzi Lim
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sabatino Ventura
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
4
|
α1L-adrenoceptors mediate contraction of human erectile tissue. J Pharmacol Sci 2018; 137:366-371. [DOI: 10.1016/j.jphs.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022] Open
|
5
|
da Silva Junior ED, Sato M, Merlin J, Broxton N, Hutchinson DS, Ventura S, Evans BA, Summers RJ. Factors influencing biased agonism in recombinant cells expressing the human α 1A -adrenoceptor. Br J Pharmacol 2017; 174:2318-2333. [PMID: 28444738 DOI: 10.1111/bph.13837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Agonists acting at GPCRs promote biased signalling via Gα or Gβγ subunits, GPCR kinases and β-arrestins. Since the demonstration of biased agonism has implications for drug discovery, it is essential to consider confounding factors contributing to bias. We have examined bias at human α1A -adrenoceptors stably expressed at low levels in CHO-K1 cells, identifying off-target effects at endogenous receptors that contribute to ERK1/2 phosphorylation in response to the agonist oxymetazoline. EXPERIMENTAL APPROACH Intracellular Ca2+ mobilization was monitored in a Flexstation® using Fluo 4-AM. The accumulation of cAMP and ERK1/2 phosphorylation were measured using AlphaScreen® proximity assays, and mRNA expression was measured by RT-qPCR. Ligand bias was determined using the operational model of agonism. KEY RESULTS Noradrenaline, phenylephrine, methoxamine and A61603 increased Ca2+ mobilization, cAMP accumulation and ERK1/2 phosphorylation. However, oxymetazoline showed low efficacy for Ca+2 mobilization, no effect on cAMP generation and high efficacy for ERK1/2 phosphorylation. The apparent functional selectivity of oxymetazoline towards ERK1/2 was related to off-target effects at 5-HT1B receptors endogenously expressed in CHO-K1 cells. Phenylephrine and methoxamine showed genuine bias towards ERK1/2 phosphorylation compared to Ca2+ and cAMP pathways, whereas A61603 displayed bias towards cAMP accumulation compared to ERK1/2 phosphorylation. CONCLUSION AND IMPLICATIONS We have shown that while adrenergic agonists display bias at human α1A -adrenoceptors, the marked bias of oxymetazoline for ERK1/2 phosphorylation originates from off-target effects. Commonly used cell lines express a repertoire of endogenous GPCRs that may confound studies on biased agonism at recombinant receptors.
Collapse
Affiliation(s)
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jon Merlin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Natalie Broxton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Sabatino Ventura
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
6
|
Huang J, He F, Huang M, Liu X, Xiong Y, Huang Y, Zhu L, Yang Y, Xu X, Yuan M. Novel naftopidil-related derivatives and their biological effects as alpha1-adrenoceptors antagonists and antiproliferative agents. Eur J Med Chem 2015; 96:83-91. [PMID: 25874333 DOI: 10.1016/j.ejmech.2015.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
Eleven novel naftopidil-related compounds that contain amide and indole groups were designed and synthesized. The biological effects of these compounds on three α1-adrenoceptor subtypes and cancerous human prostate cell lines (PC-3, DU-145, and LNCaP) were determined. Compounds 2, 3, 5, 11, and 12 exhibited an α1-adrenoceptor antagonistic activity, whereas compounds 9, 10, and 12 displayed moderate antiproliferative activities. Compound 3 exhibited a significant α(1D/1A) blocking activity in isolated rat tissues (97.7- and 64.6-fold selective for α(1D) and α(1A) compared with α(1B)) but not a relevant cytotoxic activity. Compound 12 demonstrated a potent and selective α(1D/1A) antagonistic activity (47.9- and 19.1-fold for α(1D) and α(1A) compared with α1B) and a potent antiproliferative activity in PC-3 cells (IC50 = 15.70 μM). Further testing confirmed that compound 12 inhibited the growth of PC-3 cells by inducing apoptosis and G0/G1 cell cycle arrest, which was mediated by α1-adrenoceptor. Therefore, compound 12 is a potential multipotent agent that can act as an effective α1-adrenoceptor subtype antagonist for treating benign prostatic hyperplasia and a preventive medication against human prostate cancer.
Collapse
Affiliation(s)
- Junjun Huang
- Pharmaceutical Research Center, Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Fei He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, PR China
| | - Minyi Huang
- Pharmaceutical Research Center, Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Xiawen Liu
- Pharmaceutical Research Center, Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Yan Xiong
- Guangzhou Research Institute of Snake Venom, Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Yajian Huang
- Pharmaceutical Research Center, Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Liu Zhu
- Pharmaceutical Research Center, Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Ya Yang
- Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Xingjie Xu
- Pharmaceutical Research Center, Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Mu Yuan
- Pharmaceutical Research Center, Department of Pharmacology, Guangzhou Medical University, Guangzhou 510182, PR China.
| |
Collapse
|
7
|
Patil KC, McPherson L, Daly CJ. Co-Localization of Alpha1-Adrenoceptors and GPR55: A Novel Prostate Cancer Paradigm? ACTA ACUST UNITED AC 2015. [DOI: 10.4236/pp.2015.64023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Yoshiki H, Uwada J, Umada H, Kobayashi T, Takahashi T, Yamakawa T, Yamaguchi A, Yokoyama O, Muramatsu I. Agonist pharmacology at recombinant α1A - and α1L -adrenoceptors and in lower urinary tract α1 -adrenoceptors. Br J Pharmacol 2014; 170:1242-52. [PMID: 24024968 DOI: 10.1111/bph.12403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/02/2013] [Accepted: 08/29/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Two distinct α1 -adrenoceptor phenotypes (α1A and α1L ) have recently been demonstrated to originate from a single α1A -adrenoceptor gene. Here, we examined the agonist profiles of recombinant α1A and α1L phenotypes and of lower urinary tract (LUT) α1 -adrenoceptors. EXPERIMENTAL APPROACH A series of drugs (A61603, Ro 115-1240, NS-49 , MK017 and ESR1150) originally developed for stress urinary incontinence (SUI) therapy were used to stimulate recombinant α1A - and α1L -adrenoceptor phenotypes, and their potencies and intrinsic activity estimated from Ca(2+) responses. Agonist-induced contractions were also examined in LUT tissues of rats and humans and in human mesenteric artery and rat tail artery. KEY RESULTS All the drugs were potent agonists of the α1A -adrenoceptor compared with the α1L -adrenoceptor phenotype. Among them, Ro 115-1240 was shown to be an α1A -specific partial agonist that produced partial contractions through α1A -adrenoceptors in rat prostate and tail artery, but not in the other LUT tissues and human mesenteric artery. In contrast, P-come 102 showed full agonist activity at α1A - and α1L -adrenoceptors, but was less selective than noradrenaline for α1A -adrenoceptors. Like noradrenaline, P-come 102 was highly potent at inducing contractions in all of the LUT tissues tested. However, the potency and intrinsic activity of P-come 102 were significantly lower than those of noradrenaline in human mesenteric artery. CONCLUSIONS AND IMPLICATIONS The α1A - and α1L -adrenoceptor phenotypes and LUT α1 -adrenoceptors were demonstrated to have distinct agonist profiles. As adrenergic contractions in LUT are predominantly mediated through α1L -adrenoceptors, the development of α1L -selective agonists may provide clinically useful drugs for SUI therapy.
Collapse
Affiliation(s)
- Hatsumi Yoshiki
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, School of Medicine, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
White CW, Short JL, Ventura S. Rho kinase activation mediates adrenergic and cholinergic smooth muscle contractile responses in the mouse prostate gland. Eur J Pharmacol 2013; 721:313-21. [DOI: 10.1016/j.ejphar.2013.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 12/16/2022]
|
10
|
White CW, Short JL, Evans RJ, Ventura S. Development of a P2X1-purinoceptor mediated contractile response in the aged mouse prostate gland through slowing down of ATP breakdown. Neurourol Urodyn 2013; 34:292-8. [PMID: 24249481 DOI: 10.1002/nau.22519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/10/2013] [Indexed: 01/01/2023]
Abstract
AIMS An age-related increase in prostatic smooth muscle tone is partly responsible for the lower urinary tract symptoms associated with benign prostatic hyperplasia (BPH). Changes in the effectors of prostatic smooth muscle contraction with age may play a role in the development of these symptoms. Using a mouse model of prostate contractility, this study investigated the effect of age on the different components of contractility in the prostate gland. METHODS The isometric force developed in response to electrical field stimulation or exogenously applied agonists by mouse prostates mounted in organ baths, was evaluated to determine the effect of age on contractile mechanisms. Changes with age in the rate of ATP breakdown and levels of the P2rx1 gene and P2X1-purinoceptor expression in mouse prostate were measured by a modified luciferin-luciferase assay, RT-PCR and western blot, respectively. RESULTS Nerve mediated contractile responses containing a component elicited by P2X1-purinoceptors were observed in prostates taken from aged mice, but not in prostates taken from young adult mice. Furthermore, the potency of the endogenous purinoceptor agonist ATP was 50-fold greater in aged mice, whereas the potency of its stable analogue α,β-metATP was unchanged. An age-related decrease in ATP metabolism was also observed. CONCLUSIONS With age, a purinergic contractile response to nerve stimulation develops in the mouse prostate gland due to a decrease in the rate of ATP breakdown. This may contribute to the increase in muscular tone observed in BPH and suggests that P2X1-purinoceptors are an additional target for the treatment of BPH.
Collapse
Affiliation(s)
- Carl W White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | | | | |
Collapse
|
11
|
Lei B, Schwinn DA, Morris DP. Stimulation of α1a adrenergic receptors induces cellular proliferation or antiproliferative hypertrophy dependent solely on agonist concentration. PLoS One 2013; 8:e72430. [PMID: 23991110 PMCID: PMC3749976 DOI: 10.1371/journal.pone.0072430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/08/2013] [Indexed: 12/05/2022] Open
Abstract
Stimulation of α1aAdrenergic Receptors (ARs) is known to have anti-proliferative and hypertrophic effects; however, some studies also suggests this receptor can increase cell proliferation. Surprisingly, we find the α1aAR expressed in rat-1 fibroblasts can produce either phenotype, depending exclusively on agonist concentration. Stimulation of the α1aAR by high dose phenylephrine (>10−7 M) induces an antiproliferative, hypertrophic response accompanied by robust and extended p38 activation. Inhibition of p38 with SB203580 prevented the antiproliferative response, while inhibition of Erk or Jnk had no effect. In stark contrast, stimulation of the α1aAR with low dose phenylephrine (∼10−8 M) induced an Erk-dependent increase in cellular proliferation. Agonist-induced Erk phosphorylation was preceded by rapid FGFR and EGFR transactivation; however, only EGFR inhibition blocked Erk activation and proliferation. The general matrix metalloprotease inhibitor, GM6001, blocked agonist induced Erk activation within seconds, strongly suggesting EGFR activation involved extracellular triple membrane pass signaling. Erk activation required little Ca2+ release and was blocked by PLCβ or PKC inhibition but not by intracellular Ca2+ chelation, suggesting Ca2+ independent activation of novel PKC isoforms. In contrast, Ca2+ release was essential for PI3K/Akt activation, which was acutely maximal at non-proliferative doses of agonist. Remarkably, our data suggests EGFR transactivation leading to Erk induced proliferation has the lowest activation threshold of any α1aAR response. The ability of α1aARs to induce proliferation are discussed in light of evidence suggesting antagonistic growth responses reflect native α1aAR function.
Collapse
Affiliation(s)
- Beilei Lei
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Debra A. Schwinn
- Departments of Anesthesiology, Pharmacology, Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Daniel P. Morris
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hennenberg M, Stief CG, Gratzke C. Prostatic α1-adrenoceptors: New concepts of function, regulation, and intracellular signaling. Neurourol Urodyn 2013; 33:1074-85. [DOI: 10.1002/nau.22467] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Martin Hennenberg
- Department of Urology; Ludwig-Maximilians-University; Munich Germany
| | | | - Christian Gratzke
- Department of Urology; Ludwig-Maximilians-University; Munich Germany
| |
Collapse
|
13
|
Palea S, Maiga A, Guilloteau V, Rekik M, Guérard M, Rouget C, Rischmann P, Botto H, Camparo P, Lluel P, Gilles N. Effects of ρ-Da1a a peptidic α(1) (A) -adrenoceptor antagonist in human isolated prostatic adenoma and anaesthetized rats. Br J Pharmacol 2013; 168:618-31. [PMID: 23005263 DOI: 10.1111/j.1476-5381.2012.02231.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/09/2012] [Accepted: 08/08/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE ρ-Da1a, a 65 amino-acid peptide, has subnanomolar affinity and high selectivity for the human α(1) (A) -adrenoceptor subtype. The purpose of this study was to characterize the pharmacological effects of ρ-Da1a on prostatic function, both in vivo and in vitro. EXPERIMENTAL APPROACH ρ-Da1a was tested as an antagonist of adrenaline-induced effects on COS cells transfected with the human α(1) (A) -adrenoceptor as well as on human isolated prostatic adenoma obtained from patients suffering from benign prostatic hyperplasia. Moreover, we compared the effects of ρ-Da1a and tamsulosin on phenylephrine (PHE)-induced increases in intra-urethral (IUP) and arterial pressures (AP) in anaesthetized rats, following i.v. or p.o. administration. KEY RESULTS On COS cells expressing human α(1) (A) -adrenoceptors and on human prostatic strips, ρ-Da1a inhibited adrenaline- and noradrenaline-induced effects. In anaesthetized rats, ρ-Da1a and tamsulosin administered i.v. 30 min before PHE significantly antagonized the effects of PHE on IUP. The pK(B) values for tamsulosin and ρ-Da1a for this effect were similar. With regards to AP, ρ-Da1a only reduced the effect of PHE on AP at the lowest dose tested (10 μg·kg(-1) ), whereas tamsulosin significantly reduced PHE effects at doses between 10 and 150 μg·kg(-1) . CONCLUSIONS AND IMPLICATIONS ρ-Da1a exhibited a relevant effect on IUP and a small effect on AP. In contrast, tamsulosin antagonized the effects of PHE on both IUP and AP. We conclude that ρ-Da1a is more uroselective than tamsulosin. ρ-Da1a is the most selective peptidic antagonist for α(1A) -adenoceptors identified to date and could be a new treatment for various urological diseases.
Collapse
Affiliation(s)
- S Palea
- UROsphere, Faculté des Sciences Pharmaceutiques, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abel PW, Jain N. α-Adrenoceptor assays. CURRENT PROTOCOLS IN PHARMACOLOGY 2012; Chapter 4:Unit 4.5. [PMID: 23258599 DOI: 10.1002/0471141755.ph0405s59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
α-Adrenoceptors mediate responses to activation of both peripheral sympathetic nerves and central noradrenergic neurons. They also serve as autoreceptors that modulate the release of norepinephrine (NE) and other neurotransmitters. There are two major classes of α-adrenoceptors, the α(1)- and α(2). Each class is subdivided into three subtypes: α(1A), α(1B), α(1D), and α(2A), α(2B), α(2C). Described in this unit are in vitro isolated tissue methods used to study α-adrenoceptor functions and to identify novel ligands for these receptors. Detailed protocols describing use of isolated tissues to study the various α(1)- and α(2)-adrenoceptor subtypes are provided.
Collapse
Affiliation(s)
- Peter W Abel
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | |
Collapse
|
15
|
Ventura S. What makes the α(1A)-adrenoceptor gene express the α(1L)-adrenoceptor functional phenotype? Br J Pharmacol 2012; 165:1223-5. [PMID: 21913893 DOI: 10.1111/j.1476-5381.2011.01663.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The α(1A)-adrenoceptor is therapeutically exploited because of its prevalence in the lower urinary tract. The pharmacology shown by this lower urinary tract α(1A)-adrenoceptor is different from that shown by other α(1A)-adrenoceptors, which has led to it being subclassified as an α(1L)-adrenoceptor. Only in the last few years was it shown that this pharmacologically distinct α(1L)-adrenoceptor is a product of the α(1A)-adrenoceptor gene. In this issue of the BJP, Nishimune et al. review the literature on α(1L)-adrenoceptor pharmacology and discuss the possible molecular mechanisms by which the α(1A)-adrenoceptor gene is able to produce two pharmacologically distinct adrenoceptor subtypes. Based primarily from their own research using cell lines transfected with α(1A)-adrenoceptors, they conclude that a protein that interacts with the receptor is the most plausible explanation. The challenge remains to identify any such interacting protein and show how it is able to change the pharmacology of the receptor for different ligands.
Collapse
Affiliation(s)
- Sabatino Ventura
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic., Australia.
| |
Collapse
|
16
|
Mustafa S, See HB, Seeber RM, Armstrong SP, White CW, Ventura S, Ayoub MA, Pfleger KDG. Identification and profiling of novel α1A-adrenoceptor-CXC chemokine receptor 2 heteromer. J Biol Chem 2012; 287:12952-65. [PMID: 22371491 PMCID: PMC3340001 DOI: 10.1074/jbc.m111.322834] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/20/2012] [Indexed: 01/14/2023] Open
Abstract
We have provided the first evidence for specific heteromerization between the α(1A)-adrenoceptor (α(1A)AR) and CXC chemokine receptor 2 (CXCR2) in live cells. α(1A)AR and CXCR2 are both expressed in areas such as the stromal smooth muscle layer of the prostate. By utilizing the G protein-coupled receptor (GPCR) heteromer identification technology on the live cell-based bioluminescence resonance energy transfer (BRET) assay platform, our studies in human embryonic kidney 293 cells have identified norepinephrine-dependent β-arrestin recruitment that was in turn dependent upon co-expression of α(1A)AR with CXCR2. These findings have been supported by co-localization observed using confocal microscopy. This norepinephrine-dependent β-arrestin recruitment was inhibited not only by the α(1)AR antagonist Terazosin but also by the CXCR2-specific allosteric inverse agonist SB265610. Furthermore, Labetalol, which is marketed for hypertension as a nonselective β-adrenoceptor antagonist with α(1)AR antagonist properties, was identified as a heteromer-specific-biased agonist exhibiting partial agonism for inositol phosphate production but essentially full agonism for β-arrestin recruitment at the α(1A)AR-CXCR2 heteromer. Finally, bioluminescence resonance energy transfer studies with both receptors tagged suggest that α(1A)AR-CXCR2 heteromerization occurs constitutively and is not modulated by ligand. These findings support the concept of GPCR heteromer complexes exhibiting distinct pharmacology, thereby providing additional mechanisms through which GPCRs can potentially achieve their diverse biological functions. This has important implications for the use and future development of pharmaceuticals targeting these receptors.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Antagonists/pharmacology
- Adrenergic alpha-Agonists/pharmacology
- Allosteric Regulation/physiology
- Animals
- Arrestins/metabolism
- CHO Cells
- Chemokines/metabolism
- Cricetinae
- HEK293 Cells
- Humans
- Inositol Phosphates/metabolism
- Labetalol/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Norepinephrine/pharmacology
- Prazosin/analogs & derivatives
- Prazosin/pharmacology
- Prostate/metabolism
- Protein Structure, Quaternary
- Receptors, Adrenergic, alpha-1/chemistry
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Interleukin-8B/chemistry
- Receptors, Interleukin-8B/metabolism
- beta-Arrestins
Collapse
Affiliation(s)
- Sanam Mustafa
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
| | - Heng B. See
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
| | - Ruth M. Seeber
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
| | - Stephen P. Armstrong
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
| | - Carl W. White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052 and
| | - Sabatino Ventura
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052 and
| | - Mohammed Akli Ayoub
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
| | - Kevin D. G. Pfleger
- From the Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009
- Dimerix Bioscience Pty Ltd, Nedlands, Perth, Western Australia 6009, Australia
| |
Collapse
|
17
|
Nishimune A, Yoshiki H, Uwada J, Anisuzzaman ASM, Umada H, Muramatsu I. Phenotype pharmacology of lower urinary tract α(1)-adrenoceptors. Br J Pharmacol 2012; 165:1226-34. [PMID: 21745191 PMCID: PMC3372711 DOI: 10.1111/j.1476-5381.2011.01591.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 06/20/2011] [Accepted: 06/28/2011] [Indexed: 12/01/2022] Open
Abstract
α(1)-Adrenoceptors are involved in numerous physiological functions, including micturition. However, the pharmacological profile of the α(1)-adrenoceptor subtypes remains controversial. Here, we review the literature regarding α(1)-adrenoceptors in the lower urinary tract from the standpoint of α(1L) phenotype pharmacology. Among three α(1)-adrenoceptor subtypes (α(1A), α(1B) and α(1D)), α(1a)-adrenoceptor mRNA is the most abundantly transcribed in the prostate, urethra and bladder neck of many species, including humans. In prostate homogenates or membrane preparations, α(1A)-adrenoceptors with high affinity for prazosin have been detected as radioligand binding sites. Functional α(1)-adrenoceptors in the prostate, urethra and bladder neck have low affinity for prazosin, suggesting the presence of an atypical α(1)-adrenoceptor phenotype (designated as α(1L)). The α(1L)-adrenoceptor occurs as a distinct binding entity from the α(1A)-adrenoceptor in intact segments of variety of tissues including prostate. Both the α(1L)- and α(1A)-adrenoceptors are specifically absent from Adra1A (α(1a)) gene-knockout mice. Transfection of α(1a)-adrenoceptor cDNA predominantly expresses α(1A)-phenotype in several cultured cell lines. However, in CHO cells, such transfection expresses α(1L)- and α(1A)-phenotypes. Under intact cell conditions, the α(1L)-phenotype is predominant when co-expressed with the receptor interacting protein, CRELD1α. In summary, recent pharmacological studies reveal that two distinct α(1)-adrenoceptor phenotypes (α(1A) and α(1L)) originate from a single Adra1A (α(1a)-adrenoceptor) gene, but adrenergic contractions in the lower urinary tract are predominantly mediated via the α(1L)-adrenoceptor. From the standpoint of phenotype pharmacology, it is likely that phenotype-based subtypes such as the α(1L)-adrenoceptor will become new targets for drug development and pharmacotherapy.
Collapse
Affiliation(s)
- A Nishimune
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, Organization for Life Science Advancement Programs, and Child Development Research Center, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Ventura S, Oliver VL, White CW, Xie JH, Haynes JM, Exintaris B. Novel drug targets for the pharmacotherapy of benign prostatic hyperplasia (BPH). Br J Pharmacol 2011; 163:891-907. [PMID: 21410684 DOI: 10.1111/j.1476-5381.2011.01332.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is the major cause of lower urinary tract symptoms in men aged 50 or older. Symptoms are not normally life threatening, but often drastically affect the quality of life. The number of men seeking treatment for BPH is expected to grow in the next few years as a result of the ageing male population. Estimates of annual pharmaceutical sales of BPH therapies range from $US 3 to 10 billion, yet this market is dominated by two drug classes. Current drugs are only effective in treating mild to moderate symptoms, yet despite this, no emerging contenders appear to be on the horizon. This is remarkable given the increasing number of patients with severe symptoms who are required to undergo invasive and unpleasant surgery. This review provides a brief background on prostate function and the pathophysiology of BPH, followed by a brief description of BPH epidemiology, the burden it places on society, and the current surgical and pharmaceutical therapies. The recent literature on emerging contenders to current therapies and novel drug targets is then reviewed, focusing on drug targets which are able to relax prostatic smooth muscle in a similar way to the α(1) -adrenoceptor antagonists, as this appears to be the most effective mechanism of action. Other mechanisms which may be of benefit are also discussed. It is concluded that recent basic research has revealed a number of novel drug targets such as muscarinic receptor or P2X-purinoceptor antagonists, which have the potential to produce more effective and safer drug treatments.
Collapse
Affiliation(s)
- S Ventura
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
White CW, Short JL, Haynes JM, Evans RJ, Ventura S. The residual nonadrenergic contractile response to nerve stimulation of the mouse prostate is mediated by acetylcholine but not ATP in a comparison with the mouse vas deferens. J Pharmacol Exp Ther 2010; 335:489-96. [PMID: 20724483 PMCID: PMC2967401 DOI: 10.1124/jpet.110.172130] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/18/2010] [Indexed: 11/22/2022] Open
Abstract
Neuronal release of noradrenaline is primarily responsible for the contraction of prostatic smooth muscle in all species, and this forms the basis for the use of α(1)-adrenoceptor antagonists as pharmacotherapies for benign prostatic hyperplasia. Previous studies in mice have demonstrated that a residual nonadrenergic component to nerve stimulation remains after α(1)-adrenoceptor antagonism. In the guinea pig and rat prostate and the vas deferens of guinea pigs, rats, and mice, ATP is the mediator of this residual contraction. This study investigates the mediator of residual contraction in the mouse prostate. Whole prostates from wild-type, α(1A)-adrenoceptor, and P2X1-purinoceptor knockout mice were mounted in organ baths, and the isometric force that tissues developed in response to electrical field stimulation or exogenously applied agonists was recorded. Deletion of the P2X1 purinoceptor did not affect nerve-mediated contraction. Furthermore, the P2-purinoceptor antagonist suramin (30 μM) failed to attenuate nerve-mediated contractions in wild-type, α(1A)-adrenoceptor, or P2X1-purinoceptor knockout mice. Atropine (1 μM) attenuated contraction in prostates taken from wild-type mice. In the presence of prazosin (0.3 μM) or guanethidine (10 μM), or in prostates taken from α(1A)-adrenoceptor knockout mice, residual nerve-mediated contraction was abolished by atropine (1 μM), but not suramin (30 μM). Exogenously administered acetylcholine elicited reproducible concentration-dependent contractions of the mouse prostate that were atropine-sensitive (1 μM), but not prazosin-sensitive (0.3 μM). Acetylcholine, but not ATP, mediates the nonadrenergic component of contraction in the mouse prostate. This cholinergic component of prostatic contraction is mediated by activation of muscarinic receptors.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Adenosine Triphosphate/metabolism
- Adrenergic alpha-1 Receptor Agonists
- Adrenergic alpha-1 Receptor Antagonists
- Animals
- Atropine/pharmacology
- Dose-Response Relationship, Drug
- Electric Stimulation
- Male
- Mice
- Mice, Knockout
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/metabolism
- Organ Culture Techniques
- Prazosin/pharmacology
- Prostate/drug effects
- Prostate/innervation
- Prostate/metabolism
- Prostate/physiology
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Purinergic P2X1/agonists
- Receptors, Purinergic P2X1/antagonists & inhibitors
- Receptors, Purinergic P2X1/genetics
- Vas Deferens/drug effects
- Vas Deferens/innervation
- Vas Deferens/metabolism
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Carl W White
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
20
|
Brandli A, Simpson JS, Ventura S. Isoflavones isolated from red clover (Trifolium pratense) inhibit smooth muscle contraction of the isolated rat prostate gland. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:895-901. [PMID: 20638256 DOI: 10.1016/j.phymed.2010.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 02/23/2010] [Accepted: 05/25/2010] [Indexed: 05/29/2023]
Abstract
This study investigated whether red clover contains any bioactive constituents which may affect contractility of rat prostatic smooth muscle in an attempt to determine whether its medicinal use in the treatment of benign prostatic hyperplasia is supported by pharmacological effects. A commercially available red clover extract was chemically fractionated and various isoflavones (genistein, formononetin and biochanin A) were isolated from these fractions and their effects on contractility were examined on preparations of the isolated rat prostate gland. Contractile effects of the isolated fractions were compared with commercially available isoflavones (genistein, formononetin and biochanin A). Pharmacological tools were used to investigate the mechanism of action modifying smooth muscle contraction. Crude red clover extract (Trinovin) inhibited electrical field stimulation induced contractions of the rat prostate across a range of frequencies with an IC(50) of approximately 68 microg/ml. Contractions of the rat prostate elicited by exogenous administration of acetylcholine, noradrenaline or adenosine 5'-triphosphate (ATP) were also inhibited. Chromatographic separation, and final purification by high performance liquid chromatography (HPLC) permitted the isolation of the isoflavones: daidzein, calycosin, formononetin, prunetin, pratensin, biochanin A and genistein. Genistein, formononetin and biochanin A (100 microM) from either commercial sources or isolated from red clover extract inhibited electrical field stimulation induced contractions of the isolated rat prostate. It is concluded that isoflavones contained in red clover are able to inhibit prostatic smooth muscle contractions in addition to their antiproliferative effects. However, the high concentrations required to observe these smooth muscle relaxant effects mean that a therapeutic benefit from this mechanism is unlikely at doses used clinically.
Collapse
Affiliation(s)
- A Brandli
- Prostate Research Co-operative, Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | |
Collapse
|
21
|
Segura V, Flacco N, Oliver E, Barettino D, D'Ocon P, Ivorra MD. Alpha1-adrenoceptors in the rat cerebral cortex: new insights into the characterization of alpha1L- and alpha1D-adrenoceptors. Eur J Pharmacol 2010; 641:41-8. [PMID: 20511116 DOI: 10.1016/j.ejphar.2010.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 04/14/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Among the three alpha(1)-adrenoceptor subtypes (alpha(1A), alpha(1B) and alpha(1D)) a peculiar intracellular localization and poor coupling to membrane signals of cloned alpha(1D)-adrenoceptor have been reported. In addition, the alpha(1L)-adrenoceptor (low affinity for prazosin), a functional phenotype of alpha(1A), has been described. The purpose of this work was to analyze the expression, cellular localization and coupling to membrane signalling (inositol phosphate accumulation) of alpha(1)-adrenoceptor subtypes in a native tissue, the rat cerebral cortex. mRNA for the three subtypes was quantified by real-time RT-PCR (alpha(1D)>alpha(1B)>>alpha(1A)). alpha(1)-Adrenoceptors were also detected by immunoblotting, revealing alpha(1A)- and alpha(1B)-adrenoceptors to be predominantly expressed in the membrane fraction and the alpha(1D)-adrenoceptor to be localized in the cytosolic fraction. Competitive radioligand binding studies revealed the presence of alpha(1D)-adrenoceptor in tissue homogenates, whereas only alpha(1A)- and alpha(1B)-subtypes were detected in membranes. The proportion of alpha(1A)-adrenoceptor increased after treatment with noradrenaline, suggesting differences in agonist-mediated trafficking. Saturation experiments detected high- and low (alpha(1A/L))-prazosin binding sites, the latter of which disappeared on incubation with GppNHp. The alpha(1A/L)-adrenoceptor was heavily implicated in the inositol phosphate response, while the alpha(1D)-subtype did not play a relevant role. These results suggest that the predominant cytosolic localization of alpha(1D)-adrenoceptor lies behind its poor coupling to membrane signalling such as inositol phosphate pathway. The fact that the alpha(1L)-adrenoceptor detected in radioligand binding studies disappeared in the presence of GppNHp implies that it represents a conformational state of the alpha(1A)-adrenoceptor coupled to G-protein.
Collapse
Affiliation(s)
- Vanessa Segura
- Departamento de Farmacología, Facultat de Farmàcia, Universitat de València, Avda. Vicent Andrés Estelles s/n, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
This themed section of BJP includes 11 reviews on the biology of G-protein coupled receptors (GPCRs) and the drug targets that these present, 21 research papers on the pharmacology of a range of GPCRs and Commentaries on four of the papers. Areas reviewed include molecular interactions, particular in respect of hetero-dimerisation between receptors and other membrane-located proteins and other key signalling molecules including cAMP and G12/13 proteins and recently de-orphanised receptors including the Neuromedins U & S and the Free Fatty Acid receptors FFA2 & FFA3. The research papers cover the pharmacology of a range of agents acting at GPCRs, including adrenoceptors, purinoceptors, 5HT, opioid, cannabinoid & PAR-2 receptors. A group of papers is concerned with the interesting and rapidly developing pharmacology of drugs acting at beta(2)-adrenoceptors. The reach of GPCRs is illustrated by the range of physiological systems and therapeutic applications involved, including pain, cancer, cardiovascular, gastrointestinal, visual and respiratory and central nervous systems.
Collapse
|
23
|
Michel MC. The forefront for novel therapeutic agents based on the pathophysiology of lower urinary tract dysfunction: alpha-blockers in the treatment of male voiding dysfunction - how do they work and why do they differ in tolerability? J Pharmacol Sci 2010; 112:151-7. [PMID: 20134112 DOI: 10.1254/jphs.09r15fm] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
alpha(1)-Adrenoceptor antagonists are the mainstay of medical treatment of male voiding dysfunction which typically is attributed to benign prostatic hyperplasia. While original concepts have assumed that they relieve voiding dysfunction by relaxing prostatic smooth muscle, newer data indicate that their therapeutic effects at least partly occur independent of prostatic relaxation, perhaps involving direct effects on blood vessels, urothelium, afferent nerves, and/or smooth muscle of the urinary bladder. The adverse event profiles differ among alpha(1)-adrenoceptor antagonists, with tamsulosin having a particularly good cardiovascular tolerability. While this was originally attributed to its selectivity for alpha(1A)-adrenoceptors, it appears that alfuzosin which lacks subtype-selectivity, has a very similar tolerability. In contrast, doxazosin and terazosin, which are chemically and pharmacologically more closely related to alfuzosin than to tamsulosin, appear to have more side effects attributable to the cardiovascular system. More recent data indicate that tolerability differences between alpha(1)-adrenoceptor antagonists may at least partly relate to pharmacokinetic rather than to pharmacodynamic differences. Taken together, these data emphasize the idea that concepts about drug efficacy and tolerability despite being highly plausible may not necessarily be true and always require thorough experimental testing.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology & Pharmacotherapy, Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Docherty JR. Subtypes of functional alpha1-adrenoceptor. Cell Mol Life Sci 2010; 67:405-17. [PMID: 19862476 PMCID: PMC11115521 DOI: 10.1007/s00018-009-0174-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 10/05/2009] [Indexed: 11/29/2022]
Abstract
In this review, subtypes of functional alpha1-adrenoceptor are discussed. These are cell membrane receptors, belonging to the seven-transmembrane-spanning G-protein-linked family of receptors, which respond to the physiological agonist noradrenaline. alpha1-Adrenoceptors can be divided into alpha1A-, alpha1B- and alpha1D-adrenoceptors, all of which mediate contractile responses involving Gq/11 and inositol phosphate turnover. A fourth alpha1-adrenoceptor, the alpha1L-, represents a functional phenotype of the alpha1A-adrenoceptor. alpha1-Adrenoceptor subtype knock-out mice have refined our knowledge of the functions of alpha-adrenoceptor subtypes, particuarly as subtype-selective agonists and antagonists are not available for all subtypes. alpha1-Adrenoceptors function as stimulatory receptors involved particularly in smooth muscle contraction, especially contraction of vascular smooth muscle, both in local vasoconstriction and in the control of blood pressure and temperature, and contraction of the prostate and bladder neck. Central actions are now being elucidated.
Collapse
MESH Headings
- Animals
- Blood Pressure/physiology
- Body Temperature Regulation
- Drug Inverse Agonism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Inositol Phosphates/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth/physiology
- Muscle, Smooth, Vascular/physiology
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/physiology
- Second Messenger Systems/physiology
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123, St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
25
|
Nishimune A, Suzuki F, Yoshiki H, Morishima S, Muramatsu I. Identification of Cysteine-Rich Epidermal Growth Factor–Like Domain 1α (CRELD1α) as a Novel α1A-Adrenoceptor–Down-Regulating Protein and Establishment of an α1L-Adrenoceptor–Expressing Cell Line. J Pharmacol Sci 2010; 113:169-81. [DOI: 10.1254/jphs.10093fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
26
|
Morishima S, Suzuki F, Nishimune A, Yoshiki H, Akino H, Yokoyama O, Muramatsu I. Visualization and tissue distribution of alpha1L-adrenoceptor in human prostate by the fluorescently labeled ligand Alexa-488-silodosin. J Urol 2009; 183:812-9. [PMID: 20034639 DOI: 10.1016/j.juro.2009.09.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Although alpha(1L)-adrenoceptor is recognized as a target of alpha(1) antagonist therapy for benign prostatic hyperplasia, the most common techniques, such as immunohistochemistry and in situ hybridization, are not applicable to examine alpha(1L)-AR vs alpha(1A)-AR tissue distribution because alpha(1L)-AR is now considered another phenotype sharing the alpha(1A)-AR gene and protein molecule. We labeled the alpha(1A) and alpha(1L)-adrenoceptor selective antagonist silodosin (Kissei Pharmaceutical, Matsumoto, Japan) with the fluorophore Alexa Fluor(R) 488 (Alexa-488-silodosin) to visualize alpha(1L)-AR expression. MATERIALS AND METHODS Radioligand binding and functional bioassay experiments were done to assess alpha(1)-AR expression in Chinese hamster ovary cells and human prostate tissues. Confocal imaging was subsequently performed. RESULTS Although Alexa-488-silodosin had about 10 times lower affinity for all alpha(1)-AR subtypes than silodosin in binding and functional studies, it had high selectivity to alpha(1A) and alpha(1L)-ARs. Confocal imaging revealed clear localization of fluorescence on the membrane of Chinese hamster ovary cells expressing alpha(1A)-AR but not alpha(1B)-and alpha(1D)-ARs, and in the muscle layer of the human prostate. The fluorescent signal in Chinese hamster ovary cells disappeared in the presence of 3 nM prazosin but fluorescence was observed in the human prostate even in the presence of 100 nM prazosin. CONCLUSIONS Alexa-488-silodosin is a powerful fluorescent probe with high selectivity to alpha(1A) and alpha(1L)-ARs. Thus, Alexa-488-silodosin successfully visualizes the site of alpha(1L)-ARs in the muscle layer of the human prostate without losing its distinct pharmacological profile.
Collapse
Affiliation(s)
- Shigeru Morishima
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, University of Fukui, Eiheiji, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Quinton L, Girard E, Maiga A, Rekik M, Lluel P, Masuyer G, Larregola M, Marquer C, Ciolek J, Magnin T, Wagner R, Molgó J, Thai R, Fruchart-Gaillard C, Mourier G, Chamot-Rooke J, Ménez A, Palea S, Servent D, Gilles N. Isolation and pharmacological characterization of AdTx1, a natural peptide displaying specific insurmountable antagonism of the alpha1A-adrenoceptor. Br J Pharmacol 2009; 159:316-25. [PMID: 20015090 DOI: 10.1111/j.1476-5381.2009.00532.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Venoms are a rich source of ligands for ion channels, but very little is known about their capacity to modulate G-protein coupled receptor (GPCR) activity. We developed a strategy to identify novel toxins targeting GPCRs. EXPERIMENTAL APPROACH We studied the interactions of mamba venom fractions with alpha(1)-adrenoceptors in binding experiments with (3)H-prazosin. The active peptide (AdTx1) was sequenced by Edman degradation and mass spectrometry fragmentation. Its synthetic homologue was pharmacologically characterized by binding experiments using cloned receptors and by functional experiments on rabbit isolated prostatic smooth muscle. KEY RESULTS AdTx1, a 65 amino-acid peptide stabilized by four disulphide bridges, belongs to the three-finger-fold peptide family. It has subnanomolar affinity (K(i)= 0.35 nM) and high specificity for the human alpha(1A)-adrenoceptor subtype. We showed high selectivity and affinity (K(d)= 0.6 nM) of radio-labelled AdTx1 in direct binding experiments and revealed a slow association constant (k(on)= 6 x 10(6).M(-1).min(-1)) with an unusually stable alpha(1A)-adrenoceptor/AdTx1 complex (t(1/2diss)= 3.6 h). AdTx1 displayed potent insurmountable antagonism of phenylephrine's actions in vitro (rabbit isolated prostatic muscle) at concentrations of 10 to 100 nM. CONCLUSIONS AND IMPLICATIONS AdTx1 is the most specific and selective peptide inhibitor for the alpha(1A)-adrenoceptor identified to date. It displays insurmountable antagonism, acting as a potent relaxant of smooth muscle. Its peptidic nature can be exploited to develop new tools, as a radio-labelled-AdTx1 or a fluoro-labelled-AdTx1. Identification of AdTx1 thus offers new perspectives for developing new drugs for treating benign prostatic hyperplasia.
Collapse
Affiliation(s)
- L Quinton
- Laboratoire des Mécanismes Réactionnels, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Muramatsu I, Suzuki F, Nishimune A, Anisuzzaman ASM, Yoshiki H, Su TH, Chang CK, Morishima S. Expression of distinct alpha 1-adrenoceptor phenotypes in the iris of pigmented and albino rabbits. Br J Pharmacol 2009; 158:354-60. [PMID: 19466984 DOI: 10.1111/j.1476-5381.2009.00254.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The expression of multiple pharmacological phenotypes including alpha(1L)-adrenoceptor has recently been reported for alpha(1)-adrenoceptors. The purpose of the present study was to identify alpha(1)-adrenoceptor phenotypes in the irises of pigmented and albino rabbits. EXPERIMENTAL APPROACH Radioligand binding and functional bioassay experiments were performed in segments or strips of iris of pigmented and albino rabbits, and their pharmacological profiles were compared. KEY RESULTS [(3)H]-silodosin at subnanomolar concentrations bound to intact segments of iris of pigmented and albino rabbits at similar densities (approximately 240 fmol x mg(-1) protein). The binding sites in the iris of a pigmented rabbit were composed of a single component showing extremely low affinities for prazosin, hydrochloride [N-[2-(2-cyclopropylmethoxyphenoxy)ethyl]-5-chloro-alpha,alpha-dimethyl-1H-indole-3-ethamine hydrochloride (RS-17053)] and 5-methylurapidil, while two components with high and low affinities for prazosin, RS-17053 and 5-methylurapidil were identified in irises from albino rabbits. In contrast, specific binding sites for [(3)H]-prazosin were not clearly detected because a high proportion of non-specific binding and/or low affinity for prazosin occurred. Contractile responses of iris dilator muscle to noradrenaline were antagonized by the above ligands, and their antagonist affinities were consistent with the binding estimates at low-affinity sites identified in both strains of rabbits. CONCLUSIONS AND IMPLICATIONS A typical alpha(1L) phenotype with extremely low affinity for prazosin is exclusively expressed in the iris of pigmented rabbits, while two distinct phenotypes (alpha(1A) and alpha(1L)) with high and moderate affinities for prazosin are co-expressed in the iris of albino rabbits. This suggests that a significant difference in the expression of phenotypes of the alpha(1)-adrenoceptor occurs in the irises between the two strains of rabbits.
Collapse
Affiliation(s)
- I Muramatsu
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, School of Medicine, University of Fukui, Fukui, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Subtypes of alpha1-adrenoceptors in BPH: future prospects for personalized medicine. ACTA ACUST UNITED AC 2009; 6:44-53. [PMID: 19132005 DOI: 10.1038/ncpuro1276] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/14/2008] [Indexed: 12/18/2022]
Abstract
The alpha(1)-adrenoceptors (alpha(1)-ARs) are involved in regulation of prostatic smooth muscle tone, and are a critical mediator of lower urinary tract symptoms and pathophysiology in benign prostatic hyperplasia (BPH). As a result, alpha(1)-AR antagonists are now used as first-line medical treatment for BPH. Three alpha(1)-AR subtypes (alpha(1a)-AR, alpha(1b)-AR, alpha(1d)-AR) have been identified on the basis of results of pharmacological and molecular cloning studies; however, the precise physiological role of individual alpha(1)-AR subtypes remains elusive. The expression levels of alpha(1)-AR subtypes in the prostate differ between patients, and individual differences in the genetic background of patients with BPH might be associated with variation in responses to subtype-selective alpha(1)-AR antagonists. In addition, single nucleotide polymorphism and microarray-based gene expression profiling studies might provide an opportunity to identify markers that predict clinical response and therapeutic tolerance to alpha(1)-AR antagonists. Further genomic studies will refine our knowledge of the functions of alpha(1)-AR subtypes, lead to new strategies for the clinical management of BPH and, perhaps, enable personalized treatment of BPH in the future.
Collapse
|
30
|
The alpha1L-adrenoceptor is an alternative phenotype of the alpha1A-adrenoceptor. Br J Pharmacol 2008; 155:1-3. [PMID: 18574452 DOI: 10.1038/bjp.2008.264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Despite over two decades of research, the molecular identity of the alpha1L-adrenoceptor phenotype has remained elusive. In this issue of the BJP, Gray et al. (2008) provide persuasive evidence that the in vivo alpha1L-adrenoceptor phenotype requires the expression of the alpha1A-adrenoceptor gene. They have shown that in mice lacking the functional alpha1A-adrenoceptor gene, alpha1L-mediated responses to noradrenaline in prostate smooth muscle are substantially attenuated. These findings support earlier evidence that the alpha(1L)-adrenoceptor profile represents a functional phenotype of the alpha(1A)-adrenoceptor gene product, but additional cell background-dependent factors must act in concert with the alpha(1A)-adrenoceptor protein to determine whether an alpha(1L)- or a classical alpha(1A)-adrenoceptor profile is expressed. The challenge remains to establish the nature of these cellular factors and the mechanism(s) by which they influence G-protein-coupled receptor pharmacology.
Collapse
|