1
|
Cheung HW, Wong KS, Cheng PCF, Tsang CYN, Farrington AF, Wan TSM, Ho ENM. Transcriptomic Biomarkers in Blood Indicative of the Administration of Recombinant Human Erythropoietin to Thoroughbred Horses. Drug Test Anal 2025. [PMID: 40256823 DOI: 10.1002/dta.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/03/2025] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
Erythropoiesis-stimulating agents (ESAs) continue to be a significant threat to the integrity of human and equine sports. Besides conventional direct testing, monitoring the biomarkers associated with the effects of ESAs may provide a complementary approach via indirect detection to enhance doping control. In this study, we applied RNA-sequencing (RNA-seq) to discover blood RNA biomarkers in Thoroughbred horses after administration with a long-acting form of recombinant human erythropoietin (rhEPO), methoxy polyethylene glycol epoetin beta, Mircera®. A single subcutaneous administration of Mircera® at ~ 4.2 μg/kg was effective in elevating haematocrit, haemoglobin and erythrocyte levels to varying extents in as early as 4 days post-administration in all three horses, which persisted for 40 days post-administration (the last sample collected). RNA-seq was applied to analyse blood transcriptomic changes. Differential gene expression analysis has allowed the identification of 46 genes that showed dramatic and temporary upregulation at 4-11 days after Mircera® administration. STRING analysis has identified the functional enrichment of 15 genes important for erythropoiesis and erythrocyte function, supporting the idea of an increased release into the peripheral circulation of residual RNA-containing reticulocytes after rhEPO exposure, which would otherwise mature normally inside the bone marrow in horses. Machine learning of blood transcriptomes has enabled the discrimination of samples with or without Mircera administration. Therefore, our study has provided new insights into the biological mechanism of erythropoiesis caused by rhEPO administration in horses and has provided evidence supporting the control of misuse of ESAs by monitoring the equine blood transcriptome.
Collapse
Affiliation(s)
- Hiu Wing Cheung
- Racing Laboratory, the Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Kin-Sing Wong
- Racing Laboratory, the Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Paul C F Cheng
- Racing Laboratory, the Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Candice Y N Tsang
- Racing Laboratory, the Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Adrian F Farrington
- Veterinary Clinical Services, the Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, the Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, the Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| |
Collapse
|
2
|
Elia A, Lemaître F. The application of breath-holding in sports: physiological effects, challenges, and future directions. Eur J Appl Physiol 2025:10.1007/s00421-025-05752-y. [PMID: 40126615 DOI: 10.1007/s00421-025-05752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025]
Abstract
Repeated breath-holding has been shown to elicit transient increases in haemoglobin and erythropoietin concentrations, while long-term engagement in breath-hold-related activities has been linked with improved hypercapnic tolerance, mental resilience, and favourable cardiorespiratory, cerebrovascular, and skeletal muscle adaptations. Given these findings, breath-holding was proffered as a possible performance optimisation strategy a little over a decade ago. This prompted practitioners and researchers to explore its broader application either as a priming strategy completed immediately before an endurance activity or as an alternative hypoxic-hypercapnic training method. Therefore, this review aims to offer an update of the acute and long-term physiological responses to breath-holding that are relevant to athletic performance and provide an overview of the existing body of knowledge surrounding its potential utility and efficacy as a performance enhancement strategy. Current evidence suggests that breath-holding may have potential as a priming strategy; however, further placebo-controlled studies are required to rigorously evaluate its efficacy. Additionally, it is evident that developing an effective protocol and administering it successfully is more complex than initially thought. Key factors such as the characteristics of the prescribed protocol, the timing of the intervention relative to the event, and the nature of the existing warm-up routine all require careful consideration. This highlights the need for adaptable, context-specific approaches when integrating breath-holding into real-world sporting environments. Finally, while dynamic breath-hold training shows the greatest potency as a performance optimisation strategy, further research is necessary to determine the optimal training protocol (i.e., hypoxaemic-hypercapnic dose), and duration.
Collapse
Affiliation(s)
- Antonis Elia
- Division of Environmental Physiology, Department of Physiology and Pharmacology, Karolinska Institute, Berzelius väg 13, Solna, 171 65, Stockholm, Sweden.
| | - Frédéric Lemaître
- DevAH UR n°3450, Faculty of Sports Sciences, University of Lorraine, Nancy, France
| |
Collapse
|
3
|
Fayed B, Luo S, Yassin AEB. Challenges and recent advances in erythropoietin stability. Pharm Dev Technol 2024; 29:930-944. [PMID: 39340397 DOI: 10.1080/10837450.2024.2410448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Erythropoietin (EPO) is a pivotal hormone that regulates red blood cell production, predominantly synthesized by the kidneys and also produced by the liver. Since the introduction of recombinant human EPO (rh-EPO) in 1989 through recombinant DNA technology, the therapeutic landscape for anemia has been improved. rh-EPO's market expansion has been substantial, with its application extending across various conditions such as chronic kidney disease, cancer-related anemia, and other disorders. Despite its success, significant concerns remain regarding the stability of EPO, which is critical for preserving its biological activity and ensuring therapeutic efficacy under diverse environmental conditions. Instability issues, including degradation and loss of biological activity, challenge both drug development and treatment outcomes. Factors contributing to EPO instability include temperature fluctuations, light exposure, and interactions with other substances. To overcome these challenges, pharmaceutical research has focused on developing innovative strategies such as stabilizing agents, advanced formulation techniques, and optimized storage conditions. This review article explores the multifaceted aspects of EPO stability, examining the impact of instability on clinical efficacy and drug development. It also provides a comprehensive review of current stabilization strategies, including the use of excipients, lyophilization, and novel delivery systems.
Collapse
Affiliation(s)
- Bahgat Fayed
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alaa Eldeen B Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Lau H, Janitz TM, Sikarin A, Kasozi RN, Pujalte GGA. Sports Endocrinology. Prim Care 2024; 51:523-533. [PMID: 39067976 DOI: 10.1016/j.pop.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Sports endocrinology holds a unique importance in understanding and optimizing an active and healthy lifestyle. Active patients with diabetes will need to consider modifying medications, especially insulin. The use of the dual energy x-ray absorptiometry and Fracture Risk Assessment Tool scores is important as both initiate and monitor bone health treatment. Menstrual disorders and energy imbalances are some special concerns when treating female athletes, calling for a multidisciplinary treatment team. Performance agents are popular and have made their way into recreational sports.
Collapse
Affiliation(s)
- Henry Lau
- Department of Family Medicine, Tidelands Health, 4320 Holmestown Road, Myrtle Beach, SC 29588, USA
| | - Tyler M Janitz
- Department of Family Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Alec Sikarin
- Department of Family Medicine, Tidelands Health, 4320 Holmestown Road, Myrtle Beach, SC 29588, USA
| | - Ramla N Kasozi
- Department of Family Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - George G A Pujalte
- Department of Family Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
5
|
Sajjad M, Sajjad A, Chishti GA, Khan EU, Mozūraitis R, Binyameen M. Insect Larvae as an Alternate Protein Source in Poultry Feed Improve the Performance and Meat Quality of Broilers. Animals (Basel) 2024; 14:2053. [PMID: 39061515 PMCID: PMC11273481 DOI: 10.3390/ani14142053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The primary challenge facing the global animal industry is the scarcity of protein feed resources. Various insects are gaining prominence as innovative feed sources due to their economic, environmentally friendly, and nutritious attributes. The purpose of the present study was to determine the effects of a partial replacement of soybean meal with fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) and black soldier fly Hermetia illucens (Diptera: Stratiomyidae) on the growth performances, blood parameters, gut histology, and meat quality of broilers. A total of 350 1-day-old (40 ± 0.15 g) male chicks (Ross 308) were randomly assigned to seven experimental meals. Each treatment was repeated five times with 50 birds per dietary treatment. The seven dietary treatments included 4, 8, and 12% replacements of SBM with larvae of S. frugiperda and H. illucens. SBM was the basal diet considered the control. The data showed that broilers fed 12% S. frugiperda or H. illucens exhibited a significantly higher (p < 0.05) live weight, average daily weight gain, and improved the feed conversion ratio. Meals with 12% S. frugiperda or H. illucens significantly enhanced (p < 0.05) haematological and gut histological parameters, including villus height, crypt depth, villus width, and villus height/crypt depth ratios. The meat of broilers fed the 12% S. frugiperda diet showed significantly higher (p < 0.05) lightness and yellowness. Replacing soybean meal up to 12% with either S. frugiperda or H. illucens larvae improves the growth performance, blood haematology, gut morphometry, and meat quality traits of broilers.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
- Department of Entomology, Faculty of Agriculture and Environment, Islamia University, Bahawalpur 63100, Pakistan;
| | - Asif Sajjad
- Department of Entomology, Faculty of Agriculture and Environment, Islamia University, Bahawalpur 63100, Pakistan;
| | - Ghazanfar Ali Chishti
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (G.A.C.); (E.U.K.)
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (G.A.C.); (E.U.K.)
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 10691 Stockholm, Sweden
| | - Muhammad Binyameen
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| |
Collapse
|
6
|
Nascimento ALA, Guimarães AS, Rocha TDS, Goulart MOF, Xavier JDA, Santos JCC. Structural changes in hemoglobin and glycation. VITAMINS AND HORMONES 2024; 125:183-229. [PMID: 38997164 DOI: 10.1016/bs.vh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hemoglobin (Hb) is a hemeprotein found inside erythrocytes and is crucial in transporting oxygen and carbon dioxide in our bodies. In erythrocytes (Ery), the main energy source is glucose metabolized through glycolysis. However, a fraction of Hb can undergo glycation, in which a free amine group from the protein spontaneously binds to the carbonyl of glucose in the bloodstream, resulting in the formation of glycated hemoglobin (HbA1c), widely used as a marker for diabetes. Glycation leads to structural and conformational changes, compromising the function of proteins, and is intensified in the event of hyperglycemia. The main changes in Hb include structural alterations to the heme group, compromising its main function (oxygen transport). In addition, amyloid aggregates can form, which are strongly related to diabetic complications and neurodegenerative diseases. Therefore, this chapter discusses in vitro protocols for producing glycated Hb, as well as the main techniques and biophysical assays used to assess changes in the protein's structure before and after the glycation process. This more complete understanding of the effects of glycation on Hb is fundamental for understanding the complications associated with hyperglycemia and for developing more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Amanda Luise Alves Nascimento
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Ari Souza Guimarães
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | - Tauane Dos Santos Rocha
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil
| | | | - Jadriane de Almeida Xavier
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Campus A. C. Simões, Maceió, Alagoas, Brazil.
| | | |
Collapse
|
7
|
Yan H, Zhao L, He Q, Hu Y, Li Q, He K, Zhang D, Liu Q, Luo J, Luo W, Chen S, Li L, Yang S. Exposure to Intermittent Environmental Hypoxia Promotes Vascular Remodeling through Angiogenesis in the Liver of Largemouth Bass ( Micropterus salmoides). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17796-17807. [PMID: 36802614 DOI: 10.1021/acs.est.2c07329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, we explored the effects of 4 weeks of intermittent hypoxic exposure (IHE) on liver angiogenesis and related regulatory mechanisms in largemouth bass (Micropterus salmoides). The results indicated that the O2 tension for loss of equilibrium (LOE) decreased from 1.17 to 0.66 mg/L after 4 weeks of IHE. Meanwhile, the red blood cell (RBC) and hemoglobin concentrations significantly increased during IHE. Our investigation also found that the observed increase in angiogenesis was correlated with a high expression of related regulators, such as Jagged, phosphoinositide-3-kinase (PI3K), and mitogen-activated protein kinase (MAPK). After 4 weeks of IHE, the overexpression of factors related to angiogenesis processes mediated by HIF-independent pathways (such as nuclear factor kappa-B (NF-κB), NADPH oxidase 1 (NOX1), and interleukin 8 (IL8)) was correlated with the accumulation of lactic acid (LA) in the liver. The addition of cabozantinib, a specific inhibitor of VEGFR2, blocked the phosphorylation of VEGFR2 and downregulated the expression of downstream angiogenesis regulators in largemouth bass hepatocytes exposed to hypoxia for 4 h. These results suggested that IHE promoted liver vascular remodeling by the regulation of angiogenesis factors, presenting a potential mechanism for the improvement of hypoxia tolerance in largemouth bass.
Collapse
Affiliation(s)
- Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qishuang He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Quanxi Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dongmei Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shiyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lisen Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
8
|
García-Arnés JA, García-Casares N. Doping and sports endocrinology: growth hormone, IGF-1, insulin, and erythropoietin. Rev Clin Esp 2023; 223:181-187. [PMID: 36736729 DOI: 10.1016/j.rceng.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among the substances prohibited by the World Anti-Doping Agency, "peptide hormones, growth factors, related substances, and mimetics" are classified as prohibited both in- and out-of-competition in section S2. This work reviews growth hormone and its releasing peptides, insulin-like growth factor 1 as the main growth factor, insulin, and erythropoietin and other agents that affect erythropoiesis. This review analyzes the prevalence of use among professional athletes and gym clients, the forms of use, dosing, ergogenic effects and effects on physical performance, as well as side effects and anti-doping detection methods.
Collapse
Affiliation(s)
- J A García-Arnés
- Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| | - N García-Casares
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, Málaga, Spain; Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
9
|
García-Arnés J, García-Casares N. Endocrinología del dopaje y los deportes: hormona de crecimiento, IGF-1, insulina y eritropoyetina. Rev Clin Esp 2023. [DOI: 10.1016/j.rce.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Philip M, Kal AKK, Mathew B, Subhahar MB, Karatt TK, Perwad Z. Metabolic study of hypoxia‐inducible factor stabilizers BAY 87‐2243, MK‐8617, and PT‐2385 in equine liver microsomes for doping control. Drug Test Anal 2022; 14:1703-1723. [DOI: 10.1002/dta.3348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory Dubai United Arab Emirates
| | | | - Binoy Mathew
- Equine Forensic Unit, Central Veterinary Research Laboratory Dubai United Arab Emirates
| | | | - Tajudheen K. Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory Dubai United Arab Emirates
| | - Zubair Perwad
- Equine Forensic Unit, Central Veterinary Research Laboratory Dubai United Arab Emirates
| |
Collapse
|
11
|
Bouten J, Debusschere J, Lootens L, Declercq L, Van Eenoo P, Boone J, Bourgois JG. Six weeks of static apnea training does not affect Hbmass and exercise performance. J Appl Physiol (1985) 2022; 132:673-681. [PMID: 35050796 DOI: 10.1152/japplphysiol.00770.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Acute apnea is known to induce decreases in oxyhemoglobin desaturation (SpO2) and increases in erythropoietin concentration ([EPO]). This study examined the potential of an apnea training program to induce erythropoiesis and increase hematological parameters and exercise performance. METHODS Twenty-two male subjects were randomly divided into an apnea and control group. The apnea group performed a 6-week apnea training program consisting of a daily series of 5 maximal static apneas. Before and after training, subjects visited the lab on three test days to perform 1) a ramp incremental test measuring V̇O2peak, 2) CO-rebreathing for Hb mass determination and a 3-km time trial and 3) an apnea test protocol with continuous finger SpO2 registration. Venous blood samples were drawn before and 180 minutes after the apnea test for analysis of [EPO]. RESULTS Minimal SpO2 reached during the apnea test protocol was 91 ±7% pre and 82 ±7% post apnea training. The apnea test protocol did not elicit an acute increase in [EPO] (p=0.685) before nor after the training program. Consequently, resting [EPO] (p=0.170), Hbmass (p=0.134), V̇O2peak (p=0.796) and 3-km cycling time trial performance (p=0.509) were not affected either. CONCLUSION The apnea test and training protocol, consisting of 5 maximal static apneas, did not induce a sufficiently strong hypoxic stimulus to cause erythropoiesis and therefore did not result in an increase in resting [EPO], Hbmass, V̇O2peak or time trial performance. Longer and/or more intense training sessions inducing a stronger hypoxic stimulus are probably needed to obtain changes in hematological and exercise parameters.
Collapse
Affiliation(s)
- Janne Bouten
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jonas Debusschere
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Leen Lootens
- Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Louise Declercq
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Gustaaf Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.,Centre of Sports Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Lara B, Aguilar-Navarro M, Salinero JJ, Muñoz-Guerra J, Del Mar Plata M, Del Coso J. Study of frequency and type of adverse analytical findings in the different disciplines of aquatics. Bioanalysis 2021; 13:1467-1476. [PMID: 34617450 DOI: 10.4155/bio-2021-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
We aimed to analyze the number and distribution of doping control tests in which a banned substance was reported (i.e., adverse analytical finding) in aquatics. The analysis was performed by using the data provided by the WADA Testing Figure Reports from 2015 to 2019. A total of 79,956 doping control tests were analyzed. Sprint swimming, middle-distance swimming and water polo were the disciplines with the highest number of doping control tests. However, there were no differences in the frequency of adverse findings among disciplines (overall, ∼0.56%, from 0.13 in artistic swimming to 0.76% in sprint swimming). Sprinters and long-distance swimmers presented a higher frequency of beta-2-agonists than the remaining aquatic disciplines (p < 0.05). These results indicate that the type of prohibited substances employed is strongly influenced by the intrinsic characteristics of each aquatic discipline.
Collapse
Affiliation(s)
- Beatriz Lara
- Camilo José Cela University, Exercise Physiology Laboratory, Madrid, 28692, Spain
| | - Millán Aguilar-Navarro
- Francisco de Vitoria University, Exercise & Sport Sciences, Faculty of Health Sciences, Madrid, 28223, Spain
| | - Juan José Salinero
- Camilo José Cela University, Exercise Physiology Laboratory, Madrid, 28692, Spain
| | - Jesús Muñoz-Guerra
- Department for Doping Control, Spanish Agency for Health Protection in Sport, Madrid, 28016, Spain
| | - María Del Mar Plata
- Department of Education, Spanish Agency for Health Protection in Sport, Madrid, 28016, Spain
| | - Juan Del Coso
- Rey Juan Carlos University, Centre for Sport Studies, Madrid, 28943, Spain
| |
Collapse
|
13
|
Biomaterials for human space exploration: A review of their untapped potential. Acta Biomater 2021; 128:77-99. [PMID: 33962071 DOI: 10.1016/j.actbio.2021.04.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
As biomaterial advances make headway into lightweight radiation protection, wound healing dressings, and microbe resistant surfaces, a relevance to human space exploration manifests itself. To address the needs of the human in space, a knowledge of the space environment becomes necessary. Both an understanding of the environment itself and an understanding of the physiological adaptations to that environment must inform design parameters. The space environment permits the fabrication of novel biomaterials that cannot be produced on Earth, but benefit Earth. Similarly, designing a biomaterial to address a space-based challenge may lead to novel biomaterials that will ultimately benefit Earth. This review describes several persistent challenges to human space exploration, a variety of biomaterials that might mitigate those challenges, and considers a special category of space biomaterial. STATEMENT OF SIGNIFICANCE: This work is a review of the major human and environmental challenges facing human spaceflight, and where biomaterials may mitigate some of those challenges. The work is significant because a broad range of biomaterials are applicable to the human space program, but the overlap is not widely known amongst biomaterials researchers who are unfamiliar with the challenges to human spaceflight. Additionaly, there are adaptations to microgravity that mimic the pathology of certain disease states ("terrestrial analogs") where treatments that help the overwhelmingly healthy astronauts can be applied to help those with the desease. Advances in space technology have furthered the technology in that field on Earth. By outlining ways that biomaterials can promote human space exploration, space-driven advances in biomaterials will further biomaterials technology.
Collapse
|
14
|
Aguilar-Navarro M, Salinero JJ, Muñoz-Guerra J, Plata MDM, Del Coso J. Frequency and type of adverse analytical findings in athletics: Differences among disciplines. Drug Test Anal 2021; 13:1561-1568. [PMID: 33982423 DOI: 10.1002/dta.3058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/11/2022]
Abstract
Athletics is a highly diverse sport that contains a set of disciplines grouped into jumps, throws, races of varying distances, and combined events. From a physiological standpoint, the physical capabilities linked to success are quite different among disciplines, with varying involvements of muscle strength, muscle power, and endurance. Thus, the use of banned substances in athletics might be dictated by physical dimensions of each discipline. Thus, the aim of this investigation was to analyse the number and distribution of adverse analytical findings per drug class in athletic disciplines. The data included in this investigation were gathered from the Anti-Doping Testing Figure Report made available by the World Anti-Doping Agency (from 2016 to 2018). Interestingly, there were no differences in the frequency of adverse findings (overall,~0.95%, range from 0.77 to 1.70%) among disciplines despite long distance runners having the highest number of samples analysed per year (~9812 samples/year). Sprinters and throwers presented abnormally high proportions of adverse analytical findings within the group of anabolic agents (p < 0.01); middle- and long-distance runners presented atypically high proportions of findings related to peptide hormones and growth factors (p < 0.01); racewalkers presented atypically high proportions of banned diuretics and masking agents (p = 0.05). These results suggest that the proportion of athletes that are using banned substances is similar among the different disciplines of athletics. However, there are substantial differences in the class of drugs more commonly used in each discipline. This information can be used to effectively enhance anti-doping testing protocols in athletics.
Collapse
Affiliation(s)
- Millán Aguilar-Navarro
- Exercise and Sport Sciences, Faculty of Health Sciences, Francisco de Vitoria University, Madrid, Spain
| | - Juan J Salinero
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | - Jesús Muñoz-Guerra
- Department for Doping Control, Spanish Agency for Health Protection in Sport, Madrid, Spain
| | - María Del Mar Plata
- Department of Education, Spanish Agency for Health Protection in Sport, Madrid, Spain
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
15
|
Mathew B, Philip M, Perwad Z, Karatt TK, Caveney MR, Subhahar MB, Karakka Kal AK. Identification of Hypoxia-inducible factor (HIF) stabilizer roxadustat and its possible metabolites in thoroughbred horses for doping control. Drug Test Anal 2021; 13:1203-1215. [PMID: 33569900 DOI: 10.1002/dta.3014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia-inducible factor (HIF) stabilizer belongs to a novel class of pharmacologically active substances, which are capable of inducing the endogenous erythropoietic system. The transcriptional activator HIF has been shown to significantly increase blood hemoglobin and is well set for the treatment of anemia resulting from chronic kidney disease. This research work reports a comprehensive study of the most popular HIF stabilizer roxadustat and its metabolites in thoroughbred horse urine after oral administration. The plausible structures of the detected metabolites were postulated using liquid chromatography-high-resolution mass spectrometry. Under the experimental condition 13 metabolites (7 phase I, 1 phase II, and 5 conjugates of phase I metabolism) were positively detected (M1-M13). The major phase I metabolites identified were formed by hydroxylation. Dealkylated and hydrolyzed phase I metabolites were also observed in this study. In phase II, a glucuronic acid conjugate of roxadustat was detected as the major metabolite. The sulfonic acid conjugates were observed to be formed from phase I metabolites. The characterized in vivo metabolites can potentially serve as target analytes for doping control analysis; hence, the result is an important tool for assessing its use and abuse in competitive sport.
Collapse
Affiliation(s)
- Binoy Mathew
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Zubair Perwad
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | | | | |
Collapse
|
16
|
Philip M, Mathew B, Karatt TK, Perwad Z, Subhahar MB, Karakka Kal AK. Metabolic studies of hypoxia-inducible factor stabilisers IOX2, IOX3 and IOX4 (in vitro) for doping control. Drug Test Anal 2021; 13:794-816. [PMID: 33458935 DOI: 10.1002/dta.3000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
The transcriptional activator hypoxia-inducible factor (HIF) is a vital arbitrator in the performance of cellular responses lacking oxygen supply in aerobic organisms. Because these compounds are capable of enhancing the organism's capacity for molecular oxygen transport, they possess great potential for abuse as a performance-enhancing agent in sports. A comprehensive study of the metabolic conversion of the most popular HIF stabilisers such as IOX2, IOX3 and IOX4 using equine liver microsomes (in vitro) is reported. The parents and their metabolites were identified and characterised by liquid chromatography-mass spectrometry in negative ionisation mode using a QExactive high-resolution mass spectrometer. Under the current experimental condition, a total of 10 metabolites for IOX2 (three phase I and seven phase II), nine metabolites for IOX3 (four phase I and five phase II) and five metabolites for IOX4 (three phase I and two phase II) were detected. The outcome of the present study is as follows: (1) all the three IOX candidates are prone to oxidation, results in subsequent monohydroxylated, and some dihydroxylated metabolites. (2) Besides oxidation, there is a possibility of hydrolysis and de-alkylation, which results in corresponding carboxylic acid and amide, respectively. (3) The glucuronide and sulphate conjugate of the parent drugs as well as the monohydroxylated analogues were observed in this study. The characterised in vitro metabolites can potentially serve as target analytes for doping control analysis.
Collapse
Affiliation(s)
- Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Binoy Mathew
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Zubair Perwad
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | | |
Collapse
|
17
|
Elia A, Barlow MJ, Wilson OJ, O'Hara JP. Six weeks of dynamic apnoeic training stimulates erythropoiesis but does not increase splenic volume. Eur J Appl Physiol 2020; 121:827-838. [PMID: 33372236 PMCID: PMC7892731 DOI: 10.1007/s00421-020-04565-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
Purpose This study examined the influence of dynamic apnoea training on splenic volume and haematological responses in non-breath-hold divers (BHD). Methods Eight non-BHD performed ten maximal dynamic apnoeas, four times a week for six weeks. Splenic volumes were assessed ultrasonically, and blood samples were drawn for full blood count analysis, erythropoietin, iron, ferritin, albumin, protein and osmolality at baseline, 24 h post the completion of each week’s training sessions and seven days post the completion of the training programme. Additionally, blood samples were drawn for haematology at 30, 90, and 180 min post session one, twelve and twenty-four. Results Erythropoietin was only higher than baseline (6.62 ± 3.03 mlU/mL) post session one, at 90 (9.20 ± 1.88 mlU/mL, p = 0.048) and 180 min (9.04 ± 2.35 mlU/mL, p = 0.046). Iron increased from baseline (18 ± 3 µmol/L) post week five (23 ± 2 µmol/L, p = 0.033) and six (21 ± 6 µmol/L; p = 0.041), whereas ferritin was observed to be lower than baseline (111 ± 82 µg/L) post week five (95 ± 75 µg/L; p = 0.016), six (84 ± 74 µg/L; p = 0.012) and one week post-training (81 ± 63 µg/L; p = 0.008). Reticulocytes increased from baseline (57 ± 12 × 109/L) post week one (72 ± 17 × 109/L, p = 0.037) and six (71 ± 17 × 109/L, p = 0.021) while no changes were recorded in erythrocytes (p = 0.336), haemoglobin (p = 0.124) and splenic volumes (p = 0.357). Conclusions Six weeks of dynamic apnoeic training increase reticulocytes without altering mature erythrocyte concentration and splenic volume.
Collapse
Affiliation(s)
- Antonis Elia
- Division of Environmental Physiology, School of Chemistry, Bioengineering and Health, KTH Royal Institute of Technology, Berzelius väg 13, Solna, 171 65, Stockholm, Sweden. .,Carnegie School of Sport, Leeds Beckett University, Leeds, UK.
| | | | - Oliver J Wilson
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - John P O'Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| |
Collapse
|
18
|
Delcourt V, Garcia P, Chabot B, Loup B, Remy P, Popot MA, Bailly-Chouriberry L. Screening and confirmatory analysis of recombinant human erythropoietin for racing camels' doping control. Drug Test Anal 2020; 12:763-770. [PMID: 31984676 DOI: 10.1002/dta.2772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Recombinant human erythropoietin (rHuEPO) belongs to the therapeutic class of erythropoiesis stimulating agents (ESAs) due to its implication in the creation pathway of red blood cells and thus enhancement of oxygenation. Because of this bioactivity, rHuEPO has been considered as a major doping agent in sports competitions for decades. Over the years, doping control laboratories designed several analytical strategies applied to human and animal samples to highlight any misuse. Even though multiple analytical approaches have been reported, none has yet been dedicated to racing camels. Here, we describe an analytical strategy to test camel plasma samples at screening using an ELISA assay and a targeted nano-liquid chromatography-high-resolution tandem mass spectrometry for confirmatory analysis. The method was validated and has been successfully applied to post-race samples, allowing the detection of a positive case of rHuEPO administration.
Collapse
Affiliation(s)
- Vivian Delcourt
- GIE-LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Patrice Garcia
- GIE-LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Benjamin Chabot
- GIE-LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Benoit Loup
- GIE-LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Pierre Remy
- GIE-LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | - Marie-Agnès Popot
- GIE-LCH, Laboratoire des Courses Hippiques, Verrières-le-Buisson, France
| | | |
Collapse
|
19
|
Faiss R, Saugy J, Zollinger A, Robinson N, Schuetz F, Saugy M, Garnier PY. Prevalence Estimate of Blood Doping in Elite Track and Field Athletes During Two Major International Events. Front Physiol 2020; 11:160. [PMID: 32161553 PMCID: PMC7052379 DOI: 10.3389/fphys.2020.00160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
In elite sport, the Athlete Biological Passport (ABP) was invented to tackle cheaters by monitoring closely changes in biological parameters, flagging atypical variations. The hematological module of the ABP was indeed adopted in 2011 by World Athletics (WA). This study estimates the prevalence of blood doping based on hematological parameters in a large cohort of track and field athletes measured at two international major events (2011 and 2013 WA World Championships) with a hypothesized decrease in prevalence due to the ABP introduction. A total of 3683 blood samples were collected and analyzed from all participating athletes originating from 209 countries. The estimate of doping prevalence was obtained by using a Bayesian network with seven variables, as well as "blood doping" as a variable mimicking doping with low-doses of recombinant human erythropoietin (rhEPO), to generate reference cumulative distribution functions (CDFs) for the Abnormal Blood Profile Score (ABPS) from the ABP. Our results from robust hematological parameters indicate an estimation of an overall blood doping prevalence of 18% in 2011 and 15% in 2013 (non-significant difference) in average in endurance athletes [95% Confidence Interval (CI) 14-22 and 12-19% for 2011 and 2013, respectively]. A higher prevalence was observed in female athletes (22%, CI 16-28%) than in male athletes (15%, CI 9-20%) in 2011. In conclusion, this study presents the first comparison of blood doping prevalence in elite athletes based on biological measurements from major international events that may help scientists and experts to use the ABP in a more efficient and deterrent way.
Collapse
Affiliation(s)
- Raphael Faiss
- Research and Expertise in Anti-Doping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jonas Saugy
- Research and Expertise in Anti-Doping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alix Zollinger
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Neil Robinson
- Swiss Laboratory for Doping Analyses, University Centre of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Frederic Schuetz
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Martial Saugy
- Research and Expertise in Anti-Doping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
20
|
Elia A, Barlow MJ, Deighton K, Wilson OJ, O'Hara JP. Erythropoietic responses to a series of repeated maximal dynamic and static apnoeas in elite and non-breath-hold divers. Eur J Appl Physiol 2019; 119:2557-2565. [PMID: 31563983 PMCID: PMC6858396 DOI: 10.1007/s00421-019-04235-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
Purpose Serum erythropoietin (EPO) concentration is increased following static apnoea-induced hypoxia. However, the acute erythropoietic responses to a series of dynamic apnoeas in non-divers (ND) or elite breath-hold divers (EBHD) are unknown. Methods Participants were stratified into EBHD (n = 8), ND (n = 10) and control (n = 8) groups. On two separate occasions, EBHD and ND performed a series of five maximal dynamic apnoeas (DYN) or two sets of five maximal static apnoeas (STA). Control performed a static eupnoeic (STE) protocol to control against any effects of water immersion and diurnal variation on EPO. Peripheral oxygen saturation (SpO2) levels were monitored up to 30 s post each maximal effort. Blood samples were collected at 30, 90, and 180 min after each protocol for EPO, haemoglobin and haematocrit concentrations. Results No between group differences were observed at baseline (p > 0.05). For EBHD and ND, mean end-apnoea SpO2 was lower in DYN (EBHD, 62 ± 10%, p = 0.024; ND, 85 ± 6%; p = 0.020) than STA (EBHD, 76 ± 7%; ND, 96 ± 1%) and control (98 ± 1%) protocols. EBHD attained lower end-apnoeic SpO2 during DYN and STA than ND (p < 0.001). Serum EPO increased from baseline following the DYN protocol in EBHD only (EBHD, p < 0.001; ND, p = 0.622). EBHD EPO increased from baseline (6.85 ± 0.9mlU/mL) by 60% at 30 min (10.82 ± 2.5mlU/mL, p = 0.017) and 63% at 180 min (10.87 ± 2.1mlU/mL, p = 0.024). Serum EPO did not change after the STA (EBHD, p = 0.534; ND, p = 0.850) and STE (p = 0.056) protocols. There was a significant negative correlation (r = − 0.49, p = 0.003) between end-apnoeic SpO2 and peak post-apnoeic serum EPO concentrations. Conclusions The novel findings demonstrate that circulating EPO is only increased after DYN in EBHD. This may relate to the greater hypoxemia achieved by EBHD during the DYN.
Collapse
Affiliation(s)
- Antonis Elia
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK. .,Division of Environmental Physiology, School of Chemistry, Bioengineering and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Matthew J Barlow
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | - Kevin Deighton
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | - Oliver J Wilson
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | - John P O'Hara
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| |
Collapse
|
21
|
Habib MAH, Ismail MN. Characterization of erythropoietin biosimilars using mass spectrometric CID and HCD techniques. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1615502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, University Sains Malaysia, Minden, Malaysia
| |
Collapse
|
22
|
Hassanain WA, Sivanesan A, Izake E, Ayoko GA. An electrochemical biosensor for the rapid detection of erythropoietin in blood. Talanta 2018; 189:636-640. [DOI: 10.1016/j.talanta.2018.07.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 01/14/2023]
|
23
|
Sgrò P, Sansone M, Sansone A, Romanelli F, Di Luigi L. Effects of erythropoietin abuse on exercise performance. PHYSICIAN SPORTSMED 2018; 46:105-115. [PMID: 29113535 DOI: 10.1080/00913847.2018.1402663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present review provides a comprehensive overview on the erythropoietic and non-erythropoietic effects of rHuEpo on human sport performance, paying attention to quantifying numerically how rHuEpo affects exercise performance and describing physiological changes regarding the most important exercise variables. Much attention has been paid to treatment schedules, in particular, to assess the effects of microdoses of rHuEpo and the prolonged effects on sport performance following withdrawal. Moreover, the review takes into account non-erythropoietic ergogenic effects of rHuEpo, including cognitive benefits of rHuEpo. A significant increase in both Vo2max and maximal cycling power was evidenced in studies taken into account for this review. rHuEpo, administered at clinical dosage, may have significant effects on haematological values, maximal and submaximal physiological variables, whereas few reports show positive effects on exercise perfomance. However, the influence of micro-dose rHuEpo on endurance performance in athletes is still unclear and further studies are warranted.
Collapse
Affiliation(s)
- Paolo Sgrò
- a Department of Movement, Human and Health Sciences, Unit of Endocrinology , Università degli Studi di Roma "Foro Italico" Piazza Lauro de Bosis , Rome , Italy
| | - Massimiliano Sansone
- b Department of Experimental Medicine , "Sapienza" Università di Roma , Rome , Italy
| | - Andrea Sansone
- b Department of Experimental Medicine , "Sapienza" Università di Roma , Rome , Italy
| | - Francesco Romanelli
- b Department of Experimental Medicine , "Sapienza" Università di Roma , Rome , Italy
| | - Luigi Di Luigi
- a Department of Movement, Human and Health Sciences, Unit of Endocrinology , Università degli Studi di Roma "Foro Italico" Piazza Lauro de Bosis , Rome , Italy
| |
Collapse
|
24
|
Eslami1 O, Shidfar1 F, Akbari-Fakhrabadi2 M. Vitamin D and Cardiorespiratory Fitness in the General Population: A Systematic Review. INT J VITAM NUTR RES 2017; 87:330-341. [DOI: 10.1024/0300-9831/a000490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract. Background: Up to now, the association between vitamin D and cardiorespiratory fitness (CRF) is still inconsistent and there is a lack of a comprehensive review on this topic. Aim: To systematically review the literature including both observational studies and randomized controlled trials (RCTs) on the association between vitamin D and CRF in the general population. Methods: The literature was investigated by exploring databases of PubMed, EMBASE, Scopus and ISI Web of Science as well as a manual search up to April 2017 by using related MeSH terms and key words. All the English-language articles that were conducted in the general population without any restriction on age range of participants and date of publication were included in the study. Results: Among the 731 records which were found initially, a total of 20 articles including 18 cross-sectional studies and 2 RCTs fulfilled the inclusion criteria. Among the cross-sectional studies, findings on the association between serum 25(OH) D and CRF were incongruent. Additionally, studies which had reported significant results varied remarkably in terms of sample size, study population and the effect size of the association. In addition, RCTs found no significant improvement in CRF following vitamin D supplementation. Conclusion: Overall, evidence from cross-sectional studies does not support a strong association between vitamin D and CRF, although a number of studies demonstrated modest positive associations. Furthermore, limited RCTs did not confirm such an association. Further high quality research is needed to obtain a definite conclusion on this topic. “
Collapse
Affiliation(s)
- Omid Eslami1
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar1
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
25
|
Popot MA, Ho EN, Stojiljkovic N, Bagilet F, Remy P, Maciejewski P, Loup B, Chan GH, Hargrave S, Arthur RM, Russo C, White J, Hincks P, Pearce C, Ganio G, Zahra P, Batty D, Jarrett M, Brooks L, Prescott LA, Bailly-Chouriberry L, Bonnaire Y, Wan TS. Interlaboratory trial for the measurement of total cobalt in equine urine and plasma by ICP-MS. Drug Test Anal 2017; 9:1400-1406. [DOI: 10.1002/dta.2191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Marie-Agnes Popot
- Laboratoire des Courses Hippiques (LCH); 15 rue de Paradis 91370 Verrières-le-Buisson France
| | - Emmie N.M. Ho
- Racing Laboratory; The Hong Kong Jockey Club; Sha Tin Racecourse; Sha Tin NT Hong Kong, China
| | - Natali Stojiljkovic
- Laboratoire des Courses Hippiques (LCH); 15 rue de Paradis 91370 Verrières-le-Buisson France
| | - Florian Bagilet
- Laboratoire des Courses Hippiques (LCH); 15 rue de Paradis 91370 Verrières-le-Buisson France
| | - Pierre Remy
- Laboratoire des Courses Hippiques (LCH); 15 rue de Paradis 91370 Verrières-le-Buisson France
| | - Pascal Maciejewski
- Laboratoire des Courses Hippiques (LCH); 15 rue de Paradis 91370 Verrières-le-Buisson France
| | - Benoit Loup
- Laboratoire des Courses Hippiques (LCH); 15 rue de Paradis 91370 Verrières-le-Buisson France
| | - George H.M. Chan
- Racing Laboratory; The Hong Kong Jockey Club; Sha Tin Racecourse; Sha Tin NT Hong Kong, China
| | - Sabine Hargrave
- School of Veterinary Medicine; University of California; One Shields Avenue Davis CA 95616 USA
| | - Rick M. Arthur
- School of Veterinary Medicine; University of California; One Shields Avenue Davis CA 95616 USA
| | - Charlie Russo
- Racing Chemistry Laboratory; ChemCentre, PO Box 1250 Bentley Delivery Centre Western Australia 6983 Australia
| | - James White
- Racing Chemistry Laboratory; ChemCentre, PO Box 1250 Bentley Delivery Centre Western Australia 6983 Australia
| | - Pamela Hincks
- Sport and Specialised Analytical Services; LGC Ltd; Newmarket Road, Fordham Cambridgeshire CB7 5WW UK
| | - Clive Pearce
- Sport and Specialised Analytical Services; LGC Ltd; Newmarket Road, Fordham Cambridgeshire CB7 5WW UK
| | - George Ganio
- Racing Analytical Services Ltd; 400 Epsom Road Flemington Victoria 3031 Australia
| | - Paul Zahra
- Racing Analytical Services Ltd; 400 Epsom Road Flemington Victoria 3031 Australia
| | - David Batty
- Racing Analytical Services Ltd; 400 Epsom Road Flemington Victoria 3031 Australia
| | - Mark Jarrett
- Racing Science Centre; Cooksley St Hamilton QLD 4007 Australia
| | - Lydia Brooks
- Canadian Pari-Mutuel Agency; 1130 Morrison Dr. Ottawa Ontario K2H 9N Canada
- Canadian Food Inspection Agency; 960 Carling Av. Bldg#22 C.E.F. Ottawa Ontario K1A 0Y9
| | - Lise-Anne Prescott
- Canadian Pari-Mutuel Agency; 1130 Morrison Dr. Ottawa Ontario K2H 9N Canada
- Canadian Food Inspection Agency; 960 Carling Av. Bldg#22 C.E.F. Ottawa Ontario K1A 0Y9
| | | | - Yves Bonnaire
- Laboratoire des Courses Hippiques (LCH); 15 rue de Paradis 91370 Verrières-le-Buisson France
| | - Terence S.M. Wan
- Racing Laboratory; The Hong Kong Jockey Club; Sha Tin Racecourse; Sha Tin NT Hong Kong, China
| |
Collapse
|
26
|
Handelsman DJ, Matsumoto AM, Gerrard DF. Doping Status of DHEA Treatment for Female Athletes with Adrenal Insufficiency. Clin J Sport Med 2017; 27:78-85. [PMID: 26844622 DOI: 10.1097/jsm.0000000000000300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To review the doping status of dehydroepiandrosterone (DHEA) for female athletes with adrenal insufficiency within the framework of Therapeutic Use Exemption (TUE) applications for this proandrogen, which is included on the World Anti-Doping Agency (WADA)'s Prohibited List. DATA SOURCES AND MAIN RESULTS Current knowledge of adrenal pathophysiology with a focus on the physiological role and pharmacological effects of DHEA in female athletes including placebo-controlled clinical trials of DHEA and consensus clinical practice and prescribing guidelines. CONCLUSIONS Because there is no convincing clinical evidence to support the use of DHEA replacement therapy in women with adrenal failure, a TUE for DHEA is not justified by definite health benefit for either secondary or primary adrenal failure. This is consistent with the 2014 update of the US Endocrine Society guidelines, meta-analyses of DHEA treatment in women with or without adrenal failure, current WADA TUE guidance document for adrenal insufficiency and recent case law of WADA's Court of Arbitration for Sport.
Collapse
Affiliation(s)
- David J Handelsman
- *ANZAC Research Institute, University of Sydney, Concord Hospital, New South Wales, Australia; †Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, and Department of Medicine, University of Washington School of Medicine, Seattle, Washington; and ‡Dunedin School of Medicine, University of Otago, New Zealand Chair, WADA TUE Expert Group, Dunedin, New Zealand
| | | | | |
Collapse
|
27
|
Abstract
Drug abuse occurs in all sports and at most levels of competition. Athletic life may lead to drug abuse for a number of reasons, including for performance enhancement, to self-treat otherwise untreated mental illness, and to deal with stressors, such as pressure to perform, injuries, physical pain, and retirement from sport. This review examines the effects of different classes of substances used for doping, side-effects of doping, and treatment of affected athletes. There is variable evidence for the performance-enhancing effects and side-effects of the various substances that are used for doping. Drug abuse in athletes should be addressed with preventive measures, education, motivational interviewing, and, when indicated, pharmacologic interventions.
Collapse
Affiliation(s)
- Shane Creado
- a UW Health Psychiatric Institute and Clinic Ringgold Standard Institution , Madison , WI , USA
| | - Claudia Reardon
- b UW Health Psychiatric Institute and Clinic , Psychiatry , Madison , WI , USA
| |
Collapse
|
28
|
Abstract
Despite inconclusive efficacy data and concerning safety data, the use of performance-enhancing drugs (PEDs) in the adolescent population is on the rise. Anabolic-androgenic steroids, growth hormones, stimulants, and erythropoiesis-stimulating agents are among the most widely known and studied prescription PEDs in the adolescent population. The purpose of this article is to describe the proposed mechanism of action, efficacy and adverse effects of these agents as well as discuss prevention measures and treatment considerations for those patients at risk for, considering, or currently using PEDs.
Collapse
Affiliation(s)
- Nicole D White
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska
| | - James Noeun
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska
| |
Collapse
|
29
|
Selbes YS, Caglayan MG, Eryilmaz M, Boyaci IH, Saglam N, Basaran AA, Tamer U. Surface-enhanced Raman probe for rapid nanoextraction and detection of erythropoietin in urine. Anal Bioanal Chem 2016; 408:8447-8456. [DOI: 10.1007/s00216-016-9966-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 01/29/2023]
|
30
|
Bianchi S, Fusi J, Franzoni F, Giovannini L, Galetta F, Mannari C, Guidotti E, Tocchini L, Santoro G. "Effects of recombinant human erythropoietin high mimicking abuse doses on oxidative stress processes in rats". Biomed Pharmacother 2016; 82:355-63. [PMID: 27470373 DOI: 10.1016/j.biopha.2016.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/21/2022] Open
Abstract
Although many studies highlight how long-term moderate dose of Recombinant Human Erythropoietin (rHuEPO) treatments result in beneficial and antioxidants effects, few studies take into account the effects that short-term high doses of rHuEPO (mimicking abuse conditions) might have on the oxidative stress processes. Thus, the aim of this study was to investigate the in vivo antioxidant activity of rHuEPO, administered for a short time and at high doses to mimic its sports abuse as doping. Male Wistar healthy rats (n=36) were recruited for the study and were treated with three different concentrations of rHuEPO: 7.5, 15, 30μg/kg. Plasma concentrations of erythropoietin, 8-epi Prostaglandin F2α, plasma and urinary concentrations of NOx were evaluated with specific assay kit, while hematocrit levels were analyzed with an automated cell counter. Antioxidant activity of rHuEPO was assessed analyzing the possible variation of the plasma scavenger capacity against hydroxylic and peroxylic radicals by TOSC (Total Oxyradical Scavenging Capacity) assay. Statistical analyses showed higher hematocrit values, confirmed by a statistically significant increase of plasmatic EPO concentration. An increase in plasma scavenging capacity against peroxyl and hydroxyl radicals, in 8-isoprostane plasmatic concentrations and in plasmatic and urinary levels of NOX were also found in all the treated animals, though not always statistically significant. Our results confirm the literature data regarding the antioxidant action of erythropoietin administered at low doses and for short times, whereas they showed an opposite incremental oxidative stress action when erythropoietin is administered at high doses.
Collapse
Affiliation(s)
- Sara Bianchi
- Department of Translational Research and New Technologies in Medicine and Surgery, Pharmacology, Medical School, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Luca Giovannini
- Department of Translational Research and New Technologies in Medicine and Surgery, Pharmacology, Medical School, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Fabio Galetta
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Claudio Mannari
- Department of Translational Research and New Technologies in Medicine and Surgery, Pharmacology, Medical School, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Emanuele Guidotti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Leonardo Tocchini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Gino Santoro
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| |
Collapse
|
31
|
Plumb JOM, Otto JM, Grocott MPW. 'Blood doping' from Armstrong to prehabilitation: manipulation of blood to improve performance in athletes and physiological reserve in patients. EXTREME PHYSIOLOGY & MEDICINE 2016; 5:5. [PMID: 26929820 PMCID: PMC4770708 DOI: 10.1186/s13728-016-0046-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/12/2016] [Indexed: 02/07/2023]
Abstract
Haemoglobin is the blood’s oxygen carrying pigment and is encapsulated in red blood corpuscles. The concentration of haemoglobin in blood is dependent on both its total mass in the circulation (tHb-mass) and the total plasma volume in which it is suspended. Aerobic capacity is defined as the maximum amount of oxygen that can be consumed by the body per unit time and is one measure of physical fitness. Observations in athletes who have undergone blood doping or manipulation have revealed a closer relationship between physical fitness (aerobic capacity) and total haemoglobin mass (tHb-mass) than with haemoglobin concentration ([Hb]). Anaemia is defined by the World Health Organisation (WHO) as a haemoglobin concentration of <130 g/L for men and <120 g/L for women. Perioperative anaemia is a common problem and is associated with increased mortality and morbidity following surgery. Aerobic capacity is also associated with outcome following major surgery, with less fit patients having a higher incidence of mortality and morbidity after surgery. Taken together, these observations suggest that targeted preoperative elevation of tHb-mass may raise aerobic capacity both directly and indirectly (by augmenting preoperative exercise initiatives- ‘prehabilitation’) and thus improve postoperative outcome. This notion in turn raises a number of questions. Which measure ([Hb] or tHb-mass) has the most value for the description of oxygen carrying capacity? Which measure has the most utility for targeting therapies to manipulate haemoglobin levels? Do the newer agents being used for blood manipulation (to increase tHb-mass) in elite sport have utility in the clinical environment? This review explores the literature relating to blood manipulation in elite sport as well as the relationship between perioperative anaemia, physical fitness and outcome following surgery, and suggests some avenues for exploring this area further.
Collapse
Affiliation(s)
- James O M Plumb
- Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK ; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Road, Southampton, UK ; Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, Southampton, UK ; Faculty of Medicine University of Southampton, Southampton General Hospital Mailpoint 801 South Academic Block, Tremona Road Southampton, Southampton, SO16 6YD UK
| | - James M Otto
- Division of Surgery and Interventional Science c/o, Institute of Sport, Exercise and Health (ISEH), 170 Tottenham Court Road, London, UK
| | - Michael P W Grocott
- Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK ; Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Road, Southampton, UK ; Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, Southampton, UK ; Faculty of Medicine University of Southampton, Southampton General Hospital Mailpoint 801 South Academic Block, Tremona Road Southampton, Southampton, SO16 6YD UK
| |
Collapse
|
32
|
Kulanthaivel S, Roy B, Agarwal T, Giri S, Pramanik K, Pal K, Ray SS, Maiti TK, Banerjee I. Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:648-58. [DOI: 10.1016/j.msec.2015.08.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 08/05/2015] [Accepted: 08/25/2015] [Indexed: 01/14/2023]
|
33
|
Bird SR, Goebel C, Burke LM, Greaves RF. Doping in sport and exercise: anabolic, ergogenic, health and clinical issues. Ann Clin Biochem 2015; 53:196-221. [DOI: 10.1177/0004563215609952] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 12/11/2022]
Abstract
The use of doping agents is evident within competitive sport in senior and junior age groups, where they are taken by non-elite as well as elite participants. They are also taken in non-sporting contexts by individuals seeking to ‘improve’ their physique through an increase in muscle and/or decrease in fat mass. While attaining accurate data on the prevalence of their use has limitations, studies suggest the illicit use of doping agents by athletes and non-athletes may be 1–5% in the population and greater than 50% in some groups; with the prevalence being higher in males. There is conclusive evidence that some doping agents are anabolic and ergogenic. There is also evidence that the use of doping agents such as anabolic androgenic steroids, growth hormone and other anabolic agents, erythropoietin and stimulants conveys considerable health risks that include, but are not limited to: cardiovascular disease, diabetes, cancer, mental health issues, virilisation in females and the suppression of naturally produced androgens in males. This review will outline the anabolic, ergogenic and health impacts of selected doping agents and methods that may be used in both the sporting and physique development contexts. It also provides a brief tabulated overview of the history of doping and how doping agents may impact upon the analyses of clinical samples.
Collapse
Affiliation(s)
- Stephen R Bird
- School of Medical Sciences, RMIT University, Victoria, Australia
| | - Catrin Goebel
- Australian Sports Drug Testing Laboratory, Sydney, Australia
| | | | - Ronda F Greaves
- School of Medical Sciences, RMIT University, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
34
|
Abstract
Drug abuse occurs in all sports and at most levels of competition. Athletic life may lead to drug abuse for a number of reasons, including for performance enhancement, to self-treat otherwise untreated mental illness, and to deal with stressors, such as pressure to perform, injuries, physical pain, and retirement from sport. This review examines the history of doping in athletes, the effects of different classes of substances used for doping, side effects of doping, the role of anti-doping organizations, and treatment of affected athletes. Doping goes back to ancient times, prior to the development of organized sports. Performance-enhancing drugs have continued to evolve, with “advances” in doping strategies driven by improved drug testing detection methods and advances in scientific research that can lead to the discovery and use of substances that may later be banned. Many sports organizations have come to ban the use of performance-enhancing drugs and have very strict consequences for people caught using them. There is variable evidence for the performance-enhancing effects and side effects of the various substances that are used for doping. Drug abuse in athletes should be addressed with preventive measures, education, motivational interviewing, and, when indicated, pharmacologic interventions.
Collapse
Affiliation(s)
- Claudia L Reardon
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shane Creado
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
35
|
Roth AD, Elmer J, Harris DR, Huntley J, Palmer AF, Nelson T, Johnson JK, Xue R, Lannutti JJ, Viapiano MS. Hemoglobin regulates the migration of glioma cells along poly(ε-caprolactone)-aligned nanofibers. Biotechnol Prog 2014; 30:1214-20. [DOI: 10.1002/btpr.1950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 06/17/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Alexander D. Roth
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Jacob Elmer
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - David R. Harris
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Joseph Huntley
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Andre F. Palmer
- William G. Lowrie Dept. of Chemical and Biomolecular Engineering; The Ohio State University; Columbus OH 43210
| | - Tyler Nelson
- Dept. of Biomedical Engineering; The Ohio State University; Columbus OH 43210
| | - Jed K. Johnson
- Nanofiber Solutions LLC; 1275 Kinnear Road Columbus OH 43212
| | - Ruipeng Xue
- Dept. of Materials Science and Engineering; The Ohio State University; Columbus OH 43210
| | - John J. Lannutti
- Dept. of Materials Science and Engineering; The Ohio State University; Columbus OH 43210
| | - Mariano S. Viapiano
- Dept. of Neurological Surgery; The Ohio State University Wexner Medical Center; Columbus OH 43210
| |
Collapse
|
36
|
Oliveira CDRD, Bairros AVD, Yonamine M. Blood doping: risks to athletes' health and strategies for detection. Subst Use Misuse 2014; 49:1168-81. [PMID: 24766400 DOI: 10.3109/10826084.2014.903754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Blood doping has been defined as the misuse of substances or certain techniques to optimize oxygen delivery to muscles with the aim to increase performance in sports activities. It includes blood transfusion, administration of erythropoiesis-stimulating agents or blood substitutes, and gene manipulations. The main reasons for the widespread use of blood doping include: its availability for athletes (erythropoiesis-stimulating agents and blood transfusions), its efficiency in improving performance, and its difficult detection. This article reviews and discusses the blood doping substances and methods used for in sports, the adverse effects related to this practice, and current strategies for its detection.
Collapse
|
37
|
Exogenous sphingosine-1-phosphate boosts acclimatization in rats exposed to acute hypobaric hypoxia: assessment of haematological and metabolic effects. PLoS One 2014; 9:e98025. [PMID: 24887065 PMCID: PMC4041657 DOI: 10.1371/journal.pone.0098025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022] Open
Abstract
Background The physiological challenges posed by hypobaric hypoxia warrant exploration of pharmacological entities to improve acclimatization to hypoxia. The present study investigates the preclinical efficacy of sphingosine-1-phosphate (S1P) to improve acclimatization to simulated hypobaric hypoxia. Experimental Approach Efficacy of intravenously administered S1P in improving haematological and metabolic acclimatization was evaluated in rats exposed to simulated acute hypobaric hypoxia (7620m for 6 hours) following S1P pre-treatment for three days. Major Findings Altitude exposure of the control rats caused systemic hypoxia, hypocapnia (plausible sign of hyperventilation) and respiratory alkalosis due to suboptimal renal compensation indicated by an overt alkaline pH of the mixed venous blood. This was associated with pronounced energy deficit in the hepatic tissue along with systemic oxidative stress and inflammation. S1P pre-treatment improved blood oxygen-carrying-capacity by increasing haemoglobin, haematocrit, and RBC count, probably as an outcome of hypoxia inducible factor-1α mediated erythropoiesis and renal S1P receptor 1 mediated haemoconcentation. The improved partial pressure of oxygen in the blood could further restore aerobic respiration and increase ATP content in the hepatic tissue of S1P treated animals. S1P could also protect the animals from hypoxia mediated oxidative stress and inflammation. Conclusion The study findings highlight S1P’s merits as a preconditioning agent for improving acclimatization to acute hypobaric hypoxia exposure. The results may have long term clinical application for improving physiological acclimatization of subjects venturing into high altitude for occupational or recreational purposes.
Collapse
|
38
|
Pope HG, Wood RI, Rogol A, Nyberg F, Bowers L, Bhasin S. Adverse health consequences of performance-enhancing drugs: an Endocrine Society scientific statement. Endocr Rev 2014; 35:341-75. [PMID: 24423981 PMCID: PMC4026349 DOI: 10.1210/er.2013-1058] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the high prevalence of performance-enhancing drug (PED) use, media attention has focused almost entirely on PED use by elite athletes to illicitly gain a competitive advantage in sports, and not on the health risks of PEDs. There is a widespread misperception that PED use is safe or that adverse effects are manageable. In reality, the vast majority of PED users are not athletes but rather nonathlete weightlifters, and the adverse health effects of PED use are greatly underappreciated. This scientific statement synthesizes available information on the medical consequences of PED use, identifies gaps in knowledge, and aims to focus the attention of the medical community and policymakers on PED use as an important public health problem. PED users frequently consume highly supraphysiologic doses of PEDs, combine them with other PEDs and/or other classical drugs of abuse, and display additional associated risk factors. PED use has been linked to an increased risk of death and a wide variety of cardiovascular, psychiatric, metabolic, endocrine, neurologic, infectious, hepatic, renal, and musculoskeletal disorders. Because randomized trials cannot ethically duplicate the large doses of PEDs and the many factors associated with PED use, we need observational studies to collect valid outcome data on the health risks associated with PEDs. In addition, we need studies regarding the prevalence of PED use, the mechanisms by which PEDs exert their adverse health effects, and the interactive effects of PEDs with sports injuries and other high-risk behaviors. We also need randomized trials to assess therapeutic interventions for treating the adverse effects of PEDs, such as the anabolic-androgen steroid withdrawal syndrome. Finally, we need to raise public awareness of the serious health consequences of PEDs.
Collapse
Affiliation(s)
- Harrison G Pope
- McLean Hospital (H.G.P.), Harvard Medical School, Belmont, Massachusetts 02478; University of Southern California (R.I.W.), Los Angeles, California 90089; University of Virginia (A.R.), Charlottesville, Virginia 22904; Department of Pharmaceutical Biosciences, (F.N.), Upsala University, SE-751 24, Upsala, Sweden; United States Anti-Doping Agency (L.B.), Colorado Springs, Colorado 80919; and Brigham and Women's Hospital (S.B.), Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | |
Collapse
|
39
|
Soni H. Prolyl hydroxylase domain-2 (PHD2) inhibition may be a better therapeutic strategy in renal anemia. Med Hypotheses 2014; 82:547-50. [DOI: 10.1016/j.mehy.2014.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/05/2014] [Indexed: 12/31/2022]
|
40
|
Ribeiro IF, Miranda-Vilela AL, Klautau-Guimarães MDN, Grisolia CK. The influence of erythropoietin (EPO T → G) and α-actinin-3 (ACTN3 R577X) polymorphisms on runners' responses to the dietary ingestion of antioxidant supplementation based on pequi oil ( Caryocar brasiliense Camb.): a before-after study. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2014; 6:283-304. [PMID: 24504226 DOI: 10.1159/000357947] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 12/11/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS As diet can affect an individual's genes and these can affect response to supplementation, we aimed to investigate the influence of erythropoietin (EPO T→G) and α-actinin-3 (ACTN3 R577X) polymorphisms on plasma lipid peroxidation, hemogram and biochemical dosages of creatine kinase, aspartate aminotransferase, alanine aminotransferase and C-reactive protein (including high-sensitivity C-reactive protein) of runners (n = 123) before and after 14 days of 400 mg pequi oil supplementation, a natural carotenoid-rich oil, after races under closely comparable conditions. METHODS/RESULTS Blood samples were taken immediately after racing to perform the tests. Before pequi oil supplementation, EPO polymorphism influenced erythrogram and plateletgram results, suggesting an aerobic advantage for the TG genotype and a disadvantage for the GG genotype as regards possible microvascular complications, while no association was found for ACTN3 polymorphism with endurance performance. Both polymorphisms influenced the runners' response to pequi oil: significant responses were observed for the EPO TT genotype in erythrocyte, hematocrit, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration values, and for the TT and TG genotypes in red blood cell distribution width values. Significant differences were also observed in the plateletgram for the TT and TG genotypes. ACTN3 mainly influenced aspartate aminotransferase and creatine kinase values: heterozygotes had a significant reduction in aspartate aminotransferase values and homozygous individuals (XX) in creatine kinase values after pequi oil supplementation. CONCLUSION These results emphasize the importance of studying nutrigenomic effects on athletes' performance.
Collapse
Affiliation(s)
- Ieler Ferreira Ribeiro
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | | | | |
Collapse
|
41
|
Erythropoietin and the heart: physiological effects and the therapeutic perspective. Int J Cardiol 2013; 171:116-25. [PMID: 24377712 DOI: 10.1016/j.ijcard.2013.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 10/08/2013] [Accepted: 12/10/2013] [Indexed: 01/22/2023]
Abstract
Erythropoietin (Epo) has been thought to act exclusively on erythroid progenitor cells. The identification of Epo receptor (EpoR) in non-haematopoietic cells and tissues including neurons, astrocytes, microglia, immune cells, cancer cell lines, endothelial cells, bone marrow stromal cells, as well as cells of myocardium, reproductive system, gastrointestinal tract, kidney, pancreas and skeletal muscle indicates that Epo has pleiotropic actions. Epo shows signals through protein kinases, anti-apoptotic proteins and transcription factors. In light of interest of administering recombinant human erythropoietin (rhEpo) and its analogues for limiting infarct size and left ventricular (LV) remodelling after acute myocardial infarction (AMI) in humans, the foremost studies utilising rhEpo are reviewed. The putative mechanisms involved in Epo-induced cardioprotection are related to the antiapoptotic, anti-inflammatory and angiogenic effects of Epo. Thus, cardioprotective potentials of rhEpo are reviewed in this article by focusing on clinical applicability. An overview of non-haematopoietic Epo analogues, which are a reliable alternative to the classic EpoR agonists and may prevent undesired side effects, is also provided.
Collapse
|
42
|
Reichel C. Differences in sialic acid O-acetylation between human urinary and recombinant erythropoietins: a possible mass spectrometric marker for doping control. Drug Test Anal 2013; 5:877-89. [PMID: 24353190 DOI: 10.1002/dta.1563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 01/22/2023]
Abstract
Development of a mass spectrometric method for the unambiguous detection of doping with recombinant human erythropoietins (rhEPO) has been attempted for many years. Unfortunately, progress in this field was hampered by the unavailability of highly purified human endogenous EPOs (urinary[uhEPO], serum/plasma EPO)--a prerequisite for generating detailed mass spectrometric glycosylation data necessary for revealing significant differences between uhEPO and rhEPOs. The paper presents the worldwide first analytical data on purified human urinary EPO generated with a high resolution high accuracy mass spectrometer (LTQ-Orbitrap). The focus is on the tryptic O-glycopeptide (E117-R131) and its degree of sialic acid O-acetylation. Data are compared with results obtained from 40 rhEPO pharmaceuticals. It could be demonstrated that the O-glycopeptide of uhEPO (ca 100 IU) contains only trace amounts of mono-acetylated mono-and di-sialylated O-glycans but no other O-acetylated structures and in this respect significantly differs from all rhEPOs. Moreover, Dynepo--a rhEPO previously thought to be not O-acetylated--also contains small amounts of O-acetylations within the O-glycan structure. The results might be useful for anti-doping purposes as well as the development of EPO pharmaceuticals with closer structural similarity to the endogenous hormone.
Collapse
Affiliation(s)
- Christian Reichel
- Doping Control Laboratory, AIT Seibersdorf Laboratories, A-2444, Seibersdorf, Austria
| |
Collapse
|
43
|
Abstract
During the past century, few proteins have matched erythropoietin (Epo) in capturing the imagination of physiologists, molecular biologists, and, more recently, physicians and patients. Its appeal rests on its commanding role as the premier erythroid cytokine, the elegant mechanism underlying the regulation of its gene, and its remarkable impact as a therapeutic agent, arguably the most successful drug spawned by the revolution in recombinant DNA technology. This concise review will begin with a synopsis of the colorful history of this protein, culminating in its purification and molecular cloning. It then covers in more detail the contemporary understanding of Epo's physiology as well as its structure and interaction with its receptor. A major part of this article focuses on the regulation of the Epo gene and the discovery of HIF, a transcription factor that plays a cardinal role in molecular adaptation to hypoxia. In the concluding section, a synopsis of Epo's role in disorders of red blood cell production will be followed by an assessment of the remarkable impact of Epo therapy in the treatment of anemias, as well as concerns that provide a strong impetus for the development of even safer and more effective treatment.
Collapse
Affiliation(s)
- H Franklin Bunn
- Hematology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Beuck S, Schänzer W, Thevis M. Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesis-stimulating agents in current and preventive doping analysis. Drug Test Anal 2012; 4:830-45. [PMID: 22362605 DOI: 10.1002/dta.390] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 10/21/2011] [Accepted: 10/22/2011] [Indexed: 12/12/2022]
Abstract
Increasing the blood's capacity for oxygen transport by erythropoiesis-stimulating agents (ESAs) constitutes a prohibited procedure of performance enhancement according to the World Anti-Doping Agency (WADA). The advent of orally bio-available small-molecule ESAs such as hypoxia-inducible factor (HIF) stabilizers in the development of novel anti-anaemia therapies expands the list of potential ESA doping techniques. Here, the erythropoiesis-stimulating properties and doping relevance of experimental HIF-stabilizers, such as cobaltous chloride, 3,4-dihydroxybenzoic acid or GSK360A, amongst others, are discussed. The stage of clinical trials is reviewed for the anti-anaemia drug candidates FG-2216, FG-4592, GSK1278863, AKB-6548, and BAY85-3934. Currently available methods and strategies for the determination of selected HIF stabilizers in sports drug testing are based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). For the support of further analytical assay development, patents claiming distinct compounds for the use in HIF-mediated therapies are evaluated and exemplary molecular structures of HIF stabilizers presented. Moreover, data concerning the erythropoiesis-enhancing effects of the GATA inhibitors K7174 and K11706 as well as the lipidic small-molecule ESA PBI-1402 are elucidated the context of doping analysis.
Collapse
Affiliation(s)
- Simon Beuck
- German Sport University Cologne, Cologne, Germany
| | | | | |
Collapse
|
45
|
Abuse of medicines for performance enhancement in sport: why is this a problem for the pharmaceutical industry? Bioanalysis 2012; 4:1681-90. [PMID: 22831483 DOI: 10.4155/bio.12.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The misuse of medicines for performance enhancement in sport (doping) is not approved by regulatory agencies, and is illegal in many countries. In addition to the 'traditional' doping agents such as steroids, β-blockers and blood transfusions, the list of agents and techniques used in doping is increasing and now includes newer medicines such as erythropoiesis-stimulating agents and growth hormones. Innovative new medicines are of particular interest as would-be dopers may believe them to be undetectable by current methods. Close collaboration between the biopharmaceutical industry and anti-doping agencies such as the World Anti-Doping Agency is critical to a successful anti-doping strategy. Industry is ideally placed to identify the doping potential of new medicines at early stages and to support early development of detection assays. A strong, united front between the biopharmaceutical industry and anti-doping agencies is essential to counter the misuse of medicines for performance enhancement, as well as to promote fair play and clean sport.
Collapse
|
46
|
|
47
|
Affiliation(s)
- Christopher Dandoy
- Pediatric Hematology/Oncology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | | |
Collapse
|
48
|
Neuberger EWI, Jurkiewicz M, Moser DA, Simon P. Detection of EPO gene doping in blood. Drug Test Anal 2012; 4:859-69. [PMID: 22508654 DOI: 10.1002/dta.1347] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 12/18/2022]
Abstract
Gene doping--or the abuse of gene therapy--will continue to threaten the sports world. History has shown that progress in medical research is likely to be abused in order to enhance human performance. In this review, we critically discuss the progress and the risks associated with the field of erythropoietin (EPO) gene therapy and its applicability to EPO gene doping. We present typical vector systems that are employed in ex vivo and in vivo gene therapy trials. Due to associated risks, gene doping is not a feasible alternative to conventional EPO or blood doping at this time. Nevertheless, it is well described that about half of the elite athlete population is in principle willing to risk its health to gain a competitive advantage. This includes the use of technologies that lack safety approval. Sophisticated detection approaches are a prerequisite for prevention of unapproved and uncontrolled use of gene therapy technology. In this review, we present current detection approaches for EPO gene doping, with a focus on blood-based direct and indirect approaches. Gene doping is detectable in principle, and recent DNA-based detection strategies enable long-term detection of transgenic DNA (tDNA) following in vivo gene transfer.
Collapse
Affiliation(s)
- Elmo W I Neuberger
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | |
Collapse
|
49
|
Segura J, Monfort N, Ventura R. Detection methods for autologous blood doping. Drug Test Anal 2012; 4:876-81. [PMID: 22407819 DOI: 10.1002/dta.405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 01/18/2023]
Abstract
The use of blood doping is forbidden by the World Anti-Doping Agency. Several practices, such as blood transfusions are used to increase oxygen delivery to muscles and all of them are highly pursued. In this regard, the development of accurate methodologies for detecting these prohibited practices is one of the current aims of the anti-doping control laboratories. Flow cytometry methods are able to detect allogeneic blood transfusions but there is no official methodology available to detect autologous blood transfusions. This paper reviews protocols, including the Athlete Biological Passport, that use indirect markers to detect misuse of blood transfusions, especially autologous blood transfusions. The methods of total haemoglobin mass measurements and the detection of metabolites of blood bags plasticizers in urine are reviewed. The latter seems to be an important step forward because it is a fast screening method and it is based on urine, a fluid widely available for doping control. Other innovative approaches to blood transfusion detection are also mentioned. A combination of the reported methodologies and the implementation of the Athlete Biological Passport is becoming a promising approach.
Collapse
Affiliation(s)
- J Segura
- Bioanalysis Research Group, IMIM Hospital del Mar Research Institute, Barcelona, Spain.
| | | | | |
Collapse
|
50
|
Lundby C, Robach P, Saltin B. The evolving science of detection of 'blood doping'. Br J Pharmacol 2012; 165:1306-15. [PMID: 22225538 PMCID: PMC3372716 DOI: 10.1111/j.1476-5381.2011.01822.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/15/2011] [Accepted: 11/25/2011] [Indexed: 12/21/2022] Open
Abstract
Blood doping practices in sports have been around for at least half a century and will likely remain for several years to come. The main reason for the various forms of blood doping to be common is that they are easy to perform, and the effects on exercise performance are gigantic. Yet another reason for blood doping to be a popular illicit practice is that detection is difficult. For autologous blood transfusions, for example, no direct test exists, and the direct testing of misuse with recombinant human erythropoietin (rhEpo) has proven very difficult despite a test exists. Future blood doping practice will likely include the stabilization of the transcription factor hypoxia-inducible factor which leads to an increased endogenous erythropoietin synthesis. It seems unrealistic to develop specific test against such drugs (and the copies hereof originating from illegal laboratories). In an attempt to detect and limit blood doping, the World Anti-Doping Agency (WADA) has launched the Athlete Biological Passport where indirect markers for all types of blood doping are evaluated on an individual level. The approach seemed promising, but a recent publication demonstrates the system to be incapable of detecting even a single subject as 'suspicious' while treated with rhEpo for 10-12 weeks. Sad to say, the hope that the 2012 London Olympics should be cleaner in regard to blood doping seems faint. We propose that WADA strengthens the quality and capacities of the National Anti-Doping Agencies and that they work more efficiently with the international sports federations in an attempt to limit blood doping.
Collapse
Affiliation(s)
- Carsten Lundby
- Center for Integrative Human Physiology, Institute of Physiology, University of Zurich, Switzerland.
| | | | | |
Collapse
|