1
|
Kabak EC, Foo SL, Rafaeva M, Martin I, Bentires-Alj M. Microenvironmental Regulation of Dormancy in Breast Cancer Metastasis: "An Ally that Changes Allegiances". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:373-395. [PMID: 39821034 DOI: 10.1007/978-3-031-70875-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Breast cancer remission after treatment is sometimes long-lasting, but in about 30% of cases, there is a relapse after a so-called dormant state. Cellular cancer dormancy, the propensity of disseminated tumor cells (DTCs) to remain in a nonproliferative state for an extended period, presents an opportunity for therapeutic intervention that may prevent reawakening and the lethal consequences of metastatic outgrowth. Therefore, identification of dormant DTCs and detailed characterization of cancer cell-intrinsic and niche-specific [i.e., tumor microenvironment (TME) mediated] mechanisms influencing dormancy in different metastatic organs are of great importance in breast cancer. Several microenvironmental drivers of DTC dormancy in metastatic organs, such as the lung, bone, liver, and brain, have been identified using in vivo models and/or in vitro three-dimensional culture systems. TME induction and persistence of dormancy in these organs are mainly mediated by signals from immune cells, stromal cells, and extracellular matrix components of the TME. Alterations of the TME have been shown to reawaken dormant DTCs. Efforts to capitalize on these findings often face translational challenges due to limited availability of representative patient samples and difficulty in designing dormancy-targeting clinical trials. In this chapter, we discuss current approaches to identify dormant DTCs and provide insights into cell-extrinsic (i.e., TME) mechanisms driving breast cancer cell dormancy in distant organs.
Collapse
Affiliation(s)
- Evrim Ceren Kabak
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sok Lin Foo
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Maria Rafaeva
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Wang Y, Nong J, Lu B, Gao Y, Hu M, Chen C, Zhang L, Tan J, Yang X, Lin PP, Hu X, Zhang T. Disseminated tumor cells in bone marrow as predictive classifiers for small cell lung cancer patients. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:335-345. [PMID: 39735446 PMCID: PMC11674436 DOI: 10.1016/j.jncc.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 12/31/2024] Open
Abstract
Background Small cell lung cancer (SCLC) is a highly aggressive disease characterized by early metastasis. Aneuploid CD31- disseminated tumor cells (DTCs) and CD31+ disseminated tumor endothelial cells (DTECs) residing in the bone marrow are generally considered as the initiators of metastatic process. However, the clinical significance of DTCs and DTECs in SCLC remains poorly understood. The aim of this study is to investigate the clinical implications of diverse subtypes of highly heterogeneous DTCs and DTECs in SCLC patients. Methods Subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) was applied to enrich and perform comprehensive morphologic, karyotypic, and phenotypic characterization of aneuploid DTCs and DTECs in 30 patients. Additionally, co-detection of circulating tumor cells (CTCs) and circulating tumor endothelial cells (CTECs) was conducted on 24 of the enrolled patients. Proof-of-concept of the whole exon sequencings (WES) on precisely selected different subtypes of CTCs or DTCs, longitudinally detected from a representative case with pathologically confirmed bone marrow metastasis, was validated to feasibly reveal genetic mutations in these cells. Results DTCs, DTECs and their subtypes were readily detectable in SCLC patients. Comparative analysis revealed that the number of DTCs and DTECs was significantly higher than that of their corresponding CTCs and CTECs (P < 0.001 for both). Positive detection of disseminated tumor microemboli (DTM) or disseminated tumor endothelial microemboli (DTEM) was associated with inferior survival outcomes (P = 0.046 and P = 0.048). Patients with EpCAM+ DTCs detectable displayed significantly lower disease control rate (DCR) (16.67% vs 73.33%, P = 0.019), reduced median progression-free survival (mPFS) and median overall survival (mOS) compared with those with EpCAM- DTCs (P = 0.028 and P = 0.002, respectively). WES analysis indicated that post-treatment DTCs isolated from bone marrow at the time of disease progression shared more homologous somatic gene mutations with pre-treatment CTCs compared with post-treatment CTCs. Conclusions Our findings suggest that bone marrow sampling and characterization of DTC subtypes provided a valuable tool for predicting treatment response and the prognosis in SCLC. Moreover, DTCs inherit a greater amount of homologous somatic information from pre-treatment CTCs, indicating their potential role in disease progression and treatment resistance.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jingying Nong
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Baohua Lu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuan Gao
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Mingming Hu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Cen Chen
- The First School of Clinical Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lina Zhang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinjing Tan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaomei Yang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
- Joint Laboratory for Precision Diagnosis and Treatment Translational Research in Malignant Tumors, Gynecologic Oncology Basic and Clinical Research Laboratory, Capital Medical University, Beijing, China
| | | | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tongmei Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
So KWL, Su Z, Cheung JPY, Choi SW. Single-Cell Analysis of Bone-Marrow-Disseminated Tumour Cells. Diagnostics (Basel) 2024; 14:2172. [PMID: 39410576 PMCID: PMC11475990 DOI: 10.3390/diagnostics14192172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis frequently targets bones, where cancer cells from the primary tumour migrate to the bone marrow, initiating new tumour growth. Not only is bone the most common site for metastasis, but it also often marks the first site of metastatic recurrence. Despite causing over 90% of cancer-related deaths, effective treatments for bone metastasis are lacking, with current approaches mainly focusing on palliative care. Circulating tumour cells (CTCs) are pivotal in metastasis, originating from primary tumours and circulating in the bloodstream. They facilitate metastasis through molecular interactions with the bone marrow environment, involving direct cell-to-cell contacts and signalling molecules. CTCs infiltrate the bone marrow, transforming into disseminated tumour cells (DTCs). While some DTCs remain dormant, others become activated, leading to metastatic growth. The presence of DTCs in the bone marrow strongly correlates with future bone and visceral metastases. Research on CTCs in peripheral blood has shed light on their release mechanisms, yet investigations into bone marrow DTCs have been limited. Challenges include the invasiveness of bone marrow aspiration and the rarity of DTCs, complicating their isolation. However, advancements in single-cell analysis have facilitated insights into these elusive cells. This review will summarize recent advancements in understanding bone marrow DTCs using single-cell analysis techniques.
Collapse
Affiliation(s)
| | | | | | - Siu-Wai Choi
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (K.W.L.S.); (Z.S.); (J.P.Y.C.)
| |
Collapse
|
4
|
Volmer LL, Grube M, Rohner A, McAlpine JN, Talhouk A, Lum A, Matovina S, Kommoss S, Staebler A, Brucker SY, Walter CB. Prognostic Significance of Disseminated Tumor Cells in Bone Marrow for Endometrial Carcinoma Patients. J Clin Med 2024; 13:4489. [PMID: 39124757 PMCID: PMC11313439 DOI: 10.3390/jcm13154489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Until now, limited clinical significance had been reported for disseminated tumor cells (DTCs) in gynecologic malignancies. DTCs were previously reported not to be associated with established risk factors, L1CAM immunoreactivity, and outcome in endometrial carcinoma (EC). This study's primary objective was to investigate potential correlations of DTCs in the bone marrow (BM) of EC patients with disease-related survival, and a secondary objective was to evaluate associations between molecular classification of EC and DTCs. Methods: Patients treated for primary EC at Tuebingen University women's hospital between 2003 and 2016 were identified. A total of 402 patients with a complete set of BM cytology, molecular, and clinical data were evaluable. Results: DTC occurrence was distributed equally among all four molecular groups (p = 0.651). DTC positivity was associated with a less favorable disease-free survival (HR: 1.86, 95% CI: 1.03-3.36, p = 0.036) and progression-free survival (HR: 1.86, 95% CI: 1.01-3.44, p = 0.045). Presence of DTCs was associated with a higher frequency of distant disease recurrence (p = 0.017). Conclusions: In line with our previous findings, tumor cell dissemination is not associated with molecular features in our large cohort of primary EC patients. Since DTCs seem to be associated with survival and location of disease recurrence, further studies are needed to decisively define their role in EC survival.
Collapse
Affiliation(s)
- Léa Louise Volmer
- Department of Women’s Health, Tübingen University, 72074 Tübingen, Germany (S.Y.B.)
| | - Marcel Grube
- Women’s Hospital, Diakonie-Klinikum, 74523 Schwäbisch Hall, Germany
| | - Annika Rohner
- Department of Women’s Health, Tübingen University, 72074 Tübingen, Germany (S.Y.B.)
| | - Jessica Nell McAlpine
- Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aline Talhouk
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada (A.L.)
| | - Amy Lum
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada (A.L.)
| | - Sabine Matovina
- Department of Women’s Health, Tübingen University, 72074 Tübingen, Germany (S.Y.B.)
| | - Stefan Kommoss
- Women’s Hospital, Diakonie-Klinikum, 74523 Schwäbisch Hall, Germany
| | - Annette Staebler
- Institute of Pathology, Tübingen University, 72074 Tübingen, Germany
| | - Sara Yvonne Brucker
- Department of Women’s Health, Tübingen University, 72074 Tübingen, Germany (S.Y.B.)
| | | |
Collapse
|
5
|
Liu R, Zhao Y, Su S, Kwabil A, Njoku PC, Yu H, Li X. Unveiling cancer dormancy: Intrinsic mechanisms and extrinsic forces. Cancer Lett 2024; 591:216899. [PMID: 38649107 DOI: 10.1016/j.canlet.2024.216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Tumor cells disseminate in various distant organs at early stages of cancer progression. These disseminated tumor cells (DTCs) can stay dormant/quiescent without causing patient symptoms for years or decades. These dormant tumor cells survive despite curative treatments by entering growth arrest, escaping immune surveillance, and/or developing drug resistance. However, these dormant cells can reactivate to proliferate, causing metastatic progression and/or relapse, posing a threat to patients' survival. It's unclear how cancer cells maintain dormancy and what triggers their reactivation. What are better approaches to prevent metastatic progression and relapse through harnessing cancer dormancy? To answer these remaining questions, we reviewed the studies of tumor dormancy and reactivation in various types of cancer using different model systems, including the brief history of dormancy studies, the intrinsic characteristics of dormant cells, and the external cues at the cellular and molecular levels. Furthermore, we discussed future directions in the field and the strategies for manipulating dormancy to prevent metastatic progression and recurrence.
Collapse
Affiliation(s)
- Ruihua Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Augustine Kwabil
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Prisca Chinonso Njoku
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Haiquan Yu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
6
|
Li H, Sui T, Chen X, Gu Y, Luo X, Liu Y, He Q. Screening and identification of serum exosomal protein ZNF587B in liquid biopsy for ovarian cancer diagnosis. Am J Cancer Res 2024; 14:1904-1913. [PMID: 38726286 PMCID: PMC11076262 DOI: 10.62347/rbtm1834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
Addressing the critical challenge of early ovarian cancer (OC) detection, our study focuses on identifying novel biomarkers by analyzing preoperative peripheral blood exosomes from high-grade serous ovarian cancer (HGSC) patients and healthy controls. Utilizing high-performance liquid chromatography-mass spectrometry-based quantitative proteomics, we isolated and analyzed peripheral blood exosomes to identify differentially expressed proteins (DEPs). This comprehensive analysis, supported by gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) database assessments, revealed 28 proteins with decreased abundance and 33 with increased abundance in HGSC patients compared to controls. Notably, Zinc Finger Protein 587B (ZNF587B) exhibited a significant reduction in abundance, confirmed by decreased mRNA and protein levels in HGSC and normal ovarian tissues, consistent with omes exosomal protein expression levels. Immunohistochemical staining further confirmed reduced ZNF587B protein levels in HGSC tissues. The significant correlation between ZNF587B expression levels and tumor stage underscores its potential as a valuable biomarker for early liquid biopsy screening of OC. Our findings suggest ZNF587B plays a crucial role in early HGSC detection, highlighting the importance of further research to validate its clinical utility and improve ovarian cancer patient outcomes.
Collapse
Affiliation(s)
- Hu Li
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghai 201204, China
| | - Tiantian Sui
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghai 201204, China
| | - Xiaoxiao Chen
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghai 201204, China
| | - Yanqiong Gu
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghai 201204, China
| | - Xuezhen Luo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
| | - Yiyao Liu
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghai 201204, China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji UniversityShanghai 201204, China
| |
Collapse
|
7
|
Murray NP. Biomarkers of minimal residual disease and treatment. Adv Clin Chem 2024; 119:33-70. [PMID: 38514211 DOI: 10.1016/bs.acc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Minimal residual disease (MRD) has been defined as a very small numbers of cancer cells that remain in the body after curative treatment. Its presence or absence will ultimately determine prognosis. With the introduction of new technologies the presence of MRD in patients with solid tumours can be detected and characterized. As MRD predicts future relapse, be it early or late treatment failure, in an otherwise asymptomatic patient its treatment and when to start treatment remains to be determined. Thus the concepts of personalized medicine using different biomarkers to classify the biological properties of MRD maybe come possible. Based on this determinations it may be possible to use targeted therapies rather than all patients with the same type of cancer receiving a standard treatment. However, it is important to understand the limitations of the different technologies, what these techniques are detecting and how they may help in the treatment of patients with cancer. The majority of published studies are in patients with metastatic cancer and there are few reports in patients with MRD. In this chapter the concept of MRD, the methods used to detect it and what treatments may be effective based on the biological characteristics of the tumour cells as determined by different biomarkers is reviewed. MRD depends on the phenotypic properties of the tumour cells to survive in their new environment and the anti-tumour immune response. This is a dynamic process and changes with time in the wake of immunosuppression caused by the tumour cells and/or the effects of treatment to select resistant tumour cells. With the use of biomarkers to typify the characteristics of MRD and the development of new drugs a personalized treatment can be designed rather than all patients given the same treatment. Patients who are initially negative for MRD may not require further treatment with liquid biopsies used to monitor the patients during follow-up in order to detect those patients who may become MRD positive. The liquid biopsy used during the follow up of MRD positive patients can be used to detect changes in the biological properties of the tumour cells and thus may need treatment changes to overcome tumour cell resistance.
Collapse
Affiliation(s)
- Nigel P Murray
- Minimal Residual Disease Laboratory, Faculty of Medicine, University Finis Terrae, Santiago, Chile.
| |
Collapse
|
8
|
Abstract
Abstract
Matrix metalloproteinase-2 (MMP-2) is a gelatinase and is involved in multiple steps of the metastatic cascade. More than a decade ago an increased expression of MMP-2 in tumour cells or higher serum levels was reported to be a prognostic biomarker for a lower disease-free and overall survival rate. In recent years new evidence has indicated that MMP-2 has an important role in the tumour ecosystem. It is one of the many players in the onco-sphere, involved in interacting between tumour cells, host cells and the microenvironment. It plays a role in the dissemination of tumour cells, the epithelial–mesenchymal and mesenchymal–epithelial transitions, the formation of the pre-metastatic and metastatic niches, dormancy of tumour cells and modulating the immune system. The aim of this review is to highlight these multiple roles in the metastatic cascade and how many signalling pathways can up or down-regulate MMP-2 activity in the different stages of cancer progression and the effect of MMP-2 on the onco-sphere. Research in head and neck cancer is used as an example of these processes. The use of non-specific MMP inhibitors has been unsuccessful showing only limited benefits and associated with high toxicity as such that none have progressed past Phase III trials. Preclinical trials are undergoing using antibodies directed against specific matrix metalloproteinases, these targeted therapies may be potentially less toxic to the patients.
Collapse
Affiliation(s)
- Nigel P. Murray
- Minimal Residual Disease Laboratory, Faculty of Medicine , University Finis Terrae , Santiago , Chile
- Department of Haematology , Hospital de Carabineros de Chile , Santiago , Chile
| |
Collapse
|
9
|
Volmer LL, Önder CE, Volz B, Singh AR, Brucker SY, Engler T, Hartkopf AD, Koch A. Microfluidic Isolation of Disseminated Tumor Cells from the Bone Marrow of Breast Cancer Patients. Int J Mol Sci 2023; 24:13930. [PMID: 37762233 PMCID: PMC10531360 DOI: 10.3390/ijms241813930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Disseminated tumor cells (DTCs) in the bone marrow (BM) of breast cancer (BC) patients are putative precursors of metastatic disease, and their presence is associated with an adverse clinical outcome. To achieve the personalization of therapy on a clinical routine level, the characterization of DTCs and in vitro drug testing on DTCs are of great interest. Therefore, biobanking methods, as well as novel approaches to DTC isolation, need to be developed. In this study, we established a protocol for the biobanking of BM samples and evaluated a microfluidic-based separation system (Parsortix®) for the enrichment of cryopreserved DTCs. We were able to successfully isolate viable DTCs after the prior cryopreservation of BM samples. We calculated a significant increase of up to 90-fold in harvested DTCs with the proposed method compared to the current standard techniques, opening up new analysis possibilities for DTCs. Our advanced method further presents options for 3D DTC cultures, enabling the individualized testing of targeted therapies for BC patients. In conclusion, we present a novel approach for DTC enrichment, with possibilities for future clinical implications.
Collapse
Affiliation(s)
- Léa L. Volmer
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Cansu E. Önder
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Barbara Volz
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Anjali R. Singh
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Sara Y. Brucker
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias Engler
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas D. Hartkopf
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
- Department of Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| | - André Koch
- Research Institute for Women’s Health, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Böckelmann LC, Freytag V, Ahlers AK, Maar H, Gosau T, Baranowsky A, Schmitz R, Pantel K, Schumacher U, Haider MT, Lange T. Efficacy of zoledronic acid for the elimination of disseminated tumor cells in a clinically relevant, spontaneously metastatic prostate cancer xenograft model. Bone 2023; 171:116741. [PMID: 36934984 DOI: 10.1016/j.bone.2023.116741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/01/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Bone metastases develop in >90 % of patients with castration-resistant prostate cancer (PCa) through complex interactions between the bone microenvironment and tumor cells. Previous androgen-deprivation therapy (ADT), which is known to cause bone loss, as well as anti-resorptive agents such as zoledronic acid (ZA), used to prevent skeletal complications, may influence these interactions and thereby the growth of disseminated tumor cells (DTC) in the bone marrow (BM). Here, a spontaneously metastatic xenograft tumor model of human PCa was further optimized to mimic the common clinical situation of ADT (castration) combined with primary tumor resection in vivo. The effects of these interventions, alone or in combination with ZA treatment, on tumor cell dissemination to the BM and other distant sites were analyzed. Metastatic burden was quantified by human-specific Alu-qPCR, bioluminescence imaging (BLI), and immunohistochemistry. Further, bone remodeling was assessed by static histomorphometry and serum parameters. Initial comparative analysis between NSG and SCID mice showed that spontaneous systemic dissemination of subcutaneous PC-3 xenograft tumors was considerably enhanced in NSG mice. Primary tumor resection and thereby prolonged observational periods resulted in a higher overall metastatic cell load at necropsy and tumor growth alone caused significant bone loss, which was further augmented by surgical castration. In addition, castrated mice showed a strong trend towards higher bone metastasis loads. Weekly treatment of mice with ZA completely prevented castration- and tumor-induced bone loss but had no effect on bone metastasis burden. Conversely, the total lung metastasis load as determined by BLI was significantly decreased upon ZA treatment. These findings provide a basis for future research on the role of ZA not only in preventing skeletal complications but also in reducing metastasis to other organs.
Collapse
Affiliation(s)
- Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Oncology, Hematology and Bone Marrow Transplantation, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vera Freytag
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Kristin Ahlers
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Anatomy I, Cancer Center Central Germany, Jena University Hospital, Jena, Germany
| | - Tobias Gosau
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rüdiger Schmitz
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Therese Haider
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Anatomy I, Cancer Center Central Germany, Jena University Hospital, Jena, Germany.
| |
Collapse
|
11
|
Einoch Amor R, Levy J, Broza YY, Vangravs R, Rapoport S, Zhang M, Wu W, Leja M, Behar JA, Haick H. Liquid Biopsy-Based Volatile Organic Compounds from Blood and Urine and Their Combined Data Sets for Highly Accurate Detection of Cancer. ACS Sens 2023; 8:1450-1461. [PMID: 36926819 DOI: 10.1021/acssensors.2c02422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Liquid biopsy is seen as a prospective tool for cancer screening and tracking. However, the difficulty lies in effectively sieving, isolating, and overseeing cancer biomarkers from the backdrop of multiple disrupting cells and substances. The current study reports on the ability to perform liquid biopsy without the need to physically filter and/or isolate the cancer cells per se. This has been achieved through the detection and classification of volatile organic compounds (VOCs) emitted from the cancer cells found in the headspace of blood or urine samples or a combined data set of both. Spectrometric analysis shows that blood and urine contain complementary or overlapping VOC information on kidney cancer, gastric cancer, lung cancer, and fibrogastroscopy subjects. Based on this information, a nanomaterial-based chemical sensor array in conjugation with machine learning as well as data fusion of the signals achieved was carried out on various body fluids to assess the VOC profiles of cancer. The detection of VOC patterns by either Gas Chromatography-Mass Spectrometry (GC-MS) analysis or our sensor array achieved >90% accuracy, >80% sensitivity, and >80% specificity in different binary classification tasks. The hybrid approach, namely, analyzing the VOC datasets of blood and urine together, contributes an additional discrimination ability to the improvement (>3%) of the model's accuracy. The contribution of the hybrid approach for an additional discrimination ability to the improvement of the model's accuracy is examined and reported.
Collapse
Affiliation(s)
- Reef Einoch Amor
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jeremy Levy
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering and Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga LV-1004, Latvia.,Department of Research, Riga East University Hospital, Digestive Diseases Centre GASTRO, Riga 1586, Latvia
| | - Shelley Rapoport
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga LV-1004, Latvia.,Department of Research, Riga East University Hospital, Digestive Diseases Centre GASTRO, Riga 1586, Latvia
| | - Joachim A Behar
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering and Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
12
|
Lu L, Hu W, Liu B, Yang T. Insights into Circulating Tumor Cell Clusters: A Barometer for Treatment Effects and Prognosis for Prostate Cancer Patients. Cancers (Basel) 2022; 14:cancers14163985. [PMID: 36010983 PMCID: PMC9406494 DOI: 10.3390/cancers14163985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) are a promising biomarker for the risk of prostate cancer aggressiveness and metastasis and play a role in the processes of tumor migration and metastasis. CTC clusters, which have different physical and biological properties from individual CTCs, are collections of tumor cells and non-malignant cells, resulting in greater metastatic potential. Therefore, this review aims to summarize the current knowledge of CTC clusters in metastasis as well as related biological properties and to suggest possibilities for their usage in diagnostic and therapeutic practice. Abstract Prostate cancer (PCa) exhibits high cellular heterogeneity across patients. Therefore, there is an urgent need for more real-time and accurate detection methods, in both prognosis and treatment in clinical settings. Circulating tumor cell (CTC) clusters, a population of tumor cells and non-malignant cells in the blood of patients with tumors, are a promising non-invasive tool for screening PCa progression and identifying potential benefit groups. CTC clusters are associated with tumor metastasis and possess stem-like characteristics, which are likely attributable to epithelial–mesenchymal transition (EMT). Additionally, these biological properties of CTC clusters, particularly androgen receptor V7, have indicated the potential to reflect curative effects, guide treatment modalities, and predict prognosis in PCa patients. Here, we discuss the role of CTC clusters in the mechanisms underlying PCa metastasis and clinical applications, with the aim of informing more appropriate clinical decisions, and ultimately, improving the overall survival of PCa patients.
Collapse
Affiliation(s)
- Linyao Lu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Wei Hu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Bingli Liu
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai 201299, China
- Correspondence: (B.L.); (T.Y.); Tel./Fax: +86-21-2050-9000 (B.L.); +86-21-6803-6506 (T.Y.)
| | - Tao Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Correspondence: (B.L.); (T.Y.); Tel./Fax: +86-21-2050-9000 (B.L.); +86-21-6803-6506 (T.Y.)
| |
Collapse
|
13
|
Gužvić M, Engelmann S, Burger M, Mayr R. [Disseminated tumour cells in bladder cancer]. UROLOGIE (HEIDELBERG, GERMANY) 2022; 61:728-733. [PMID: 35925248 DOI: 10.1007/s00120-022-01849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Molecular analysis of disseminated tumour cells (DTC) may aid in predicting the course of the disease and response to therapies in individual patients. It has been shown in bladder cancer and many other cancer types that the presence of disseminated tumour cells or occult micrometastases in bone marrow or lymph nodes is associated with shorter survival. This type of analysis is particularly important for patients who have been declared disease-free after postsurgery histopathological and clinical imaging analysis. However, comprehensive molecular analysis of disseminated tumour cells is challenging due to the low amount of material and great heterogeneity of the disease. Therefore, currently the routine molecular analysis of these cells is hardly possible in daily clinical practice. Nevertheless, we see daily advances in clinical utility of analysis of cellular or cell-free liquid biopsy analytes taken before, during or after surgery. These advances will enable an integration of translational research workflows into clinical decision-making.
Collapse
Affiliation(s)
- Miodrag Gužvić
- Lehrstuhl für Urologie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Simon Engelmann
- Klinik für Urologie, Universität Regensburg, Caritas-Krankenhaus St. Josef, Landshuter Str. 65, 93053, Regensburg, Deutschland
| | - Maximilian Burger
- Lehrstuhl für Urologie, Universitätsklinikum Regensburg, Regensburg, Deutschland
- Klinik für Urologie, Universität Regensburg, Caritas-Krankenhaus St. Josef, Landshuter Str. 65, 93053, Regensburg, Deutschland
| | - Roman Mayr
- Lehrstuhl für Urologie, Universitätsklinikum Regensburg, Regensburg, Deutschland.
- Klinik für Urologie, Universität Regensburg, Caritas-Krankenhaus St. Josef, Landshuter Str. 65, 93053, Regensburg, Deutschland.
| |
Collapse
|
14
|
Buschhaus JM, Rajendran S, Humphries BA, Cutter AC, Muñiz AJ, Ciavattone NG, Buschhaus AM, Cañeque T, Nwosu ZC, Sahoo D, Bevoor AS, Shah YM, Lyssiotis CA, Ghosh P, Wicha MS, Rodriguez R, Luker GD. Effects of iron modulation on mesenchymal stem cell-induced drug resistance in estrogen receptor-positive breast cancer. Oncogene 2022; 41:3705-3718. [PMID: 35732800 PMCID: PMC9288981 DOI: 10.1038/s41388-022-02385-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 01/03/2023]
Abstract
Patients with estrogen receptor-positive (ER+) breast cancer, the most common subtype, remain at risk for lethal metastatic disease years after diagnosis. Recurrence arises partly because tumor cells in bone marrow become resistant to estrogen-targeted therapy. Here, we utilized a co-culture model of bone marrow mesenchymal stem cells (MSCs) and ER+ breast cancer cells to recapitulate interactions of cancer cells in bone marrow niches. ER+ breast cancer cells in direct contact with MSCs acquire cancer stem-like (CSC) phenotypes with increased resistance to standard antiestrogenic drugs. We confirmed that co-culture with MSCs increased labile iron in breast cancer cells, a phenotype associated with CSCs and disease progression. Clinically approved iron chelators and in-house lysosomal iron-targeting compounds restored sensitivity to antiestrogenic therapy. These findings establish iron modulation as a mechanism to reverse MSC-induced drug resistance and suggest iron modulation in combination with estrogen-targeted therapy as a promising, translatable strategy to treat ER+ breast cancer.
Collapse
Affiliation(s)
- Johanna M Buschhaus
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Shrila Rajendran
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Brock A Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Alyssa C Cutter
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ayşe J Muñiz
- Macromolecular Science and Engineering and Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109-2200, USA
| | - Nicholas G Ciavattone
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Alexander M Buschhaus
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Tatiana Cañeque
- Institut Curie, Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, PSL Research University, Paris, France
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Debashis Sahoo
- Pediatrics, and Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Avinash S Bevoor
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pradipta Ghosh
- Departments of Medicine and Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Max S Wicha
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Raphaël Rodriguez
- Institut Curie, Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, PSL Research University, Paris, France
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA.
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
15
|
Gül D, Schweitzer A, Khamis A, Knauer SK, Ding GB, Freudelsperger L, Karampinis I, Strieth S, Hagemann J, Stauber RH. Impact of Secretion-Active Osteoblast-Specific Factor 2 in Promoting Progression and Metastasis of Head and Neck Cancer. Cancers (Basel) 2022; 14:2337. [PMID: 35565465 PMCID: PMC9106029 DOI: 10.3390/cancers14092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment success of head and neck cancer (HNC) is still hampered by tumor relapse due to metastases. Our study aimed to identify biomarkers by exploiting transcriptomics profiles of patient-matched metastases, primary tumors, and normal tissue mucosa as well as the TCGA HNC cohort data sets. Analyses identified osteoblast-specific factor 2 (OSF-2) as significantly overexpressed in lymph node metastases and primary tumors compared to normal tissue. High OSF-2 levels correlate with metastatic disease and reduced overall survival of predominantly HPV-negative HNC patients. No significant correlation was observed with tumor localization or therapy response. These findings were supported by the fact that OSF-2 expression was not elevated in cisplatin-resistant HNC cell lines. OSF-2 was strongly expressed in tumor-associated fibroblasts, suggesting a tumor microenvironment-promoting function. Molecular cloning and expression studies of OSF-2 variants from patients identified an evolutionary conserved bona fide protein secretion signal (1MIPFLPMFSLLLLLIVNPINA21). OSF-2 enhanced cell migration and cellular survival under stress conditions, which could be mimicked by the extracellular administration of recombinant protein. Here, OSF-2 executes its functions via ß1 integrin, resulting in the phosphorylation of PI3K and activation of the Akt/PKB signaling pathway. Collectively, we suggest OSF-2 as a potential prognostic biomarker and drug target, promoting metastases by supporting the tumor microenvironment and lymph node metastases survival rather than by enhancing primary tumor proliferation or therapy resistance.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Andrea Schweitzer
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Aya Khamis
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, El Azareta, Alexandria, Egypt
| | - Shirley K. Knauer
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Universitätsstraße, 45117 Essen, Germany;
| | - Guo-Bin Ding
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| | - Laura Freudelsperger
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Ioannis Karampinis
- Academic Thoracic Center, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany;
| | - Jan Hagemann
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| |
Collapse
|
16
|
Richter F, Röder C, Möller T, Egberts JH, Becker T, Sebens S. Detection of Circulating and Disseminated Tumor Cells and Their Prognostic Value under the Influence of Neoadjuvant Therapy in Esophageal Cancer Patients. Cancers (Basel) 2022; 14:cancers14051279. [PMID: 35267585 PMCID: PMC8909540 DOI: 10.3390/cancers14051279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Esophageal cancer (EC) has a poor prognosis and a high mortality rate. This study investigated the expression of CK20 and DEFA5, markers being associated with circulating (CTC) and disseminated tumor cells (DTC), in blood and bone marrow (BM) of EC patients, and correlated positivity rates with clinical data to assess the prognostic impact. Both markers were detected in blood and BM of EC patients and the control cohort so that a cut-off value was determined to define marker positivity for correlation with clinical parameters. CK20 and DEFA5 positivity in liquid biopsies of EC patients did not correlate with overall survival (OS). However, CK20 positivity in BM and DEFA5 negativity in blood were associated with reduced OS in patients without neoadjuvant therapy. In patients with neoadjuvant therapy, DEFA5 positivity in BM was associated with improved OS, pointing to the potential of DEFA5 as a prognostic biomarker in liquid biopsies of EC patients. Abstract Detection of circulating (CTC) or disseminated tumor cells (DTC) are correlated with negative prognosis in esophageal cancer (EC) patients. In this study, DTC- and CTC-associated markers CK20 and DEFA5 were determined by RT-PCR in EC patients and correlated with clinical parameters to determine their prognostic impact. The blood and bone marrow (BM) of 216 EC patients after tumor resection with or without neoadjuvant therapy and as control blood samples from 38 healthy donors and BM from 24 patients with non-malignant diseases were analyzed. Both markers were detected in blood and BM of EC patients and the control cohort. A cut-off value was determined to define marker positivity for correlation with clinical data. CK20 expression was detected in 47/206 blood samples and in 49/147 BM samples of EC patients. DEFA5 positivity was determined in 96/206 blood samples and 98/147 BM samples, not correlating with overall survival (OS). However, CK20 positivity in BM and DEFA5 negativity in blood were associated with reduced OS in EC patients without neoadjuvant therapy, while in patients with neoadjuvant therapy DEFA5 positivity in BM was associated with improved OS. Overall, our study suggests DEFA5 as a prognostic biomarker in liquid biopsies of EC patients which requires further validation.
Collapse
Affiliation(s)
- Florian Richter
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (F.R.); (T.M.); (T.B.)
| | - Christian Röder
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany;
| | - Thorben Möller
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (F.R.); (T.M.); (T.B.)
| | | | - Thomas Becker
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (F.R.); (T.M.); (T.B.)
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University (CAU) and University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany;
- Correspondence: ; Tel.: +49-431-500-30501
| |
Collapse
|
17
|
Kan T, Zhang S, Zhou S, Zhang Y, Zhao Y, Gao Y, Zhang T, Gao F, Wang X, Zhao L, Yang M. Single-cell RNA-seq recognized the initiator of epithelial ovarian cancer recurrence. Oncogene 2022; 41:895-906. [PMID: 34992217 DOI: 10.1038/s41388-021-02139-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
Epithelial ovarian cancers (EOCs) are sensitive to chemotherapy but will ultimately relapse and develop drug resistance. The origin of EOC recurrence has been elusive due to intra-tumor heterogeneity. Here we performed single-cell RNA sequencing (scRNA-seq) in 13,369 cells from primary, untreated peritoneal metastasis, and relapse tumors. We used time-resolved analysis to chart the developmental sequence of cells from the metastatic tumors, then traced the earliest replanting cells back to the primary tumors. We discovered seven distinct subpopulations in primary tumors where the CYR61+ "stress" subpopulation was identified as the relapse-initiators. Furthermore, a subpopulation of RGS5+ cancer-associated fibroblasts (CAFs) was found to strongly support tumor metastasis. The combined CYR61/RGS5 expression scores significantly correlated with the relapse-free-survival of EOC patients and can be used as predictors of EOC recurrence. Our study provides insights into the mechanism of EOC recurrence and presents CYR61+ relapse-initiating cells as potential therapeutic targets to prevent EOC relapse.
Collapse
Affiliation(s)
- Tongtong Kan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Shupeng Zhang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Zhang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Yun Zhao
- Department of Pathology, Taian Tumor Prevention and Treatment Hospital, Taian, China
| | - Yinghua Gao
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Feng Gao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
- Key Laboratory of Biochip Technology, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
18
|
Ling Z, Yang C, Tan J, Dou C, Chen Y. Beyond immunosuppressive effects: dual roles of myeloid-derived suppressor cells in bone-related diseases. Cell Mol Life Sci 2021; 78:7161-7183. [PMID: 34635950 PMCID: PMC11072300 DOI: 10.1007/s00018-021-03966-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells (IMCs) with immunosuppressive functions, whereas IMCs originally differentiate into granulocytes, macrophages, and dendritic cells (DCs) to participate in innate immunity under steady-state conditions. At present, difficulties remain in identifying MDSCs due to lacking of specific biomarkers. To make identification of MDSCs accurately, it also needs to be determined whether having immunosuppressive functions. MDSCs play crucial roles in anti-tumor, angiogenesis, and metastasis. Meanwhile, MDSCs could make close interaction with osteoclasts, osteoblasts, chondrocytes, and other stromal cells within microenvironment of bone and joint, and thereby contributing to poor prognosis of bone-related diseases such as cancer-related bone metastasis, osteosarcoma (OS), rheumatoid arthritis (RA), osteoarthritis (OA), and orthopedic trauma. In addition, MDSCs have been shown to participate in the procedure of bone repair. In this review, we have summarized the function of MDSCs in cancer-related bone metastasis, the interaction with stromal cells within the bone microenvironment as well as joint microenvironment, and the critical role of MDSCs in bone repair. Besides, the promising value of MDSCs in the treatment for bone-related diseases is also well discussed.
Collapse
Affiliation(s)
- Zhiguo Ling
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiulin Tan
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ce Dou
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueqi Chen
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
19
|
Murray NP, Villalon R, Hartmann D, Rodriguez MP, Aedo S. Improvement in immune dysfunction after FOLFOX chemotherapy for Stage III colon cancer is associated with improved minimal residual disease prognostic subtype and outcome. Colorectal Dis 2021; 23:2879-2893. [PMID: 34473913 DOI: 10.1111/codi.15899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022]
Abstract
AIM Minimal residual disease (MRD) is the net result of the biological properties of disseminated tumour cells and the effect of the immune system and treatment to eliminate them. The aim of this work is to report the changes in MRD status and immune function (lymphocyte count) after FOLFOX chemotherapy, and the outcome in Stage III colon cancer patients. METHOD This study is a prospective, single-centre observational study. Lymphocyte counts were determined prior to and 1, 2 and 3 months after the completion of chemotherapy. Circulating tumour cells (CTCs) and bone marrow micrometastases were determined using immunocytochemistry with anticarcinoembryonic antigen prior to and 1 month after chemotherapy. MRD was classified as negative (Group I), micrometastasis positive only (Group II) and CTC positive (Group III). Changes in lymphocyte counts and MRD subtype following chemotherapy and relapse-free progression were analysed. RESULTS Of the total of 185 patients, 83 (44.9%) relapsed. The risk of relapse significantly increased from Groups I to III (p < 0.001) and with decreasing lymphocyte count (p < 0.01). The lymphocyte count significantly decreased from Groups I to III (p < 0.001). Multivariance Cox regression analysis showed hazard ratios of 3.58 (Group II), 17.43 (Group III) and 0.39 (lymphocyte count) in predicting relapse. Following chemotherapy, improved lymphocyte count was associated with improved MRD subtype (p < 0.0001). Neither baseline lymphocyte count nor MRD subtype predicted response to chemotherapy. Five-year relapse-free survival for combined lymphocyte-MRD subtypes was 95%, 57% and 5% for Groups I to III, respectively (p < 0.001). CONCLUSION Following chemotherapy, improvements in immune function were associated with improved MRD subtype and a better relapse-free survival.
Collapse
Affiliation(s)
- Nigel P Murray
- Servicio de Medicina, Hospital de Carabineros de Chile, Santiago, Chile.,Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | - Ricardo Villalon
- Servicio de Coloproctologia, Hospital de Carabineros de Chile, Santiago, Chile
| | - Dan Hartmann
- Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | | | - Socrates Aedo
- Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
20
|
Lazic D, Kromp F, Rifatbegovic F, Repiscak P, Kirr M, Mivalt F, Halbritter F, Bernkopf M, Bileck A, Ussowicz M, Ambros IM, Ambros PF, Gerner C, Ladenstein R, Ostalecki C, Taschner-Mandl S. Landscape of Bone Marrow Metastasis in Human Neuroblastoma Unraveled by Transcriptomics and Deep Multiplex Imaging. Cancers (Basel) 2021; 13:cancers13174311. [PMID: 34503120 PMCID: PMC8431445 DOI: 10.3390/cancers13174311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
While the bone marrow attracts tumor cells in many solid cancers leading to poor outcome in affected patients, comprehensive analyses of bone marrow metastases have not been performed on a single-cell level. We here set out to capture tumor heterogeneity and unravel microenvironmental changes in neuroblastoma, a solid cancer with bone marrow involvement. To this end, we employed a multi-omics data mining approach to define a multiplex imaging panel and developed DeepFLEX, a pipeline for subsequent multiplex image analysis, whereby we constructed a single-cell atlas of over 35,000 disseminated tumor cells (DTCs) and cells of their microenvironment in the metastatic bone marrow niche. Further, we independently profiled the transcriptome of a cohort of 38 patients with and without bone marrow metastasis. Our results revealed vast diversity among DTCs and suggest that FAIM2 can act as a complementary marker to capture DTC heterogeneity. Importantly, we demonstrate that malignant bone marrow infiltration is associated with an inflammatory response and at the same time the presence of immuno-suppressive cell types, most prominently an immature neutrophil/granulocytic myeloid-derived suppressor-like cell type. The presented findings indicate that metastatic tumor cells shape the bone marrow microenvironment, warranting deeper investigations of spatio-temporal dynamics at the single-cell level and their clinical relevance.
Collapse
Affiliation(s)
- Daria Lazic
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Florian Kromp
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
- Software Competence Center Hagenberg (SCCH), 4232 Hagenberg, Austria
| | - Fikret Rifatbegovic
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Peter Repiscak
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Michael Kirr
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (M.K.); (C.O.)
| | - Filip Mivalt
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Florian Halbritter
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Marie Bernkopf
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (C.G.)
| | - Marek Ussowicz
- Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow, Transplantation, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Inge M. Ambros
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Peter F. Ambros
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (A.B.); (C.G.)
| | - Ruth Ladenstein
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
| | - Christian Ostalecki
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (M.K.); (C.O.)
| | - Sabine Taschner-Mandl
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria; (D.L.); (F.K.); (F.R.); (P.R.); (F.M.); (F.H.); (M.B.); (I.M.A.); (P.F.A.); (R.L.)
- Correspondence: ; Tel.: +43-1-40470-4050
| |
Collapse
|
21
|
Wang X, Liu H, Liao X, Qiao L, Zhu L, Wu S, Zhou Y, Zhang Y, Li B, Lin L, Ma J, Gu Q, Shu J. Dissecting the Roles of LncRNAs in the Development of Periventricular White Matter Damage. Front Genet 2021; 12:641526. [PMID: 33995480 PMCID: PMC8120246 DOI: 10.3389/fgene.2021.641526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNA (LncRNA) has high expression in the brain. Animal studies have shown that lncRNA plays an important role in brain functions and mediates the development of many neurological diseases. However, data on the expression of lncRNAs and the clinical significance in prematurely born infants with diseases such as periventricular white matter damage (PWMD) remains scant. Here, we compared the expression of the lncRNAs in whole blood samples obtained from prematurely born infants with PWMD with samples from prematurely born infants without PWMD. Our data demonstrated differential expression of the lncRNAs between the two groups. Further, we showed that the lncRNAs play important roles in the development of PWMD. Our findings give insights into the functions of the lncRNAs in PWMD and provide evidence for the improvement of diagnostic and treatment strategies in infants with PWMD.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Heng Liu
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoli Liao
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lixing Qiao
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lihua Zhu
- Institute of Clinical, Jiangsu Health Vocational College, Nanjing, China
| | - Shun Wu
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yan Zhou
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yi Zhang
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bangbang Li
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lili Lin
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jingjing Ma
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Qianying Gu
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jiaping Shu
- Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
22
|
Murray NP. Immune dysfunction, minimal residual disease and patient outcome in nonmetastatic cancer: could modulation of immune function improve outcome? Future Oncol 2021; 17:1571-1575. [PMID: 33626930 DOI: 10.2217/fon-2020-1259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Nigel P Murray
- Head Circulating Tumour Cell Laboratory & Professor Haematology Faculty of Medicine, University Finis Terrae, Santiago, 7501015, Chile
| |
Collapse
|
23
|
Murray NP, Aedo S, Villalon R, Albarran V, Orrego S, Guzman E. Subtypes of minimal residual disease and outcome for stage II colon cancer treated by surgery alone. Ecancermedicalscience 2020; 14:1119. [PMID: 33209110 PMCID: PMC7652547 DOI: 10.3332/ecancer.2020.1119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Introduction Twenty-five percent of stage II colon cancer (CC) patients relapse within 5 years due to minimal residual disease (MRD) not eliminated by surgery. We hypothesise that subtypes of MRD, defined by circulating tumour cells (CTCs) and bone marrow micrometastasis (mM), have different types and kinetics of relapse. Methods and patients One month after surgery, blood and bone marrow samples were taken to detect CTCs and mM using immunocytochemistry with anti-carcinoembryonic antigen (CEA). Follow-up was for up to 5 years or relapse. Disease-free survival curves using Kaplan-Meier (DFS) and restricted mean disease-free survival times (RMST) were calculated for three prognostic groups: A: MRD (-), B: mM (+) CTC (-) MRD and C: CTC (+) MRD. Results One hundred and eighty-one patients (82 men) have participated, mean age was 68 years and median follow-up was 4.04 years (A (N = 105), B (N = 36) and C (N = 40)). For the whole cohort of 5 years, DFS was 70%, median DFS has not reached (Groups A: 98%, B: 63% and C: 7%) and median DFS for Groups A and B have not reached. RMST for the whole cohort of 4.1 years, Group A was 4.9 years, B was 4.1 years and C was 1.7 years. Serum CEA was significantly higher in Group C. No significant differences for sex, age or high-risk adverse prognostic factors between groups were detected. Conclusions MRD subtypes define relapse patterns and may be useful to define the risk of relapse in stage II CC patients, in which patients may benefit or not from additional therapy and warrants further studies with a larger number of patients.
Collapse
Affiliation(s)
- Nigel P Murray
- Servicio de Medicina, Hospital de Carabineros de Chile, Simón Bolívar 2200, Ñuñoa, Santiago 8370179, Chile.,Facultad de Medicina, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Providencia, Santiago 7501015, Chile
| | - Socrates Aedo
- Facultad de Medicina, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Providencia, Santiago 7501015, Chile
| | - Ricardo Villalon
- Servicio de Coloproctologia, Hospital de Carabineros de Chile, Simón Bolívar 2200, Ñuñoa, Santiago 8370179, Chile
| | - Vidal Albarran
- Servicio de Coloproctologia, Hospital de Carabineros de Chile, Simón Bolívar 2200, Ñuñoa, Santiago 8370179, Chile
| | - Shenda Orrego
- Faculty of Medicine, University Mayor, San Pio X 2422, Providencia, Santiago 7601003, Chile
| | - Eghon Guzman
- Faculty of Medicine, University Mayor, San Pio X 2422, Providencia, Santiago 7601003, Chile
| |
Collapse
|
24
|
Ombrato L, Montagner M. Technical Advancements for Studying Immune Regulation of Disseminated Dormant Cancer Cells. Front Oncol 2020; 10:594514. [PMID: 33251149 PMCID: PMC7672194 DOI: 10.3389/fonc.2020.594514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Metastases are a major cause of cancer-related death and despite the fact that they have been focus of intense research over the last two decades, effective therapies for patients with distant secondary lesions are still very limited. In addition, in some tumor types metastases can grow years after the patients have been declared clinically cured, indicating that disseminated cancer cells (DCCs) persist undetected for years, even decades in a quiescent state. Clinical and experimental data highlight the importance of the immune system in shaping the fitness and behaviour of DCCs. Here, we review mechanisms of survival, quiescence and outgrowth of DCCs with a special focus on immune-regulation and we highlight the latest cutting-edge techniques for modelling the biology of DCCs in vitro and for studying the metastatic niche in vivo. We believe that a wide dissemination of those techniques will boost scientific findings towards new therapies to defeat metastatic relapses in cancer patients.
Collapse
Affiliation(s)
- Luigi Ombrato
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Marco Montagner
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padua, Padua, Italy
| |
Collapse
|
25
|
Sistigu A, Musella M, Galassi C, Vitale I, De Maria R. Tuning Cancer Fate: Tumor Microenvironment's Role in Cancer Stem Cell Quiescence and Reawakening. Front Immunol 2020; 11:2166. [PMID: 33193295 PMCID: PMC7609361 DOI: 10.3389/fimmu.2020.02166] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cell dormancy is a common feature of human tumors and represents a major clinical barrier to the long-term efficacy of anticancer therapies. Dormant cancer cells, either in primary tumors or disseminated in secondary organs, may reawaken and relapse into a more aggressive disease. The mechanisms underpinning dormancy entry and exit strongly resemble those governing cancer cell stemness and include intrinsic and contextual cues. Cellular and molecular components of the tumor microenvironment persistently interact with cancer cells. This dialog is highly dynamic, as it evolves over time and space, strongly cooperates with intrinsic cell nets, and governs cancer cell features (like quiescence and stemness) and fate (survival and outgrowth). Therefore, there is a need for deeper insight into the biology of dormant cancer (stem) cells and the mechanisms regulating the equilibrium quiescence-versus-proliferation are vital in our pursuit of new therapeutic opportunities to prevent cancer from recurring. Here, we review and discuss microenvironmental regulations of cancer dormancy and its parallels with cancer stemness, and offer insights into the therapeutic strategies adopted to prevent a lethal recurrence, by either eradicating resident dormant cancer (stem) cells or maintaining them in a dormant state.
Collapse
Affiliation(s)
- Antonella Sistigu
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Martina Musella
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Galassi
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo (TO), Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| |
Collapse
|
26
|
Morris AH, Orbach SM, Bushnell GG, Oakes RS, Jeruss JS, Shea LD. Engineered Niches to Analyze Mechanisms of Metastasis and Guide Precision Medicine. Cancer Res 2020; 80:3786-3794. [PMID: 32409307 PMCID: PMC7501202 DOI: 10.1158/0008-5472.can-20-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/04/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
Cancer metastasis poses a challenging problem both clinically and scientifically, as the stochastic nature of metastatic lesion formation introduces complexity for both early detection and the study of metastasis in preclinical models. Engineered metastatic niches represent an emerging approach to address this stochasticity by creating bioengineered sites where cancer can preferentially metastasize. As the engineered niche captures the earliest metastatic cells at a nonvital location, both noninvasive and biopsy-based monitoring of these sites can be performed routinely to detect metastasis early and monitor alterations in the forming metastatic niche. The engineered metastatic niche also provides a new platform technology that serves as a tunable site to molecularly dissect metastatic disease mechanisms. Ultimately, linking the engineered niches with advances in sensor development and synthetic biology can provide enabling tools for preclinical cancer models and fosters the potential to impact the future of clinical cancer care.
Collapse
Affiliation(s)
- Aaron H Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Sophia M Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Grace G Bushnell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
27
|
Mentis AFA, Grivas PD, Dardiotis E, Romas NA, Papavassiliou AG. Circulating tumor cells as Trojan Horse for understanding, preventing, and treating cancer: a critical appraisal. Cell Mol Life Sci 2020; 77:3671-3690. [PMID: 32333084 PMCID: PMC11104835 DOI: 10.1007/s00018-020-03529-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Circulating tumor cells (CTCs) are regarded as harbingers of metastases. Their ability to predict response to therapy, relapse, and resistance to treatment has proposed their value as putative diagnostic and prognostic indicators. CTCs represent one of the zeniths of cancer evolution in terms of cell survival; however, the triggers of CTC generation, the identification of potentially metastatic CTCs, and the mechanisms contributing to their heterogeneity and aggressiveness represent issues not yet fully deciphered. Thus, prior to enabling liquid biopsy applications to reach clinical prime time, understanding how the above mechanistic information can be applied to improve treatment decisions is a key challenge. Here, we provide our perspective on how CTCs can provide mechanistic insights into tumor pathogenesis, as well as on CTC clinical value. In doing so, we aim to (a) describe how CTCs disseminate from the primary tumor, and their link to epithelial-mesenchymal transition (EMT); (b) trace the route of CTCs through the circulation, focusing on tumor self-seeding and the possibility of tertiary metastasis; (c) describe possible mechanisms underlying the enhanced metastatic potential of CTCs; (d) discuss how CTC could provide further information on the tissue of origin, especially in cancer of unknown primary origin. We also provide a comprehensive review of meta-analyses assessing the prognostic significance of CTCs, to highlight the emerging role of CTCs in clinical oncology. We also explore how cell-free circulating tumor DNA (ctDNA) analysis, using a combination of genomic and phylogenetic analysis, can offer insights into CTC biology, including our understanding of CTC heterogeneity and tumor evolution. Last, we discuss emerging technologies, such as high-throughput quantitative imaging, radiogenomics, machine learning approaches, and the emerging breath biopsy. These technologies could compliment CTC and ctDNA analyses, and they collectively represent major future steps in cancer detection, monitoring, and management.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
- Department of Microbiology, University Hospital of Thessaly, Larissa, Greece
| | - Petros D Grivas
- Division of Oncology, Department of Medicine, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Nicholas A Romas
- Department of Urology, Columbia University Medical Center, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street-Bldg. 16, 11527, Athens, Greece.
| |
Collapse
|
28
|
Comparative Analysis of Blood and Bone Marrow for the Detection of Circulating and Disseminated Tumor Cells and Their Prognostic and Predictive Value in Esophageal Cancer Patients. J Clin Med 2020; 9:jcm9082674. [PMID: 32824841 PMCID: PMC7464950 DOI: 10.3390/jcm9082674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 01/21/2023] Open
Abstract
Hematogenic tumor cell spread is a key event in metastasis. However, the clinical significance of circulating tumor cells (CTC) in the blood and disseminated tumor cells (DTC) in bone marrow is still not fully understood. Here, the presence of DTC and CTC in esophageal cancer (EC) patients and its correlation with clinical parameters was investigated to evaluate the CTC/DTC prognostic value in EC. This study included 77 EC patients with complete surgical tumor resection. CTC and DTC were analyzed in blood and bone marrow using nested CK20 reverse transcription-nested polymerase chain reaction (RT-PCR) and findings were correlated with clinical data. Twenty-seven of 76 patients (36.5%) showed CK20 positivity in the blood, 19 of 61 patients (31.1%) in bone marrow, and 40 (51.9%) of 77 patients were positive in either blood or bone marrow or both. In multivariate analyses, only the DTC status emerged as independent predictor of overall and tumor specific survival. Our study revealed that, while the presence of CTC in blood is not associated with a worse prognosis, DTC detection in the bone marrow is a highly specific and independent prognostic marker in EC patients. Larger cohort studies could unravel how this finding can be translated into improved therapy management in EC.
Collapse
|
29
|
Buschhaus JM, Humphries BA, Eckley SS, Robison TH, Cutter AC, Rajendran S, Haley HR, Bevoor AS, Luker KE, Luker GD. Targeting disseminated estrogen-receptor-positive breast cancer cells in bone marrow. Oncogene 2020; 39:5649-5662. [PMID: 32678295 PMCID: PMC7442734 DOI: 10.1038/s41388-020-01391-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer can recur up to 20 years after initial diagnosis. Delayed recurrences arise from disseminated tumors cells (DTCs) in sites such as bone marrow that remain quiescent during endocrine therapy and subsequently proliferate to produce clinically detectable metastases. Identifying therapies that eliminate DTCs and/or effectively target cells transitioning to proliferation promises to reduce risk of recurrence. To tackle this problem, we utilized a 3D co-culture model incorporating ER+ breast cancer cells and bone marrow mesenchymal stem cells to represent DTCs in a bone marrow niche. 3D co-cultures maintained cancer cells in a quiescent, viable state as measured by both single-cell and population-scale imaging. Single-cell imaging methods for metabolism by fluorescence lifetime (FLIM) of NADH and signaling by kinases Akt and ERK revealed that breast cancer cells utilized oxidative phosphorylation and signaling by Akt to a greater extent both in 3D co-cultures and a mouse model of ER+ breast cancer cells in bone marrow. Using our 3D co-culture model, we discovered that combination therapies targeting oxidative phosphorylation via the thioredoxin reductase (TrxR) inhibitor, D9, and the Akt inhibitor, MK-2206, preferentially eliminated breast cancer cells without altering viability of bone marrow stromal cells. Treatment of mice with disseminated ER+ human breast cancer showed that D9 plus MK-2206 blocked formation of new metastases more effectively than tamoxifen. These data establish an integrated experimental system to investigate DTCs in bone marrow and identify combination therapy against metabolic and kinase targets as a promising approach to effectively target these cells and reduce risk of recurrence in breast cancer.
Collapse
Affiliation(s)
- Johanna M Buschhaus
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Brock A Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Samantha S Eckley
- Unit for Laboratory Animal Medicine, University of Michigan, 412 Victor Vaughan, Ann Arbor, MI, 48109-2200, USA
- Office of Animal Resources, University of Iowa, Iowa City, IA, USA
| | - Tanner H Robison
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Alyssa C Cutter
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Shrila Rajendran
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Henry R Haley
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Avinash S Bevoor
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI, 48109-2099, USA.
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
30
|
Assessment of Pre-Analytical Sample Handling Conditions for Comprehensive Liquid Biopsy Analysis. J Mol Diagn 2020; 22:1070-1086. [PMID: 32497717 DOI: 10.1016/j.jmoldx.2020.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
Liquid biopsies as a minimally invasive approach have the potential to revolutionize molecular diagnostics. Yet, although protocols for sample handling and the isolation of circulating tumor DNA (ctDNA) are numerous, comprehensive guidelines for diagnostics and research considering all aspects of real-life multicenter clinical studies are currently not available. These include limitations in sample volume, transport, and blood collection tubes. We tested the impact of commonly used (EDTA and heparin) and specialized blood collection tubes and storage conditions on the yield and purity of cell-free DNA for the application in down-stream analysis. Moreover, we evaluated the feasibility of a combined workflow for ctDNA and tumor cell genomic testing and parallel flow cytometric analysis of leukocytes. For genomic analyses, EDTA tubes showed good results if stored for a maximum of 4 hours at room temperature or for up to 24 hours when stored at 4°C. Spike-in experiments revealed that EDTA tubes in combination with density gradient centrifugation allowed the parallel isolation of ctDNA, leukocytes, and low amounts of tumor cells (0.1%) and their immunophenotyping by flow cytometry and down-stream genomic analysis by whole genome sequencing. In conclusion, adhering to time and temperature limits allows the use of routine EDTA blood samples for liquid biopsy analyses. We further provide a workflow enabling the parallel analysis of cell-free and cellular features for disease monitoring and for clonal evolution studies.
Collapse
|
31
|
Stepula E, Wang XP, Srivastav S, König M, Levermann J, Kasimir-Bauer S, Schlücker S. 6-Color/1-Target Immuno-SERS Microscopy on the Same Single Cancer Cell. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32321-32327. [PMID: 32573192 DOI: 10.1021/acsami.0c07269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is an urgent clinical need for multicolor imaging of single cancer cells (no ensemble averaging) for identifying heterogenous expression of predictive biomarkers. Specifically, the comprehensive characterization of single disseminated tumor cells (sDTCs) responsible for metastatic relapse is the key to personalized therapy for patients. Current bioimaging methods lack the necessary multicolor capacity and suffer from background/autofluorescence. Both these central limitations can be overcome by immuno-SERS microscopy using SERS nanotags conjugated to antibodies. Here, we demonstrate the proof of concept for 6-color iSERS microscopy on the same single cancer cell. Human epidermal growth factor receptor 2 (HER2), the most prominent breast cancer marker, is localized on the membrane of single SkBr-3 cells, which overexpress HER2 and are an accepted model for sDTCs in breast cancer. This work paves the way for future multicolor/multitarget imaging for characterizing heterogeneous protein expression at the single-cell level.
Collapse
Affiliation(s)
- Elzbieta Stepula
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany
| | - Xin-Ping Wang
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany
| | - Supriya Srivastav
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany
| | - Matthias König
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany
| | - Janina Levermann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5, Essen 45141, Germany
| |
Collapse
|
32
|
Kallergi G, Hoffmann O, Bittner AK, Papadimitriou L, Katsarou SD, Zacharopoulou N, Zervakis M, Sfakianakis S, Stournaras C, Georgoulias V, Kimmig R, Kasimir-Bauer S. CXCR4 and JUNB double-positive disseminated tumor cells are detected frequently in breast cancer patients at primary diagnosis. Ther Adv Med Oncol 2020; 12:1758835919895754. [PMID: 32426042 PMCID: PMC7222234 DOI: 10.1177/1758835919895754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The chemokine receptor CXCR4 and the transcription factor JUNB, expressed on a variety of tumor cells, seem to play an important role in the metastatic process. Since disseminated tumor cells (DTCs) in the bone marrow (BM) have been associated with worse outcomes, we evaluated the expression of CXCR4 and JUNB in DTCs of primary, nonmetastatic breast cancer (BC) patients before the onset of any systemic treatment. Methods: Bilateral BM (10 ml) aspirations of 39 hormone receptor (HR)-positive, HER2-negative BC patients were assessed for the presence of DTCs using the following combination of antibodies: pan-cytokeratin (A45-B/B3)/CXCR4/JUNB. An expression pattern of the examined proteins was created using confocal laser scanning microscopy, Image J software and BC cell lines. Results: CXCR4 was overexpressed in cancer cells and DTCs, with the following hierarchy of expression: SKBR3 > MCF7 > DTCs > MDA-MB231. Accordingly, the expression pattern of JUNB was: DTCs > MDA-MB231 > SKBR3 > MCF7. The mean intensity of CXCR4 (6411 ± 334) and JUNB (27725.64 ± 470) in DTCs was statistically higher compared with BM hematopoietic cells (2009 ± 456, p = 0.001; and 11112.89 ± 545, p = 0.001, respectively). The (CXCR4+JUNB+CK+) phenotype was the most frequently detected [90% (35/39)], followed by the (CXCR4–JUNB+CK+) phenotype [36% (14/39)]. However, (CXCR4+JUNB–CK+) tumor cells were found in only 5% (3/39) of patients. Those patients harboring DTCs with the (CXCR4+JUNB+CK+) phenotype revealed lower overall survival (Cox regression: p = 0.023). Conclusions: (CXCR4+JUNB+CK+)-expressing DTCs, detected frequently in the BM of BC patients, seem to identify a subgroup of patients at higher risk for relapse that may be considered for close follow up.
Collapse
Affiliation(s)
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Lina Papadimitriou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, (IESL-FORTH), Heraklion, Greece
| | | | - Nefeli Zacharopoulou
- Department of Biochemistry, Medical School, University of Crete, Heraklion, Greece
| | - Michalis Zervakis
- Digital Image and Signal Processing Laboratory, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece
| | - Stelios Sfakianakis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, (IESL-FORTH), Heraklion, Greece
| | - Christos Stournaras
- Department of Biochemistry, Medical School, University of Crete, Heraklion, Greece
| | | | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
33
|
Karstens KF, Ghadban T, Effenberger K, Sauter G, Pantel K, Izbicki JR, Vashist Y, König A, Reeh M. Lymph Node and Bone Marrow Micrometastases Define the Prognosis of Patients with pN0 Esophageal Cancer. Cancers (Basel) 2020; 12:cancers12030588. [PMID: 32143307 PMCID: PMC7139797 DOI: 10.3390/cancers12030588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pathological routine lymph node staging is postulated to be the main oncological prognosticator in esophageal cancer (EC). However, micrometastases in lymph nodes (LNMM) and bone marrow (BNMM) are discussed as the key events in tumor recurrence. We assessed the prognostic significance of the LNMM/BNMM status in initially pN0 staged patients with curative esophagectomy. METHODS From 110 patients bone marrow aspirates and lymph node tissues were analyzed. For LNMM detection immunohistochemistry was performed using the anticytokeratin antibody AE1/AE3. To detect micrometastases in the bone marrow a staining with the pan-keratin antibody A45-B/B3 was done. Results were correlated with clinicopathologic parameters as well as recurrence and death during follow-up time. RESULTS Thirty-eight (34.5%) patients showed LNMM, whereas in 54 (49.1%) patients BNMM could be detected. LNMM and BNMM positive patients showed a correlation to an increased pT category (p = 0.017). Univariate and multivariate analyses revealed that the LNMM/BNMM status and especially LNMM skipping the anatomical lymph node chain were significant independent predictors of overall survival and recurrence-free survival. CONCLUSIONS This study indicates that routine pathological staging of EC is insufficient. Micrometastases in lymph nodes and the bone marrow seem to be the main reason for tumor recurrence and they are a strong prognosticator following curative treatment of pN0 EC.
Collapse
Affiliation(s)
- Karl-F. Karstens
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (K.-F.K.); (T.G.); (K.E.); (J.R.I.); (Y.V.); (A.K.)
| | - Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (K.-F.K.); (T.G.); (K.E.); (J.R.I.); (Y.V.); (A.K.)
| | - Katharina Effenberger
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (K.-F.K.); (T.G.); (K.E.); (J.R.I.); (Y.V.); (A.K.)
| | - Guido Sauter
- Department of Pathology, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany;
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany;
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (K.-F.K.); (T.G.); (K.E.); (J.R.I.); (Y.V.); (A.K.)
| | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (K.-F.K.); (T.G.); (K.E.); (J.R.I.); (Y.V.); (A.K.)
| | - Alexandra König
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (K.-F.K.); (T.G.); (K.E.); (J.R.I.); (Y.V.); (A.K.)
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Centre, Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (K.-F.K.); (T.G.); (K.E.); (J.R.I.); (Y.V.); (A.K.)
- Correspondence:
| |
Collapse
|
34
|
Yousefi M, Ghaffari P, Nosrati R, Dehghani S, Salmaninejad A, Abarghan YJ, Ghaffari SH. Prognostic and therapeutic significance of circulating tumor cells in patients with lung cancer. Cell Oncol (Dordr) 2019; 43:31-49. [PMID: 31828552 DOI: 10.1007/s13402-019-00470-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Lung cancer is the second most common cancer and the main cause of cancer-related mortality worldwide. In spite of various efforts that have been made to facilitate the early diagnosis of lung cancer, most patients are diagnosed when the disease is already in stage IV, which is generally associated with the occurrence of distant metastases and a poor survival. Moreover, a large proportion of these patients will relapse after treatment, heralding the need for the stratification of lung cancer patients in addition to identifying those who are at a higher risk of relapse and, thus, require alternative and/or additional therapies. Recently, circulating tumor cells (CTCs) have been considered as valuable markers for the early diagnosis, prognosis and risk stratification of cancer patients, and they have been found to be able to predict the survival of patients with various types of cancer, including lung cancer. Additionally, the characterization of CTCs has recently provided fascinating insights into the heterogeneity of tumors, which may be instrumental for the development of novel targeted therapies. CONCLUSIONS Here we review our current understanding of the significance of CTCs in lung cancer metastasis. We also discuss prominent studies reporting the utility of enumeration and characterization of CTCs in lung cancer patients as prognostic and pharmacodynamic biomarkers for those who are at a higher risk of metastasis and drug resistance.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parisa Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Jafari Abarghan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Stelcer E, Konkol M, Głȩboka A, Suchorska WM. Liquid Biopsy in Oligometastatic Prostate Cancer-A Biologist's Point of View. Front Oncol 2019; 9:775. [PMID: 31475117 PMCID: PMC6702517 DOI: 10.3389/fonc.2019.00775] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the main cause of cancer-related mortality in males and the diagnosis, treatment, and care of these patients places a great burden on healthcare systems globally. Clinically, PCa is highly heterogeneous, ranging from indolent tumors to highly aggressive disease. In many cases treatment-generally either radiotherapy (RT) or surgery-can be curative. Several key genetic and demographic factors such as age, family history, genetic susceptibility, and race are associated with a high incidence of PCa. While our understanding of PCa, which is mainly based on the tools of molecular biology-has improved dramatically in recent years, efforts to better understand this complex disease have led to the identification of a new type of PCa-oligometastatic PCa. Oligometastatic disease should be considered an individual, heterogeneous entity with distinct metastatic phenotypes and, consequently, wide prognostic variability. In general, patients with oligometastatic disease typically present less biologically aggressive tumors whose metastatic potential is more limited and which are slow-growing. These patients are good candidates for more aggressive treatment approaches. The main aim of the presented review was to evaluate the utility of liquid biopsy for diagnostic purposes in PCa and for use in monitoring disease progression and treatment response, particularly in patients with oligometastatic PCa. Liquid biopsies offer a rapid, non-invasive approach whose use t is expected to play an important role in routine clinical practice to benefit patients. However, more research is needed to resolve the many existing discrepancies with regard to the definition and isolation method for specific biomarkers, as well as the need to determine the most appropriate markers. Consequently, the current priority in this field is to standardize liquid biopsy-based techniques. This review will help to improve understanding of the biology of PCa, particularly the recently defined condition known as "oligometastatic PCa". The presented review of the body of evidence suggests that additional research in molecular biology may help to establish novel treatments for oligometastatic PCa. In the near future, the treatment of PCa will require an interdisciplinary approach involving active cooperation among clinicians, physicians, and biologists.
Collapse
Affiliation(s)
- Ewelina Stelcer
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Konkol
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Radiation Oncology Department, Greater Poland Cancer Centre, Poznan, Poland
| | | | - Wiktoria Maria Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
36
|
Uemura S, Ishida T, Thwin KKM, Yamamoto N, Tamura A, Kishimoto K, Hasegawa D, Kosaka Y, Nino N, Lin KS, Takafuji S, Mori T, Iijima K, Nishimura N. Dynamics of Minimal Residual Disease in Neuroblastoma Patients. Front Oncol 2019; 9:455. [PMID: 31214500 PMCID: PMC6558004 DOI: 10.3389/fonc.2019.00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is a common extracranial solid tumor of neural crest (NC) origin that accounts for up to 15% of all pediatric cancer deaths. The disease arises from a transient population of NC cells that undergo an epithelial-mesenchymal transition (EMT) and generate diverse cell-types and tissues. Patients with neuroblastoma are characterized by their extreme heterogeneity ranging from spontaneous regression to malignant progression. More than half of newly diagnosed patients present highly metastatic tumors and are stratified into a high-risk group with dismal outcome. As many as 20% of high-risk patients have residual disease that is refractory or progressive during induction chemotherapy. Although a majority of high-risk patients achieve remission, larger part of those patients has minimal residual disease (MRD) that causes relapse even after additional consolidation therapy. MRD is composed of drug-resistant tumor cells and dynamically presented as cancer stem cells (CSCs) in residual tumors, circulating tumor cells (CTCs) in peripheral blood (PB), and disseminated tumor cells (DTCs) in bone marrow (BM) and other metastatic sites. EMT appears to be a key mechanism for cancer cells to acquire MRD phenotypes and malignant aggressiveness. Due to the restricted availability of residual tumors, PB and BM have been used to isolate and analyze CTCs and DTCs to evaluate MRD in cancer patients. In addition, recent technical advances make it possible to use circulating tumor DNA (ctDNA) shed from tumor cells into PB for MRD evaluation. Because MRD can be detected by tumor-specific antigens, genetic or epigenetic changes, and mRNAs, numerous assays using different methods and samples have been reported to detect MRD in cancer patients. In contrast to the tumor-specific gene-rearrangement-positive acute lymphoblastic leukemia (ALL) and the oncogenic fusion-gene-positive chronic myelogenous leukemia (CML) and several solid tumors, the clinical significance of MRD remains to be established in neuroblastoma. Given the extreme heterogeneity of neuroblastoma, dynamics of MRD in neuroblastoma patients will hold a key to the clinical validation. In this review, we summarize the biology and detection methods of cancer MRD in general and evaluate the available assays and clinical significance of neuroblastoma MRD to clarify its dynamics in neuroblastoma patients.
Collapse
Affiliation(s)
- Suguru Uemura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Ishida
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Khin Kyae Mon Thwin
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Tamura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kenji Kishimoto
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Nanako Nino
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyaw San Lin
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoru Takafuji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Mori
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
37
|
Zhang W, Bado I, Wang H, Lo HC, Zhang XHF. Bone Metastasis: Find Your Niche and Fit in. Trends Cancer 2019; 5:95-110. [PMID: 30755309 DOI: 10.1016/j.trecan.2018.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Metastasis to bones is determined by both intrinsic traits of metastatic tumor cells and properties appertaining to the bone microenvironment. Bone marrow niches are critical for all major steps of metastasis, including the seeding of disseminated tumor cells (DTCs) to bone, the survival of DTCs and microscopic metastases under dormancy, and the eventual outgrowth of overt metastases. In this review, we discuss the role of bone marrow niches in bone colonization. The emphasis is on complicated and dynamic nature of cancer cells-niche interaction, which may underpin the long-standing mystery of metastasis dormancy, and represent a therapeutic target for elimination of minimal residue diseases and prevention of life-taking, overt metastases.
Collapse
Affiliation(s)
- Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hin-Ching Lo
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Lange T, Oh-Hohenhorst SJ, Joosse SA, Pantel K, Hahn O, Gosau T, Dyshlovoy SA, Wellbrock J, Feldhaus S, Maar H, Gehrcke R, Kluth M, Simon R, Schlomm T, Huland H, Schumacher U. Development and Characterization of a Spontaneously Metastatic Patient-Derived Xenograft Model of Human Prostate Cancer. Sci Rep 2018; 8:17535. [PMID: 30510249 PMCID: PMC6277427 DOI: 10.1038/s41598-018-35695-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Here we describe the establishment and characterization of an AR+, PSMA+, ERG+, PTEN-/-, CHD1+/- patient-derived xenograft (PDX) model termed 'C5', which has been developed from a 60 years old patient suffering from castration-resistant prostate cancer (CRPC). The patient underwent radical prostatectomy, showed early tumor marker PSA recurrence and, one year after surgery, abiraterone resistance. Subcutaneous C5 tumors can be serially transplanted between mice and grow within ~90 days to 1.5-2 cm³ tumors in SCID Balb/c mice (take rate 100%), NOD-scid IL2Rgnull (NSG) mice (100%) and C57BL/6 pfp-/-/rag2-/- mice (66%). In contrast, no tumor growth is observed in female mice. C5 tumors can be cryopreserved and show the same growth characteristics in vivo afterwards. C5 tumor cells do not grow stably in vitro, neither under two- nor three-dimensional cell culture conditions. Upon serial transplantation, some C5 tumors spontaneously disseminated to distant sites with an observable trend towards higher metastatic cell loads in scid compared to NSG mice. Lung metastases could be verified by histology by means of anti-PSMA immunohistochemistry, exclusively demonstrating single disseminated tumor cells (DTCs) and micro-metastases. Upon surgical resection of the primary tumors, such pulmonary foci rarely grew out to multi-cellular metastatic colonies despite doubled overall survival span. In the brain and bone marrow, the metastatic cell load present at surgery even disappeared during the post-surgical period. We provide shallow whole genome sequencing and whole exome sequencing data of C5 tumors demonstrating the copy number aberration/ mutation status of this PCa model and proving genomic stability over several passages. Moreover, we analyzed genomic and transcriptomic alterations during metastatic progression achieved by serial transplantation. This study describes a novel PCa PDX model that enables future research on several aspects of metastatic PCa, particularly for the AR+ , ERG+ , PTEN-/- PCa subtype.
Collapse
Affiliation(s)
- Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Su Jung Oh-Hohenhorst
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Hahn
- Department of Urology, University Medical Center Goettingen, Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Tobias Gosau
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sergey A Dyshlovoy
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russian Federation
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Feldhaus
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Renate Gehrcke
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Urology, Charité University Hospital, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
39
|
Sai B, Xiang J. Disseminated tumour cells in bone marrow are the source of cancer relapse after therapy. J Cell Mol Med 2018; 22:5776-5786. [PMID: 30255991 PMCID: PMC6237612 DOI: 10.1111/jcmm.13867] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that cancer cells spread much earlier than was previously believed. Recent technological advances have greatly improved the detection methods of circulating tumour cells (CTCs), suggesting that the dissemination of cancer cells into the circulation occurs randomly. Most CTCs die in circulation as a result of shear stress and/or anoikis. However, the persistence of disseminated tumour cells (DTCs) in the bone marrow is the result of interaction of DTCs with bone marrow microenvironment. DTCs in the bone marrow undergo successive clonal expansions and a parallel progression that leads to new variants. Compared to the CTCs, DTCs in the bone marrow have a unique signature, which displayed dormant, mesenchymal phenotype and osteoblast-like or osteoclast-like phenotype. The persistence of DTCs in the bone marrow is always related to minimal residual diseases (MRDs). This review outlines the difference between CTCs and DTCs in the bone marrow and describes how this difference affects the clinical values of CTCs and DTCs, such as metastasis and recurrence. We suggest that DTCs remaining in the bone marrow after therapy can be used as a superior marker in comparison with CTCs to define patients with an unfavourable prognosis and may therefore be a potential prognostic factor and therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Buqing Sai
- Hunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South UniversityChangshaHunanChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Juanjuan Xiang
- Hunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South UniversityChangshaHunanChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerChangshaHunanChina
| |
Collapse
|
40
|
Fornetti J, Welm AL, Stewart SA. Understanding the Bone in Cancer Metastasis. J Bone Miner Res 2018; 33:2099-2113. [PMID: 30476357 DOI: 10.1002/jbmr.3618] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
The bone is the third most common site of metastasis for a wide range of solid tumors including lung, breast, prostate, colorectal, thyroid, gynecologic, and melanoma, with 70% of metastatic prostate and breast cancer patients harboring bone metastasis.1 Unfortunately, once cancer spreads to the bone, it is rarely cured and is associated with a wide range of morbidities including pain, increased risk of fracture, and hypercalcemia. This fact has driven experts in the fields of bone and cancer biology to study the bone, and has revealed that there is a great deal that each can teach the other. The complexity of the bone was first described in 1889 when Stephen Paget proposed that tumor cells have a proclivity for certain organs, where they "seed" into a friendly "soil" and eventually grow into metastatic lesions. Dr. Paget went on to argue that although many study the "seed" it would be paramount to understand the "soil." Since this original work, significant advances have been made not only in understanding the cell-autonomous mechanisms that drive metastasis, but also alterations which drive changes to the "soil" that allow a tumor cell to thrive. Indeed, it is now clear that the "soil" in different metastatic sites is unique, and thus the mechanisms that allow tumor cells to remain in a dormant or growing state are specific to the organ in question. In the bone, our knowledge of the components that contribute to this fertile "soil" continues to expand, but our understanding of how they impact tumor growth in the bone remains in its infancy. Indeed, we now appreciate that the endosteal niche likely contributes to tumor cell dormancy, and that osteoclasts, osteocytes, and adipocytes can impact tumor cell growth. Here, we discuss the bone microenvironment and how it impacts cancer cell seeding, dormancy, and growth. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sheila A Stewart
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Integrating Communication within the Cancer Environment (ICCE) Institute, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
41
|
Rachner TD, Kasimir-Bauer S, Göbel A, Erdmann K, Hoffmann O, Browne A, Wimberger P, Rauner M, Hofbauer LC, Kimmig R, Bittner AK. Prognostic Value of RANKL/OPG Serum Levels and Disseminated Tumor Cells in Nonmetastatic Breast Cancer. Clin Cancer Res 2018; 25:1369-1378. [PMID: 30425091 DOI: 10.1158/1078-0432.ccr-18-2482] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/28/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE We assessed serum concentrations of the receptor activator of NFκB ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG), two proteins implicated in the development and progression of breast cancer, in 509 patients with primary, nonmetastatic breast cancer. Then the results were evaluated with regards to the occurrence of bone metastases, the presence of disseminated tumor cells (DTC) in the bone marrow, survival, and risk of developing metastatic disease. EXPERIMENTAL DESIGN Before surgery, two bone marrow aspirates were analyzed for DTC using density centrifugation followed by immunocytochemistry (pan-cytokeratin antibody A45-B/B3). RANKL and OPG levels in the serum were measured by ELISA. RESULTS RANKL levels were significantly lower in women >60 years (P < 0.0001) and RANKL/OPG ratios higher in lymph node-positive patients (P < 0.05). High OPG serum levels were associated with a higher risk of death from breast cancer [HR 1.94; 95% confidence interval (CI) 1.23-3.07; P = 0.005] and OPG was an independent prognostic marker for breast cancer-specific survival (BCSS; multivariate analyses, P = 0.035). RANKL levels were 33% higher (P < 0.0001) in DTCpos patients (41%), whereas high levels were associated with a significantly better BCSS in DTCneg patients as compared with low levels (HR 0.524; 95% CI 0.30-0.95; P = 0.04). RANKL serum levels were significantly increased in patients who developed bone metastases (P = 0.01) and patients within the highest quartile of RANKL had a significantly increased risk of developing bone metastases compared with those in the lowest (HR 4.62; 95% CI 1.49-14.34; P = 0.03). CONCLUSIONS These findings warrant further investigation as they provide a rationale for novel diagnostic or therapeutic approaches.
Collapse
Affiliation(s)
- Tilman D Rachner
- Department of Medicine III, Division of Endocrinology and Metabolic Bone Diseases, TU Dresden, Dresden, Germany. .,Center for Healthy Ageing, Department of Medicine III, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andy Göbel
- Department of Medicine III, Division of Endocrinology and Metabolic Bone Diseases, TU Dresden, Dresden, Germany.,Center for Healthy Ageing, Department of Medicine III, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kati Erdmann
- Department of Urology, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrew Browne
- Department of Medicine III, Division of Endocrinology and Metabolic Bone Diseases, TU Dresden, Dresden, Germany.,Center for Healthy Ageing, Department of Medicine III, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pauline Wimberger
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Gynecology and Obstetrics, TU Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Division of Endocrinology and Metabolic Bone Diseases, TU Dresden, Dresden, Germany.,Center for Healthy Ageing, Department of Medicine III, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Division of Endocrinology and Metabolic Bone Diseases, TU Dresden, Dresden, Germany.,Center for Healthy Ageing, Department of Medicine III, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, Upadhyay P, Uyeminami DL, Pommier A, Küttner V, Bružas E, Maiorino L, Bautista C, Carmona EM, Gimotty PA, Fearon DT, Chang K, Lyons SK, Pinkerton KE, Trotman LC, Goldberg MS, Yeh JTH, Egeblad M. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018; 361:eaao4227. [PMID: 30262472 PMCID: PMC6777850 DOI: 10.1126/science.aao4227] [Citation(s) in RCA: 976] [Impact Index Per Article: 139.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
Cancer cells from a primary tumor can disseminate to other tissues, remaining dormant and clinically undetectable for many years. Little is known about the cues that cause these dormant cells to awaken, resume proliferating, and develop into metastases. Studying mouse models, we found that sustained lung inflammation caused by tobacco smoke exposure or nasal instillation of lipopolysaccharide converted disseminated, dormant cancer cells to aggressively growing metastases. Sustained inflammation induced the formation of neutrophil extracellular traps (NETs), and these were required for awakening dormant cancer. Mechanistic analysis revealed that two NET-associated proteases, neutrophil elastase and matrix metalloproteinase 9, sequentially cleaved laminin. The proteolytically remodeled laminin induced proliferation of dormant cancer cells by activating integrin α3β1 signaling. Antibodies against NET-remodeled laminin prevented awakening of dormant cells. Therapies aimed at preventing dormant cell awakening could potentially prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Jean Albrengues
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mario A Shields
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Chun Gwon Park
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | | | - Morgan E Poindexter
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616, USA
| | - Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616, USA
| | - Dale L Uyeminami
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616, USA
| | - Arnaud Pommier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Victoria Küttner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Emilis Bružas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Laura Maiorino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | | | - Ellese M Carmona
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas T Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Scott K Lyons
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Michael S Goldberg
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215, USA
| | - Johannes T-H Yeh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
43
|
Hudson LG, Gillette JM, Kang H, Rivera MR, Wandinger-Ness A. Ovarian Tumor Microenvironment Signaling: Convergence on the Rac1 GTPase. Cancers (Basel) 2018; 10:cancers10100358. [PMID: 30261690 PMCID: PMC6211091 DOI: 10.3390/cancers10100358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment for epithelial ovarian cancer is complex and rich in bioactive molecules that modulate cell-cell interactions and stimulate numerous signal transduction cascades. These signals ultimately modulate all aspects of tumor behavior including progression, metastasis and therapeutic response. Many of the signaling pathways converge on the small GTPase Ras-related C3 botulinum toxin substrate (Rac)1. In addition to regulating actin cytoskeleton remodeling necessary for tumor cell adhesion, migration and invasion, Rac1 through its downstream effectors, regulates cancer cell survival, tumor angiogenesis, phenotypic plasticity, quiescence, and resistance to therapeutics. In this review we discuss evidence for Rac1 activation within the ovarian tumor microenvironment, mechanisms of Rac1 dysregulation as they apply to ovarian cancer, and the potential benefits of targeting aberrant Rac1 activity in this disease. The potential for Rac1 contribution to extraperitoneal dissemination of ovarian cancer is addressed.
Collapse
Affiliation(s)
- Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Jennifer M Gillette
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Huining Kang
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Melanie R Rivera
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Angela Wandinger-Ness
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
44
|
Genomic and expression profiling reveal molecular heterogeneity of disseminated tumor cells in bone marrow of early breast cancer. NPJ Breast Cancer 2018; 4:31. [PMID: 30211312 PMCID: PMC6125436 DOI: 10.1038/s41523-018-0083-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Detection of disseminated tumor cells (DTCs) in bone marrow is an established negative prognostic factor. We isolated small pools of (~20) EPCAM-positive DTCs from early breast cancer patients for genomic profiling. Genome-wide copy number profiles of DTC pools (n = 45) appeared less aberrant than the corresponding primary tumors (PT, n = 16). PIK3CA mutations were detected in 26% of DTC pools (n = 53), none of them were shared with matched PTs. Expression profiling of DTC pools (n = 30) confirmed the upregulation of EPCAM expression and certain oncogenes (e.g., MYC and CCNE1), as well as the absence of hematopoietic features. Two expression subtypes were observed: (1) luminal with dual epithelial-mesenchymal properties (high ESR1 and VIM/CAV1 expression), and (2) basal-like with proliferative/stem cell-like phenotype (low ESR1 and high MKI67/ALDH1A1 expression). We observed high discordance between ESR1 (40%) and ERRB2 (43%) expression in DTC pools vs. the clinical ER and HER2 status of the corresponding primary tumors, suggesting plasticity of biomarker status during dissemination to the bone marrow. Comparison of expression profiles of DTC pools with available data from circulating tumor cells (CTCs) of metastatic breast cancer patients revealed gene expression signatures in DTCs that were unique from those of CTCs. For example, ALDH1A1, CAV1, and VIM were upregulated in DTC pools relative to CTCs. Taken together, analysis of pooled DTCs revealed molecular heterogeneity, possible genetic divergence from corresponding primary tumor, and two distinct subpopulations. Validation in larger cohorts is needed to confirm the presence of these molecular subtypes and to evaluate their biological and clinical significance.
Collapse
|
45
|
Circulating tumor cells and cell-free nucleic acids in patients with gynecological malignancies. Virchows Arch 2018; 473:395-403. [PMID: 30145616 DOI: 10.1007/s00428-018-2447-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The ability to detect cancer cells in the blood or in the bone marrow offers invaluable information which potentially impacts early diagnosis, monitoring of treatment, and prognosis. Accessing blood or other body fluids has the additional advantage of being less invasive than biopsy. Consequently, considerable effort has been invested in the last 20 years in optimizing assays which may identify malignant cells at these anatomic sites. Detection of nucleic acids has been applied as alternative approach in this context, first targeting single cancer-associated genes using PCR-based technology, and recently using assays which identify different DNA classes, as well as microRNAs and exosomes. The present review focuses on studies which applied these assays to the detection of cells or cellular components originating from gynecological cancers.
Collapse
|
46
|
Eltoukhy HS, Sinha G, Moore CA, Gergues M, Rameshwar P. Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie 2018; 155:92-103. [PMID: 29859990 DOI: 10.1016/j.biochi.2018.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023]
Abstract
The secretome produced by cells within the bone marrow is significant to homeostasis. The bone marrow, a well-studied organ, has multiple niches with distinct roles for supporting stem cell functions. Thus, an understanding of mediators involved in the regulation of stem cells could serve as a model for clinical problems and solutions such as tissue repair and regeneration. The exosome secretome of bone marrow stem cells is a developing area of research with respect to the regenerative potential by bone marrow cell, particularly the mesenchymal stem cells. The bone marrow niche regulates endogenous processes such as hematopoiesis but could also support the survival of tumors such as facilitating the cancer stem cells to exist in dormancy for decades. The bone marrow-derived secretome will be critical to future development of therapeutic strategies for oncologic diseases, in addition to regenerative medicine. This article discusses the importance for parallel studies to determine how the same secretome may compromise safety during the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Hussam S Eltoukhy
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Garima Sinha
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Caitlyn A Moore
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Marina Gergues
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
47
|
Effenberger KE, Schroeder C, Hanssen A, Wolter S, Eulenburg C, Tachezy M, Gebauer F, Izbicki JR, Pantel K, Bockhorn M. Improved Risk Stratification by Circulating Tumor Cell Counts in Pancreatic Cancer. Clin Cancer Res 2018; 24:2844-2850. [PMID: 29559560 DOI: 10.1158/1078-0432.ccr-18-0120] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/26/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
| | - Cornelia Schroeder
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annkathrin Hanssen
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Eulenburg
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Gebauer
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jacob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
48
|
Roato I, Ferracini R. Cancer Stem Cells, Bone and Tumor Microenvironment: Key Players in Bone Metastases. Cancers (Basel) 2018; 10:cancers10020056. [PMID: 29461491 PMCID: PMC5836088 DOI: 10.3390/cancers10020056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor mass is constituted by a heterogeneous group of cells, among which a key role is played by the cancer stem cells (CSCs), possessing high regenerative properties. CSCs directly metastasize to bone, since bone microenvironment represents a fertile environment that protects CSCs against the immune system, and maintains their properties and plasticity. CSCs can migrate from the primary tumor to the bone marrow (BM), due to their capacity to perform the epithelial-to-mesenchymal transition. Once in BM, they can also perform the mesenchymal-to-epithelial transition, allowing them to proliferate and initiate bone lesions. Another factor explaining the osteotropism of CSCs is their ability to recognize chemokine gradients toward BM, through the CXCL12–CXCR4 axis, also known to be involved in tumor metastasis to other organs. Moreover, the expression of CXCR4 is associated with the maintenance of CSCs’ stemness, and CXCL12 expression by osteoblasts attracts CSCs to the BM niches. CSCs localize in the pre-metastatic niches, which are anatomically distinct regions within the tumor microenvironment and govern the metastatic progression. According to the stimuli received in the niches, CSCs can remain dormant for long time or outgrow from dormancy and create bone lesions. This review resumes different aspects of the CSCs’ bone metastastic process and discusses available treatments to target CSCs.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza, Turin 10126, Italy.
| | - Riccardo Ferracini
- Department of Surgical Sciences (DISC), Orthopaedic Clinic-IRCCS A.O.U. San Martino, Genoa 16132, Italy.
| |
Collapse
|
49
|
Urata S, Izumi K, Hiratsuka K, Maolake A, Natsagdorj A, Shigehara K, Iwamoto H, Kadomoto S, Makino T, Naito R, Kadono Y, Lin WJ, Wufuer G, Narimoto K, Mizokami A. C-C motif ligand 5 promotes migration of prostate cancer cells in the prostate cancer bone metastasis microenvironment. Cancer Sci 2018; 109:724-731. [PMID: 29288523 PMCID: PMC5834783 DOI: 10.1111/cas.13494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/18/2017] [Accepted: 12/25/2017] [Indexed: 12/30/2022] Open
Abstract
Chemokines and their receptors have key roles in cancer progression. The present study investigated chemokine activity in the prostate cancer bone metastasis microenvironment. Growth and migration of human prostate cancer cells were assayed in cocultures with bone stromal cells. The migration of LNCaP cells significantly increased when co‐cultured with bone stromal cells isolated from prostate cancer bone metastases. Cytokine array analysis of conditioned medium from bone stromal cell cultures identified CCL5 as a concentration‐dependent promoter of LNCaP cell migration. The migration of LNCaP cells was suppressed when C‐C motif ligand 5 (CCL5) neutralizing antibody was added to cocultures with bone stromal cells. Knockdown of androgen receptor with small interfering RNA increased the migration of LNCaP cells compared with control cells, and CCL5 did not promote the migration of androgen receptor knockdown LNCaP. Elevated CCL5 secretion in bone stromal cells from metastatic lesions induced prostate cancer cell migration by a mechanism consistent with CCL5 activity upstream of androgen receptor signaling.
Collapse
Affiliation(s)
- Satoko Urata
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kaoru Hiratsuka
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Aerken Maolake
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ariunbold Natsagdorj
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuyoshi Shigehara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroaki Iwamoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Suguru Kadomoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tomoyuki Makino
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Renato Naito
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshifumi Kadono
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Guzailinuer Wufuer
- Hematology Department of the People's Hospital of Xinjiang Uyghur Autonomous Region, Xinjiang, China
| | - Kazutaka Narimoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
50
|
A Facile, In Vitro 384-Well Plate System to Model Disseminated Tumor Cells in the Bone Marrow Microenvironment. Methods Mol Biol 2018; 1686:201-213. [PMID: 29030823 DOI: 10.1007/978-1-4939-7371-2_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone marrow disseminated tumor cells (DTCs) are dormant cancer cells that harbor themselves in a bone marrow niche for years after patient remission before potentially returning to a proliferative state, causing recurrent cancer. DTCs reside in bone marrow environments with physiologically important mesenchymal stem cells that are often negatively affected by chemotherapy treatments. Currently, there are very few models of DTCs that recapitulate their dormant phenotype while producing enough samples to accurately quantify cancer and surrounding stromal cell behaviors. We present a three-dimensional spheroid-based model system that uses dual-color bioluminescence imaging to quantify differential cell viability in response to various compounds. We successfully screened for compounds that selectively eliminated cancer cells versus supportive stromal cells and verified results with comparison to efficacy in vivo. The spheroid coculture system successfully modeled key aspects of DTCs in the bone marrow microenvironment, facilitating testing for compounds to selectively eliminate DTCs.
Collapse
|