1
|
Xiao H, Han Z, Xu M, Gao X, Qiu S, Ren N, Yi Y, Zhou C. The Role of Post-Translational Modifications in Necroptosis. Biomolecules 2025; 15:549. [PMID: 40305291 PMCID: PMC12024652 DOI: 10.3390/biom15040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 05/02/2025] Open
Abstract
Necroptosis, a distinct form of regulated necrosis implicated in various human pathologies, is orchestrated through sophisticated signaling pathways. During this process, cells undergoing necroptosis exhibit characteristic necrotic morphology and provoke substantial inflammatory responses. Post-translational modifications (PTMs)-chemical alterations occurring after protein synthesis that critically regulate protein functionality-constitute essential regulatory components within these complex signaling cascades. This intricate crosstalk between necroptotic pathways and PTM networks presents promising therapeutic opportunities. Our comprehensive review systematically analyzes the molecular mechanisms underlying necroptosis, with particular emphasis on the regulatory roles of PTMs in signal transduction. Through systematic evaluation of key modifications including ubiquitination, phosphorylation, glycosylation, methylation, acetylation, disulfide bond formation, caspase cleavage, nitrosylation, and SUMOylation, we examine potential therapeutic applications targeting necroptosis in disease pathogenesis. Furthermore, we synthesize current pharmacological strategies for manipulating PTM-regulated necroptosis, offering novel perspectives on clinical target development and therapeutic intervention.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Zeping Han
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Xukang Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
2
|
Warrick KA, Vallez CN, Meibers HE, Pasare C. Bidirectional Communication Between the Innate and Adaptive Immune Systems. Annu Rev Immunol 2025; 43:489-514. [PMID: 40279312 DOI: 10.1146/annurev-immunol-083122-040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Effective bidirectional communication between the innate and adaptive immune systems is crucial for tissue homeostasis and protective immunity against infections. The innate immune system is responsible for the early sensing of and initial response to threats, including microbial ligands, toxins, and tissue damage. Pathogen-related information, detected primarily by the innate immune system via dendritic cells, is relayed to adaptive immune cells, leading to the priming and differentiation of naive T cells into effector and memory lineages. Memory T cells that persist long after pathogen clearance are integral for durable protective immunity. In addition to rapidly responding to reinfections, memory T cells also directly instruct the interacting myeloid cells to induce innate inflammation, which resembles microbial inflammation. As such, memory T cells act as newly emerging activators of the innate immune system and function independently of direct microbial recognition. While T cell-mediated activation of the innate immune system likely evolved as a protective mechanism to combat reinfections by virulent pathogens, the detrimental outcomes of this mechanism manifest in the forms of autoimmunity and other T cell-driven pathologies. Here, we review the complexities and layers of regulation at the interface between the innate and adaptive immune systems to highlight the implications of adaptive instruction of innate immunity in health and disease.
Collapse
Affiliation(s)
- Kathrynne A Warrick
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Charles N Vallez
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Hannah E Meibers
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| |
Collapse
|
3
|
Zhou B, Xiao K, Guo J, Xu Q, Xu Q, Lv Q, Zhu H, Zhao J, Liu Y. Necroptosis contributes to the intestinal toxicity of deoxynivalenol and is mediated by methyltransferase SETDB1. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134601. [PMID: 38823098 DOI: 10.1016/j.jhazmat.2024.134601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
Deoxynivalenol (DON) is a secondary metabolite produced by fungi, which causes serious health issues worldwide due to its widespread presence in human and animal diets. Necroptosis is a newly proposed cell death mode and has been proposed as a potential mechanism of intestinal disease. This study aimed to investigate the role of necroptosis in intestinal damage caused by DON exposure. Piglets were fed diets with or without 4 mg/kg DON for 3 weeks or given a gavage of 2 mg/kg BW DON or sterile saline to investigate the effects of chronic or acute DON exposure on the gut, respectively. IPEC-1 cells were challenged with different concentrations of DON to investigate the effect of DON exposure on the intestinal epithelial cells (IECs) in vitro. Subsequently, the inhibitors of necroptosis were used to treat cells or piglets prior to DON challenge. Chronic and acute DON exposure both caused morphological damage, reduction of disaccharidase activity, decrease of tight junction protein expression, inflammation of the small intestine, and necroptosis of intestinal epithelial cells in piglets. Necroptosis was also detected when IPEC-1 cell damage was induced by DON in vitro. The suppression of necroptosis in IPEC-1 cells by inhibitors (necrostatin-1 (Nec-1), GSK'872, or GW806742X) alleviated cell death, the decrease of tight junction protein expression, oxidative stress, and the inflammatory response induced by DON. Furthermore, pre-treatment with Nec-1 in piglets was also observed to protect the intestine against DON-induced enterotoxicity. Additionally, the expression of histone methyltransferase SETDB1 was abnormally downregulated upon chronic and acute DON exposure in piglets, and necroptosis was activated in IPEC-1 cells due to knockout of SETDB1. Collectively, these results demonstrate that necroptosis of IECs is a mechanism of DON-induced enterotoxicity and SETDB1 mediates necroptosis upon DON exposure in IECs, suggesting the potential for targeted inhibition of necroptosis to alleviate mycotoxin-induced enterotoxicity and intestinal disease.
Collapse
Affiliation(s)
- Bei Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qilong Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingqing Lv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
4
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
5
|
Qian M, Zhou J, Wu J, Zhang H, Yu S, Xu H, Yang Y, Zhou F, Yang Q, Shao L, Zhang W, Jiang N, Ruan Q. A rare missense p.C125Y mutation in the TNFRSF1A gene identified in a Chinese family with tumor necrosis factor receptor-associated periodic fever syndrome. Front Genet 2024; 15:1413641. [PMID: 38978873 PMCID: PMC11228257 DOI: 10.3389/fgene.2024.1413641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024] Open
Abstract
Background Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) is a rare autosomal dominant disorder with a low incidence in Asia. The most frequent clinical manifestations include fever, rash, myalgia, joint pain and abdominal pain. Misdiagnosis rates are high because of the clinical and genetic variability of the disease. The pathogenesis of TRAPS is complex and yet to be fully defined. Early genetic diagnosis is the key to precise treatment. Methods In this study, a Chinese family with suspected TRAPS were analyzed by genome-wide SNP genotyping, linkage analysis and targeted sequencing for identification of mutations in causative genes. To study the pathogenicity of the identified gene mutation, we performed a conservation analysis of the mutation site and protein structure analysis. Flow cytometry was used to detect TNFRSF1A shedding and quantitative real-time PCR were used to assess the activation of unfolded protein response (UPR) in the mutation carriers and healthy individuals. Results A typical TRAPS family history, with a pattern of autosomal dominant inheritance, led to the identification of a rare mutation in the TNFRSF1A gene (c.G374A [p.Cys125Tyr]) with unknown significance. The patient responded well to corticosteroids, and long-term therapy with colchicine effectively reduced the inflammatory attacks. No amyloid complications occurred during the 6-year follow-up. In silico protein analysis showed that the mutation site is highly conversed and the mutation prevents the formation of intrachain disulfide bonds in the protein. Despite a normal shedding of the TNFRSF1A protein from stimulated monocytes in the TRAPS patients with p.C125Y mutation, the expression of CHOP and the splicing of XBP1 was significantly higher than healthy controls, suggesting the presence of an activation UPR. Conclusion This is the first report of a Chinese family with the rare p.C125Y mutation in TNFRSF1A. The p.C125Y mutation does not result in aberrant receptor shedding, but instead is associated with an activated UPR in these TRAPS patients, which may provide new insights into the pathogenesis of this rare mutation in TRAPS.
Collapse
Affiliation(s)
- Mengqing Qian
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyu Zhou
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Wu
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haocheng Zhang
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglei Yu
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoxin Xu
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixuan Yang
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feiran Zhou
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingluan Yang
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyun Shao
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection and Immunity, Shanghai, China
| | - Ning Jiang
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection and Immunity, Shanghai, China
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering (SKLG), School of Life Sciences, Fudan University, Shanghai, China
| | - Qiaoling Ruan
- Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Li X, Xia F. Immunotherapy for hepatocellular carcinoma: molecular pathogenesis and clinical research progress. ONCOLOGY AND TRANSLATIONAL MEDICINE 2023. [DOI: 10.1097/ot9.0000000000000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
The treatment of hepatocellular carcinoma (HCC) is advancing rapidly in the 21st century. Although there are various treatment methods, the most promising breakthrough seems to be in immunotherapy. Recent guidelines from the American Society of Clinical Oncology and the European Association for the Study of the Liver have recommended immunotherapies with strong antitumor effects for HCC treatment. Emerging systemic therapeutic strategies, such as immune checkpoint inhibitors combined with targeted therapy or local treatment, are among the most promising for improving overall and tumor-free survival times in patients with HCC. This review analyzes the molecular mechanisms of existing immune checkpoint inhibitors, vaccines, and chimeric antigen receptor–T cells; summarizes the latest progress in relevant clinical research; and outlines future trends and opportunities for HCC immunotherapy.
Collapse
|
7
|
Sharma M, Niu L, Zhang X, Huang S. Comparative transcriptomes reveal pro-survival and cytotoxic programs of mucosal-associated invariant T cells upon Bacillus Calmette-Guérin stimulation. Front Cell Infect Microbiol 2023; 13:1134119. [PMID: 37091679 PMCID: PMC10116416 DOI: 10.3389/fcimb.2023.1134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are protective against tuberculous and non-tuberculous mycobacterial infections with poorly understood mechanisms. Despite an innate-like nature, MAIT cell responses remain heterogeneous in bacterial infections. To comprehensively characterize MAIT activation programs responding to different bacteria, we stimulated MAIT cells with E. coli to compare with Bacillus Calmette-Guérin (BCG), which remains the only licensed vaccine and a feasible tool for investigating anti-mycobacterial immunity in humans. Upon sequencing mRNA from the activated and inactivated CD8+ MAIT cells, results demonstrated the altered MAIT cell gene profiles by each bacterium with upregulated expression of activation markers, transcription factors, cytokines, and cytolytic mediators crucial in anti-mycobacterial responses. Compared with E. coli, BCG altered more MAIT cell genes to enhance cell survival and cytolysis. Flow cytometry analyses similarly displayed a more upregulated protein expression of B-cell lymphoma 2 and T-box transcription factor Eomesodermin in BCG compared to E.coli stimulations. Thus, the transcriptomic program and protein expression of MAIT cells together displayed enhanced pro-survival and cytotoxic programs in response to BCG stimulation, supporting BCG induces cell-mediated effector responses of MAIT cells to fight mycobacterial infections.
Collapse
Affiliation(s)
| | | | | | - Shouxiong Huang
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
8
|
Erba F, Di Paola L, Di Venere A, Mastrangelo E, Cossu F, Mei G, Minicozzi V. Head or tail? A molecular dynamics approach to the complex structure of TNF-associated factor TRAF2. Biomol Concepts 2023; 14:bmc-2022-0031. [PMID: 37377424 DOI: 10.1515/bmc-2022-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor necrosis factor receptor-associated factor proteins (TRAFs) are trimeric proteins that play a fundamental role in signaling, acting as intermediaries between the tumor necrosis factor (TNF) receptors and the proteins that transmit the downstream signal. The monomeric subunits of all the TRAF family members share a common tridimensional structure: a C-terminal globular domain and a long coiled-coil tail characterizing the N-terminal section. In this study, the dependence of the TRAF2 dynamics on the length of its tail was analyzed in silico. In particular, we used the available crystallographic structure of a C-terminal fragment of TRAF2 (168 out of 501 a.a.), TRAF2-C, and that of a longer construct, addressed as TRAF2-plus, that we have re-constructed using the AlphaFold2 code. The results indicate that the longer N-terminal tail of TRAF2-plus has a strong influence on the dynamics of the globular regions in the protein C-terminal head. In fact, the quaternary interactions among the TRAF2-C subunits change asymmetrically in time, while the movements of TRAF2-plus monomers are rather limited and more ordered than those of the shorter construct. Such findings shed a new light on the dynamics of TRAF subunits and on the protein mechanism in vivo, since TRAF monomer-trimer equilibrium is crucial for several reasons (receptor recognition, membrane binding, hetero-oligomerization).
Collapse
Affiliation(s)
- Fulvio Erba
- Department of Clinical Science and Translational Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, University Campus Bio-Medico of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Almerinda Di Venere
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Eloise Mastrangelo
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Federica Cossu
- National Research Council (IBF-CNR) Milan Unit, Institute of Biophysics, Via Celoria 26, 20133 Milan, Italy
| | - Giampiero Mei
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Velia Minicozzi
- Department of Physics and INFN, Tor Vergata University of Rome, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
9
|
Hu J, Pan D, Li G, Chen K, Hu X. Regulation of programmed cell death by Brd4. Cell Death Dis 2022; 13:1059. [PMID: 36539410 PMCID: PMC9767942 DOI: 10.1038/s41419-022-05505-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Epigenetic factor Brd4 has emerged as a key regulator of cancer cell proliferation. Targeted inhibition of Brd4 suppresses growth and induces apoptosis of various cancer cells. In addition to apoptosis, Brd4 has also been shown to regulate several other forms of programmed cell death (PCD), including autophagy, necroptosis, pyroptosis, and ferroptosis, with different biological outcomes. PCD plays key roles in development and tissue homeostasis by eliminating unnecessary or detrimental cells. Dysregulation of PCD is associated with various human diseases, including cancer, neurodegenerative and infectious diseases. In this review, we discussed some recent findings on how Brd4 actively regulates different forms of PCD and the therapeutic potentials of targeting Brd4 in PCD-related human diseases. A better understanding of PCD regulation would provide not only new insights into pathophysiological functions of PCD but also provide new avenues for therapy by targeting Brd4-regulated PCD.
Collapse
Affiliation(s)
- Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Dun Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Ministry of Education), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
10
|
Contreras CJ, Mukherjee N, Branco RCS, Lin L, Hogan MF, Cai EP, Oberst AA, Kahn SE, Templin AT. RIPK1 and RIPK3 regulate TNFα-induced β-cell death in concert with caspase activity. Mol Metab 2022; 65:101582. [PMID: 36030035 PMCID: PMC9464965 DOI: 10.1016/j.molmet.2022.101582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Type 1 diabetes (T1D) is characterized by autoimmune-associated β-cell loss, insulin insufficiency, and hyperglycemia. Although TNFα signaling is associated with β-cell loss and hyperglycemia in non-obese diabetic mice and human T1D, the molecular mechanisms of β-cell TNF receptor signaling have not been fully characterized. Based on work in other cell types, we hypothesized that receptor interacting protein kinase 1 (RIPK1) and receptor interacting protein kinase 3 (RIPK3) regulate TNFα-induced β-cell death in concert with caspase activity. METHODS We evaluated TNFα-induced cell death, caspase activity, and TNF receptor pathway molecule expression in immortalized NIT-1 and INS-1 β-cell lines and primary mouse islet cells in vitro. Our studies utilized genetic and small molecule approaches to alter RIPK1 and RIPK3 expression and caspase activity to interrogate mechanisms of TNFα-induced β-cell death. We used the β-cell toxin streptozotocin (STZ) to determine the susceptibility of Ripk3+/+ and Ripk3-/- mice to hyperglycemia in vivo. RESULTS Expression of TNF receptor signaling molecules including RIPK1 and RIPK3 was identified in NIT-1 and INS-1 β cells and isolated mouse islets at the mRNA and protein levels. TNFα treatment increased NIT-1 and INS-1 cell death and caspase activity after 24-48 h, and BV6, a small molecule inhibitor of inhibitor of apoptosis proteins (IAPs) amplified this TNFα-induced cell death. RIPK1 deficient NIT-1 cells were protected from TNFα- and BV6-induced cell death and caspase activation. Interestingly, small molecule inhibition of caspases with zVAD-fmk (zVAD) did not prevent TNFα-induced cell death in either NIT-1 or INS-1 cells. This caspase-independent cell death was increased by BV6 treatment and decreased in RIPK1 deficient NIT-1 cells. RIPK3 deficient NIT-1 cells and RIPK3 kinase inhibitor treated INS-1 cells were protected from TNFα+zVAD-induced cell death, whereas RIPK3 overexpression increased INS-1 cell death and promoted RIPK3 and MLKL interaction under TNFα+zVAD treatment. In mouse islet cells, BV6 or zVAD treatment promoted TNFα-induced cell death, and TNFα+zVAD-induced cell death was blocked by RIPK3 inhibition and in Ripk3-/- islet cells in vitro. Ripk3-/- mice were also protected from STZ-induced hyperglycemia and glucose intolerance in vivo. CONCLUSIONS RIPK1 and RIPK3 regulate TNFα-induced β-cell death in concert with caspase activity in immortalized and primary islet β cells. TNF receptor signaling molecules such as RIPK1 and RIPK3 may represent novel therapeutic targets to promote β-cell survival and glucose homeostasis in T1D.
Collapse
Affiliation(s)
- Christopher J Contreras
- Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA
| | - Noyonika Mukherjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Renato C S Branco
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Meghan F Hogan
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - Erica P Cai
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Andrew A Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - Andrew T Templin
- Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA; Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
11
|
Xu W, Huang Y. Regulation of Inflammatory Cell Death by Phosphorylation. Front Immunol 2022; 13:851169. [PMID: 35300338 PMCID: PMC8921259 DOI: 10.3389/fimmu.2022.851169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cell death is a necessary event in multi-cellular organisms to maintain homeostasis by eliminating unrequired or damaged cells. Currently, there are many forms of cell death, and several of them, such as necroptosis, pyroptosis and ferroptosis, even apoptosis trigger an inflammatory response by releasing damage-associated molecular patterns (DAMPs), which are involved in the pathogenesis of a variety of human inflammatory diseases, including autoimmunity disease, diabetes, Alzheimer’s disease and cancer. Therefore, the occurrence of inflammatory cell death must be strictly regulated. Recently, increasing studies suggest that phosphorylation plays a critical role in inflammatory cell death. In this review, we will summarize current knowledge of the regulatory role of phosphorylation in inflammatory cell death and also discuss the promising treatment strategy for inflammatory diseases by targeting related protein kinases that mediate phosphorylation or phosphatases that mediate dephosphorylation.
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Ye M, Huang J, Mou Q, Luo J, Hu Y, Lou X, Yao K, Zhao B, Duan Q, Li X, Zhang H, Zhao Y. CD82 protects against glaucomatous axonal transport deficits via mTORC1 activation in mice. Cell Death Dis 2021; 12:1149. [PMID: 34897284 PMCID: PMC8665930 DOI: 10.1038/s41419-021-04445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/02/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive optic nerve degeneration and retinal ganglion cell loss. Axonal transport deficits have been demonstrated to be the earliest crucial pathophysiological changes underlying axonal degeneration in glaucoma. Here, we explored the role of the tetraspanin superfamily member CD82 in an acute ocular hypertension model. We found a transient downregulation of CD82 after acute IOP elevation, with parallel emergence of axonal transport deficits. The overexpression of CD82 with an AAV2/9 vector in the mouse retina improved optic nerve axonal transport and ameliorated subsequent axon degeneration. Moreover, the CD82 overexpression stimulated optic nerve regeneration and restored vision in a mouse optic nerve crush model. CD82 exerted a protective effect through the upregulation of TRAF2, which is an E3 ubiquitin ligase, and activated mTORC1 through K63-linked ubiquitylation and intracellular repositioning of Raptor. Therefore, our study offers deeper insight into the tetraspanin superfamily and demonstrates a potential neuroprotective strategy in glaucoma treatment.
Collapse
Affiliation(s)
- Meng Ye
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingqiu Huang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianxue Mou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaotong Lou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA, USA
| | - Xing Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther 2021; 6:407. [PMID: 34824200 PMCID: PMC8613465 DOI: 10.1038/s41392-021-00816-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection. Over decades, advanced understanding of host-microorganism interaction has gradually unmasked the genuine nature of sepsis, guiding toward new definition and novel therapeutic approaches. Diverse clinical manifestations and outcomes among infectious patients have suggested the heterogeneity of immunopathology, while systemic inflammatory responses and deteriorating organ function observed in critically ill patients imply the extensively hyperactivated cascades by the host defense system. From focusing on microorganism pathogenicity, research interests have turned toward the molecular basis of host responses. Though progress has been made regarding recognition and management of clinical sepsis, incidence and mortality rate remain high. Furthermore, clinical trials of therapeutics have failed to obtain promising results. As far as we know, there was no systematic review addressing sepsis-related molecular signaling pathways and intervention therapy in literature. Increasing studies have succeeded to confirm novel functions of involved signaling pathways and comment on efficacy of intervention therapies amid sepsis. However, few of these studies attempt to elucidate the underlining mechanism in progression of sepsis, while other failed to integrate preliminary findings and describe in a broader view. This review focuses on the important signaling pathways, potential molecular mechanism, and pathway-associated therapy in sepsis. Host-derived molecules interacting with activated cells possess pivotal role for sepsis pathogenesis by dynamic regulation of signaling pathways. Cross-talk and functions of these molecules are also discussed in detail. Lastly, potential novel therapeutic strategies precisely targeting on signaling pathways and molecules are mentioned.
Collapse
Affiliation(s)
- Yun-Yu Zhang
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Bo-Tao Ning
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
14
|
Jiang Q, Li Z, Tao T, Duan R, Wang X, Su W. TNF-α in Uveitis: From Bench to Clinic. Front Pharmacol 2021; 12:740057. [PMID: 34795583 PMCID: PMC8592912 DOI: 10.3389/fphar.2021.740057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Uveitis is an inflammation of the iris, ciliary body, vitreous, retina, or choroid, which has been shown to be the first manifestation of numerous systemic diseases. Studies about the immunopathogenesis and treatment of uveitis are helpful to comprehend systemic autoimmune diseases, and delay the progression of systemic autoimmune diseases, respectively. Tumor necrosis factor-alpha (TNF-α), a pleiotropic cytokine, plays a pivotal role in intraocular inflammation based on experimental and clinical data. Evidence of the feasibility of using anti-TNF-α agents for uveitis management has increased. Although there are numerous studies on TNF-α in various autoimmune diseases, the pathological mechanism and research progress of TNF-α in uveitis have not been reviewed. Therefore, the objective of this review is to provide a background on the role of TNF-α in the immunopathogenesis of uveitis, as well as from bench to clinical research progress, to better guide TNF-α-based therapeutics for uveitis.
Collapse
Affiliation(s)
- Qi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Tianyu Tao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xianggui Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Yu Z, Jiang N, Su W, Zhuo Y. Necroptosis: A Novel Pathway in Neuroinflammation. Front Pharmacol 2021; 12:701564. [PMID: 34322024 PMCID: PMC8311004 DOI: 10.3389/fphar.2021.701564] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is a complex inflammatory process in the nervous system that is expected to play a significant role in neurological diseases. Necroptosis is a kind of necrosis that triggers innate immune responses by rupturing dead cells and releasing intracellular components; it can be caused by Toll-like receptor (TLR)-3 and TLR-4 agonists, tumor necrosis factor (TNF), certain microbial infections, and T cell receptors. Necroptosis signaling is modulated by receptor-interacting protein kinase (RIPK) 1 when the activity of caspase-8 becomes compromised. Activated death receptors (DRs) cause the activation of RIPK1 and the RIPK1 kinase activity-dependent formation of an RIPK1-RIPK3-mixed lineage kinase domain-like protein (MLKL), which is complex II. RIPK3 phosphorylates MLKL, ultimately leading to necrosis through plasma membrane disruption and cell lysis. Current studies suggest that necroptosis is associated with the pathogenesis of neuroinflammatory diseases, such as Alzheimer’s disease, Parkinson’s disease, and traumatic brain injury. Inhibitors of necroptosis, such as necrostatin-1 (Nec-1) and stable variant of Nec (Nec-1s), have been proven to be effective in many neurological diseases. The purpose of this article is to illuminate the mechanism underlying necroptosis and the important role that necroptosis plays in neuroinflammatory diseases. Overall, this article shows a potential therapeutic strategy in which targeting necroptotic factors may improve the pathological changes and clinical symptoms of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Ziyu Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Nan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Department of Pediatric Ophthalmology, Guangzhou Children's Hospital and Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Di Venere A, Nicolai E, Minicozzi V, Caccuri AM, Di Paola L, Mei G. The Odd Faces of Oligomers: The Case of TRAF2-C, A Trimeric C-Terminal Domain of TNF Receptor-Associated Factor. Int J Mol Sci 2021; 22:ijms22115871. [PMID: 34070875 PMCID: PMC8198530 DOI: 10.3390/ijms22115871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
TNF Receptor Associated Factor 2 (TRAF2) is a trimeric protein that belongs to the TNF receptor associated factor family (TRAFs). The TRAF2 oligomeric state is crucial for receptor binding and for its interaction with other proteins involved in the TNFR signaling. The monomer-trimer equilibrium of a C- terminal domain truncated form of TRAF2 (TRAF2-C), plays also a relevant role in binding the membrane, causing inward vesiculation. In this study, we have investigated the conformational dynamics of TRAF2-C through circular dichroism, fluorescence, and dynamic light scattering, performing temperature-dependent measurements. The data indicate that the protein retains its oligomeric state and most of its secondary structure, while displaying a significative increase in the heterogeneity of the tyrosines signal, increasing the temperature from ≈15 to ≈35 °C. The peculiar crowding of tyrosine residues (12 out of 18) at the three subunit interfaces and the strong dependence on the trimer concentration indicate that such conformational changes mainly involve the contact areas between each pair of monomers, affecting the oligomeric state. Molecular dynamic simulations in this temperature range suggest that the interfaces heterogeneity is an intrinsic property of the trimer that arises from the continuous, asymmetric approaching and distancing of its subunits. Such dynamics affect the results of molecular docking on the external protein surface using receptor peptides, indicating that the TRAF2-receptor interaction in the solution might not involve three subunits at the same time, as suggested by the static analysis obtainable from the crystal structure. These findings shed new light on the role that the TRAF2 oligomeric state might have in regulating the protein binding activity in vivo.
Collapse
Affiliation(s)
- Almerinda Di Venere
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy; (A.D.V.); (E.N.)
| | - Eleonora Nicolai
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy; (A.D.V.); (E.N.)
| | - Velia Minicozzi
- Department of Physics, Tor Vergata University of Rome, Via Della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Anna Maria Caccuri
- Department of Chemistry, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Luisa Di Paola
- Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, University Campus Bio-Medico of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Correspondence: (L.D.P.); (G.M.)
| | - Giampiero Mei
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy; (A.D.V.); (E.N.)
- Correspondence: (L.D.P.); (G.M.)
| |
Collapse
|
17
|
Ni Y, Baladandayuthapani V, Vannucci M, Stingo FC. Bayesian graphical models for modern biological applications. STAT METHOD APPL-GER 2021; 31:197-225. [PMID: 35673326 PMCID: PMC9165295 DOI: 10.1007/s10260-021-00572-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 12/14/2022]
Abstract
Graphical models are powerful tools that are regularly used to investigate complex dependence structures in high-throughput biomedical datasets. They allow for holistic, systems-level view of the various biological processes, for intuitive and rigorous understanding and interpretations. In the context of large networks, Bayesian approaches are particularly suitable because it encourages sparsity of the graphs, incorporate prior information, and most importantly account for uncertainty in the graph structure. These features are particularly important in applications with limited sample size, including genomics and imaging studies. In this paper, we review several recently developed techniques for the analysis of large networks under non-standard settings, including but not limited to, multiple graphs for data observed from multiple related subgroups, graphical regression approaches used for the analysis of networks that change with covariates, and other complex sampling and structural settings. We also illustrate the practical utility of some of these methods using examples in cancer genomics and neuroimaging.
Collapse
Affiliation(s)
- Yang Ni
- Department of Statistics, Texas A&M University, College Station, USA
| | | | | | - Francesco C. Stingo
- Department of Statistics, Computer Science, Applications “G. Parenti”, The University of Florence, Florence, Italy
| |
Collapse
|
18
|
Varfolomeev E, Goncharov T, Vucic D. Immunoblot Analysis of the Regulation of TNF Receptor Family-Induced NF-κB Signaling by c-IAP Proteins. Methods Mol Biol 2021; 2366:109-123. [PMID: 34236635 DOI: 10.1007/978-1-0716-1669-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Proper maintenance of organismal homeostasis, development, and immune defense requires precise regulation of survival and signaling pathways. Inhibitor of apoptosis (IAP) proteins are evolutionarily conserved regulators of cell death and immune signaling that impact numerous cellular processes. Although initially characterized as inhibitors of apoptosis, the ubiquitin ligase activity of IAP proteins is critical for modulating various signaling pathways (e.g., NF-κB, MAPK) and cell survival. Cellular IAP1 and 2 regulate the pro-survival canonical NF-κB pathway by ubiquitinating RIP1 and themselves thus enabling recruitment of kinase (IKK) and E3 ligase (LUBAC) complexes. On the other hand, c-IAP1 and c-IAP2 are negative regulators of noncanonical NF-κB signaling by promoting ubiquitination and consequent proteasomal degradation of the NF-κB-inducing kinase NIK. Here we describe the involvement of c-IAP1 and c-IAP2 in NF-κB signaling and provide detailed methodology for examining functional roles of c-IAPs in these pathways.
Collapse
Affiliation(s)
- Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
19
|
Torrey H, Kühtreiber WM, Okubo Y, Tran L, Case K, Zheng H, Vanamee E, Faustman DL. A novel TNFR2 agonist antibody expands highly potent regulatory T cells. Sci Signal 2020; 13:13/661/eaba9600. [DOI: 10.1126/scisignal.aba9600] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Heather Torrey
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Willem M. Kühtreiber
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Yoshiaki Okubo
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Lisa Tran
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Katherine Case
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Hui Zheng
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Eva Vanamee
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Denise L. Faustman
- Immunobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
20
|
Van der Meeren L, Verduijn J, Krysko DV, Skirtach AG. AFM Analysis Enables Differentiation between Apoptosis, Necroptosis, and Ferroptosis in Murine Cancer Cells. iScience 2020; 23:101816. [PMID: 33299979 PMCID: PMC7702191 DOI: 10.1016/j.isci.2020.101816] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/13/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) has a fundamental role in development, pathology, and tissue homeostasis. In order to understand the RCD mechanisms, it is essential to follow these processes in real time. Here, atomic force microscopy (AFM) is applied to morphologically and mechanically characterize four RCD modalities (intrinsic and extrinsic apoptosis, necroptosis, and ferroptosis) in murine tumor cell lines. The nano-topographical analysis revealed a distinct surface morphology in case of necroptosis, ∼ 200 nm membrane disruptions are observed. Using mechanical measurements, it is possible to detect the early onset of RCD. Combined elasticity and microrheology analysis allowed for a clear distinction between apoptotic and regulated necrotic cell death. Finally, immunofluorescence analysis of the cytoskeleton structure during the RCD processes confirm the measured mechanical changes. The results of this study not only demonstrate the possibility of early real-time cell death detection but also reveal important differences in the cytoskeletal dynamics between multiple RCD modalities. AFM is a label-free method to distinguish apoptosis, necroptosis, and ferroptosis Nanotopography and subtle morphologic changes are distinct for each RCD Mechanobiology elasticity analysis reveals changes occurring at early stages of RCD Microrheology data agree with mechanobiology Young's modulus analysis
Collapse
Affiliation(s)
- Louis Van der Meeren
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Joost Verduijn
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Dmitri V Krysko
- Cancer Research Institute Ghent, 9000 Ghent, Belgium.,Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.,Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - André G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Patil AA, Bhor SA, Rhee WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Zhou S, Liu Y, Dong J, Yang Q, Xu N, Yang Y, Gu Z, Ai X. Transcriptome analysis of goldfish (Carassius auratus) in response to Gyrodactylus kobayashii infection. Parasitol Res 2020; 120:161-171. [PMID: 33094386 DOI: 10.1007/s00436-020-06827-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Gyrodactylid monogeneans are widespread parasites of teleost fishes, and infection with these parasites results in high host morbidity and mortality in aquaculture. To comprehensively elucidate the immune mechanisms against Gyrodactylus kobayashii, the transcriptome profiles of goldfish (Carassius auratus) skin after challenge with G. kobayashii were first investigated using next-generation sequencing. Approximately 21 million clean reads per library were obtained, and the average percentage of these clean reads mapped to the reference genome was 82.25%. A total of 556 differentially expressed genes (DEGs), including 344 upregulated and 212 downregulated genes, were identified, and 380 DEGs were successfully annotated and assigned to 95 signaling pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, 14 pathways associated with immune response were identified mainly including mTOR signaling pathway, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, toll-like receptor signaling pathway, and phagosome. Twelve genes were selected and validated using qRT-PCR. A similar trend of these genes between RNA-Seq and qRT-PCR was observed, indicating that RNA-Seq data was reliable. Besides, the ALP activity and NO content in serum were significantly higher in the infected goldfish compared with the non-infected goldfish. In summary, this study provides better understandings of immune defense mechanisms of goldfish against G. kobayashii, which will support future molecular research on gyrodactylids and facilitate the prevention and treatment of gyrodactylosis in aquaculture.
Collapse
Affiliation(s)
- Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430223, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China.,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China
| | - Zemao Gu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8 Wuda Park Road 1, Wuhan, 430223, Hubei Province, China. .,Hu Bei Province Engineering and Technology Research Center of Aquatic Product Quality and Safety, Wuhan, 430223, China.
| |
Collapse
|
23
|
Cossu F, Sorrentino L, Fagnani E, Zaffaroni M, Milani M, Giorgino T, Mastrangelo E. Computational and Experimental Characterization of NF023, A Candidate Anticancer Compound Inhibiting cIAP2/TRAF2 Assembly. J Chem Inf Model 2020; 60:5036-5044. [PMID: 32820924 DOI: 10.1021/acs.jcim.0c00518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions are the basis of many important physiological processes and are currently promising, yet difficult, targets for drug discovery. In this context, inhibitor of apoptosis proteins (IAPs)-mediated interactions are pivotal for cancer cell survival; the interaction of the BIR1 domain of cIAP2 with TRAF2 was shown to lead the recruitment of cIAPs to the TNF receptor, promoting the activation of the NF-κB survival pathway. In this work, using a combined in silico-in vitro approach, we identified a drug-like molecule, NF023, able to disrupt cIAP2 interaction with TRAF2. We demonstrated in vitro its ability to interfere with the assembly of the cIAP2-BIR1/TRAF2 complex and performed a thorough characterization of the compound's mode of action through 248 parallel unbiased molecular dynamics simulations of 300 ns (totaling almost 75 μs of all-atom sampling), which identified multiple binding modes to the BIR1 domain of cIAP2 via clustering and ensemble docking. NF023 is, thus, a promising protein-protein interaction disruptor, representing a starting point to develop modulators of NF-κB-mediated cell survival in cancer. This study represents a model procedure that shows the use of large-scale molecular dynamics methods to typify promiscuous interactors.
Collapse
Affiliation(s)
- Federica Cossu
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| | - Luca Sorrentino
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| | - Elisa Fagnani
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy
| | - Mattia Zaffaroni
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| | - Mario Milani
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| | - Toni Giorgino
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| | - Eloise Mastrangelo
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| |
Collapse
|
24
|
In vitro analysis reveals necroptotic signaling does not provoke DNA damage or HPRT mutations. Cell Death Dis 2020; 11:680. [PMID: 32826875 PMCID: PMC7442655 DOI: 10.1038/s41419-020-02879-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Most anticancer drugs provoke apoptotic signaling by damaging DNA or other means. Genotoxic therapies may enhance a patient’s risk of developing “therapy-related cancers” due to the accumulation of oncogenic mutations that may occur in noncancerous cells. Mutations can also form upon apoptotic signaling due to sublethal caspase activity, implying that apoptosis activating drugs may also be oncogenic. Necroptosis is a different way of killing cancer cells: this version of caspase-independent cell death is characterized by receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase-like domain protein (MLKL) activation, leading to cell membrane rupture and controlled cell lysis. The mutagenic potential of sublethal necroptotic signaling has not yet been directly investigated. Smac mimetics drugs, which activate apoptotic or necroptotic cell death, do not induce mutations but the mechanistic basis for this lack of mutagenic activity has not been determined. In this study, we compared the mutagenic potential of these two cell death pathways by engineering cells to activate either apoptotic or necroptotic signaling by exposing them to Smac mimetics with or without TNFα, and/or enforcing or preventing expression of apoptotic or necroptotic regulators. We discovered that sublethal concentrations of Smac mimetics in contexts that activated apoptotic signaling provoked DNA damage and mutations in surviving cells. Mutagenesis was dependent on executioner caspase activation of the nuclease CAD. In contrast, RIPK3- and MLKL-dependent necroptotic signaling following Smac mimetic treatment was not mutagenic. Likewise, DNA damage was not provoked in cells expressing a lethal constitutively active MLKL mutant. These data reveal that cells surviving sublethal necroptotic signaling do not sustain genomic damage and provide hope for a reduced risk of therapy-related malignancies in patients treated with necroptosis-inducing drugs.
Collapse
|
25
|
Zhang J, Webster JD, Dugger DL, Goncharov T, Roose-Girma M, Hung J, Kwon YC, Vucic D, Newton K, Dixit VM. Ubiquitin Ligases cIAP1 and cIAP2 Limit Cell Death to Prevent Inflammation. Cell Rep 2020; 27:2679-2689.e3. [PMID: 31141691 DOI: 10.1016/j.celrep.2019.04.111] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/29/2019] [Accepted: 04/26/2019] [Indexed: 01/18/2023] Open
Abstract
Cellular inhibitor of apoptosis proteins cIAP1 and cIAP2 ubiquitinate nuclear factor κB (NF-κB)-inducing kinase (NIK) to suppress non-canonical NF-κB signaling and substrates such as receptor interacting protein kinase 1 (RIPK1) to promote cell survival. We investigate how these functions contribute to homeostasis by eliminating cIap2 from adult cIap1-deficient mice. cIAP1 and cIAP2 (cIAP1/2) deficiency causes rapid weight loss and inflammation, with aberrant cell death, indicated by cleaved caspases-3 and -8, prevalent in intestine and liver. Deletion of Casp8 and Ripk3 prevents this aberrant cell death, reduces the inflammation, and prolongs mouse survival, whereas Ripk3 loss alone offers little benefit. Residual inflammation in mice lacking cIap1/2, Casp8, and Ripk3 is reduced by inhibition of NIK. Loss of Casp8 and Mlkl (mixed lineage kinase domain-like), but not Mlkl loss alone, also prevents cIAP1/2-deficient mice from dying around embryonic day 11. Therefore, a major function of cIAP1/2 in vivo is to suppress caspase-8-dependent cell death.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Debra L Dugger
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | - Jeffrey Hung
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Youngsu C Kwon
- Department of Translational Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
26
|
Abstract
We consider the problem of modeling conditional independence structures in heterogeneous data in the presence of additional subject-level covariates - termed Graphical Regression. We propose a novel specification of a conditional (in)dependence function of covariates - which allows the structure of a directed graph to vary flexibly with the covariates; imposes sparsity in both edge and covariate selection; produces both subject-specific and predictive graphs; and is computationally tractable. We provide theoretical justifications of our modeling endeavor, in terms of graphical model selection consistency. We demonstrate the performance of our method through rigorous simulation studies. We illustrate our approach in a cancer genomics-based precision medicine paradigm, where-in we explore gene regulatory networks in multiple myeloma taking prognostic clinical factors into account to obtain both population-level and subject-level gene regulatory networks.
Collapse
Affiliation(s)
- Yang Ni
- Department of Statistics and Data Sciences, The University of Texas at Austin
- Department of Statistics, Rice University
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center
| | - Francesco C Stingo
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center
- Department of Statistics, Computer Science, Applications "G. Parenti", The University of Florence
| | | |
Collapse
|
27
|
Lewis MJ, McAndrew MB, Wheeler C, Workman N, Agashe P, Koopmann J, Uddin E, Morris DL, Zou L, Stark R, Anson J, Cope AP, Vyse TJ. Autoantibodies targeting TLR and SMAD pathways define new subgroups in systemic lupus erythematosus. J Autoimmun 2018; 91:1-12. [DOI: 10.1016/j.jaut.2018.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 11/25/2022]
|
28
|
Chen Q, Kang J, Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther 2018; 3:18. [PMID: 29967689 PMCID: PMC6026494 DOI: 10.1038/s41392-018-0018-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cell death is an essential biological process for physiological growth and development. Three classical forms of cell death-apoptosis, autophagy, and necrosis-display distinct morphological features by activating specific signaling pathways. With recent research advances, we have started to appreciate that these cell death processes can cross-talk through interconnecting, even overlapping, signaling pathways, and the final cell fate is the result of the interplay of different cell death programs. This review provides an insight into the independence of and associations among these three types of cell death and explores the significance of cell death under the specific conditions of human diseases, particularly neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Qi Chen
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China
| | - Jian Kang
- 3Cancer Signalling Laboratory, Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan street, Melbourne, VIC 3000 Australia
| | - Caiyun Fu
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China.,4Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA 94158 USA.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014 China
| |
Collapse
|
29
|
Abstract
Defective production of antiviral interferon (IFN)-β is thought to contribute to rhinovirus-induced asthma exacerbations. These exacerbations are associated with elevated lung levels of lactate dehydrogenase (LDH), indicating occurrence of cell necrosis. We thus hypothesized that reduced lung IFN-β could contribute to necrotic cell death in a model of asthma exacerbations. Wild-type and IFN-β−/− mice were given saline or house dust mite (HDM) intranasally for 3 weeks to induce inflammation. Double-stranded RNA (dsRNA) was then given for additional 3 days to induce exacerbation. HDM induced an eosinophilic inflammation, which was not associated with increased expression of cleaved caspase-3, cleaved PARP or elevated bronchoalveolar lavage fluid (BALF) LDH levels in wild-type. However, exacerbation evoked by HDM + dsRNA challenges increased BALF levels of LDH, apoptotic markers and the necroptotic markers receptor-interacting protein (RIP)-3 and phosphorylation of mixed linage kinase domain-like protein (pMLKL), compared to HDM + saline. Absence of IFN-β at exacerbation further increased BALF LDH and protein expression of pMLKL compared to wild-type. We demonstrate that cell death markers are increased at viral stimulus-induced exacerbation in mouse lungs, and that absence of IFN-β augments markers of necroptotic cell death at exacerbation. Our data thus suggest a novel role of deficient IFN-β production at viral-induced exacerbation.
Collapse
|
30
|
Zhu H, Sun A. Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J Mol Cell Cardiol 2018; 116:125-134. [DOI: 10.1016/j.yjmcc.2018.01.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/24/2017] [Accepted: 01/31/2018] [Indexed: 02/05/2023]
|
31
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y, Wang P. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget 2018; 7:57391-57413. [PMID: 27429198 PMCID: PMC5302997 DOI: 10.18632/oncotarget.10548] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao-Li Cui
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Shi
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lei Deng
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - You Lu
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
32
|
Callow MG, Watanabe C, Wickliffe KE, Bainer R, Kummerfield S, Weng J, Cuellar T, Janakiraman V, Chen H, Chih B, Liang Y, Haley B, Newton K, Costa MR. CRISPR whole-genome screening identifies new necroptosis regulators and RIPK1 alternative splicing. Cell Death Dis 2018; 9:261. [PMID: 29449584 PMCID: PMC5833675 DOI: 10.1038/s41419-018-0301-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 12/04/2022]
Abstract
The necroptotic cell death pathway is a key component of human pathogen defense that can become aberrantly derepressed during tissue homeostasis to contribute to multiple types of tissue damage and disease. While formation of the necrosome kinase signaling complex containing RIPK1, RIPK3, and MLKL has been extensively characterized, additional mechanisms of its regulation and effector functions likely remain to be discovered. We screened 19,883 mouse protein-coding genes by CRISPR/Cas9-mediated gene knockout for resistance to cytokine-induced necroptosis and identified 112 regulators and mediators of necroptosis, including 59 new candidate pathway components with minimal or no effect on cell growth in the absence of necroptosis induction. Among these, we further characterized the function of PTBP1, an RNA binding protein whose activity is required to maintain RIPK1 protein abundance by regulating alternative splice-site selection.
Collapse
Affiliation(s)
- Marinella G Callow
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Colin Watanabe
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Katherine E Wickliffe
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Russell Bainer
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sarah Kummerfield
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Julie Weng
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Trinna Cuellar
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | | | - Honglin Chen
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ben Chih
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuxin Liang
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michael R Costa
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
33
|
Vanamee ÉS, Faustman DL. Structural principles of tumor necrosis factor superfamily signaling. Sci Signal 2018; 11:11/511/eaao4910. [PMID: 29295955 DOI: 10.1126/scisignal.aao4910] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tumor necrosis factor (TNF) ligand and receptor superfamilies play an important role in cell proliferation, survival, and death. Stimulating or inhibiting TNF superfamily signaling pathways is expected to have therapeutic benefit for patients with various diseases, including cancer, autoimmunity, and infectious diseases. We review our current understanding of the structure and geometry of TNF superfamily ligands, receptors, and their interactions. A trimeric ligand and three receptors, each binding at the interface of two ligand monomers, form the basic unit of signaling. Clustering of multiple receptor subunits is necessary for efficient signaling. Current reports suggest that the receptors are prearranged on the cell surface in a "nonsignaling," resting state in a large hexagonal structure of antiparallel dimers. Receptor activation requires ligand binding, and cross-linking antibodies can stabilize the receptors, thereby maintaining the active, signaling state. On the other hand, an antagonist antibody that locks receptor arrangement in antiparallel dimers effectively blocks signaling. This model may aid the design of more effective TNF signaling-targeted therapies.
Collapse
Affiliation(s)
- Éva S Vanamee
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Denise L Faustman
- Immunobiology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
34
|
Abstract
Necroptosis is a caspase-independent form of programmed cell death that is induced by a variety of different signalling cascades-all culminating in the activation of the pseudokinase mixed lineage kinase domain-like (MLKL). TNF-induced necroptosis is the most intensively studied of these pathways. Here we describe reagents and cell-based techniques that can be used to investigate TNF-mediated necroptosis in the lab.
Collapse
|
35
|
Li J, Ke X, Yan F, Lei L, Li H. Necroptosis in the periodontal homeostasis: Signals emanating from dying cells. Oral Dis 2017; 24:900-907. [PMID: 28763140 DOI: 10.1111/odi.12722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/15/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022]
Abstract
Periodontal tissues are constantly exposed to microbial stimuli. The equilibrium between microbes and host defense system helps maintain the homeostasis in the periodontal microenvironment. Growth of pathogenic bacteria in dental biofilms may induce proinflammatory cytokine production to recruit sentinel cells, mainly neutrophils and monocytes into the gingival sulcus or the periodontal pocket. Moreover, dysbiosis with overgrowth of anaerobic pathogens, such as Porphyromonas gingivalis and Tannerella forsythia, may induce death of both immune cells and host resident cells. Necroptosis is one newly characterized programmed cell death mediated by receptor-interacting protein kinase (RIPK)-1, RIPK3, and mixed lineage kinase like (MLKL). With its release of death-associated molecular patterns (DAMPs) into extracellular environment, necroptosis may help transmit the danger signal and amplify the inflammatory responses. In this review, we present recent advances on how necroptosis influences bacterial infection progression and what a role necroptosis plays in maintaining the homeostasis in the periodontal niche. Until we fully decipher the signals emanated from dying cells, we cannot completely understand the mechanism of disease progression.
Collapse
Affiliation(s)
- J Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - X Ke
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - F Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - L Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - H Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
36
|
Moreno-Gonzalez G, Vandenabeele P, Krysko DV. Necroptosis: A Novel Cell Death Modality and Its Potential Relevance for Critical Care Medicine. Am J Respir Crit Care Med 2017; 194:415-28. [PMID: 27285640 DOI: 10.1164/rccm.201510-2106ci] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cell death is intertwined with life in development, homeostasis, pathology, and aging. Until recently, apoptosis was the best known form of programmed cell death, whereas necrosis was for a long time considered accidental owing to physicochemical injury. However, identification of crucial signaling and execution molecules, which are highly regulated, revealed that necrosis encompasses several cell death modalities that can be therapeutically targeted. The best understood form of regulated necrosis is necroptosis, which is transduced by the kinase activities of receptor interacting protein kinase-1 and receptor interacting protein kinase-3, eventually leading to the activation of mixed lineage kinase domain-like and plasma membrane permeabilization. We are only beginning to appreciate the role of necroptosis in different pathological conditions, including critical illnesses. In this review, we discuss the molecular mechanisms of necroptosis and analyze the effect of inhibiting necroptosis in experimental models of critical illnesses. In view of the identification of an increasing number of cell death modalities, we also briefly discuss the simultaneous targeting of multiple cell death modalities because, depending on the cell type and cellular conditions, various types of cell death may contribute to the pathology.
Collapse
Affiliation(s)
- Gabriel Moreno-Gonzalez
- 1 Molecular Signaling and Cell Death Unit, VIB Inflammation Research Center, Ghent, Belgium.,2 Department of Biomedical Molecular Biology, and.,3 Intensive Care Unit, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Peter Vandenabeele
- 1 Molecular Signaling and Cell Death Unit, VIB Inflammation Research Center, Ghent, Belgium.,2 Department of Biomedical Molecular Biology, and.,4 Methusalem Program, Ghent University, Ghent, Belgium; and
| | - Dmitri V Krysko
- 1 Molecular Signaling and Cell Death Unit, VIB Inflammation Research Center, Ghent, Belgium.,2 Department of Biomedical Molecular Biology, and
| |
Collapse
|
37
|
Gadina M, Gazaniga N, Vian L, Furumoto Y. Small molecules to the rescue: Inhibition of cytokine signaling in immune-mediated diseases. J Autoimmun 2017; 85:20-31. [PMID: 28676205 DOI: 10.1016/j.jaut.2017.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 12/14/2022]
Abstract
Cytokines are small, secreted proteins associated with the maintenance of immune homeostasis but also implicated with the pathogenesis of several autoimmune and inflammatory diseases. Biologic agents blocking cytokines or their receptors have revolutionized the treatment of such pathologies. Nonetheless, some patients fail to respond to these drugs or do not achieve complete remission. The signal transduction originating from membrane-bound cytokine receptors is an intricate network of events that lead to gene expression and ultimately regulate cellular functionality. Our understanding of the intracellular actions that molecules such as interleukins, interferons (IFNs) and tumor necrosis factor (TNF) set into motion has greatly increased in the past few years, making it possible to interfere with cytokines' signaling cascades. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT), the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), the mitogen activated protein kinase (MAPK) and the Phosphatidylinositol-3'-kinases (PI3K) pathways have all been intensively studied and key steps as well as molecules have been identified. These research efforts have led to the development of a new generation of small molecule inhibitors. Drugs capable of blocking JAK enzymatic activity or interfering with the proteasome-mediated degradation of intermediates in the NF-kB pathway have already entered the clinical arena confirming the validity of this approach. In this review, we have recapitulated the biochemical events downstream of cytokine receptors and discussed some of the drugs which have already been successfully utilized in the clinic. Moreover, we have highlighted some of the new molecules that are currently being developed for the treatment of immune-mediated pathologies and malignancies.
Collapse
Affiliation(s)
- Massimo Gadina
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA.
| | - Nathalia Gazaniga
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA
| | - Laura Vian
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA
| | - Yasuko Furumoto
- Translational Immunology Section, Office of Science and Technology, National Institute of Arthritis Musculoskeletal and Skin Diseases, USA
| |
Collapse
|
38
|
Challenging a Misnomer? The Role of Inflammatory Pathways in Inflammatory Breast Cancer. Mediators Inflamm 2017; 2017:4754827. [PMID: 28607534 PMCID: PMC5457777 DOI: 10.1155/2017/4754827] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022] Open
Abstract
Inflammatory breast cancer is a rare, yet highly aggressive form of breast cancer, which accounts for less than 5% of all locally advanced presentations. The clinical presentation of inflammatory breast cancer often differs significantly from that of noninflammatory breast cancer; however, immunohistochemistry reveals few, if any, distinguishing features. The more aggressive triple-negative and HER2-positive breast cancer subtypes are overrepresented in inflammatory breast cancer compared with noninflammatory breast cancer, with a poorer prognosis in response to conventional therapies. Despite its name, there remains some controversy regarding the role of inflammation in inflammatory breast cancer. This review summarises the current molecular evidence suggesting that inflammatory signaling pathways are upregulated in this disease, including NF-κB activation and excessive IL-6 production among others, which may provide an avenue for novel therapeutics. The role of the tumor microenvironment, through tumor-associated macrophages, infiltrating lymphocytes, and cancer stem cells is also discussed, suggesting that these tumor extrinsic factors may help account for the differences in behavior between inflammatory breast cancer and noninflammatory breast cancer. While there are various novel treatment strategies already underway in clinical trials, the need for further development of preclinical models of this rare but aggressive disease is paramount.
Collapse
|
39
|
Finlay D, Teriete P, Vamos M, Cosford NDP, Vuori K. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Res 2017; 6:587. [PMID: 28529715 PMCID: PMC5414821 DOI: 10.12688/f1000research.10625.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Teriete
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Vamos
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
40
|
Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat Rev Rheumatol 2017; 13:217-233. [PMID: 28275260 DOI: 10.1038/nrrheum.2017.22] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
TNF blockers are highly efficacious at dampening inflammation and reducing symptoms in rheumatic diseases such as rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis, and also in nonrheumatic syndromes such as inflammatory bowel disease. As TNF belongs to a superfamily of 19 structurally related proteins that have both proinflammatory and anti-inflammatory activity, reagents that disrupt the interaction between proinflammatory TNF family cytokines and their receptors, or agonize the anti-inflammatory receptors, are being considered for the treatment of rheumatic diseases. Biologic agents that block B cell activating factor (BAFF) and receptor activator of nuclear factor-κB ligand (RANKL) have been approved for the treatment of systemic lupus erythematosus and osteoporosis, respectively. In this Review, we focus on additional members of the TNF superfamily that could be relevant for the pathogenesis of rheumatic disease, including those that can strongly promote activity of immune cells or increase activity of tissue cells, as well as those that promote death pathways and might limit inflammation. We examine preclinical mouse and human data linking these molecules to the control of damage in the joints, muscle, bone or other tissues, and discuss their potential as targets for future therapy of rheumatic diseases.
Collapse
|
41
|
Arora D, Sharma PK, Siddiqui MH, Shukla Y. Necroptosis: Modules and molecular switches with therapeutic implications. Biochimie 2017; 137:35-45. [PMID: 28263777 DOI: 10.1016/j.biochi.2017.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/07/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Among the various programmed cell death (PCD) pathways, "Necroptosis" has gained much importance as a novel paradigm of cell death. This pathway has emerged as a backup mechanism when physiologically conserved PCD (apoptosis) is non-functional either genetically or pathogenically. The expanding spectrum of necroptosis from physiological development to diverse patho-physiological disorders, including xenobiotics-mediated toxicity has now grabbed the attention worldwide. The efficient role of necroptosis regulators in disease development and management are under constant examination. In fact, few regulators (e.g. MLKL) have already paved their way towards clinical trials and others are in queue. In this review, emphasis has been paid to the various contributing factors and molecular switches that can regulate necroptosis. Here we linked the overview of current knowledge of this enigmatic signaling with magnitude of therapeutics that may underpin the opportunities for novel therapeutic approaches to suppress the pathogenesis of necroptosis-driven disorders.
Collapse
Affiliation(s)
- Deepika Arora
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Yogeshwer Shukla
- Environmental Carcinogenesis & Proteomics Laboratory, Food, Drug & Chemical Toxicology Group, VishvigyanBhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
42
|
|
43
|
Brumatti G, Lalaoui N, Wei AH, Silke J. 'Did He Who Made the Lamb Make Thee?' New Developments in Treating the 'Fearful Symmetry' of Acute Myeloid Leukemia. Trends Mol Med 2017; 23:264-281. [PMID: 28196625 DOI: 10.1016/j.molmed.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
Malignant cells must circumvent endogenous cell death pathways to survive and develop into cancers. Acquired cell death resistance also sets up malignant cells to survive anticancer therapies. Acute Myeloid Leukemia (AML) is an aggressive blood cancer characterized by high relapse rate and resistance to cytotoxic therapies. Recent collaborative profiling projects have led to a greater understanding of the 'fearful symmetry' of the genomic landscape of AML, and point to the development of novel potential therapies that can overcome factors linked to chemoresistance. We review here the most recent research in the genetics of AML and how these discoveries have led, or might lead, to therapies that specifically activate cell death pathways to substantially challenge this 'fearful' disease.
Collapse
Affiliation(s)
- Gabriela Brumatti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andrew H Wei
- Alfred Hospital and Monash University, Melbourne, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
44
|
de Almagro MC, Goncharov T, Izrael-Tomasevic A, Duttler S, Kist M, Varfolomeev E, Wu X, Lee WP, Murray J, Webster JD, Yu K, Kirkpatrick DS, Newton K, Vucic D. Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death Differ 2016; 24:26-37. [PMID: 27518435 PMCID: PMC5260504 DOI: 10.1038/cdd.2016.78] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/15/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022] Open
Abstract
Proper regulation of cell death signaling is crucial for the maintenance of homeostasis and prevention of disease. A caspase-independent regulated form of cell death called necroptosis is rapidly emerging as an important mediator of a number of human pathologies including inflammatory bowel disease and ischemia–reperfusion organ injury. Activation of necroptotic signaling through TNF signaling or organ injury leads to the activation of kinases receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3) and culminates in inflammatory cell death. We found that, in addition to phosphorylation, necroptotic cell death is regulated by ubiquitination of RIP1 in the necrosome. Necroptotic RIP1 ubiquitination requires RIP1 kinase activity, but not necroptotic mediators RIP3 and MLKL (mixed lineage kinase-like). Using immunoaffinity enrichment and mass spectrometry, we profiled numerous ubiquitination events on RIP1 that are triggered during necroptotic signaling. Mutation of a necroptosis-related ubiquitination site on RIP1 reduced necroptotic cell death and RIP1 ubiquitination and phosphorylation, and disrupted the assembly of RIP1 and RIP3 in the necrosome, suggesting that necroptotic RIP1 ubiquitination is important for maintaining RIP1 kinase activity in the necrosome complex. We also observed RIP1 ubiquitination in injured kidneys consistent with a physiological role of RIP1 ubiquitination in ischemia–reperfusion disease. Taken together, these data reveal that coordinated and interdependent RIP1 phosphorylation and ubiquitination within the necroptotic complex regulate necroptotic signaling and cell death.
Collapse
Affiliation(s)
- M Cristina de Almagro
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Anita Izrael-Tomasevic
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefanie Duttler
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Matthias Kist
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Eugene Varfolomeev
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeremy Murray
- Department of Structural Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kebing Yu
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donald S Kirkpatrick
- Department of Protein Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kim Newton
- Departments of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
45
|
Cristina de Almagro M, Vucic D. Inhibitor of Apoptosis Proteins, the Sentinels of Cell Death and Signaling. ENCYCLOPEDIA OF CELL BIOLOGY 2016:390-398. [DOI: 10.1016/b978-0-12-394447-4.30052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
46
|
Etemadi N, Chopin M, Anderton H, Tanzer MC, Rickard JA, Abeysekera W, Hall C, Spall SK, Wang B, Xiong Y, Hla T, Pitson SM, Bonder CS, Wong WWL, Ernst M, Smyth GK, Vaux DL, Nutt SL, Nachbur U, Silke J. TRAF2 regulates TNF and NF-κB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1. eLife 2015; 4. [PMID: 26701909 PMCID: PMC4769158 DOI: 10.7554/elife.10592] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/21/2015] [Indexed: 02/01/2023] Open
Abstract
TRAF2 is a component of TNF superfamily signalling complexes and plays an essential role in the regulation and homeostasis of immune cells. TRAF2 deficient mice die around birth, therefore its role in adult tissues is not well-explored. Furthermore, the role of the TRAF2 RING is controversial. It has been claimed that the atypical TRAF2 RING cannot function as a ubiquitin E3 ligase but counterclaimed that TRAF2 RING requires a co-factor, sphingosine-1-phosphate, that is generated by the enzyme sphingosine kinase 1, to function as an E3 ligase. Keratinocyte-specific deletion of Traf2, but not Sphk1 deficiency, disrupted TNF mediated NF-κB and MAP kinase signalling and caused epidermal hyperplasia and psoriatic skin inflammation. This inflammation was driven by TNF, cell death, non-canonical NF-κB and the adaptive immune system, and might therefore represent a clinically relevant model of psoriasis. TRAF2 therefore has essential tissue specific functions that do not overlap with those of Sphk1. DOI:http://dx.doi.org/10.7554/eLife.10592.001 Psoriasis is an inflammatory disorder that causes red, flaky patches of skin. The disease affects around 2% of the world’s population, and is most common in people of northern European descent. TNF is one of the key proteins in the development of psoriasis and drugs that inhibit TNF have been very successful in the treatment of this disease. However, these drugs are expensive and for unknown reasons at least 10% of patients do not respond to them. Attempts to develop better drugs for psoriasis would be assisted by an improved understanding of this disease in terms of the genes and proteins involved. Etemadi et al. set out to obtain a more detailed molecular understanding of this disease by developing new mouse models of the condition. Mice were genetically engineered such that a key gene was deleted specifically from the skin cells that form the main barrier to the environment. These mice demonstrated that defects in skin cells called keratinocytes, rather than defects in the immune response, could lead to a psoriasis-like disease. Etemadi et al. also showed that the skin cells with this genetic defect die in the presence of TNF and this cell death in mice caused a rapidly-appearing form of psoriasis. However, in the absence of TNF the mice still developed psoriasis, albeit more slowly. In this case, the condition was due to an excessive activation of a protein called NF-κB, which is known to play a role in maintaining balance in the immune system and in psoriasis. These findings reveal how keratinocytes, cell death and inflammation can directly contribute to psoriasis-like conditions in mice. The next challenge will be to determine whether these findings can be used to help patients with this condition. DOI:http://dx.doi.org/10.7554/eLife.10592.002
Collapse
Affiliation(s)
- Nima Etemadi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Michael Chopin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Holly Anderton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Maria C Tanzer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - James A Rickard
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Cathrine Hall
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Sukhdeep K Spall
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bing Wang
- Center for Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuquan Xiong
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, United States
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, United States
| | - Stuart M Pitson
- Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | | | - Wendy Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - David L Vaux
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Ueli Nachbur
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
47
|
|
48
|
Kocab AJ, Duckett CS. Inhibitor of apoptosis proteins as intracellular signaling intermediates. FEBS J 2015; 283:221-31. [PMID: 26462035 DOI: 10.1111/febs.13554] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 01/20/2023]
Abstract
Inhibitor of apoptosis (IAP) proteins have often been considered inhibitors of cell death due to early reports that described their ability to directly bind and inhibit caspases, the primary factors that implement apoptosis. However, a greater understanding is evolving regarding the vital roles played by IAPs as transduction intermediates in a diverse set of signaling cascades associated with functions ranging from the innate immune response to cell migration to cell-cycle regulation. In this review, we discuss the functions of IAPs in signaling, focusing primarily on the cellular IAP (c-IAP) proteins. The c-IAPs are important components in tumor necrosis factor receptor superfamily signaling cascades, which include activation of the NF-κB transcription factor family. As these receptors modulate cell proliferation and cell death, the involvement of the c-IAPs in these pathways provides an additional means of controlling cellular fate beyond simply inhibiting caspase activity. Additionally, IAP-binding proteins, such as Smac and caspases, which have been described as having cell death-independent roles, may affect c-IAP activity in intracellular signaling. Collectively, the multi-faceted functions and complex regulation of the c-IAPs illustrate their importance as intracellular signaling intermediates.
Collapse
Affiliation(s)
- Andrew J Kocab
- Graduate Program in Immunology, The University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
| | - Colin S Duckett
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Lee SU, Sung MH, Ryu HW, Lee J, Kim HS, In HJ, Ahn KS, Lee HJ, Lee HK, Shin DH, Lee Y, Hong ST, Oh SR. Verproside inhibits TNF-α-induced MUC5AC expression through suppression of the TNF-α/NF-κB pathway in human airway epithelial cells. Cytokine 2015; 77:168-75. [PMID: 26318254 DOI: 10.1016/j.cyto.2015.08.262] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of MUC5AC, are significant risk factors in asthma and chronic obstructive pulmonary disease (COPD) patients. Previously, we reported that verproside, a catalpol derivative iridoid glycoside isolated from Pseudolysimachion rotundum var. subintegrum, is a potent anti-asthmatic candidate drug in vivo. However, the molecular mechanisms underlying the pharmacological actions of verproside remain unknown. Here, we found that verproside significantly reduces the expression levels of tumor necrosis factor alpha (TNF-α)-induced MUC5AC mRNA and protein by inhibiting both nuclear factor kappa B (NF-κB) transcriptional activity and the phosphorylation of its upstream effectors such as IκB kinase (IKK)β, IκBα, and TGF-β-activated kinase 1 (TAK1) in NCI-H292 cells. Moreover, verproside attenuated TNF-α-induced MUC5AC transcription more effectively when combined with an IKK (BAY11-7082) or a TAK1 (5z-7-oxozeaenol) inhibitor than when administered alone. Importantly, we demonstrated that verproside negatively modulates the formation of the TNF-α-receptor (TNFR) 1 signaling complex [TNF-RSC; TNFR1-recruited TNFR1-associated death domain protein (TRADD), TNFR-associated factor 2 (TRAF2), receptor-interacting protein kinase 1 (RIP1), and TAK1], the most upstream signaling factor of NF-κB signaling. In silico molecular docking studies show that verproside binds between TRADD and TRAF2 subunits. Altogether, these results suggest that verproside could be a good therapeutic candidate for treatment of inflammatory airway diseases such as asthma and COPD by blocking the TNF-α/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Min Hee Sung
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Jinhyuk Lee
- Korean Bioinformation Center (KOBIC), Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hui-Seong Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Hyun Ju In
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Hyun-Jun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Hyeong-Kyu Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Dae-Hee Shin
- Central R&D Institute, Yungjin Pharm. Co., Ltd., Suwon 443-270, Republic of Korea
| | - Yongnam Lee
- Central R&D Institute, Yungjin Pharm. Co., Ltd., Suwon 443-270, Republic of Korea
| | - Sung-Tae Hong
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Guseong-Dong, Yusong-Gu, Daejeon 305-701, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk 363-883, Republic of Korea.
| |
Collapse
|
50
|
Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination. Cell Death Dis 2015; 6:e1800. [PMID: 26111062 PMCID: PMC4669837 DOI: 10.1038/cddis.2015.158] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/03/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022]
Abstract
Necroptosis is a caspase-independent regulated type of cell death that relies on receptor-interacting protein kinases RIP1 (receptor-interacting protein kinases 1) and RIP3. Tumor necrosis factor-α (TNFα)-stimulated assembly of the TNFR1 (TNF receptor 1)-associated signaling complex leads to the recruitment of RIP1, whose ubiquitination is mediated by the cellular inhibitors of apoptosis (c-IAPs). Translocation of RIP1 to the cytoplasm and association of RIP1 with the necrosome is believed to correlate with deubiquitination of RIP1. However, we found that RIP1 is ubiquitinated with K63 and linear polyubiquitin chains during TNFα, IAP antagonist BV6 and caspase inhibitor zVAD-fmk-induced necroptotic signaling. Furthermore, ubiquitinated RIP1 is associated with the necrosome, and RIP1 ubiquitination in the necrosome coincides with RIP3 phosphorylation. Both cellular IAPs and LUBAC (linear ubiquitin chain assembly complex) modulate RIP1 ubiquitination in IAP antagonist-treated necrotic cells, but they use different mechanisms. c-IAP1 regulates RIP1 recruitment to the necrosome without directly affecting RIP1 ubiquitination, whereas HOIP and HOIL1 mediate linear ubiquitination of RIP1 in the necrosome, but are not essential for necrosome formation. Knockdown of the E3 ligase c-IAP1 decreased RIP1 ubiquitination, necrosome assembly and necroptosis induced by TNFα, BV6 and zVAD-fmk. c-IAP1 deficiency likely decreases necroptotic cell death through the activation of the noncanonical NF-κB pathway and consequent c-IAP2 upregulation. The ability to upregulate c-IAP2 could determine whether c-IAP1 absence will have a positive or negative impact on TNFα-induced necroptotic cell death and necrosome formation. Collectively, these results reveal unexpected complexity of the roles of IAP proteins, IAP antagonists and LUBAC in the regulation of necrosome assembly.
Collapse
|