1
|
Klein L, Tu M, Krebs N, Urbach L, Grimm D, Latif MU, Penz F, Blandau A, Wu X, Samuel RD, Küffer S, Wegwitz F, Chan N, Aliar K, Vyas F, Kishore U, Hessmann E, Trumpp A, Espinet E, Papantonis A, Khokha R, Ellenrieder V, Grünwald BT, Singh SK. Spatial tumor immune heterogeneity facilitates subtype co-existence and therapy response in pancreatic cancer. Nat Commun 2025; 16:335. [PMID: 39762215 PMCID: PMC11704331 DOI: 10.1038/s41467-024-55330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) displays a high degree of spatial subtype heterogeneity and co-existence, linked to a diverse microenvironment and worse clinical outcome. However, the underlying mechanisms remain unclear. Here, by combining preclinical models, multi-center clinical, transcriptomic, proteomic, and patient bioimaging data, we identify an interplay between neoplastic intrinsic AP1 transcription factor dichotomy and extrinsic macrophages driving subtype co-existence and an immunosuppressive microenvironment. ATAC-, ChIP-, and RNA-seq analyses reveal that JUNB/AP1- and HDAC-mediated epigenetic programs repress pro-inflammatory signatures in tumor cells, antagonizing cJUN/AP1 signaling, favoring a therapy-responsive classical neoplastic state. This dichotomous regulation is amplified via regional TNF-α+ macrophages, which associates with a reactive phenotype and reduced CD8+ T cell infiltration in patients. Consequently, combined preclinical anti-TNF-α immunotherapy and chemotherapy reduces macrophages and promotes CD3+/CD8+ T cell infiltration in basal-like PDAC, improving survival. Hence, tumor cell-intrinsic epigenetic programs, together with extrinsic microenvironmental cues, facilitate intratumoral subtype heterogeneity and disease progression.
Collapse
Affiliation(s)
- Lukas Klein
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Mengyu Tu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Niklas Krebs
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Laura Urbach
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniela Grimm
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Muhammad Umair Latif
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Frederike Penz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Anna Blandau
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Xueyan Wu
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Rebecca Diya Samuel
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Nathan Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kazeera Aliar
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Foram Vyas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Uday Kishore
- Department of Veterinary Medicine and Zayed Center of Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
- Clinical Research Unit KFO5002, University Medical Center Göttingen, Göttingen, Germany
- Comprehensive Cancer Center, Lower Saxony, Göttingen and Hannover, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
- Clinical Research Unit KFO5002, University Medical Center Göttingen, Göttingen, Germany
- Comprehensive Cancer Center, Lower Saxony, Göttingen and Hannover, Germany
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
- Clinical Research Unit KFO5002, University Medical Center Göttingen, Göttingen, Germany
- Comprehensive Cancer Center, Lower Saxony, Göttingen and Hannover, Germany
| | - Barbara T Grünwald
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Urology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany.
- Clinical Research Unit KFO5002, University Medical Center Göttingen, Göttingen, Germany.
- Comprehensive Cancer Center, Lower Saxony, Göttingen and Hannover, Germany.
| |
Collapse
|
2
|
Bakiri L, Tichet M, Marques C, Thomsen MK, Allen EA, Stolzlechner S, Cheng K, Matsuoka K, Squatrito M, Hanahan D, Wagner EF. A new effLuc/Kate dual reporter allele for tumor imaging in mice. Dis Model Mech 2025; 18:DMM052130. [PMID: 39745082 PMCID: PMC11789939 DOI: 10.1242/dmm.052130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025] Open
Abstract
Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases, such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo. Here, we report the generation of a dual reporter allele allowing simultaneous bioluminescence and fluorescence detection of cells that have undergone Cre-Lox recombination in mice. The single copy knock-in allele in the permissive collagen I locus was evaluated in the context of several cancer GEMMs, where Cre expression was achieved genetically or by ectopic virus-mediated delivery. The new reporter allele was also combined with gene-targeted alleles widely used in bone, prostate, brain and pancreas cancer research, as well as with alleles inserted into the commonly used Rosa26 and collagen I loci. This allele is, therefore, a useful addition to the portfolio of reporters to help advance preclinical research.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| | - Mélanie Tichet
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Carolina Marques
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Martin K. Thomsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus, Denmark
| | - Elizabeth A. Allen
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Stefanie Stolzlechner
- Laboratory Bone Cancer Metastasis, Cellular and Molecular Tumor Biology, Center for Cancer Research, Medical University of Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| | - Ke Cheng
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Kazuhiko Matsuoka
- Laboratory Bone Cancer Metastasis, Cellular and Molecular Tumor Biology, Center for Cancer Research, Medical University of Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Douglas Hanahan
- Ludwig Institute for Cancer Research, Lausanne Branch; Swiss Institute for Experimental Cancer Research (ISREC), EPFL; Swiss Cancer Center Leman (SCCL); Agora Translational Cancer Research Center, Rue du Bugnon 25A, 1005 Lausanne, Switzerland
| | - Erwin F. Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUW), Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
3
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
4
|
Gao J, Liu Y, Tao L, Zeng P, Ye G, Zheng Y, Zhang N. Single-cell data revealed the regulatory mechanism of TNK cell heterogeneity in liver metastasis from gastric cancer. Discov Oncol 2024; 15:664. [PMID: 39549183 PMCID: PMC11569111 DOI: 10.1007/s12672-024-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
AIM The present work set out to classify cell subpopulations related to liver metastasis from gastric cancer (GC) and the mechanisms of their interactions with other immune cell subpopulations. BACKGROUND GC is characterized by a high degree of heterogeneity and liver metastasis. Exploring the mechanism of liver metastasis of GC from the perspective of heterogeneity of the tumor microenvironment (TME) might help improve the efficacy of GC treatment. OBJECTIVE Based on the cellular subpopulation characteristics of GC with liver metastasis, the regulatory mechanisms contributing to GC progression were analyzed, with special focuses on the roles of signaling pathways, transcription factors (TFs) and ligand-receptor pairs. METHODS The GSE163558 dataset was downloaded from the Gene Expression Omnibus (GEO) database to collect single-cell transcriptomic data of GC patients and their metastasis groups for cell clustering and relevant analyses. Differentially expressed genes (DEGs) in the GC and GC liver metastasis groups were screened and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. SCENIC analysis was used to mine TFs that affected cellular subpopulations during liver metastasis from GC. The relative expression levels of TFs in GC were determined using qRT-PCR. Transwell and wound healing assays were utilized to verify the regulation of the TFs on the migration and invasion of GC cells. Interaction network between the cellular subpopulations was developed applying CellChat. RESULTS Single-cell clustering was performed to group six major cell subpopulations, namely, Myeloid cells, B cells, Mast cells, Epithelial cells, Fibroblasts, and TNK cells, among which the number of TNK cells was significantly increased in the GC liver metastasis group. Differentially enriched pathways of TNK cells between GC and GC liver metastasis groups mainly included IL-17 and Pi3k-Akt signaling pathways. TNK cell subsets could be further categorized into CD8 T cells, Exhausted T cells, NK cells, NKT cells, and Treg cells, with the GC liver metastasis group showing significantly more CD8 T cells and NKT cells. FOS and JUNB were the TFs of TNK cell marker genes that contributed to liver metastasis from GC and the invasion and migration of GC cell lines. Significant differences in immune cell communication ligand-receptor pairs existed between the GC and GC liver metastasis groups. CONCLUSION This study revealed the critical role of TNK cell subsets in GC with liver metastasis applying single-cell transcriptomics analysis. The findings provided an important theoretical basis for developing novel therapies to inhibit liver metastasis from GC.
Collapse
Affiliation(s)
- Jun Gao
- Department of Gastrointestinal Surgery, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Yujuan Liu
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Lu Tao
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Peng Zeng
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Guiying Ye
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Ying Zheng
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Nai Zhang
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China.
| |
Collapse
|
5
|
Libero ML, Montero-Hidalgo AJ, Recinella L, Luque RM, Generali D, Acquaviva A, Orlando G, Ferrante C, Menghini L, Di Simone SC, Nilofar N, Chiavaroli A, Brunetti L, Leone S. The Protective Effects of an Aged Black Garlic Water Extract on the Prostate. Nutrients 2024; 16:3025. [PMID: 39275340 PMCID: PMC11396974 DOI: 10.3390/nu16173025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Chronic inflammation is a recognized risk factor for various cancers, including prostate cancer (PCa). We aim to explore the potential protective effects of aged black garlic extract (ABGE) against inflammation-induced prostate damage and its impact on prostate cancer cell lines. We used an ex vivo model of inflammation induced by Escherichia coli lipopolysaccharide (LPS) on C57BL/6 male mouse prostate specimens to investigate the anti-inflammatory properties of ABGE. The gene expression levels of pro-inflammatory biomarkers (COX-2, NF-κB, and TNF-α, IL-6) were measured. Additionally, we evaluated ABGE's therapeutic effects on the prostate cancer cell lines through in vitro functional assays, including colony formation, tumorsphere formation, migration assays, and phosphorylation arrays to assess the signaling pathways (MAPK, AKT, JAK/STAT, and TGF-β). ABGE demonstrated significant anti-inflammatory and antioxidant effects in preclinical models, partly attributed to its polyphenolic content, notably catechin and gallic acid. In the ex vivo model, ABGE reduced the gene expression levels of COX-2, NF-κB, TNF-α, and IL-6. The in vitro studies showed that ABGE inhibited cell proliferation, colony and tumorsphere formation, and cell migration in the prostate cancer cells, suggesting its potential as a therapeutic agent. ABGE exhibits promising anti-inflammatory and anti-cancer properties, supporting further investigation into ABGE as a potential agent for managing inflammation and prostate cancer.
Collapse
Affiliation(s)
- Maria Loreta Libero
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Cordoba, Spain
| | - Lucia Recinella
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 14004 Cordoba, Spain
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | | | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | | | - Nilofar Nilofar
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | | | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, "G. d'Annunzio" University, 66013 Chieti, Italy
| |
Collapse
|
6
|
Redmer T, Raigel M, Sternberg C, Ziegler R, Probst C, Lindner D, Aufinger A, Limberger T, Trachtova K, Kodajova P, Högler S, Schlederer M, Stoiber S, Oberhuber M, Bolis M, Neubauer HA, Miranda S, Tomberger M, Harbusch NS, Garces de Los Fayos Alonso I, Sternberg F, Moriggl R, Theurillat JP, Tichy B, Bystry V, Persson JL, Mathas S, Aberger F, Strobl B, Pospisilova S, Merkel O, Egger G, Lagger S, Kenner L. JUN mediates the senescence associated secretory phenotype and immune cell recruitment to prevent prostate cancer progression. Mol Cancer 2024; 23:114. [PMID: 38811984 PMCID: PMC11134959 DOI: 10.1186/s12943-024-02022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood. METHODS We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment. RESULTS Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1β production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1β and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1β, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth. CONCLUSIONS Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes.
Collapse
Affiliation(s)
- Torben Redmer
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
| | - Martin Raigel
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Christina Sternberg
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Biochemical Institute, University of Kiel, Kiel, 24098, Germany
| | - Roman Ziegler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Cell Biology, Charles University, Prague, Czech Republic and Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Vestec u Prahy, Czech Republic
| | - Clara Probst
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Desiree Lindner
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Astrid Aufinger
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | - Tanja Limberger
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Center for Biomarker Research in Medicine (CBmed) Vienna, Core-Lab2, Medical University of Vienna, Vienna, 1090, Austria
| | - Karolina Trachtova
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Petra Kodajova
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Sandra Högler
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Michaela Schlederer
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | - Stefan Stoiber
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, 1090, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, 1090, Austria
| | - Monika Oberhuber
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria
| | - Marco Bolis
- Institute of Oncology Research, Bellinzona and Faculty of Biomedical Sciences, USI, Lugano, 6500, TI, Switzerland
- Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, 20156, Italy
- Bioinformatics Core Unit, Swiss Institute of Bioinformatics, Bellinzona, 6500, TI, Switzerland
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Sara Miranda
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Martina Tomberger
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria
| | - Nora S Harbusch
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria
| | - Ines Garces de Los Fayos Alonso
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | - Felix Sternberg
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, 1090, Austria
| | - Richard Moriggl
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Jean-Philippe Theurillat
- Institute of Oncology Research, Bellinzona and Faculty of Biomedical Sciences, USI, Lugano, 6500, TI, Switzerland
| | - Boris Tichy
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Vojtech Bystry
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Jenny L Persson
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
- Department of Biomedical Sciences, Malmö Universitet, Malmö, 206 06, Sweden
| | - Stephan Mathas
- Charité-Universitätsmedizin Berlin, Hematology, Oncology and Tumor Immunology, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 10117, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Group Biology of Malignant Lymphomas, Berlin, 13125, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation between the MDC and the Charité, Berlin, Germany
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, 5020, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Sarka Pospisilova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Olaf Merkel
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | - Sabine Lagger
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
| | - Lukas Kenner
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, 1210, Austria.
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria.
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, 1090, Austria.
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, 8010, Austria.
- Comprehensive Cancer Center, Medical University Vienna, Vienna, 1090, Austria.
| |
Collapse
|
7
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
8
|
Hosseinzadeh L, Kikhtyak Z, Laven-Law G, Pederson SM, Puiu CG, D'Santos CS, Lim E, Carroll JS, Tilley WD, Dwyer AR, Hickey TE. The androgen receptor interacts with GATA3 to transcriptionally regulate a luminal epithelial cell phenotype in breast cancer. Genome Biol 2024; 25:44. [PMID: 38317241 PMCID: PMC10840202 DOI: 10.1186/s13059-023-03161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The androgen receptor (AR) is a tumor suppressor in estrogen receptor (ER) positive breast cancer, a role sustained in some ER negative breast cancers. Key factors dictating AR genomic activity in a breast context are largely unknown. Herein, we employ an unbiased chromatin immunoprecipitation-based proteomic technique to identify endogenous AR interacting co-regulatory proteins in ER positive and negative models of breast cancer to gain new insight into mechanisms of AR signaling in this disease. RESULTS The DNA-binding factor GATA3 is identified and validated as a novel AR interacting protein in breast cancer cells irrespective of ER status. AR activation by the natural ligand 5α-dihydrotestosterone (DHT) increases nuclear AR-GATA3 interactions, resulting in AR-dependent enrichment of GATA3 chromatin binding at a sub-set of genomic loci. Silencing GATA3 reduces but does not prevent AR DNA binding and transactivation of genes associated with AR/GATA3 co-occupied loci, indicating a co-regulatory role for GATA3 in AR signaling. DHT-induced AR/GATA3 binding coincides with upregulation of luminal differentiation genes, including EHF and KDM4B, established master regulators of a breast epithelial cell lineage. These findings are validated in a patient-derived xenograft model of breast cancer. Interaction between AR and GATA3 is also associated with AR-mediated growth inhibition in ER positive and ER negative breast cancer. CONCLUSIONS AR and GATA3 interact to transcriptionally regulate luminal epithelial cell differentiation in breast cancer regardless of ER status. This interaction facilitates the tumor suppressor function of AR and mechanistically explains why AR expression is associated with less proliferative, more differentiated breast tumors and better overall survival in breast cancer.
Collapse
Affiliation(s)
- Leila Hosseinzadeh
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Zoya Kikhtyak
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Geraldine Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Stephen M Pederson
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Caroline G Puiu
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Elgene Lim
- Garvan Institute of Medical Research, University of New South Wales, Sydney, Australia
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Amy R Dwyer
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
9
|
Mamun M, Liu Y, Geng YP, Zheng YC, Gao Y, Sun JG, Zhao LF, Zhao LJ, Liu HM. Discovery of neddylation E2s inhibitors with therapeutic activity. Oncogenesis 2023; 12:45. [PMID: 37717015 PMCID: PMC10505188 DOI: 10.1038/s41389-023-00490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
Neddylation is the writing of monomers or polymers of neural precursor cells expressed developmentally down-regulated 8 (NEDD8) to substrate. For neddylation to occur, three enzymes are required: activators (E1), conjugators (E2), and ligators (E3). However, the central role is played by the ubiquitin-conjugating enzymes E2M (UBE2M) and E2F (UBE2F), which are part of the E2 enzyme family. Recent understanding of the structure and mechanism of these two proteins provides insight into their physiological effects on apoptosis, cell cycle arrest and genome stability. To treat cancer, it is therefore appealing to develop novel inhibitors against UBE2M or UBE2F interactions with either E1 or E3. In this evaluation, we summarized the existing understanding of E2 interaction with E1 and E3 and reviewed the prospective of using neddylation E2 as a pharmacological target for evolving new anti-cancer remedies.
Collapse
Affiliation(s)
- Maa Mamun
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Ying Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yin-Ping Geng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Jian-Gang Sun
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Long-Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Ren FJ, Cai XY, Yao Y, Fang GY. JunB: a paradigm for Jun family in immune response and cancer. Front Cell Infect Microbiol 2023; 13:1222265. [PMID: 37731821 PMCID: PMC10507257 DOI: 10.3389/fcimb.2023.1222265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Jun B proto-oncogene (JunB) is a crucial member of dimeric activator protein-1 (AP-1) complex, which plays a significant role in various physiological processes, such as placental formation, cardiovascular development, myelopoiesis, angiogenesis, endochondral ossification and epidermis tissue homeostasis. Additionally, it has been reported that JunB has great regulatory functions in innate and adaptive immune responses by regulating the differentiation and cytokine secretion of immune cells including T cells, dendritic cells and macrophages, while also facilitating the effector of neutrophils and natural killer cells. Furthermore, a growing body of studies have shown that JunB is involved in tumorigenesis through regulating cell proliferation, differentiation, senescence and metastasis, particularly affecting the tumor microenvironment through transcriptional promotion or suppression of oncogenes in tumor cells or immune cells. This review summarizes the physiological function of JunB, its immune regulatory function, and its contribution to tumorigenesis, especially focusing on its regulatory mechanisms within tumor-associated immune processes.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Xu H, Xiao L, Chen Y, Liu Y, Zhang Y, Gao Y, Man S, Yan N, Zhang M. Effect of CDK7 inhibitor on MYCN-amplified retinoblastoma. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194964. [PMID: 37536559 DOI: 10.1016/j.bbagrm.2023.194964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Retinoblastoma (RB) is a common malignancy that primarily affects pediatric populations. Although a well-known cause of RB is RB1 mutation, MYCN amplification can also lead to the disease, which is a poor prognosis factor. Studies conducted in various tumor types have shown that MYCN inhibition is an effective approach to impede tumor growth. Various indirect approaches have been developed to overcome the difficulty of directly targeting MYCN, such as modulating the super enhancer (SE) upstream of MYCN. The drug used in this study to treat MYCN-amplified RB was THZ1, a CDK7 inhibitor that can effectively suppress transcription by interfering with the activity of SEs. The study findings confirmed the anticancer activity of THZ1 against RB in both in vitro and in vivo experiments. Therapy with THZ1 was found to affect numerous genes in RB according to the RNA-seq analysis. Moreover, the gene expression changes induced by THZ1 treatment were enriched in ribosome, endocytosis, cell cycle, apoptosis, etc. Furthermore, the combined analysis of ChIP-Seq and RNA-seq data suggested a potential role of SEs in regulating the expression of critical transcription factors, such as MYCN, OTX2, and SOX4. Moreover, ChIP-qPCR experiments were conducted to confirm the interaction between MYCN and SEs. In conclusion, THZ1 caused substantial changes in gene transcription in RB, resulting in inhibited cell proliferation, interference with the cell cycle, and increased apoptosis. The efficacy of THZ1 is positively correlated with the degree of MYCN amplification and is likely exerted by interfering with MYCN upstream SEs.
Collapse
Affiliation(s)
- Hanyue Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yi Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China; Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yilin Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yifan Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yuzhu Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Shulei Man
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Naihong Yan
- Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
12
|
Thomsen MK, Busk M. Pre-Clinical Models to Study Human Prostate Cancer. Cancers (Basel) 2023; 15:4212. [PMID: 37686488 PMCID: PMC10486646 DOI: 10.3390/cancers15174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer is a common cancer among men and typically progresses slowly for several decades before becoming aggressive and spreading to other organs, leaving few treatment options. While large animals have been studied, the dog's prostate is anatomically similar to humans and has been used to study spontaneous prostate cancer. However, most research currently focuses on the mouse as a model organism due to the ability to genetically modify their prostatic tissues for molecular analysis. One milestone in this research was the identification of the prostate-specific promoter Probasin, which allowed for the prostate-specific expression of transgenes. This has led to the generation of mice with aggressive prostatic tumors through overexpression of the SV40 oncogene. The Probasin promoter is also used to drive Cre expression and has allowed researchers to generate prostate-specific loss-of-function studies. Another landmark moment in the process of modeling prostate cancer in mice was the orthoptic delivery of viral particles. This technology allows the selective overexpression of oncogenes from lentivirus or the use of CRISPR to generate complex loss-of-function studies. These genetically modified models are complemented by classical xenografts of human prostate tumor cells in immune-deficient mice. Overall, pre-clinical models have provided a portfolio of model systems to study and address complex mechanisms in prostate cancer for improved treatment options. This review will focus on the advances in each technique.
Collapse
Affiliation(s)
| | - Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
13
|
Missinato MA, Murphy S, Lynott M, Yu MS, Kervadec A, Chang YL, Kannan S, Loreti M, Lee C, Amatya P, Tanaka H, Huang CT, Puri PL, Kwon C, Adams PD, Qian L, Sacco A, Andersen P, Colas AR. Conserved transcription factors promote cell fate stability and restrict reprogramming potential in differentiated cells. Nat Commun 2023; 14:1709. [PMID: 36973293 PMCID: PMC10043290 DOI: 10.1038/s41467-023-37256-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Defining the mechanisms safeguarding cell fate identity in differentiated cells is crucial to improve 1) - our understanding of how differentiation is maintained in healthy tissues or altered in a disease state, and 2) - our ability to use cell fate reprogramming for regenerative purposes. Here, using a genome-wide transcription factor screen followed by validation steps in a variety of reprogramming assays (cardiac, neural and iPSC in fibroblasts and endothelial cells), we identified a set of four transcription factors (ATF7IP, JUNB, SP7, and ZNF207 [AJSZ]) that robustly opposes cell fate reprogramming in both lineage and cell type independent manners. Mechanistically, our integrated multi-omics approach (ChIP, ATAC and RNA-seq) revealed that AJSZ oppose cell fate reprogramming by 1) - maintaining chromatin enriched for reprogramming TF motifs in a closed state and 2) - downregulating genes required for reprogramming. Finally, KD of AJSZ in combination with MGT overexpression, significantly reduced scar size and improved heart function by 50%, as compared to MGT alone post-myocardial infarction. Collectively, our study suggests that inhibition of barrier to reprogramming mechanisms represents a promising therapeutic avenue to improve adult organ function post-injury.
Collapse
Affiliation(s)
- Maria A Missinato
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Sean Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Michael S Yu
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yu-Ling Chang
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Christopher Lee
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Prashila Amatya
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hiroshi Tanaka
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chun-Teng Huang
- Viral Vector Core Facility Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Peter D Adams
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
14
|
Schneider L, Dansranjav T, Neumann E, Yan H, Pilatz A, Schuppe HC, Wagenlehner F, Schagdarsurengin U. Post-prostatic-massage urine exosomes of men with chronic prostatitis/chronic pelvic pain syndrome carry prostate-cancer-typical microRNAs and activate proto-oncogenes. Mol Oncol 2023; 17:445-468. [PMID: 36321189 PMCID: PMC9980307 DOI: 10.1002/1878-0261.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) has a high prevalence of up to 15% and accounts for 90-95% of prostatitis diagnoses, and yet its etiopathogenesis and link to prostate cancer (PCa) are still unclear. Here, we investigated microRNAs in exosomes isolated from blood and post-prostatic-massage urine of CP/CPPS type IIIb patients and healthy men. THP-1 monocytes (human leukemia monocytic cell line) were treated with exosomes and subjected to mRNA arrays "Cancer Inflammation and Immunity Crosstalk" and "Transcription Factors." Using The Cancer Genome Atlas, the expression of CP/CPPS-associated microRNAs was analyzed in PCa and normal prostate tissue. In silico functional studies were carried out to explore the disease ontology of CP/CPPS. In CP/CPPS, urine exosomes exhibited significant upregulation of eight PCa-specific microRNAs (e.g., hsa-miR-501, hsa-miR-20a, and hsa-miR-106), whose target genes were significantly enriched for GO terms, hallmark gene sets, and pathways specific for carcinogenesis. In THP-1 monocytes, CP/CPPS-derived urine exosomes induced upregulation of PCa-associated proinflammatory genes (e.g., CCR2 and TLR2) and proto-oncogene transcription factors (e.g., MYB and JUNB). In contrast, CP/CPPS-derived blood exosomes exhibited molecular properties similar to those of healthy men. Thus, CP/CPPS exhibits molecular changes that constitute a risk for PCa and should be considered in the development of PCa biomarkers and cancer screening programs.
Collapse
Affiliation(s)
- Laura Schneider
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany.,Working Group "Epigenetics of the Urogenital System," Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Temuujin Dansranjav
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Elena Neumann
- Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University of Giessen, Bad Nauheim, Germany
| | - Hang Yan
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany.,Working Group "Epigenetics of the Urogenital System," Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Adrian Pilatz
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Florian Wagenlehner
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| | - Undraga Schagdarsurengin
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany.,Working Group "Epigenetics of the Urogenital System," Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
15
|
Komalasari NLGY, Tomonobu N, Kinoshita R, Chen Y, Sakaguchi Y, Gohara Y, Jiang F, Yamamoto KI, Murata H, Ruma IMW, Sumardika IW, Zhou J, Yamauchi A, Kuribayashi F, Inoue Y, Toyooka S, Sakaguchi M. Lysyl oxidase-like 4 exerts an atypical role in breast cancer progression that is dependent on the enzymatic activity that targets the cell-surface annexin A2. Front Oncol 2023; 13:1142907. [PMID: 37091157 PMCID: PMC10114587 DOI: 10.3389/fonc.2023.1142907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
Background LOX family members are reported to play pivotal roles in cancer. Unlike their enzymatic activities in collagen cross-linking, their precise cancer functions are unclear. We revealed that LOXL4 is highly upregulated in breast cancer cells, and we thus sought to define an unidentified role of LOXL4 in breast cancer. Methods We established the MDA-MB-231 sublines MDA-MB-231-LOXL4 mutCA and -LOXL4 KO, which stably overexpress mutant LOXL4 that loses its catalytic activity and genetically ablates the intrinsic LOXL4 gene, respectively. In vitro and in vivo evaluations of these cells' activities of cancer outgrowth were conducted by cell-based assays in cultures and an orthotopic xenograft model, respectively. The new target (s) of LOXL4 were explored by the MS/MS analytic approach. Results Our in vitro results revealed that both the overexpression of mutCA and the KO of LOXL4 in cells resulted in a marked reduction of cell growth and invasion. Interestingly, the lowered cellular activities observed in the engineered cells were also reflected in the mouse model. We identified a novel binding partner of LOXL4, i.e., annexin A2. LOXL4 catalyzes cell surface annexin A2 to achieve a cross-linked multimerization of annexin A2, which in turn prevents the internalization of integrin β-1, resulting in the locking of integrin β-1 on the cell surface. These events enhance the promotion of cancer cell outgrowth. Conclusions LOXL4 has a new role in breast cancer progression that occurs via an interaction with annexin A2 and integrin β-1 on the cell surface.
Collapse
Affiliation(s)
- Ni Luh Gede Yoni Komalasari
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
- Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Youyi Chen
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yuma Gohara
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Fan Jiang
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Ken-ich Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | | | | | - Jin Zhou
- Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
- *Correspondence: Masakiyo Sakaguchi,
| |
Collapse
|
16
|
Wang H, Tran TT, Duong KT, Nguyen T, Le UM. Options of Therapeutics and Novel Delivery Systems of Drugs for the Treatment of Melanoma. Mol Pharm 2022; 19:4487-4505. [PMID: 36305753 DOI: 10.1021/acs.molpharmaceut.2c00775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma is one of the most severe cancerous diseases. The cells employ multiple signaling pathways, such as ERK, HGF/c-MET, WNT, and COX-2 to cause the cell proliferation, survival, and metastasis. Treatment of melanoma, including surgery, chemotherapy, immunotherapy, radiation, and targeted therapy, is based on 4 major or 11 substages of the disease. Fourteen drugs, including dacarbazine, interferon α-2b, interleukin-12, ipilimumab, peginterferon α-2b, vemurafenib, trametinib, talimogene laherparepvec, cobimetinib, pembrolizumab, dabrafenib, binimetinib, encorafenib, and nivolumab, have been approved by the FDA for the treatment of melanoma. All of them are in conventional dosage forms of injection solutions, suspensions, oral tablets, or capsules. Major drawbacks of the treatment are side effects of the drugs and patients' incompliance to them. These are consequences of high doses and long-term treatments for the diseases. Currently more than 350 NCI-registered clinical trials are being carried out to treat advanced and/or metastatic melanoma using novel treatment methods, such as immune cell therapy, cancer vaccines, and new therapeutic targets. In addition, novel delivery systems using biomaterials of the approved drugs have been developed attempting to increase the drug delivery, targeting, stability, bioavailability, thus potentially reducing the toxicity and increasing the treatment effectiveness. Nanoparticles and liposomes have been emerging as advanced delivery systems which can improve drug stability and systemic circulation time. In this review, the most recent findings in the options for treatment and development of novel drug delivery systems for the treatment of melanoma are comprehensively discussed.
Collapse
Affiliation(s)
- Hongbin Wang
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
- Master of Pharmaceutical Sciences College of Graduate Study, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Tuan T Tran
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Katherine T Duong
- CVS Pharmacy, 18872 Beach Boulevard, Huntington Beach, California 92648, United States
| | - Trieu Nguyen
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Uyen M Le
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| |
Collapse
|
17
|
Deichaite I, Sears TJ, Sutton L, Rebibo D, Morgan K, Nelson T, Rose B, Tamayo P, Ferrara N, Asimakopoulos F, Carter H. Differential regulation of TNFα and IL-6 expression contributes to immune evasion in prostate cancer. J Transl Med 2022; 20:527. [PMID: 36371231 PMCID: PMC9652804 DOI: 10.1186/s12967-022-03731-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The role of the inflammatory milieu in prostate cancer progression is not well understood. Differences in inflammatory signaling between localized and metastatic disease may point to opportunities for early intervention. METHODS We modeled PCa disease progression by analyzing RNA-seq of localized vs. metastatic patient samples, followed by CIBERSORTx to assess their immune cell populations. The VHA CDW registry of PCa patients was analyzed for anti-TNF clinical outcomes. RESULTS We observed statistically significant opposing patterns of IL-6 and TNFα expression between localized and metastatic disease. IL-6 was robustly expressed in localized disease and downregulated in metastatic disease. The reverse was observed with TNFα expression. Metastatic disease was also characterized by downregulation of adhesion molecule E-selectin, matrix metalloproteinase ADAMTS-4 and a shift to M2 macrophages whereas localized disease demonstrated a preponderance of M1 macrophages. Treatment with anti-TNF agents was associated with earlier stage disease at diagnosis. CONCLUSIONS Our data points to clearly different inflammatory contexts between localized and metastatic prostate cancer. Primary localized disease demonstrates local inflammation and adaptive immunity, whereas metastases are characterized by immune cold microenvironments and a shift towards resolution of inflammation and tissue repair. Therapies that interfere with these inflammatory networks may offer opportunities for early intervention in monotherapy or in combination with immunotherapies and anti-angiogenic approaches.
Collapse
Affiliation(s)
- Ida Deichaite
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| | - Timothy J Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Leisa Sutton
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Daniel Rebibo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kylie Morgan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tyler Nelson
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Brent Rose
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Urology, University of California San Diego, La Jolla, CA, USA
| | - Pablo Tamayo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Center for Novel Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Napoleone Ferrara
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Fotis Asimakopoulos
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Adamiecki R, Hryniewicz-Jankowska A, Ortiz MA, Li X, Porter-Hansen BA, Nsouli I, Bratslavsky G, Kotula L. In Vivo Models for Prostate Cancer Research. Cancers (Basel) 2022; 14:5321. [PMID: 36358740 PMCID: PMC9654339 DOI: 10.3390/cancers14215321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/28/2022] Open
Abstract
In 2022, prostate cancer (PCa) is estimated to be the most commonly diagnosed cancer in men in the United States-almost 270,000 American men are estimated to be diagnosed with PCa in 2022. This review compares and contrasts in vivo models of PCa with regards to the altered genes, signaling pathways, and stages of tumor progression associated with each model. The main type of model included in this review are genetically engineered mouse models, which include conditional and constitutive knockout model. 2D cell lines, 3D organoids and spheroids, xenografts and allografts, and patient derived models are also included. The major applications, advantages and disadvantages, and ease of use and cost are unique to each type of model, but they all make it easier to translate the tumor progression that is seen in the mouse prostate to the human prostate. Although both human and mouse prostates are androgen-dependent, the fact that the native, genetically unaltered prostate in mice cannot give rise to carcinoma is an especially critical component of PCa models. Thanks to the similarities between the mouse and human genome, our knowledge of PCa has been expanded, and will continue to do so, through models of PCa.
Collapse
Affiliation(s)
- Robert Adamiecki
- Rutgers New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Anita Hryniewicz-Jankowska
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Maria A. Ortiz
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Xiang Li
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Baylee A. Porter-Hansen
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Imad Nsouli
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Gennady Bratslavsky
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
- Upstate Cancer Center, SUNY Upstate Medical University, 750 East Adams Str., Syracuse, NY 13010, USA
| |
Collapse
|
19
|
Cai H, Agersnap SN, Sjøgren A, Simonsen MK, Blaavand MS, Jensen UV, Thomsen MK. In Vivo Application of CRISPR/Cas9 Revealed Implication of Foxa1 and Foxp1 in Prostate Cancer Proliferation and Epithelial Plasticity. Cancers (Basel) 2022; 14:cancers14184381. [PMID: 36139541 PMCID: PMC9496785 DOI: 10.3390/cancers14184381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is the most common cancer in men in the Western world and the number is rising. Prostate cancer is notoriously heterogeneous, which makes it hard to generate and study in pre-clinical models. The family of Forkhead box (FOX) transcription factors are often altered in prostate cancer with especially high mutation burden in FOXA1 and FOXP1. FOXA1 harbors loss or gain of function mutations in 8% of prostate cancer, which increases to 14% in metastatic samples. FOXP1 predominately occurs with loss of function mutations in 7% of primary tumors, and similar incidents are found in metastatic samples. Here, we applied in vivo CRISPR editing, to study the loss of functions of these two FOX transcription factors, in murine prostate in combination with loss of Pten. Deficiency of Foxp1 increased proliferation in combination with loss of Pten. In contrast, proliferation was unchanged when androgen was deprived. The expression of Tmprss2 was increased when Foxp1 was mutated in vivo, showing that Foxp1 is a repressor for this androgen-regulated target. Furthermore, analysis of FOXP1 and TMPRSS2 expression in a human prostate cancer data set revealed a negative correlation. Mutation of Foxa1 in the murine prostate induces cell plasticity to luminal cells. Here, epithelial cells with loss of Foxa1 were transdifferentiated to cells with expression of the basal markers Ck5 and p63. Interestingly, these cells were located in the lumen and did not co-express Ck8. Overall, this study reveals that loss of Foxp1 increases cell proliferation, whereas loss of Foxa1 induces epithelial plasticity in prostate cancer.
Collapse
Affiliation(s)
- Huiqiang Cai
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Amalie Sjøgren
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | | | | | - Martin K. Thomsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|
20
|
Riedel M, Cai H, Stoltze IC, Vendelbo MH, Wagner EF, Bakiri L, Thomsen MK. Targeting AP-1 transcription factors by CRISPR in the prostate. Oncotarget 2021; 12:1956-1961. [PMID: 34548912 PMCID: PMC8448511 DOI: 10.18632/oncotarget.27997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the second most diagnosed cancer in men. It is a slow progressing cancer, but when the disease reaches an advanced stage, treatment options are limited. Sequencing analyses of cancer samples have identified genes that can potentially drive disease progression. We implemented the CRISPR/Cas9 technology to simultaneously manipulate multiple genes in the murine prostate and thus to functionally test putative cancer driver genes in vivo. The activating protein-1 (AP-1) transcription factor is associated with many different cancer types, with the proto-oncogenes JUN and FOS being the two most intensely studied subunits. We analyzed expression of FOS and JUNB in human prostate cancer datasets and observed decreased expression in advanced stages. By applying CRISPR/Cas9 technology, the role of these two transcription factors in prostate cancer progression was functionally tested. Our data revealed that loss of either JunB or Fos in the context of Pten loss drives prostate cancer progression to invasive disease. Furthermore, loss of Fos increases Jun expression, and CRISPR inactivation of Jun in this context decreases cell proliferation. Overall, these in vivo studies reveal that JunB and Fos exhibit a tumor suppressor function by repressing invasive disease, whereas Jun is oncogenic and increases cell proliferation. This demonstrates that AP-1 factors are implicated in prostate cancer progression at different stages and display a dual function as tumor suppressor and as an oncogene in cancer progression.
Collapse
Affiliation(s)
- Maria Riedel
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Huiqiang Cai
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Iben C Stoltze
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mikkel H Vendelbo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), Vienna, Austria.,Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, Austria
| | - Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUV), Vienna, Austria
| | - Martin K Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Wutschka J, Kast B, Sator-Schmitt M, Appak-Baskoy S, Hess J, Sinn HP, Angel P, Schorpp-Kistner M. JUNB suppresses distant metastasis by influencing the initial metastatic stage. Clin Exp Metastasis 2021; 38:411-423. [PMID: 34282521 PMCID: PMC8318945 DOI: 10.1007/s10585-021-10108-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/23/2021] [Indexed: 01/01/2023]
Abstract
The complex interactions between cells of the tumor microenvironment and cancer cells are considered a major determinant of cancer progression and metastasis. Yet, our understanding of the mechanisms of metastatic disease is not sufficient to successfully treat patients with advanced-stage cancer. JUNB is a member of the AP-1 transcription factor family shown to be frequently deregulated in human cancer and associated with invasion and metastasis. A strikingly high stromal JUNB expression in human breast cancer samples prompted us to functionally investigate the consequences of JUNB loss in cells of the tumor microenvironment on cancer progression and metastasis in mice. To adequately mimic the clinical situation, we applied a syngeneic spontaneous breast cancer metastasis model followed by primary tumor resection and identified stromal JUNB as a potent suppressor of distant metastasis. Comprehensive characterization of the JUNB-deficient tumor microenvironment revealed a strong influx of myeloid cells into primary breast tumors and lungs at early metastatic stage. In these infiltrating neutrophils, BV8 and MMP9, proteins promoting angiogenesis and tissue remodeling, were specifically upregulated in a JUNB-dependent manner. Taken together, we established stromal JUNB as a strong suppressor of distant metastasis. Consequently, therapeutic strategies targeting AP-1 should be carefully designed not to interfere with stromal JUNB expression as this may be detrimental for cancer patients.
Collapse
Affiliation(s)
- Juliane Wutschka
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Bettina Kast
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Melanie Sator-Schmitt
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sila Appak-Baskoy
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- iBEST (Institute of Biomedical Engineering, Science and Technology), Toronto, ON, Canada
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, DKFZ, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun. Oncogene 2021; 40:2437-2447. [PMID: 33674748 PMCID: PMC7610543 DOI: 10.1038/s41388-021-01724-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
Prostate cancer is a major global health concern with limited treatment options for advanced disease. Its heterogeneity challenges the identification of crucial driver genes implicated in disease progression. Activating protein-1 (AP-1) transcription factor is associated with cancer since the first identification of its subunits, the proto-oncogenes JUN and FOS. Whereas both JUN and FOS, have been implicated in prostate cancer, this study provides the first functional evidence that FOS acts as a tumor suppressor during prostate cancer progression and invasion. Data mining revealed decreased FOS expression in prostate cancer and a further downregulation in metastatic disease, consistent with FOS expression in cell lines derived from different prostate cancer stages. FOS deficiency in prostate cancer cell lines increases cell proliferation and induces oncogenic pathway alterations. Importantly, in vivo CRISPR/Cas9-mediated Fos and Pten double mutation in murine prostate epithelium results in increased proliferation and invasiveness compared to the abrogation of Pten alone. Interestingly, enhanced Jun expression is observed in the murine prostatic intraepithelial neoplasia lacking Fos. CRISPR/Cas9-mediated knockout of Jun combined with Fos and Pten deficiency diminishes the increased proliferation rate in vivo, but not the ability to form invasive disease. Overall, we demonstrate that loss of Fos promotes disease progression from clinical latent prostate cancer to advanced disease through accelerated proliferation and invasiveness, partly through Jun.
Collapse
|
23
|
Fu F, Wang L. Molecular cloning, characterization of JunB in Schizothorax prenanti and its roles in responding to Aeromonas hydrophila infection. Int J Biol Macromol 2020; 164:2788-2794. [DOI: 10.1016/j.ijbiomac.2020.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 01/20/2023]
|
24
|
Immune signature driven by ADT-induced immune microenvironment remodeling in prostate cancer is correlated with recurrence-free survival and immune infiltration. Cell Death Dis 2020; 11:779. [PMID: 32951005 PMCID: PMC7502080 DOI: 10.1038/s41419-020-02973-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/09/2022]
Abstract
Androgen deprivation therapy (ADT) is a cornerstone treatment for locally advanced or metastatic prostate cancer (PCa). However, its potential effects on the tumor immune microenvironment (TIM) of PCa patients and the underlying mechanism remain largely unclear. To explore the effects of ADT on PCa TIM, RNA sequencing was performed on six paired pre-ADT biopsy and post-ADT PCa lesions, and five paired paracancerous benign tissues from patients receiving neoadjuvant ADT with locally advanced PCa. Bioinformatics methods including ESTIMATE and ssGSEA were used to evaluate the stromal immune score and immune cell infiltration in PCa and paracancerous tissues. Weighted correlation network analysis was used to screen hub genes in the ADT-induced immune remodeling process. The results showed differences exist between PCa and paracancerous tissues in response to ADT. Compared with paracancerous tissues, the immune remodeling effect of ADT in PCa was more intense. ZFP36, JUNB, and SOCS3 served as hub genes in the ADT-induced immune remodeling process and were associated with PSA recurrent-free survival in the TCGA and our neoadjuvant ADT cohort. To investigate the joint action of the above three hub genes, an immune signature score was constructed. The results showed that immune signature score-based immune subtypes reveal the heterogeneity of the immune microenvironment of PCa and showed significant differences in patient prognosis, tumor immune infiltration, mutation burden, and landscape.
Collapse
|
25
|
Brennan A, Leech JT, Kad NM, Mason JM. Selective antagonism of cJun for cancer therapy. J Exp Clin Cancer Res 2020; 39:184. [PMID: 32917236 PMCID: PMC7488417 DOI: 10.1186/s13046-020-01686-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
The activator protein-1 (AP-1) family of transcription factors modulate a diverse range of cellular signalling pathways into outputs which can be oncogenic or anti-oncogenic. The transcription of relevant genes is controlled by the cellular context, and in particular by the dimeric composition of AP-1. Here, we describe the evidence linking cJun in particular to a range of cancers. This includes correlative studies of protein levels in patient tumour samples and mechanistic understanding of the role of cJun in cancer cell models. This develops an understanding of cJun as a focal point of cancer-altered signalling which has the potential for therapeutic antagonism. Significant work has produced a range of small molecules and peptides which have been summarised here and categorised according to the binding surface they target within the cJun-DNA complex. We highlight the importance of selectively targeting a single AP-1 family member to antagonise known oncogenic function and avoid antagonism of anti-oncogenic function.
Collapse
Affiliation(s)
- Andrew Brennan
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - James T Leech
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Neil M Kad
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
26
|
Chen W, Wang X, Wei G, Huang Y, Shi Y, Li D, Qiu S, Zhou B, Cao J, Chen M, Qin P, Jin W, Ni T. Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts. Front Genet 2020; 11:867. [PMID: 32849838 PMCID: PMC7431633 DOI: 10.3389/fgene.2020.00867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
Replicative senescence is a hallmark of aging, which also contributes to individual aging. Mouse embryonic fibroblasts (MEFs) provide a convenient replicative senescence model. However, the heterogeneity of single MEFs during cellular senescence has remained unclear. Here, we conducted single-cell RNA sequencing on senescent MEFs. Principal component analysis showed obvious heterogeneity among these MEFs such that they could be divided into six subpopulations. Three types of gene expression analysis revealed distinct expression features of these six subpopulations. Trajectory analysis revealed three distinct lineages during MEF senescence. In the main lineage, some senescence-associated secretory phenotypes were upregulated in a subset of cells from senescent clusters, which could not be distinguished in a previous bulk study. In the other two lineages, a possibility of escape from cell cycle arrest and coupling between translation-related genes and ATP synthesis-related genes were also discovered. Additionally, we found co-expression of transcription factor HOXD8 coding gene and its potential target genes in the main lineage. Overexpression of Hoxd8 led to senescence-associated phenotypes, suggesting HOXD8 is a new regulator of MEF senescence. Together, our single-cell sequencing on senescent MEFs largely expanded the knowledge of a basic cell model for aging research.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xuefei Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yin Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yufang Shi
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Dan Li
- Field Application Department, Fluidigm (Shanghai) Instrument Technology Co., Ltd., Shanghai, China
| | - Shengnu Qiu
- Division of Biosciences, Faculty of Life Sciences, University College London, London, United Kingdom
| | - Bin Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Junhong Cao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Meng Chen
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengfei Qin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wenfei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Guan H, Peng R, Fang F, Mao L, Chen Z, Yang S, Dai C, Wu H, Wang C, Feng N, Xu B, Chen M. Tumor-associated macrophages promote prostate cancer progression via exosome-mediated miR-95 transfer. J Cell Physiol 2020; 235:9729-9742. [PMID: 32406953 DOI: 10.1002/jcp.29784] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/25/2020] [Accepted: 05/02/2020] [Indexed: 12/24/2022]
Abstract
Tumor-associated macrophages (TAMs) are vital constituents in mediating cell-to-cell communication within the tumor microenvironment. However, the molecular mechanisms underlying the interplay between TAMs and tumor cells that guide cell fate are largely undetermined. Extracellular vesicles, also known as exosomes, which are derived from TAMs, are the components exerting regulatory effects. Thus, understanding the underlying mechanism of "onco-vesicles" is of crucial importance for prostate cancer (PCa) therapy. In this study, we analyzed micro RNA sequences in exosomes released by THP-1 and M2 macrophages and found a significant increase in miR-95 levels in TAM-derived exosomes, demonstrating the direct uptake of miR-95 by recipient PCa cells. In vitro and in vivo loss-of-function assays suggested that miR-95 could function as a tumor promoter by directly binding to its downstream target gene, JunB, to promote PCa cell proliferation, invasion, and epithelial-mesenchymal transition. The clinical data analyses further revealed that higher miR-95 expression results in worse clinicopathological features. Collectively, our results demonstrated that TAM-mediated PCa progression is partially attributed to the aberrant expression of miR-95 in TAM-derived exosomes, and the miR-95/JunB axis provides the groundwork for research on TAMs to further develop more-personalized therapeutic approaches for patients with PCa.
Collapse
Affiliation(s)
- Han Guan
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Peng
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fang Fang
- Department of Immunology, School of Laboratory Medicine, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Likai Mao
- Department of Urology, Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Chen
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shuai Yang
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Changyuan Dai
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongliang Wu
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chengyong Wang
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No.2 Hospital of Nanjing Medical University, Wuxi, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
28
|
Tudor DV, Bâldea I, Lupu M, Kacso T, Kutasi E, Hopârtean A, Stretea R, Gabriela Filip A. COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biol Med 2020; 17:20-31. [PMID: 32296574 PMCID: PMC7142851 DOI: 10.20892/j.issn.2095-3941.2019.0339] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
With a constantly increasing incidence, cutaneous melanoma has raised the need for a better understanding of its complex microenvironment that may further guide therapeutic options. Melanoma is a model tumor in immuno-oncology. Inflammation represents an important hallmark of cancer capable of inducing and sustaining tumor development. The inflammatory process also orchestrates the adaptative immunosuppression of tumor cells that helps them to evade immune destruction. Besides its role in proliferation, angiogenesis, and apoptosis, cyclooxygenase-2 (COX-2) is a well-known promoter of immune suppression in melanoma. COX-2 inhibitors are closely involved in this condition. This review attempts to answer two controversial questions: is COX-2 a valuable prognostic factor? Among all COX-2 inhibitors, is celecoxib a suitable adjuvant in melanoma therapy?
Collapse
Affiliation(s)
- Diana Valentina Tudor
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Ioana Bâldea
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Mihai Lupu
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Teodor Kacso
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Eniko Kutasi
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Andreea Hopârtean
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Roland Stretea
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Adriana Gabriela Filip
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| |
Collapse
|
29
|
Arriaga JM, Abate-Shen C. Genetically Engineered Mouse Models of Prostate Cancer in the Postgenomic Era. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a030528. [PMID: 29661807 DOI: 10.1101/cshperspect.a030528] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent genomic sequencing analyses have unveiled the spectrum of genomic alterations that occur in primary and advanced prostate cancer, raising the question of whether the corresponding genes are functionally relevant for prostate tumorigenesis, and whether such functions are associated with particular disease stages. In this review, we describe genetically engineered mouse models (GEMMs) of prostate cancer, focusing on those that model genomic alterations known to occur in human prostate cancer. We consider whether the phenotypes of GEMMs based on gain or loss of function of the relevant genes provide reliable counterparts to study the predicted consequences of the corresponding genomic alterations as occur in human prostate cancer, and we discuss exceptions in which the GEMMs do not fully emulate the expected phenotypes. Last, we highlight future directions for the generation of new GEMMs of prostate cancer and consider how we can use GEMMs most effectively to decipher the biological and molecular mechanisms of disease progression, as well as to tackle clinically relevant questions.
Collapse
Affiliation(s)
- Juan M Arriaga
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Cory Abate-Shen
- Departments of Urology, Medicine, Systems Biology, and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
30
|
Zhu M, Huang C, Ma X, Wu R, Zhu W, Li X, Liang Z, Deng F, Wu J, Geng S, Xie C, Zhong C. Phthalates promote prostate cancer cell proliferation through activation of ERK5 and p38. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:29-33. [PMID: 30125794 DOI: 10.1016/j.etap.2018.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in man. Studies have shown that phthalates may act as promoters in various types of cancer; however, the role of phthalates in prostate cancer has been rarely reported. The MAPK/AP-1 pathway is a vital regulator of cell proliferation in cancer. In this report we found that three typical phthalates, diethylhexyl phthalate (DEHP), Butyl benzyl phthalate (BBP) and Dibutyl phthalate (DBP), up-regulated cyclinD1 and PCNA, down-regulated P21, inducing proliferation of prostate cancer cells. Furthermore, we found that phthalates increased the expression of p-ERK5 and p-p38, along with upregulation of AP-1 (p-c-fos and p-c-jun). In studies with ERK5 and a p38 inhibitor, our data showed that downregulation of p-ERK5 or p38 inhibited phthalate-triggered cell proliferation. Taken together, findings from this study suggest that phthalates activate MAPK/AP-1 pathway and may potentially promote cell proliferation in prostate cancer, thus providing new insight into the effects and the underlying mechanism of phthalates on prostate cancer.
Collapse
Affiliation(s)
- Mingming Zhu
- Department of Nutrition, The Second School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cong Huang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Ma
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiwei Zhu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhaofeng Liang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Feifei Deng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jieshu Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shanshan Geng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
31
|
Riedel M, Berthelsen MF, Bakiri L, Wagner EF, Thomsen MK. Virus Delivery of CRISPR Guides to the Murine Prostate for Gene Alteration. J Vis Exp 2018. [PMID: 29757291 DOI: 10.3791/57525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
With an increasing incidence of prostate cancer, identification of new tumor drivers or modulators is crucial. Genetically engineered mouse models (GEMM) for prostate cancer are hampered by tumor heterogeneity and its complex microevolution dynamics. Traditional prostate cancer mouse models include, amongst others, germline and conditional knockouts, transgenic expression of oncogenes, and xenograft models. Generation of de novo mutations in these models is complex, time-consuming, and costly. In addition, most of traditional models target the majority of the prostate epithelium, whereas human prostate cancer is well known to evolve as an isolated event in only a small subset of cells. Valuable models need to simulate not only prostate cancer initiation, but also progression to advanced disease. Here we describe a method to target a few cells in the prostate epithelium by transducing cells by viral particles. The delivery of an engineered virus to the murine prostate allows alteration of gene expression in the prostate epithelia. Virus type and quantity will hereby define the number of targeted cells for gene alteration by transducing a few cells for cancer initiation and many cells for gene therapy. Through surgery-based injection in the anterior lobe, distal from the urinary track, the tumor in this model can expand without impairing the urinary function of the animal. Furthermore, by targeting only a subset of prostate epithelial cells the technique enables clonal expansion of the tumor, and therefore mimics human tumor initiation, progression, as well as invasion through the basal membrane. This novel technique provides a powerful prostate cancer model with improved physiological relevance. Animal suffering is limited, and since no additional breeding is required, overall animal count is reduced. At the same time, analysis of new candidate genes and pathways is accelerated, which in turn is more cost efficient.
Collapse
Affiliation(s)
- Maria Riedel
- Department of Clinical Medicine, Aarhus University
| | | | - Latifa Bakiri
- GDD, Cancer Cell Biology Program, National Cancer Research Center (CNIO)
| | - Erwin F Wagner
- GDD, Cancer Cell Biology Program, National Cancer Research Center (CNIO)
| | | |
Collapse
|
32
|
Tumor microenvironment promotes prostate cancer cell dissemination via the Akt/mTOR pathway. Oncotarget 2018; 9:9206-9218. [PMID: 29507684 PMCID: PMC5823632 DOI: 10.18632/oncotarget.24104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022] Open
Abstract
Metastasis causes high mortality in various malignancies, including prostate cancer (PCa). Accumulating data has suggested that cancer cells spread from the primary tumor to distant sites at early stage, which is characterized by disseminated tumor cells (DTCs). However, lack of direct evidence of partial localized PCa cells occurring epithelial-to-mesenchymal transition (EMT) and disseminating to distant sites (e.g bone marrow). In this study, we used luciferase labeled PCa cells to establish an EMT mouse model and to detect whether DTCs spread into the bone marrow. We observed tumor cells existing in mouse bone marrow when tumor grew subcutaneously at palpable stage. Studies also showed that ex vivo tumor cells exhibited increased proliferative, migratory, invasive and angiogenesis abilities. When compared ex vivo tumor cells with parental cells, hallmarks of EMT including E-cadherin, Vimentin, Snail, and ZO-1 were altered significantly. Specifically, the ex vivo tumor cells showed more mesenchymal properties. Angiogenesis markers, including VEGFR2, VEGFR3, MCP-3, I-TAC, I309, uPAR and GROα, were also increased in the ex vivo tumor cells. Intriguingly, MCP-1 expression was dramatically increased in those cells. Mechanistic analyses indicated that AP1 mediates PCa EMT and the appearance of DTCs via the Akt/mTOR pathway. This study may provide potential therapeutic targets and diagnostic biomarkers of PCa progression and metastasis.
Collapse
|
33
|
Khan FM, Sadeghi M, Gupta SK, Wolkenhauer O. A Network-Based Integrative Workflow to Unravel Mechanisms Underlying Disease Progression. Methods Mol Biol 2018; 1702:247-276. [PMID: 29119509 DOI: 10.1007/978-1-4939-7456-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unraveling mechanisms underlying diseases has motivated the development of systems biology approaches. The key challenges for the development of mathematical models and computational tool are (1) the size of molecular networks, (2) the nonlinear nature of spatio-temporal interactions, and (3) feedback loops in the structure of interaction networks. We here propose an integrative workflow that combines structural analyses of networks, high-throughput data, and mechanistic modeling. As an illustration of the workflow, we use prostate cancer as a case study with the aim of identifying key functional components associated with primary to metastasis transitions. Analysis carried out by the workflow revealed that HOXD10, BCL2, and PGR are the most important factors affected in primary prostate samples, whereas, in the metastatic state, STAT3, JUN, and JUNB are playing a central role. The identified key elements of each network are validated using patient survival analysis. The workflow presented here allows experimentalists to use heterogeneous data sources for the identification of diagnostic and prognostic signatures.
Collapse
Affiliation(s)
- Faiz M Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany
| | - Mehdi Sadeghi
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Shailendra K Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany.,Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, India
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051, Rostock, Germany. .,Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, India. .,Stellenbosch Institute of Advanced Study (STIAS), Wallenberg Research Centre, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
34
|
Wong JP, Wei R, Lyu P, Tong OL, Zhang SD, Wen Q, Yuen HF, El-Tanani M, Kwok HF. Clinical and in vitro analysis of Osteopontin as a prognostic indicator and unveil its potential downstream targets in bladder cancer. Int J Biol Sci 2017; 13:1373-1386. [PMID: 29209142 PMCID: PMC5715521 DOI: 10.7150/ijbs.21457] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN) plays an important role in cancer progression, however its prognostic significance and its downstream factors are largely elusive. In this study, we have shown that expression of OPN was significantly higher in bladder cancer specimens with higher T-stage or tumor grades. In addition, a high level of OPN was significantly associated with poorer survival in two independent bladder cancer patient cohorts totaling 389 bladder cancer patients with available survival data. We further identified Matrix metallopeptidase 9 (MMP9) and S100 calcium-binding protein A8 (S100A8) were both downstream factors for OPN in bladder cancer specimens and bladder cancer cell lines. Expression of OPN was significantly positively associated with that of MMP9 and S100A8, while overexpression of OPN resulted in upregulation of MMP9 and S100A8, and knockdown of OPN showed consistent downregulation of MMP9 and S100A8 expression levels. Importantly, expression levels of both MMP9 and S100A8 were significantly associated with higher T-stage, higher tumor grade and a shorter survival time in the bladder cancer patients. Interestingly, OPN expression only predicted survival in MMP9-high, but not MMP9-low subgroups, and in S100A8-low but not S100A8-high subgroups. Our results suggest that OPN, MMP9 and S100A8 all play a significant role in bladder cancer progression and are potential prognostic markers and therapeutic targets in bladder cancer. The mechanistic link between these three genes and bladder cancer progression warrants further investigation.
Collapse
Affiliation(s)
- Janet P.C. Wong
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Ran Wei
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Peng Lyu
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Olivia L.H. Tong
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Shu Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, United Kingdom
| | - Qing Wen
- Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Hiu Fung Yuen
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| |
Collapse
|
35
|
Sadeghi M, Ranjbar B, Ganjalikhany MR, M. Khan F, Schmitz U, Wolkenhauer O, Gupta SK. MicroRNA and Transcription Factor Gene Regulatory Network Analysis Reveals Key Regulatory Elements Associated with Prostate Cancer Progression. PLoS One 2016; 11:e0168760. [PMID: 28005952 PMCID: PMC5179129 DOI: 10.1371/journal.pone.0168760] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022] Open
Abstract
Technological and methodological advances in multi-omics data generation and integration approaches help elucidate genetic features of complex biological traits and diseases such as prostate cancer. Due to its heterogeneity, the identification of key functional components involved in the regulation and progression of prostate cancer is a methodological challenge. In this study, we identified key regulatory interactions responsible for primary to metastasis transitions in prostate cancer using network inference approaches by integrating patient derived transcriptomic and miRomics data into gene/miRNA/transcription factor regulatory networks. One such network was derived for each of the clinical states of prostate cancer based on differentially expressed and significantly correlated gene, miRNA and TF pairs from the patient data. We identified key elements of each network using a network analysis approach and validated our results using patient survival analysis. We observed that HOXD10, BCL2 and PGR are the most important factors affected in primary prostate samples, whereas, in the metastatic state, STAT3, JUN and JUNB are playing a central role. Benefiting integrative networks our analysis suggests that some of these molecules were targeted by several overexpressed miRNAs which may have a major effect on the dysregulation of these molecules. For example, in the metastatic tumors five miRNAs (miR-671-5p, miR-665, miR-663, miR-512-3p and miR-371-5p) are mainly responsible for the dysregulation of STAT3 and hence can provide an opportunity for early detection of metastasis and development of alternative therapeutic approaches. Our findings deliver new details on key functional components in prostate cancer progression and provide opportunities for the development of alternative therapeutic approaches.
Collapse
Affiliation(s)
- Mehdi Sadeghi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Faiz M. Khan
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | - Ulf Schmitz
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, Australia
- Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Shailendra K. Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
- Department of Bioinformatics, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
36
|
Nip H, Dar AA, Saini S, Colden M, Varahram S, Chowdhary H, Yamamura S, Mitsui Y, Tanaka Y, Kato T, Hashimoto Y, Shiina M, Kulkarni P, Dasgupta P, Imai-Sumida M, Tabatabai ZL, Greene K, Deng G, Dahiya R, Majid S. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget 2016; 7:68371-68384. [PMID: 27634912 PMCID: PMC5356562 DOI: 10.18632/oncotarget.12031] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/26/2016] [Indexed: 12/25/2022] Open
Abstract
Prostate carcinogenesis involves alterations in several signaling pathways, the most prominent being the PI3K/AKT pathway. This pathway is constitutively active and drives prostate cancer (PCa) progression to advanced metastatic disease. PTEN, a critical tumor and metastasis suppressor gene negatively regulates cell survival, proliferation, migration and angiogenesis via the PI3K/Akt pathway. PTEN is mutated, downregulated/dysfunctional in many cancers and its dysregulation correlates with poor prognosis in PCa. Here, we demonstrate that microRNA-4534 (miR-4534) is overexpressed in PCa and show that miR-4534 is hypermethylated in normal tissues and cell lines compared to PCa tissues/cells. miR-4534 exerts its oncogenic effects partly by downregulating the tumor suppressor PTEN gene. Knockdown of miR-4534 impaired cell proliferation, migration/invasion and induced G0/G1 cell cycle arrest and apoptosis in PCa. Suppression of miR-4534 and its effects on tumor growth was confirmed in a xenograft mouse model. We performed parallel experiments in non-cancer RWPE1 cells by overexpessing miR-4534 followed by functional assays. Overexpression of miR-4534 induced pro-cancerous characteristics in this non-cancer cell line. Statistical analyses revealed that miR-4534 has potential to independently distinguish malignant from normal tissues and positively correlated with poor overall and PSA recurrence free survival. Taken together, our results show that depletion of miR-4534 in PCa induces a tumor suppressor phenotype partly through induction of PTEN. These results have important implications for identifying and defining the role of new PTEN regulators such as microRNAs in prostate tumorigenesis. Understanding aberrantly overexpressed miR-4534 and its downregulation of PTEN will provide mechanistic insight and therapeutic targets for PCa therapy.
Collapse
Affiliation(s)
- Hannah Nip
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Altaf A. Dar
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| | - Sharanjot Saini
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Melissa Colden
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Shahryari Varahram
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Harshika Chowdhary
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Soichiro Yamamura
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Yozo Mitsui
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Yuichiro Tanaka
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Taku Kato
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Yutaka Hashimoto
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Marisa Shiina
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Priyanka Kulkarni
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Pritha Dasgupta
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Mitsuho Imai-Sumida
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Z. Laura Tabatabai
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Kirsten Greene
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Guoren Deng
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Rajvir Dahiya
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Shahana Majid
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| |
Collapse
|
37
|
CAFÉ-Map: Context Aware Feature Mapping for mining high dimensional biomedical data. Comput Biol Med 2016; 79:68-79. [PMID: 27764717 DOI: 10.1016/j.compbiomed.2016.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022]
Abstract
Feature selection and ranking is of great importance in the analysis of biomedical data. In addition to reducing the number of features used in classification or other machine learning tasks, it allows us to extract meaningful biological and medical information from a machine learning model. Most existing approaches in this domain do not directly model the fact that the relative importance of features can be different in different regions of the feature space. In this work, we present a context aware feature ranking algorithm called CAFÉ-Map. CAFÉ-Map is a locally linear feature ranking framework that allows recognition of important features in any given region of the feature space or for any individual example. This allows for simultaneous classification and feature ranking in an interpretable manner. We have benchmarked CAFÉ-Map on a number of toy and real world biomedical data sets. Our comparative study with a number of published methods shows that CAFÉ-Map achieves better accuracies on these data sets. The top ranking features obtained through CAFÉ-Map in a gene profiling study correlate very well with the importance of different genes reported in the literature. Furthermore, CAFÉ-Map provides a more in-depth analysis of feature ranking at the level of individual examples. AVAILABILITY CAFÉ-Map Python code is available at: http://faculty.pieas.edu.pk/fayyaz/software.html#cafemap . The CAFÉ-Map package supports parallelization and sparse data and provides example scripts for classification. This code can be used to reconstruct the results given in this paper.
Collapse
|
38
|
MicroRNA hsa-miR-4674 in Hemolysis-Free Blood Plasma Is Associated with Distant Metastases of Prostatic Cancer. Bull Exp Biol Med 2016; 161:112-5. [PMID: 27265126 DOI: 10.1007/s10517-016-3358-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 10/21/2022]
Abstract
We analyzed microRNA profile in hemolysis-free blood plasma of patients with prostatic cancer. The metastatic form of prostatic cancer was found to be associated with increased levels of hsa-miR-22-3p, hsa-miR-663a, and hsa-miR-4674 in comparison with non-metastatic form. Common candidate target genes of these microRNA include JUNB, KMT2A, and XPO6.
Collapse
|