1
|
Salehi-Mazandarani S, Mahmoudian-Hamedani S, Farajzadegan Z, Nikpour P. EZH2: A Crucial Competing Endogenous RNA in Cancer Research-A Scoping Review. Adv Biomed Res 2025; 14:53. [PMID: 40519579 PMCID: PMC12165308 DOI: 10.4103/abr.abr_561_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 06/18/2025] Open
Abstract
Recently, research on the competing endogenous RNAs (ceRNAs) in cancer has been in full swing, emphasizing their importance as critical RNAs in cancer progression. Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) is a ceRNA that has been introduced as a potential therapeutic target in many cancers. Due to EZH2's dual role as an oncogene and tumor suppressor in cancer, a more thorough exploration of its ceRNA functions may enhance clinical cancer treatment approaches. In the current scoping review, we searched several online databases to identify experimentally validated ceRNA axes, including EZH2 in human cancers. We identified 66 unique axes consisting of 30 microRNAs (miRNAs), 32 long non-coding RNAs (lncRNAs), 9 messenger RNAs (mRNAs), and 14 circular RNAs (circRNAs). Notably, SPRY4-IT1 - miR-101-3p - EZH2 and XIST - miR-101-3p - EZH2 were recurrent axes observed in multiple cancer types. Among the most frequent miRNAs were miR-101-3p, miR-144-3p and miR-124-3p, and ceRNAs including SPRY4-IT1, XIST, SNHG6, HOXA11-AS, MALAT1, and TUG1 emerged as frequent competitors of EZH2 for miRNA binding. This scoping review highlights the diversity of EZH2-containing ceRNA axes in cancer, suggesting their potential as therapeutic targets. Further studies are needed to clarify their roles and clinical utility.
Collapse
Affiliation(s)
- Sadra Salehi-Mazandarani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Mahmoudian-Hamedani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ziba Farajzadegan
- Department of Community and Family Medicine, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Feng Z, Yang Y, Luo W, Li J, Xie Z, Zuo L, Duan M, Zuo D, Mo R, Tang X, Yi S, He X, Liu F, Ma N, He F. Integrative analysis of taurine metabolism-related genes prognostic signature with immunotherapy and identification of ABCB1 and GORASP1 as key genes in nasopharyngeal carcinoma. Amino Acids 2025; 57:21. [PMID: 40272558 PMCID: PMC12021963 DOI: 10.1007/s00726-025-03452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Taurine is an amino acid with several physiological functions and has been shown to be involved in the anti-tumor of human nasopharyngeal carcinoma (NPC) cells. However, the role of taurine metabolism-related genes (TMRGs) in NPC has not been reported. We integrated data from the Genecards, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Expression Omnibus(GEO) databases to identify differentially expressed genes associated with taurine metabolism in NPC patients. Gene Ontology (GO) and KEGG analyses were conducted to investigate the underlying mechanisms. Subsequently, Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses were performed to construct a taurine metabolism-related prognostic signature. Survival, medication sensitivity, and immunological microenvironment evaluations were performed to assess the prognostic utility of the model. Finally, immunohistochemistry (IHC) experiments were performed to validate the model's prognostic reliability. In addition, we further verified the reliability of our research results through molecular docking and single-cell sequencing. Our prognostic model was based on three pivotal TMRGs (ABCB1, GORASP1, and EZH2). Functional analysis revealed a strong association between TMRGs and miRNAs in cancer. Notably, increased risk scores correlated with worsening tumor malignancy and prognosis. Significant disparities in immune microenvironment, immune checkpoints, and drug sensitivity were observed between the high- and low-risk groups. The protein expression patterns of the selected genes in clinical NPC samples were validated using immunohistochemistry. Molecular docking verified the interaction between these three core genes and taurine, which was further supported by single-cell sequencing showing significant expression variation among different cell clusters in NPC. We had elucidated the functions, therapeutic potential, and prognostic significance of three key genes related to taurine metabolism in NPC through multidimensional research and experimental validation. This research provided valuable insights and potential avenues for improved NPC management.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
- Department of Otolaryngology Head and Neck Surgery, Pingnan County People's Hospital, Guigang, 537300, China
| | - Yuhang Yang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Wenqi Luo
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Jinqing Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Zhenlian Xie
- Department of Oncology, Pingnan County People's Hospital, Guigang, 537300, China
| | - Long Zuo
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Meijiao Duan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Dongzhi Zuo
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Ruwei Mo
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Xuejing Tang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Shijiang Yi
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Xiaosong He
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Fangxian Liu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Ning Ma
- Institute of Oriental Medicine, Suzuka University of Medical Science, Suzuka , Mie, 510-0293, Japan.
| | - Feng He
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|
3
|
Yan K, Lim DW, Ma BBBY. Progress in the clinical development of investigational systemic agents for recurrent and metastatic nasopharyngeal carcinoma. Expert Opin Investig Drugs 2024; 33:1019-1028. [PMID: 39297575 DOI: 10.1080/13543784.2024.2401910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Nasopharyngeal carcinoma (NPC) remains an endemic disease in certain parts of the world, with many patients presenting with advanced disease on diagnosis. Chemotherapy had remained the standard of care with minimal progress made until recent years. This review aims to provide an overview of recent significant breakthroughs and up-and-coming novel strategies in treating this deadly disease. AREAS COVERED This review focuses on the latest clinical development of promising investigational agents in the treatment of advanced NPC. These include anti-vascular agents, signaling pathways inhibitors and immunotherapy. EXPERT OPINION The addition of immune-checkpoint inhibitors (CPI) to platinum-based chemotherapy has undoubtedly changed the therapeutic landscape of R/M NPC in the first-line setting. This leaves much room for further research on the optimal treatment strategy in subsequent-line settings, likely including the addition of CPI to anti-vascular agents or novel CPI combinations, with or without chemotherapy as a backbone. Other potential approaches include optimal CPI maintenance therapy after first-line CPI-chemotherapy combination. Potential novel agents on the horizons are antibody-drug conjugates, bi-specific antibodies and signaling inhibitors, with several phase II/III studies currently underway.
Collapse
Affiliation(s)
- Kelvin Yan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Darren Wt Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Brigette B B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Baig MS, Deepanshu, Prakash P, Alam P, Krishnan A. In silico analysis reveals hypoxia-induced miR-210-3p specifically targets SARS-CoV-2 RNA. J Biomol Struct Dyn 2023; 41:12305-12327. [PMID: 36752331 DOI: 10.1080/07391102.2023.2175255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/01/2023] [Indexed: 02/09/2023]
Abstract
Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deepanshu
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Patra SK, Szyf M. Epigenetic perspectives of COVID-19: Virus infection to disease progression and therapeutic control. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166527. [PMID: 36002132 PMCID: PMC9393109 DOI: 10.1016/j.bbadis.2022.166527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
COVID-19 has caused numerous deaths as well as imposed social isolation and upheaval world-wide. Although, the genome and the composition of the virus, the entry process and replication mechanisms are well investigated from by several laboratories across the world, there are many unknown remaining questions. For example, what are the functions of membrane lipids during entry, packaging and exit of virus particles? Also, the metabolic aspects of the infected tissue cells are poorly understood. In the course of virus replication and formation of virus particles within the host cell, the enhanced metabolic activities of the host is directly proportional to viral loads. The epigenetic landscape of the host cells is also altered, particularly the expression/repression of genes associated with cellular metabolism as well as cellular processes that are antagonistic to the virus. Metabolic pathways are enzyme driven processes and the expression profile and mechanism of regulations of the respective genes encoding those enzymes during the course of pathogen invasion might be highly informative on the course of the disease. Recently, the metabolic profile of the patients' sera have been analysed from few patients. In view of this, and to gain further insights into the roles that epigenetic mechanisms might play in this scenario in regulation of metabolic pathways during the progression of COVID-19 are discussed and summarised in this contribution for ensuring best therapy.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McIntyre Medical Sciences Building, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
7
|
Effect of Hypoxia-Induced Micro-RNAs Expression on Oncogenesis. Int J Mol Sci 2022; 23:ijms23116294. [PMID: 35682972 PMCID: PMC9181687 DOI: 10.3390/ijms23116294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. An aberrant regulation of gene expression by miRNAs is associated with numerous diseases, including cancer. MiRNAs expression can be influenced by various stimuli, among which hypoxia; however, the effects of different types of continuous hypoxia (moderate or marked) on miRNAs are still poorly studied. Lately, some hypoxia-inducible miRNAs (HRMs, hypoxia-regulated miRNAs) have been identified. These HRMs are often activated in different types of cancers, suggesting their role in tumorigenesis. The aim of this study was to evaluate changes in miRNAs expression both in moderate continuous hypoxia and marked continuous hypoxia to better understand the possible relationship between hypoxia, miRNAs, and colorectal cancer. We used RT-PCR to detect the miRNAs expression in colorectal cancer cell lines in conditions of moderate and marked continuous hypoxia. The expression of miRNAs was analyzed using a two-way ANOVA test to compare the differential expression of miRNAs among groups. The levels of almost all analyzed miRNAs (miR-21, miR-23b, miR-26a, miR-27b, and miR-145) were greater in moderate hypoxia versus marked hypoxia, except for miR-23b and miR-21. This study identified a series of miRNAs involved in the response to different types of continuous hypoxia (moderate and marked), highlighting that they play a role in the development of cancer. To date, there are no other studies that demonstrate how these two types of continuous hypoxia could be able to activate different molecular pathways that lead to a different expression of specific miRNAs involved in tumorigenesis.
Collapse
|
8
|
PITPNA-AS1/miR-98-5p to Mediate the Cisplatin Resistance of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7981711. [PMID: 35578599 PMCID: PMC9107361 DOI: 10.1155/2022/7981711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
Abstract
Gastric cancer (GC) is the most deadly gastrointestinal malignancy with high incidence and mortality. Although, molecular mechanisms which drive gastric cancer progression are extensively investigated, the roles of long noncoding RNA (lncRNA) in gastric cancer growth and drug sensitivity remain unclear. Platinum is a mainstay to treat gastric cancer, and platinum resistance always leads to the local recurrence of gastric cancer. Therefore, it is important to identify biomarkers or therapeutic targets to sensitize gastric cancer to platinum. In this study, we employ noncoding RNA sequencing and found that lncRNA PITPNA-AS1 is overexpressed in gastric cancer tissues and associated with poor survival of gastric cancer patients. Kockdown of PITPNA-AS1 in gastric cancer cells significantly inhibited cell growth and triggered apoptotic cell death in gastric cancer cells. Also, cisplatin treatment could decrease PITPNA-AS1 levels in gastric cancer cells through inhibiting H3K27ac. Besides, PITPNA-AS1 is elevated in cisplatin-resistant gastric cancer cells and tissues, PITPNA-AS1 knockdown could sensitize gastric cancer cells to cisplatin treatment. Furthermore, we identified that PITPNA-AS1 directly interacts and inhibits miR-98-5p. Therefore, PITPNA-AS1 could be served as a potential biomarkers and curative therapeutic targets for gastric cancer progression.
Collapse
|
9
|
Cai B, Qu X, Kan D, Luo Y. miR-26a-5p suppresses nasopharyngeal carcinoma progression by inhibiting PTGS2 expression. Cell Cycle 2022; 21:618-629. [PMID: 35073820 PMCID: PMC8942422 DOI: 10.1080/15384101.2022.2030168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) has a low five-year survival rate, and its pathogenesis remains unclear. There is an urgent need to improve our understanding of the genetic regulation of NPC tumorigenesis and development. The role of miR-26a-5p in NPC growth regulation and the expression of its target, PTGS2, was analyzed. Quantitative Real-time PCR assay was used to detect miR-26a-5p and PTGS2 expression in human NPC tissues and cell lines. The RNA pull-down dual-luciferase reporter assay was used to determine the association between miR-26a-5p and PTGS2. The effects of miR-26a-5p and PTGS2 on NPC cell viability, proliferation, migration, and invasion were measured by CCK-8, BrdU, and Transwell assays. miR-26a-5p expression in NPC tissues and cell lines was significantly decreased. The overexpression of miR-26a-5p inhibited the viability, proliferation, migration, and invasion of NPC cells. miR-26a-5p bound to the 3-'untranslated region of PTGS2, thus reducing PTGS2 protein levels. miR-26a-5p inhibited NPC development by reducing the expression of its target PTGS2.
Collapse
Affiliation(s)
- Binlin Cai
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Xiu Qu
- Department of Pain Treatment, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Dan Kan
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Yi Luo
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China,CONTACT Yi Luo Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, No. 1 Benxi Street, Qingshan District, Wuhan, Hubei430081, China
| |
Collapse
|
10
|
Yu C, Chen H, Zhao Y, Zhang Y. Forkhead Box Protein M1 Promotes Nasopharyngeal Carcinoma Cell Tumorigenesis Possibly via the Wnt/β-Catenin Signaling Pathway. Med Sci Monit 2021; 27:e931970. [PMID: 34911926 PMCID: PMC8690047 DOI: 10.12659/msm.931970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Forkhead box protein M1 (FoxM1) is an important transcription factor involved in the development and progression of various malignancies. However, its role in nasopharyngeal carcinoma (NPC) remains largely unknown. This study aimed to assess the effect of FoxM1 on NPC cell tumorigenesis as well as the underlying mechanism. MATERIAL AND METHODS NPC cell lines CNE-1 and CNE-2 were treated with vehicle and FoxM1 inhibitor thiostrepton or transfected with small interfering RNA. CCK-8 assay, flow cytometric assay, and Hoechst 33258 staining were performed to assess the viability, apoptosis and nuclear morphological impairment, and cell cycle, respectively. The expression of apoptosis-related caspase-3 and caspase-9 was detected by western blot analysis The tumor growth in the mouse xenograft model of NPC treated with thiostrepton or control was assessed. The expression of Wnt/ß-catenin signaling proteins p27, FoxM1, S phase kinase-associated protein 2 (SKP2), and Cyclin D1 were determined both in cells and xenograft tissues by western blot analysis. RESULTS Inhibition of FoxM1 by thiostrepton significantly suppressed NPC cell viability, induced apoptosis, increased cell cycle arrest, impaired nuclear morphology, and reduced NPC cell-derived tumor xenograft growth. Mechanistically, inhibition or knockdown of FoxM1 inactivated the Wnt/ß-catenin signaling pathway, as demonstrated by altered expression of Wnt/ß-catenin signaling-related genes, including p27, SKP2, and cyclin D1, in both NPC cells and xenograft tissues. CONCLUSIONS We identified FoxM1 as a novel regulator of NPC cell tumorigenesis in vitro and in vivo. Targeting FoxM1 could be a promising therapeutic strategy against NPC.
Collapse
Affiliation(s)
- Chao Yu
- Department of Otolaryngology, Head and Neck Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Hongyan Chen
- Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yanli Zhao
- Department of Otolaryngology, Head and Neck Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| | - Yuedong Zhang
- Department of Otolaryngology, Head and Neck Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, PR China
| |
Collapse
|
11
|
Wong KCW, Hui EP, Lo KW, Lam WKJ, Johnson D, Li L, Tao Q, Chan KCA, To KF, King AD, Ma BBY, Chan ATC. Nasopharyngeal carcinoma: an evolving paradigm. Nat Rev Clin Oncol 2021; 18:679-695. [PMID: 34194007 DOI: 10.1038/s41571-021-00524-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
The past three decades have borne witness to many advances in the understanding of the molecular biology and treatment of nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-associated cancer endemic to southern China, southeast Asia and north Africa. In this Review, we provide a comprehensive, interdisciplinary overview of key research findings regarding NPC pathogenesis, treatment, screening and biomarker development. We describe how technological advances have led to the advent of proton therapy and other contemporary radiotherapy approaches, and emphasize the relentless efforts to identify the optimal sequencing of chemotherapy with radiotherapy through decades of clinical trials. Basic research into the pathogenic role of EBV and the genomic, epigenomic and immune landscape of NPC has laid the foundations of translational research. The latter, in turn, has led to the development of new biomarkers and therapeutic targets and of improved approaches for individualizing immunotherapy and targeted therapies for patients with NPC. We provide historical context to illustrate the effect of these advances on treatment outcomes at present. We describe current preclinical and clinical challenges and controversies in the hope of providing insights for future investigation.
Collapse
Affiliation(s)
- Kenneth C W Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wai Kei Jacky Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - David Johnson
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Lili Li
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Qian Tao
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwan Chee Allen Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ann D King
- Department of Diagnostic Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR.
| | - Anthony T C Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR.
| |
Collapse
|
12
|
Chen B, Deng YN, Wang X, Xia Z, He Y, Zhang P, Syed SE, Li Q, Liang S. miR-26a enhances colorectal cancer cell growth by targeting RREB1 deacetylation to activate AKT-mediated glycolysis. Cancer Lett 2021; 521:1-13. [PMID: 34419497 DOI: 10.1016/j.canlet.2021.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
We previously reported the inhibitory effects of microRNA-26a (miR-26a) on the conversion of pyruvate to acetyl coenzyme A in glucose metabolism by directly targeting pyruvate dehydrogenase protein X component in colorectal cancer (CRC) cells (Chen B et al., BMC Cancer 2014). Here, using microRNA in situ hybridization, we confirmed that miR-26a levels were elevated in 77 human CRC tissue samples and further investigated the key miR-26a-mediated metabolic regulation elements and signaling pathways in CRC cells through quantitative proteomic dissection combined with cancer cell biology and biochemical loss-of-function analysis. We found that AKT transcription signaling was a target pathway via miR-26a-mediated deacetylation modification of Ras-responsive element-binding protein 1 (RREB1) at the Lys-60 residue. miR-26a improved the deacetylation level of RREB1, thus contributing to RREB1 binding to the AKT1 promoter to activate AKT transcription and its related signaling pathway in glycolysis. Moreover, miR-26a promoted CRC tumorigenesis in CRC cells and subcutaneous xenograft mice. Thus, miR-26a is a key regulator of CRC tumorigenesis that mediates the deacetylation modification of RREB1 to enhance AKT1 transcription and downstream target gene expression in glycolysis for CRC growth.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Ya-Nan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Zijing Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China; Department of Rheumatology and Immunology, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China.
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China.
| | - Samina Ejaz Syed
- Department of Biochemistry and Biotechnology, Baghdad Campus, The Islamia University of Bahawalpur, Pakistan.
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| |
Collapse
|
13
|
Liao C, Liu H, Luo X. The emerging roles of exosomal miRNAs in nasopharyngeal carcinoma. Am J Cancer Res 2021; 11:2508-2520. [PMID: 34249413 PMCID: PMC8263644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique subtype of head and neck cancer that is endemic to Southern China and Southeast Asia. Due to the concealed location and intrinsic invasiveness of this disease, majority of NPC patients are diagnosed with advanced stages (III and IV) and poor prognosis. Chemoradiotherapy resistance is a major problem for NPC patients, leading to incomplete local elimination, recurrence and metastasis. Therefore, it is of great significance to seek novel biomarkers and effective therapeutic regimen for clinical management of this deadly cancer. Exosomes are tiny membrane vesicles with a lipid bilayer secreted by most cells in the body, which are widely distributed in various body fluids. They are functionally active in different physiopathological process by carrying and transmitting important signal molecules such as miRNA, mRNA, protein, lipid, etc. Exosomal miRNAs play an important role in tumorigenesis and development of NPC. They are extensively involved in NPC cell proliferation, migration, invasion, neovascularization, radiotherapy resistance and the regulation of tumor immune microenvironment through intercellular communication and control of gene expression. Moreover, exosomal miRNAs can be used as valuable biomarkers for early diagnosis and therapeutic targets of NPC.
Collapse
Affiliation(s)
- Chaoliang Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, PR China
- Cancer Research Institute, School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, PR China
- Key Laboratory of Carcinogenesis, Chinese Ministry of HealthChangsha 410078, Hunan, PR China
| | - Huiwen Liu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, PR China
- Cancer Research Institute, School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, PR China
- Key Laboratory of Carcinogenesis, Chinese Ministry of HealthChangsha 410078, Hunan, PR China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, PR China
- Cancer Research Institute, School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, PR China
- Key Laboratory of Carcinogenesis, Chinese Ministry of HealthChangsha 410078, Hunan, PR China
- Molecular Imaging Research Center of Central South UniversityChangsha 410078, Hunan, PR China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
| |
Collapse
|
14
|
Epigenetic regulation of TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated diabetic nephropathy. Redox Biol 2021; 45:102033. [PMID: 34119876 PMCID: PMC8209273 DOI: 10.1016/j.redox.2021.102033] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
S-adenosylhomocysteine (SAH) is hydrolyzed by SAH hydrolase (SAHH) to homocysteine and adenosine. Increased plasma SAH levels were associated with disturbed renal function in patients with diabetes. However, the role and mechanism of SAHH in diabetic nephropathy is still unknown. In the present study, we found that inhibition of SAHH by using its inhibitor adenosine dialdehyde (ADA) accumulates intracellular or plasma SAH levels and increases high glucose-induced podocyte injury and aggravates STZ-induced diabetic nephropathy, which is associated with Nod-like receptor protein 3 (NLRP3) inflammasome activation. Inhibition or knockout of NLRP3 attenuates SAHH inhibition-aggravated podocyte injury and diabetic nephropathy. Additionally, SAHH inhibition increases thioredoxin-interacting protein (TXNIP)-mediated oxidative stress and NLRP3 inflammasome activation, but these effects were not observed in TXNIP knockout mice. Mechanistically, SAHH inhibition increased TXNIP by inhibiting histone methyltransferase enhancer of zeste homolog 2 (EZH2) and reduced trimethylation of histone H3 lysine 27 and its enrichment at promoter of early growth response 1 (EGR1). Moreover, EGR1 is activated and enriched at promoters of TXNIP by SAHH inhibition and is essential for SAHH inhibition-induced TXNIP expression. Inhibition of EGR1 protected against SAHH inhibition-induced NLRP3 inflammasome activation and oxidative stress and diabetic nephropathy. Finally, the harmful effects of SAHH inhibition on inflammation and oxidative stress and diabetic nephropathy were also observed in heterozygote SAHH knockout mice. These findings suggest that EZH2/EGR1/TXNIP/NLRP3 signaling cascade contributes to SAHH inhibition-aggravated diabetic nephropathy. Our study firstly provides a novel insight into the role and mechanism of SAHH inhibition in diabetic nephropathy. SAHH inhibition accumulates SAH levels and aggravates podocyte injury and diabetic nephropathy. SAHH inhibition induces TXNIP-mediated oxidative stress and NLRP3 inflammasome activation. SAHH inhibition increases TXNIP by inhibiting EZH2 and reducing H3K27me3 and its enrichment at promoter of EGR1. EGR1 is required for SAHH inhibition-induced TXNIP and NLRP3 inflammasome activation and diabetic nephropathy.
Collapse
|
15
|
Huo S, Qi H, Si Y, Li C, Du W. MicroRNA 26a targets Ezh2 to regulate apoptosis in mouse ovarian granulosa cells. Syst Biol Reprod Med 2021; 67:221-229. [PMID: 34058933 DOI: 10.1080/19396368.2021.1895362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the mammalian ovary, <1% of the follicles ovulate, with most undergoing degenerative atresia during ovarian follicular development. Follicular atresia is caused by the apoptosis of granulosa cells (GCs), although the precise underpinning mechanism remains unidentified. MiR-26a regulates various cellular events, including cell division, apoptotic signaling, and cell differentiation, migration, and autophagy. Here, we demonstrated that miR-26a regulated apoptosis in GCs in the mouse ovary through Ezh2, a key regulator of GC viability. We also found that transcription of miR-26a changed in response to an LH antagonist and a GnRH agonist. In addition, miR-26a transcription was downregulated following LH-induced transition of GCs to granulosa-lutein cells (GLCs). Dual-luciferase reporter assays confirmed Ezh2 as a miR-26a target. Exogenous expression in GCs of miR-26a mimics resulted in decreased Ezh2 expression, while miR-26a inhibition in GCs induced the opposite phenotype. Ezh2 silencing additionally reduced the anti-apoptotic effect of miR-26a inhibition in GCs. These data highlight the critical role of miR-26a in targeting Ezh2 and regulating apoptosis in mouse ovarian GCs.Abbreviations: GC: Granulosa cell; GLCs: Granulosa-lutein cells; LH: Luteinizing hormone; miRNA: MicroRNA; NC: Negative control; Cyt-c: Cytochrome c; GnRH: Gonadotropin releasing hormone; i.p.: intraperitoneal injection; cKO: conditional knock-out; WB: Western blotting; hCG: Human chorionic gonadotropin; NPC: nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Shiwei Huo
- Department of Reproductive Medicine, The Central Hospital of Taian, Taian, China
| | - Hongrong Qi
- Department of Reproductive Medicine, The Central Hospital of Taian, Taian, China
| | - Yuexiu Si
- Department of Respiration, The Fifth Hospital of Jinan, Jinan, China
| | - Changzhou Li
- Department of Reproductive Medicine, The Central Hospital of Taian, Taian, China
| | - Wenyan Du
- Department of Outpatient, The Branch of Taian Central Hospital, Taian, China
| |
Collapse
|
16
|
Campion NJ, Ally M, Jank BJ, Ahmed J, Alusi G. The molecular march of primary and recurrent nasopharyngeal carcinoma. Oncogene 2021; 40:1757-1774. [PMID: 33479496 DOI: 10.1038/s41388-020-01631-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Nasopharyngeal carcinoma (NPC) results from the aberrant and uncontrolled growth of the nasopharyngeal epithelium. It is highly associated with the Epstein-Barr virus, especially in regions where it is endemic. In the last decade, significant advances in genetic sequencing techniques have allowed the discovery of many new abnormal molecular processes that undoubtedly contribute to the establishment, growth and spread of this deadly disease. In this review, we consider NPC as EBV induced. We summarise the recent discoveries and how they add to our understanding of the pathophysiology of NPC in the context of genomics first in primary and then in recurrent disease. Overall, we find key early events lead to p16 inactivation and cyclin D1 expression, allowing latent viral infection. Host and viral factors work together to affect a variety of molecular pathways, the most fundamental being activation of NF-κB. Nonetheless, much still yearns to be discovered, especially in recurrent NPC.
Collapse
Affiliation(s)
- Nicholas J Campion
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK. .,Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Munira Ally
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| | - Bernhard J Jank
- Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Jahangir Ahmed
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| | - Ghassan Alusi
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| |
Collapse
|
17
|
Zhang S, Cheng Z, Wang Y, Han T. The Risks of miRNA Therapeutics: In a Drug Target Perspective. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:721-733. [PMID: 33654378 PMCID: PMC7910153 DOI: 10.2147/dddt.s288859] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022]
Abstract
RNAi therapeutics have been growing. Patisiran and givosiran, two siRNA-based drugs, were approved by the Food and Drug Administration in 2018 and 2019, respectively. However, there is rare news on the advance of miRNA drugs (another therapeutic similar to siRNA drug). Here we report the existing obstacles of miRNA therapeutics by analyses for resources available in a drug target perspective, despite being appreciated when it began. Only 10 obtainable miRNA drugs have been in clinical trials with none undergoing phase III, while over 60 siRNA drugs are in complete clinical trial progression including two approvals. We mechanically compared the two types of drug and found that their major distinction lay in the huge discrepancy of the target number of two RNA molecules, which was caused by different complementary ratios. One miRNA generally targets tens and even hundreds of genes. We named it “too many targets for miRNA effect” (TMTME). Further, two adverse events from the discontinuation of two miRNA therapeutics were exactly answered by TMTME. In summary, TMTME is inevitable because of the special complementary approach between miRNA and its target. It means that miRNA therapeutics would trigger a series of unknown and unpreventable consequences, which makes it a considerable alternative for application.
Collapse
Affiliation(s)
- Song Zhang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhujun Cheng
- Department of Burn, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yanan Wang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| |
Collapse
|
18
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
19
|
Guan X, Deng H, Choi UL, Li Z, Yang Y, Zeng J, Liu Y, Zhang X, Li G. EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis. Oncogene 2020; 39:7127-7141. [PMID: 33009487 DOI: 10.1038/s41388-020-01484-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
The mechanism underlying EZH2 overexpression in breast cancer and its involvement in tumorigenesis remain poorly understood. In this study, we developed an approach to systematically identify the trans-acting factors regulating the EZH2 expression, and identified more than 20 such factors. We revealed reciprocal regulation of early growth response 1 (EGR1) and EZH2: EGR1 activates the expression of EZH2, and EZH2 represses EGR1 expression. Using CRISPR-mediated genome/epigenome editing, we demonstrated that EHZ2 represses EGR1 expression through a silencer downstream of the EGR1 gene. Deletion of the EGR1 silencer resulted in reduced cell growth, invasion, tumorigenicity of breast cancer cells, and extensive changes in gene expression, such as upregulation of GADD45, DDIT3, and RND1; and downregulation of genes encoding cholesterol biosynthesis pathway enzymes. We hypothesize that EZH2/PRC2 acts as a "brake" for EGR1 expression by targeting the EGR1 silencer, and EZH2 overexpression dampens tumor-suppressive signals mediated by EGR1 to drive breast tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Guan
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Houliang Deng
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Un Lam Choi
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhengfeng Li
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yiqi Yang
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jianming Zeng
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yunze Liu
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau, China. .,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China. .,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
20
|
Zhu J, Li L, Tong J, Hui C, Wong CH, Lo KW, Chan R, Ai QY, Hui EP, Chan ATC, To KF, Tao Q, Ma BBY. Targeting the polycomb repressive complex-2 related proteins with novel combinational strategies for nasopharyngeal carcinoma. Am J Cancer Res 2020; 10:3267-3284. [PMID: 33163269 PMCID: PMC7642668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023] Open
Abstract
Aberrant epigenetic regulation is critically involved in the pathogenesis of nasopharyngeal carcinoma (NPC), where abnormal histone methylation can be found in polycomb repressive complex-2 (PRC2) related cancer gene loci. This study investigated some novel combinational strategies against NPC in vitro using PRC2-targeting agents as a backbone. PRC2 subunit proteins were overexpressed in over 70% of NPC tumors and enhancer of zeste homolog-2 (EZH2) expression correlated with more advanced T-stage. Basal expression of EZH2 and embryonic ectoderm development (EED) was higher in Epstein-Bar virus (EBV)+ NPC cells than EBV- cells. Treatment with an EED inhibitor (EED226) led to reduced levels of H3K27me3 with minimal inhibitory effect on NPC cell growth. The combination of an EZH2 inhibitor (EPZ-6438) and trichostatin-A (TSA) yielded the highest synergy score (12.64) in NPC cells in vitro than combinations using EED226 and agents like chemotherapy and azacitadine. Global gene expression analysis showed that EED226 predominantly affects the expression of major histocompatibility complex (MHC) class I genes and cell cycle-related genes in NPC cells. Furthermore, treatment with EED226 resulted in increased MHC-I proteins in vitro. Based on the prediction of an artificial neural network, a synergistic inhibitory effect on growth was found by combining EED226 with cyclin dependent kinase (CDK) 4/6 inhibitor (LEE011) in NPC cells. In summary, this study found that PRC2-targeting agents could exert synergistic effect on growth inhibition when combined with TSA or LEE011 in NPC cells. Since MHC-I genes alterations are found in a third of NPC tumors, the effect of EED226 on MHC-I genes expression on response to immunotherapy in NPC warrants further investigations.
Collapse
Affiliation(s)
- Junyu Zhu
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Lili Li
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Joanna Tong
- Department of Anatomical and Cellular Pathology, The Prince of Wales HospitalHong Kong, China
| | - Connie Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Chi Hang Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, The Prince of Wales HospitalHong Kong, China
| | - Raymond Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Qi Yong Ai
- Department of Imaging and Interventional Radiology, The Chinese University of Hong KongHong Kong, China
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Anthony TC Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Ka F To
- Department of Anatomical and Cellular Pathology, The Prince of Wales HospitalHong Kong, China
| | - Qian Tao
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| | - Brigette BY Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales HospitalHong Kong, China
| |
Collapse
|
21
|
Das P, Taube JH. Regulating Methylation at H3K27: A Trick or Treat for Cancer Cell Plasticity. Cancers (Basel) 2020; 12:E2792. [PMID: 33003334 PMCID: PMC7600873 DOI: 10.3390/cancers12102792] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Properly timed addition and removal of histone 3 lysine 27 tri-methylation (H3K27me3) is critical for enabling proper differentiation throughout all stages of development and, likewise, can guide carcinoma cells into altered differentiation states which correspond to poor prognoses and treatment evasion. In early embryonic stages, H3K27me3 is invoked to silence genes and restrict cell fate. Not surprisingly, mutation or altered functionality in the enzymes that regulate this pathway results in aberrant methylation or demethylation that can lead to malignancy. Likewise, changes in expression or activity of these enzymes impact cellular plasticity, metastasis, and treatment evasion. This review focuses on current knowledge regarding methylation and de-methylation of H3K27 in cancer initiation and cancer cell plasticity.
Collapse
Affiliation(s)
| | - Joseph H. Taube
- Department of Biology, Baylor University, Waco, TX 76706, USA;
| |
Collapse
|
22
|
E. A. R. ENS, Irekeola AA, Yean Yean C. Diagnostic and Prognostic Indications of Nasopharyngeal Carcinoma. Diagnostics (Basel) 2020; 10:E611. [PMID: 32825179 PMCID: PMC7554987 DOI: 10.3390/diagnostics10090611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a disease that is highly associated with the latent infection of Epstein-Barr virus. The absence of obvious clinical signs at the early stage of the disease has made early diagnosis practically impossible, thereby promoting the establishment and progression of the disease. To enhance the stride for a reliable and less invasive tool for the diagnosis and prognosis of NPC, we synopsize biomarkers belonging to the two most implicated biological domains (oncogenes and tumor suppressors) in NPC disease. Since no single biomarker is sufficient for diagnosis and prognosis, coupled with the fact that the known established methods such as methylation-specific polymerase chain reaction (PCR), multiplex methylation-specific PCR, microarray assays, etc., can only accommodate a few biomarkers, we propose a 10-biomarker panel (KIT, LMP1, PIKC3A, miR-141, and miR-18a/b (oncogenic) and p16, RASSF1A, DAP-kinase, miR-9, and miR-26a (tumor suppressors)) based on their diagnostic and prognostic values. This marker set could be explored in a multilevel or single unified assay for the diagnosis and prognosis of NPC. If carefully harnessed and standardized, it is hoped that the proposed marker set would help transform the diagnostic and prognostic realm of NPC, and ultimately, help prevent the life-threatening late-stage NPC disease.
Collapse
Affiliation(s)
- Engku Nur Syafirah E. A. R.
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Department of Biological Sciences, Microbiology Unit, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara State, Nigeria
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
23
|
MicroRNAs: Biogenesis, Functions and Potential Biomarkers for Early Screening, Prognosis and Therapeutic Molecular Monitoring of Nasopharyngeal Carcinoma. Processes (Basel) 2020. [DOI: 10.3390/pr8080966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
According to reports published, the aberrant expression of microRNAs (miRNAs), a class of 19–25 nucleotide-long small non-coding RNAs, is responsible for human cancers, including nasopharyngeal cancer (NPC). The dysregulation of miRNAs that act either as a tumor suppressor or oncogene, leading to a wide range of NPC pathogenesis pathways, includes the proliferation, invasion, migration as well as the metastasis of NPC cells. This article reviews and highlights recent advances in the studies of miRNAs in NPC, with a specific demonstration of the functions of miRNA, especially circulating miRNAs, in the pathway of NPC pathogenesis. Additionally, the possible use of miRNAs as early screening and prognostic biomarkers and for therapeutic molecular monitoring has been extensively studied.
Collapse
|
24
|
Huq S, Casaos J, Serra R, Peters M, Xia Y, Ding AS, Ehresman J, Kedda JN, Morales M, Gorelick NL, Zhao T, Ishida W, Perdomo-Pantoja A, Cecia A, Ji C, Suk I, Sidransky D, Brait M, Brem H, Skuli N, Tyler B. Repurposing the FDA-Approved Antiviral Drug Ribavirin as Targeted Therapy for Nasopharyngeal Carcinoma. Mol Cancer Ther 2020; 19:1797-1808. [PMID: 32606016 DOI: 10.1158/1535-7163.mct-19-0572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/09/2019] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma with a proclivity for systemic dissemination, leading many patients to present with advanced stage disease and fail available treatments. There is a notable lack of targeted therapies for NPC, despite working knowledge of multiple proteins with integral roles in NPC cancer biology. These proteins include EZH2, Snail, eIF4E, and IMPDH, which are all overexpressed in NPC and correlated with poor prognosis. These proteins are known to be modulated by ribavirin, an FDA-approved hepatitis C antiviral that has recently been repurposed as a promising therapeutic in several solid and hematologic malignancies. Here, we investigated the potential of ribavirin as a targeted anticancer agent in five human NPC cell lines. Using cellular growth assays, flow cytometry, BrdU cell proliferation assays, scratch wound assays, and invasion assays, we show in vitro that ribavirin decreases NPC cellular proliferation, migration, and invasion and promotes cell-cycle arrest and cell death. Modulation of EZH2, Snail, eIF4E, IMPDH, mTOR, and cyclin D1 were observed in Western blots and enzymatic activity assays in response to ribavirin treatment. As monotherapy, ribavirin reduced flank tumor growth in multiple NPC xenograft models in vivo Most importantly, we demonstrate that ribavirin enhanced the effects of radiotherapy, a central component of NPC treatment, both in vitro and in vivo Our work suggests that NPC responds to ribavirin-mediated EZH2, Snail, eIF4E, IMPDH, and mTOR changes and positions ribavirin for clinical evaluation as a potential addition to our NPC treatment armamentarium.
Collapse
Affiliation(s)
- Sakibul Huq
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joshua Casaos
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Riccardo Serra
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Peters
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuanxuan Xia
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andy S Ding
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff Ehresman
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jayanidhi N Kedda
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Manuel Morales
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Noah L Gorelick
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tianna Zhao
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wataru Ishida
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander Perdomo-Pantoja
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arba Cecia
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chenchen Ji
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ian Suk
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Head and Neck Cancer Research Laboratory, Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mariana Brait
- Head and Neck Cancer Research Laboratory, Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henry Brem
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Biomedical Engineering, Oncology, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicolas Skuli
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Betty Tyler
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
25
|
High Mobility Group A (HMGA): Chromatin Nodes Controlled by a Knotty miRNA Network. Int J Mol Sci 2020; 21:ijms21030717. [PMID: 31979076 PMCID: PMC7038092 DOI: 10.3390/ijms21030717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
High mobility group A (HMGA) proteins are oncofoetal chromatin architectural factors that are widely involved in regulating gene expression. These proteins are unique, because they are highly expressed in embryonic and cancer cells, where they play a relevant role in cell proliferation, stemness, and the acquisition of aggressive tumour traits, i.e., motility, invasiveness, and metastatic properties. The HMGA protein expression levels and activities are controlled by a connected set of events at the transcriptional, post-transcriptional, and post-translational levels. In fact, microRNA (miRNA)-mediated RNA stability is the most-studied mechanism of HMGA protein expression modulation. In this review, we contribute to a comprehensive overview of HMGA-targeting miRNAs; we provide detailed information regarding HMGA gene structural organization and a comprehensive evaluation and description of HMGA-targeting miRNAs, while focusing on those that are widely involved in HMGA regulation; and, we aim to offer insights into HMGA-miRNA mutual cross-talk from a functional and cancer-related perspective, highlighting possible clinical implications.
Collapse
|
26
|
Elevated SUV39H2 attributes to the progression of nasopharyngeal carcinoma via regulation of NRIP1. Biochem Biophys Res Commun 2019; 510:290-295. [PMID: 30709585 DOI: 10.1016/j.bbrc.2019.01.092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 01/02/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent tumor in southern China and southeast Asia. Recent studies have demonstrated that viral infection, somatic genetic changes, and epigenetic changes synergistically contribute to NPC pathogenesis. Genome-wide studies show that epigenetic aberrations likely drive nasopharyngeal carcinoma development and progression. This work is aimed at investigating the effect of histone methyltransferase SUV39H2 in NPC. The elevated expression of SUV39H2 in NPC is observed by analyzing GSE53819 and GSE12452 downloaded from the Gene Expression Omnibus (GEO) database. SUV39H2 knockdown inhibits NPC proliferation and induces the apoptosis of cancer cells. At last, RNaseq analysis identifies a variety of SUV39H2 downstream genes related with cancer, in which, NRIP1 is identified as a critical downstream target of SUV39H2 in NPC. Taken together, these findings provide a theoretical basis for understating the biological roles of SUV39H2 in NPC.
Collapse
|
27
|
Zhao CX, Zhu W, Ba ZQ, Xu HJ, Liu WD, Zhu B, Wang L, Song YJ, Yuan S, Ren CP. The regulatory network of nasopharyngeal carcinoma metastasis with a focus on EBV, lncRNAs and miRNAs. Am J Cancer Res 2018; 8:2185-2209. [PMID: 30555738 PMCID: PMC6291648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023] Open
Abstract
Metastasis of nasopharyngeal carcinoma (NPC) remains a main cause of death for NPC patients even though great advances have been made in therapeutic approaches. An in-depth study into the molecular mechanisms of NPC metastasis will help us combat NPC. Epstein-Barr virus (EBV) infection is an evident feature of nonkeratinizing NPC and is strongly associated with tumor metastasis. Recently, long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have become a hot topic of research due to their epigenetic regulatory roles in NPC metastasis. The EBV products, lncRNAs and miRNAs can target each other and share several common signaling pathways, which form an interconnected, complex molecular regulatory network. In this review, we discuss the features of this regulatory network and summarize the molecular mechanisms of NPC metastasis, focusing on EBV, lncRNAs and miRNAs with updated knowledge.
Collapse
Affiliation(s)
- Chen-Xuan Zhao
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Wei Zhu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Zheng-Qing Ba
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Hong-Juan Xu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Wei-Dong Liu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Bin Zhu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Lei Wang
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Yu-Jia Song
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Shuai Yuan
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Cai-Ping Ren
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| |
Collapse
|
28
|
Hsu CL, Lui KW, Chi LM, Kuo YC, Chao YK, Yeh CN, Lee LY, Huang Y, Lin TL, Huang MY, Lai YR, Yeh YM, Fan HC, Lin AC, Lu YJ, Hsieh CH, Chang KP, Tsang NM, Wang HM, Chang AY, Chang YS, Li HP. Integrated genomic analyses in PDX model reveal a cyclin-dependent kinase inhibitor Palbociclib as a novel candidate drug for nasopharyngeal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:233. [PMID: 30236142 PMCID: PMC6149192 DOI: 10.1186/s13046-018-0873-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Background Patient-derived xenograft (PDX) tumor model has become a new approach in identifying druggable tumor mutations, screening and evaluating personalized cancer drugs based on the mutated targets. Methods We established five nasopharyngeal carcinoma (NPC) PDXs in mouse model. Subsequently, whole-exome sequencing (WES) and genomic mutation analyses were performed to search for genetic alterations for new drug targets. Potential drugs were applied in two NPC PDX mice model to assess their anti-cancer activities. RNA sequencing and transcriptomic analysis were performed in one NPC PDX mice to correlate with the efficacy of the anti-cancer drugs. Results A relative high incident rate of copy number variations (CNVs) of cell cycle-associated genes. Among the five NPC-PDXs, three had cyclin D1 (CCND1) amplification while four had cyclin-dependent kinase inhibitor CDKN2A deletion. Furthermore, CCND1 overexpression was observed in > 90% FFPE clinical metastatic NPC tumors (87/91) and was associated with poor outcomes. CNV analysis disclosed that plasma CCND1/CDKN2A ratio is correlated with EBV DNA load in NPC patients’ plasma and could serve as a screening test to select potential CDK4/6 inhibitor treatment candidates. Based on our NPC PDX model and RNA sequencing, Palbociclib, a cyclin-dependent kinase inhibitor, proved to have anti-tumor effects by inducing G1 arrest. One NPC patient with liver metastatic was treated with Palbociclib, had stable disease response and a drop in Epstein Barr virus (EBV) EBV titer. Conclusions Our integrated information of sequencing-based genomic studies and tumor transcriptomes with drug treatment in NPC-PDX models provided guidelines for personalized precision treatments and revealed a cyclin-dependent kinase inhibitor Palbociclib as a novel candidate drug for NPC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0873-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Kar-Wai Lui
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Lang-Ming Chi
- Clinical Proteomics Core Laboratory, Chang Gung Memorial Hospital, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Yung-Chia Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Yin-Kai Chao
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Chun-Nan Yeh
- Department of General Surgery, Liver Research Center, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Tung-Liang Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Mei-Yuan Huang
- Department of Microbiology and Immunology, Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Lin-Kou, Taoyuan, 333, Taiwan, Republic of China
| | - Yi-Ru Lai
- Department of Microbiology and Immunology, Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Lin-Kou, Taoyuan, 333, Taiwan, Republic of China
| | - Yuan-Ming Yeh
- Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 333, Taiwan, Republic of China
| | - Hsien-Chi Fan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - An-Chi Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Yen-Jung Lu
- ACT Genomics, Co. Ltd., 1F., No.280, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan, Republic of China
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Ngan-Ming Tsang
- Department of Radiation, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Hung-Ming Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Alex Y Chang
- Johns Hopkins Singapore International Medical Centre, 11 Jalan Tan Tock Seng, Singapore City, 308433, Singapore
| | - Yu-Sun Chang
- Department of Microbiology and Immunology, Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Lin-Kou, Taoyuan, 333, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 333, Taiwan, Republic of China.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China
| | - Hsin-Pai Li
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, No.5, Fuxing St., Guishan Dist, Taoyuan City, 333, Lin-Kou, Taiwan, Republic of China. .,Department of Microbiology and Immunology, Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Lin-Kou, Taoyuan, 333, Taiwan, Republic of China. .,Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 333, Taiwan, Republic of China.
| |
Collapse
|
29
|
microRNA-98 inhibits the proliferation, invasion, migration and promotes apoptosis of breast cancer cells by binding to HMGA2. Biosci Rep 2018; 38:BSR20180571. [PMID: 30049846 PMCID: PMC6146293 DOI: 10.1042/bsr20180571] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/11/2023] Open
Abstract
Breast cancer is a major contributor leading to cancer death in females worldwide. The aim of the present study was to investigate the effects of microRNA-98 (miR-98) on the processes of cell proliferation, invasion, migration and apoptosis by binding to high-mobility group AT-hook 2 (HMGA2) in breast cancer. Breast cancer tissues and adjacent normal tissues were collected from 112 patients suffering from breast cancer. The target relationship between miR-98 and HMGA2 was verified by in connection with the bioinformatics website as well as a dual-luciferase reporter assay, both of which provided evidence indicating that HMGA2 was a target gene of miR-98. Human breast cancer MDA-MB-231 cells were treated with miR-98 mimics, miR-98 inhibitors, siRNA-HMGA2 or miR-98 inhibitors + siRNA-HMGA2. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry methods were performed to determine cell proliferation, cell cycle and apoptosis, respectively, while a Transwell assay was employed to detect cell migration and invasion. Breast cancer tissues exhibited decreased miR-98 expression, while increased expression levels of HMGA2 were recorded. The mRNA and protein expressions of HMGA2, cell proliferation, cells at the S phase, cell migration, invasion, expressions of matrix metalloproteinase (MMP)2 as well as MMP9 were all reduced in response to miR-98 mimics or siRNA-HMGA2, while a contradictory trend was observed in the miR-98 inhibitors group. In conclusion, the results of the study demonstrate that miR-98 inhibits cell proliferation, migration and invasion, while acting to promote apoptosis by negatively regulating HMGA2 in breast cancer.
Collapse
|
30
|
Li MY, Liu JQ, Chen DP, Li ZY, Qi B, He L, Yu Y, Yin WJ, Wang MY, Lin L. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways. Cancer Biol Ther 2018; 18:681-693. [PMID: 28799829 DOI: 10.1080/15384047.2017.1360442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant neoplasm of the head and neck which is harmful to human's health. Radiotherapy is commonly used in the treatment of NPC and it induces immediate cell cycle arrest and cell apoptosis. However, the mechanism remains unknown. Evidences suggested the activation of Ataxia telangiectasia mutated (ATM) pathway and Smad pathway are 2 of the important crucial mediators in the function of radiotherapy. In this study, we performed in vitro assays with human nasopharyngeal carcinoma CNE-2 cells and in vivo assays with nude mice to investigate the role of the ATM and Smad pathways in the treatment of nasopharyngeal carcinoma with radiotherapy. The results suggested that radiation induced activation of ATM pathway by inducing expression of p-ATM, p-CHK1, p-CHK2, p15 and inhibiting expression of p-Smad3. In addition, Caspase3 expression was increased while CDC25A was decreased, leading to cell cycle arrest and cell apoptosis. On the other hand, activation of Smad3 can inhibited the ATM pathway and attenuated the efficacy of radiation. In summary, we suggest that both ATM and Smad pathways contribute to the cell cycle arrest and cell apoptosis during nasopharyngeal carcinoma cells treated with radiation.
Collapse
Affiliation(s)
- Ming-Yi Li
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China.,b Guangzhou Institute of Oncology , Guangzhou , 510095 , Guangdong , China.,c Guangzhou Key Laboratory of Translational Medicine on Malignant Tumor Treatment , Guangzhou , 510095 , Guangdong , China
| | - Jin-Quan Liu
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China.,b Guangzhou Institute of Oncology , Guangzhou , 510095 , Guangdong , China.,c Guangzhou Key Laboratory of Translational Medicine on Malignant Tumor Treatment , Guangzhou , 510095 , Guangdong , China
| | - Dong-Ping Chen
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Zhou-Yu Li
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Bin Qi
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Lu He
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Yi Yu
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Wen-Jin Yin
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Meng-Yao Wang
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| | - Ling Lin
- a The 5th Ward of Radiotherapy Department , Affiliated Cancer Hospital & Institute of Guangzhou Medical University , Guangzhou , 510095 , Guangdong , China
| |
Collapse
|
31
|
Ding Q, Wang Y, Zuo Z, Gong Y, Krishnamurthy S, Li CW, Lai YJ, Wei W, Wang J, Manyam GC, Diao L, Zhang X, Lin F, Symmans WF, Sun L, Liu CG, Liu X, Debeb BG, Ueno NT, Harano K, Alvarez RH, Wu Y, Cristofanilli M, Huo L. Decreased expression of microRNA-26b in locally advanced and inflammatory breast cancer. Hum Pathol 2018; 77:121-129. [PMID: 29689244 DOI: 10.1016/j.humpath.2018.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/13/2018] [Indexed: 01/23/2023]
Abstract
Advanced-stage breast cancer patients comprise a smaller proportion of breast cancer patients than do early stage patients and are more likely to experience a poor outcome. Understanding the underlying molecular mechanisms and identifying new biomarkers for treatment in this subgroup of patients is paramount. With the aim of identifying microRNAs that are regulated in advanced-stage breast cancer, we found lower expression of miR-26b, a member of the miR-26 family, in inflammatory breast cancer and noninflammatory locally advanced breast cancer tissue than in normal breast tissue, by quantitative real-time polymerase chain reaction and in situ hybridization. Quantitative real-time polymerase chain reaction (but not in situ hybridization) also revealed lower miR-26b expression in inflammatory breast cancer than in noninflammatory locally advanced breast cancer. Furthermore, lower expression of miR-26b was correlated with shorter distant metastasis-free survival and overall survival in univariate analysis, and with shorter overall survival in multivariate analysis. The expression of miRNA-26b was inversely associated with EZH2 protein expression in several breast cancer cell lines, and overexpression and knockdown of miR-26b caused corresponding changes in EZH2 expression. Our study shows that miR-26b may regulate EZH2 expression in breast cancer and may be useful as a therapeutic target for inflammatory breast cancer and noninflammatory locally advanced breast cancer.
Collapse
Affiliation(s)
- Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yan Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zhuang Zuo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yun Gong
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Savitri Krishnamurthy
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yun-Ju Lai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wei Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xinna Zhang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Feng Lin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William F Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Li Sun
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bisrat G Debeb
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kenichi Harano
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ricardo H Alvarez
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
32
|
Wang Y, Bao W, Liu Y, Wang S, Xu S, Li X, Li Y, Wu S. miR-98-5p contributes to cisplatin resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeting Dicer1. Cell Death Dis 2018; 9:447. [PMID: 29670086 PMCID: PMC5906447 DOI: 10.1038/s41419-018-0390-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/14/2022]
Abstract
Epithelial ovarian cancer (EOC) is a highly lethal gynecological malignancy, and cisplatin resistance is usually correlated with the poor prognosis of EOC. Increasing evidence indicates that the dysregulation of miRNAs is related to chemotherapy sensitivity. In this study, we revealed that miR-98-5p, a member of the let-7 family, was enriched in cisplatin-resistant EOC cells compared with cisplatin-sensitive cells, and could promote cisplatin resistance in EOC cells. Further studies showed that miR-98-5p could directly target the 3′-UTR of Dicer1 and suppress its expression, causing global miRNA downregulation. By miRNA array and qRT-PCR verification, we identified miR-152 as the vital downstream target of the miR-98-5p/Dicer1 axis in EOC cells. Moreover, we demonstrated that the ectopic expression of miR-152 reversed cisplatin resistance both in vitro and in vivo by targeting RAD51, a central member in homologous recombination. Importantly, miR-98-5p expression, as determined by in situ hybridization in tumor tissues, was associated with poor outcome of EOC patients. Together, these findings suggest the essential role of the miR-98-5p/Dicer1/miR-152 pathway in regulating cisplatin resistance of EOC cells and provide a potential target for EOC therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Liu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyu Wang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengjie Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanli Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Xu X, Bao Z, Liu Y, Ji J, Liu N. MicroRNA-98 Attenuates Cell Migration and Invasion in Glioma by Directly Targeting Pre-B Cell Leukemia Homeobox 3. Cell Mol Neurobiol 2017; 37:1359-1371. [PMID: 28124208 PMCID: PMC11482209 DOI: 10.1007/s10571-017-0466-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/18/2017] [Indexed: 01/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The extraordinary invasion of human GBM into adjacent normal brain tissues contributes to treatment failure. However, the mechanisms that control this process remain poorly understood. Increasing evidence has demonstrated that microRNAs are strongly implicated in the migration and invasion of GBM. In this study, we found that microRNA-98 (miR-98) was markedly downregulated in human glioma tissues and cell lines. Functional experiments indicated that restored expression of miR-98 attenuated glioma cell invasion and migration, whereas depletion of miR-98 promoted glioma cell invasion and migration. Subsequent investigation showed that pre-B-cell leukemia homeobox 3 (PBX3), an important transcription factor that controls tumor invasion, was a direct and functional target of miR-98 in GBM cells. Consistently, an orthotopic mouse model also demonstrated the suppressive effects of miR-98 overexpression on tumor invasion and PBX3 expression. Silencing of PBX3 using small interfering RNA inhibited the migratory and invasive capacities of glioma cells, whereas reintroduction of PBX3 into glioma cells reversed the anti-invasive function of miR-98. Furthermore, depletion of PBX3 phenocopied the effects of miR-98 overexpression in vivo. Finally, quantitative real-time polymerase chain reaction results showed that miR-98 was negatively correlated with PBX3 expression in 24 glioma tissues. Thus, we propose that PBX3 modulation by miR-98 has an important role in regulating GBM invasion and may serve as therapeutic target for GBM.
Collapse
Affiliation(s)
- Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinlong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Fu Q, Song X, Liu Z, Deng X, Luo R, Ge C, Li R, Li Z, Zhao M, Chen Y, Lin X, Zhang Q, Fang W. miRomics and Proteomics Reveal a miR-296-3p/PRKCA/FAK/Ras/c-Myc Feedback Loop Modulated by HDGF/DDX5/β-catenin Complex in Lung Adenocarcinoma. Clin Cancer Res 2017; 23:6336-6350. [PMID: 28751441 DOI: 10.1158/1078-0432.ccr-16-2813] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/19/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Purpose: This study was performed to identify the detailed mechanisms by which miR-296-3p functions as a tumor suppressor to prevent lung adenocarcinoma (LADC) cell growth, metastasis, and chemoresistance.Experimental Design: The miR-296-3p expression was examined by real-time PCR and in situ hybridization. MTT, EdU incorporation, Transwell assays, and MTT cytotoxicity were respectively performed for cell proliferation, metastasis, and chemoresistance; Western blotting was performed to analyze the pathways by miR-296-3p and HDGF/DDX5 complex. The miRNA microarray and luciferase reporter assays were respectively used for the HDGF-mediated miRNAs and target genes of miR-296-3p. The ChIP, EMSA assays, and coimmunoprecipitation combined with mass spectrometry and GST pull-down were respectively designed to analyze the DNA-protein complex and HDGF/DDX5/β-catenin complex.Results: We observed that miR-296-3p not only controls cell proliferation and metastasis, but also sensitizes LADC cells to cisplatin (DDP) in vitro and in vivo Mechanistic studies demonstrated that miR-296-3p directly targets PRKCA to suppress FAK-Ras-c-Myc signaling, thus stimulating its own expression in a feedback loop that blocks cell cycle and epithelial-mesenchymal transition (EMT) signal. Furthermore, we observed that suppression of HDGF-β-catenin-c-Myc signaling activates miR-296-3p, ultimately inhibiting the PRKCA-FAK-Ras pathway. Finally, we found that DDX5 directly interacts with HDGF and induces β-catenin-c-Myc, which suppresses miR-296-3p and further activates PRKCA-FAK-Ras, cell cycle, and EMT signaling. In clinical samples, reduced miR-296-3p is an unfavorable factor that inversely correlates with HDGF/DDX5, but not PRKCA.Conclusions: Our study provides a novel mechanism that the miR-296-3p-PRKCA-FAK-Ras-c-Myc feedback loop modulated by HDGF/DDX5/β-catenin complex attenuates cell growth, metastasis, and chemoresistance in LADC. Clin Cancer Res; 23(20); 6336-50. ©2017 AACR.
Collapse
Affiliation(s)
- Qiaofen Fu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Xin Song
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Zhen Liu
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Xiaojie Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Rongcheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Chunlei Ge
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, P.R. China
| | - Mengyang Zhao
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yiyu Chen
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Qianbing Zhang
- Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
35
|
Liu L, Xu F, Chang CK, He Q, Wu LY, Zhang Z, Li X. MYCN contributes to the malignant characteristics of erythroleukemia through EZH2-mediated epigenetic repression of p21. Cell Death Dis 2017; 8:e3126. [PMID: 29022893 PMCID: PMC5682688 DOI: 10.1038/cddis.2017.526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/18/2023]
Abstract
MYC proto-oncogene family including c-myc and n-myc (MYCN) are critical for normal cell development and tumorigenesis. Overexpression of c-myc causes acute erythroleukemia in vivo. However, the role of MYCN in acute erythroleukemia remains poorly understood. In this study, we found that the patients with erythroleukemia showed higher expression of MYCN than normal controls. In vitro experiments, knockdown of MYCN resulted in decreased cell proliferation, elevated autonomously cell apoptosis and increased P21-mediated cell senescence. On the contrary, overexpression of MYCN obviously promoted cell proliferation, and induced erythroid differentiation block and apoptosis resistance to cytotoxic agent. Further gene microarray and functional analysis revealed that EZH2 is a target of MYCN. Knockdown of MYCN inhibited the expression of EZH2, and then activated p21 expression through removal of H3K27me3 at the p21 promoter. Overexpression of ezh2 could antagonize the p21 activation caused by MYCN knockdown. In addition, Aurora inhibitor MLN8237 inhibited the proliferation of erythroleukemia cells through repression of MYCN/EZH2 axis, whereas it minimally affected the normal hematopoietic cells. In conclusion, MYCN contributes to the malignant characteristics of erythroleukemia through EZH2-meidated epigenetic repression of p21. MYCN may serve as a therapy target for the patients with acute erythroleukemia.
Collapse
Affiliation(s)
- Li Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233, China
| |
Collapse
|
36
|
Wang J, Chen L, Jin S, Lin J, Zheng H, Zhang H, Fan H, He F, Ma S, Li Q. Altered expression of microRNA-98 in IL-1β-induced cartilage degradation and its role in chondrocyte apoptosis. Mol Med Rep 2017; 16:3208-3216. [PMID: 28765925 PMCID: PMC5547958 DOI: 10.3892/mmr.2017.7028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/23/2017] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial disease characterized by degeneration of the articular cartilage due to genetic and epigenetic components. The pathogenesis of OA is complex and the mechanism of chondrocyte homeostatic regulation remains to be fully elucidated. Previous studies have demonstrated that microRNAs (miRNAs/miR) contribute to cartilage dysfunction. However, the functional role of miR-98 in interleukin-1β (IL-1β)-induced chondrocyte apoptosis in OA cartilage remains to be investigated. The present study aimed to identify and characterize the expression profile of miR-98 and apoptosis-associated proteins in healthy and OA chondrocytes, and western blot analysis and TUNEL staining were used to evaluate the role of miR-98 in the regulation of chondrocyte apoptosis. The present study demonstrated that miR-98 expression was increased in OA chondrocytes in response to IL-1β stimulation, and the expression levels of apoptosis-associated proteins, including Fas cell surface death receptor, caspase-3, caspase-8 and B-cell lymphoma-2 (Bcl-2)-associated X protein, were also increased in IL-1β-stimulated chondrocytes. In addition, it was revealed that upregulation of miR-98 was accompanied by reduced expression of Bcl-2 following exposure to IL-1β. IL-1β-induced downregulation of Bcl-2 was associated with miR-98-mediated translational repression. Transfection of OA chondrocytes with a miR-98 inhibitor had an inhibitory effect on IL-1β-induced cell apoptosis, increased cell proliferation and upregulated Bcl-2 expression. It is possible that miR-98 inhibited IL-1β-induced chondrocyte apoptosis by modulating Bcl-2 expression levels. The findings of the present study indicated that the effects of miR-98 on chondrocyte apoptosis were induced by regulation of Bcl-2 expression. In addition, the present study confirmed that miR-98 targeted the 3′-untranslated region of Bcl-2. In conclusion, miRNA-coordinated regulation of apoptosis-associated protein expression has been identified in OA chondrocytes following IL-1β induction.
Collapse
Affiliation(s)
- Jing Wang
- Department of Rheumatology and Immunology, First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Lingqing Chen
- Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Song Jin
- Department of Rheumatology and Immunology, First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Jun Lin
- Department of Rheumatology and Immunology, First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Hongmei Zheng
- Department of Rheumatology and Immunology, First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Hong Zhang
- Department of Rheumatology and Immunology, First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Hongtao Fan
- Department of Rheumatology and Immunology, First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Fang He
- Department of Rheumatology and Immunology, First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Sha Ma
- Department of Rheumatology and Immunology, First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| | - Qin Li
- Department of Rheumatology and Immunology, First People's Hospital of Yunnan, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
37
|
Ding K, Wu Z, Wang N, Wang X, Wang Y, Qian P, Meng G, Tan S. MiR-26a performs converse roles in proliferation and metastasis of different gastric cancer cells via regulating of PTEN expression. Pathol Res Pract 2017; 213:467-475. [PMID: 28242043 DOI: 10.1016/j.prp.2017.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Gastric cancer is the second leading cause of cancer-related death in the world. The exact molecular pathways in gastric cancer need for further study. We herein indicated miR-26a performed converse roles on oncogenicity in different gastric cancer cells. In gastric cancer cells MKN-28, miR-26a promoted cell proliferation, migration and invasion. However, in gastric cancer cells AGS, miR-26a reduced cell proliferation and metastasis. PTEN was identified as a direct target of miR-26a. In MKN-28 cells, PTEN was suppressed by miR-26a through 3'-UTR, and PTEN mediated miR-26a promoting oncogenicity including cell proliferation and metastasis. On the other hand, in AGS cells, the expression of PTEN was enhanced by miR-26a, and PTEN mediated miR-26a reducing oncogenicity. The mechanism in AGS cells may be the indirect regulation of PTEN by miR-26a overcame the direct targeting regulation. The model like MKN-28 cells was concordant with patients with a high level of miR-26a and a low level of PTEN and patients with a low level of miR-26a and a high level of PTEN which showed lower overall survival (OS); the model like AGS cells was concordant with patients with both high level of miR-26a and PTEN and both low level of miR-26a and PTEN which showed higher OS. These findings will facilitate a better understanding of the functions and mechanisms about miR-26a, miR-26a and PTEN are potential combined biomarkers in patients with gastric cancer.
Collapse
Affiliation(s)
- Keshuo Ding
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Nana Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China; Department of Pathology, The Fourth Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Xiaonan Wang
- Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yuejun Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China; Department of Pathology, The Fourth Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Pengxu Qian
- Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Gang Meng
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Sheng Tan
- Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
38
|
Shi W, Bruce J, Lee M, Yue S, Rowe M, Pintilie M, Kogo R, Bissey PA, Fyles A, Yip KW, Liu FF. MiR-449a promotes breast cancer progression by targeting CRIP2. Oncotarget 2017; 7:18906-18. [PMID: 26934316 PMCID: PMC4951339 DOI: 10.18632/oncotarget.7753] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/14/2016] [Indexed: 12/12/2022] Open
Abstract
The identification of prognostic biomarkers and their underlying mechanisms of action remain of great interest in breast cancer biology. Using global miRNA profiling of 71 lymph node-negative invasive ductal breast cancers and 5 normal mammary epithelial tissues, we identified miR-449a to be highly overexpressed in the malignant breast tissue. Its expression was significantly associated with increased incidence of patient relapse, decreased overall survival, and decreased disease-free survival. In vitro, miR-449a promoted breast cancer cell proliferation, clonogenic survival, migration, and invasion. By utilizing a tri-modal in silico approach for target identification, Cysteine-Rich Protein 2 (CRIP2; a transcription factor) was identified as a direct target of miR-449a, corroborated using qRT-PCR, Western blot, and luciferase reporter assays. MDA-MB-231 cells stably transfected with CRIP2 demonstrated a significant reduction in cell viability, migration, and invasion, as well as decreased tumor growth and angiogenesis in mouse xenograft models. Our data revealed that overexpression of miR-449a suppresses CRIP2, which then affects the tumor vasculature, likely via NF-κB/p65 complex-mediated transcription of VEGF. These finding define an oncogenic function of miR-449a in human breast cancer, and highlight the importance of this pathway in driving aggressive behaviour.
Collapse
Affiliation(s)
- Wei Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jeff Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Matthew Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shijun Yue
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Matthew Rowe
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Melania Pintilie
- Division of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ryunosuke Kogo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Anthony Fyles
- Department of Radiation Oncology, Princess Margaret Hospital, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Kenneth W Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Radiation Oncology, Princess Margaret Hospital, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
39
|
Tang XR, Wen X, He QM, Li YQ, Ren XY, Yang XJ, Zhang J, Wang YQ, Ma J, Liu N. MicroRNA-101 inhibits invasion and angiogenesis through targeting ITGA3 and its systemic delivery inhibits lung metastasis in nasopharyngeal carcinoma. Cell Death Dis 2017; 8:e2566. [PMID: 28102841 PMCID: PMC5386386 DOI: 10.1038/cddis.2016.486] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/16/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Clinically, distant metastasis after primary treatment remains a key problem in nasopharyngeal carcinoma (NPC), and the treatment outcome of metastatic NPC remains disappointing, so there is a pressing need to identify novel therapeutic strategies. In accordance with our previous microarray data, we found that miR-101 was downregulated in NPC clinical specimens and cell lines. Ectopic expression of miR-101 significantly suppressed NPC cell migration, invasion and angiogenesis in vitro and inhibited angiogenesis and metastasis in vivo using the chicken chorioallantoic membrane model. Furthermore, ITGA3 was identified and validated as a novel target of miR-101, and the restoration of ITGA3 expression potently rescued the suppressive effects of miR-101. In addition, NPC patients with high ITGA3 expression had poorer overall survival and distant metastasis-free survival than patients with low ITGA3 expression, and ITGA3 overexpression was an independent poor prognostic factor in NPC. More importantly, we demonstrated that the systemic delivery of lentivirus-mediated miR-101 abrogated the lung metastatic colonization formation of NPC cells without obvious toxicity. Our study elucidates the molecular mechanisms of miR-101/ITGA3 pathway in regulating NPC metastasis and angiogenesis, and the systemic delivery of miR-101 provides a potent evidence for the development of a novel microRNA-targeting anticancer strategy for NPC patients.
Collapse
Affiliation(s)
- Xin-Ran Tang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Xin Wen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Qing-Mei He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Ying-Qin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Xian-Yue Ren
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Xiao-Jing Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Jian Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Ya-Qin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Jun Ma
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| | - Na Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 651 Dongfeng Road East, Guangzhou, People's Republic of China
| |
Collapse
|
40
|
Qian K, Liu G, Tang Z, Hu Y, Fang Y, Chen Z, Xu X. The long non-coding RNA NEAT1 interacted with miR-101 modulates breast cancer growth by targeting EZH2. Arch Biochem Biophys 2016; 615:1-9. [PMID: 28034643 DOI: 10.1016/j.abb.2016.12.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/16/2023]
Abstract
Nuclear enriched abundant transcript 1 (NEAT1), an important cancer-associated long non-coding RNA (lncRNA), contributes to the development and progression of several cancers. An increased expression of NEAT1 was observed in cancers including bladder cancer, lung cancer and breast cancer (BC). However, the exact effect of NEAT1 in BC progression and the underlying molecular mechanisms are still unknown up to now. Here, we investigated the detailed role of NEAT1 in human BC cell lines and clinical tumor samples in order to validate the function of this molecule. In our research, lncRNA-NEAT1 was specifically upregulated in BC cell lines and promoted BC cell growth through targeting miR-101. Knockdown of NEAT1 inhibited the proliferation and DNA synthesis of human BC cell in vitro. In addition, the regulation of EZH2 by miR-101 was required in NEAT1 induced BC cell growth. These findings indicated that NEAT1 might suppress the tumor growth via miR-101 dependent EZH2 regulation. Taken together, our data indicated that NEAT1 might be an oncogenic lncRNA that promoted proliferation of BC and could be regarded as a therapeutic target in human BC.
Collapse
Affiliation(s)
- Ke Qian
- Department of Breast and Thyroid Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Gao Liu
- Division of Hepatobiliary Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhonghua Tang
- Department of Breast and Thyroid Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yibo Hu
- Division of Hepatobiliary Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yu Fang
- Division of Hepatobiliary Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zonglin Chen
- Department of Breast and Thyroid Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xundi Xu
- Division of Hepatobiliary Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
41
|
Xu F, Liu L, Chang CK, He Q, Wu LY, Zhang Z, Shi WH, Guo J, Zhu Y, Zhao YS, Gu SC, Fei CM, Li X. Genomic loss of EZH2 leads to epigenetic modifications and overexpression of the HOX gene clusters in myelodysplastic syndrome. Oncotarget 2016; 7:8119-30. [PMID: 26812882 PMCID: PMC4884980 DOI: 10.18632/oncotarget.6992] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/01/2016] [Indexed: 12/11/2022] Open
Abstract
The role of EZH2 in cancer is complex and may vary depending on cancer type or stage. We examined the effect of altered EZH2 levels on H3K27 methylation, HOX gene expression, and malignant phenotype in myelodysplastic syndrome (MDS) cell lines and an in vivo xenograft model. We also studied links between EZH2 expression and prognosis in MDS patients. Patients with high-grade MDS exhibited lower levels of EZH2 expression than those with low-grade MDS. Low EZH2 expression was associated with high percentages of blasts, shorter survival, and increased transformation of MDS into acute myeloid leukemia (AML). MDS patients frequently had reductions in EZH2 copy number. EZH2 knockdown increased tumor growth capacity and reduced H3K27me3 levels in both MDS-derived leukemia cells and in a xenograft model. H3K27me3 levels were reduced and HOX gene cluster expression was increased in MDS patients. EZH2 knockdown also increased HOX gene cluster expression by reducing H3K27me3, and H3K27 demethylating agents increased HOX gene cluster expression in MDS-derived cell lines. These findings suggest genomic loss of EZH2 contributes to overexpression of the HOX gene clusters in MDS through epigenetic modifications.
Collapse
Affiliation(s)
- Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Liu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wen-Hui Shi
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Zhu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - You-Shan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shu-Cheng Gu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Cheng-Ming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
42
|
Alajez NM. Large-Scale Analysis of Gene Expression Data Reveals a Novel Gene Expression Signature Associated with Colorectal Cancer Distant Recurrence. PLoS One 2016; 11:e0167455. [PMID: 27935967 PMCID: PMC5147898 DOI: 10.1371/journal.pone.0167455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/14/2016] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth-ranked cause of cancer-related deaths worldwide. Despite recent advances in CRC management, distant recurrence (DR) remains the major cause of mortality in patients with preoperative chemotherapy and radiotherapy, underscoring a need to precisely identify novel gene signatures for predicting the risk of systemic relapse. Herein, we integrated two independent CRC gene expression datasets: the GSE71222 dataset, including 26 patients who developed DR and 126 patients who did not develop DR, and the GSE21510 dataset, including 23 patients who developed DR and 76 patients who did not develop DR. Our data revealed 37 common upregulated genes (fold change (FC) ≥ 1.5, P < 0.05) and three common downregulated genes (FC ≤ 1.5, P < 0.05) between DR and non-recurrent patients from the two datasets. We subsequently validated the upregulated gene panel in the Cancer Genome Atlas CRC datasets (379 patients), which identified a five-gene signature (S100A2, VIP, HOXC6, DACT1, KIF26B) associated with poor overall survival (OS, log-rank test P-value: 1.19 × 10−4) and poor disease-free survival (DFS, log-rank test P-value: 0.002). In a Cox proportional hazards multiple regression model, the five-gene signature and tumor stage retained their significance as independent prognostic factors for CRC DFS and OS. Therefore, our data identified a novel DR gene expression signature associated with worse prognosis in CRC.
Collapse
Affiliation(s)
- Nehad M. Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
- * E-mail:
| |
Collapse
|
43
|
Zou Q, Wu H, Fu F, Yi W, Pei L, Zhou M. RKIP suppresses the proliferation and metastasis of breast cancer cell lines through up-regulation of miR-185 targeting HMGA2. Arch Biochem Biophys 2016; 610:25-32. [DOI: 10.1016/j.abb.2016.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/08/2016] [Accepted: 09/17/2016] [Indexed: 01/30/2023]
|
44
|
Upregulation of miR-98 Inhibits Apoptosis in Cartilage Cells in Osteoarthritis. Genet Test Mol Biomarkers 2016; 20:645-653. [DOI: 10.1089/gtmb.2016.0011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
45
|
Erdmann K, Kaulke K, Rieger C, Salomo K, Wirth MP, Fuessel S. MiR-26a and miR-138 block the G1/S transition by targeting the cell cycle regulating network in prostate cancer cells. J Cancer Res Clin Oncol 2016; 142:2249-61. [PMID: 27562865 DOI: 10.1007/s00432-016-2222-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/20/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE The tumor-suppressive microRNAs miR-26a and miR-138 are significantly down-regulated in prostate cancer (PCa) and have been identified as direct regulators of enhancer of zeste homolog 2 (EZH2), which is a known oncogene in PCa. In the present study, the influence of miR-26a and miR-138 on EZH2 and cellular function including the impact on the cell cycle regulating network was evaluated in PCa cells. METHODS PC-3 and DU-145 PCa cells were transfected with 100 nM of miRNA mimics, siRNA against EZH2 (siR-EZH2) or control constructs for 4 h. Analyses of gene expression and cellular function were conducted 48 h after transfection. RESULTS Both miRNAs influenced the EZH2 expression and activity only marginally, whereas siR-EZH2 led to a notable decrease of the EZH2 expression and activity. Both miRNAs inhibited short- and/or long-term proliferation of PCa cells but showed no effect on viability and apoptosis. In PC-3 cells, miR-26a and miR-138 caused a significant surplus of cells in the G0/G1 phase of 6 and 12 %, respectively, thus blocking the G1/S-phase transition. Treatment with siR-EZH2 was without substantial influence on cellular function and cell cycle. Therefore, alternative target genes involved in cell cycle regulation were identified in silico. MiR-26a significantly diminished the expression of its targets CCNE1, CCNE2 and CDK6, whereas CCND1, CCND3 and CDK6 were suppressed by their regulator miR-138. CONCLUSIONS The present findings suggest an anti-proliferative role for miR-26a and miR-138 in PCa by blocking the G1/S-phase transition independent of EZH2 but via a concerted inhibition of crucial cell cycle regulators.
Collapse
Affiliation(s)
- Kati Erdmann
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Knut Kaulke
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Christiane Rieger
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Karsten Salomo
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Manfred P Wirth
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Susanne Fuessel
- Department of Urology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
46
|
RBM24 suppresses cancer progression by upregulating miR-25 to target MALAT1 in nasopharyngeal carcinoma. Cell Death Dis 2016; 7:e2352. [PMID: 27584791 PMCID: PMC5059856 DOI: 10.1038/cddis.2016.252] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022]
Abstract
Abnormal interaction between non-coding RNAs has been demonstrated to be a common molecular event in various human cancers, but its significance and underlying mechanisms have not been well documented. RNA-binding proteins (RBPs) are key regulators of RNA transcription and post-transcriptional processing. In this study, we found that RNA-binding protein 24 (RBM24) was frequently downregulated in nasopharyngeal carcinoma (NPC). The restoration of RBM24 expression suppressed NPC cellular proliferation, migration and invasion and impeded metastatic colonization in mouse models. Microarray analyses revealed that miR-25 expression was upregulated by RBM24 expression in NPC cells. Similarly, ectopic miR-25 expression suppressed NPC cellular growth and motility by targeting the pro-oncogenic lncRNA MALAT1, and the knockdown of MALAT1 expression exhibited similar effects as RBM24 restoration in NPC cells. Overall, these findings suggest a novel role of RBM24 as a tumor suppressor. Mechanistically, RBM24 acts at least in part through upregulating the expression of miR-25, which in turn targets MALAT1 for degradation.
Collapse
|
47
|
Lin X, Chen L, Yao Y, Zhao R, Cui X, Chen J, Hou K, Zhang M, Su F, Chen J, Song E. CCL18-mediated down-regulation of miR98 and miR27b promotes breast cancer metastasis. Oncotarget 2016; 6:20485-99. [PMID: 26244871 PMCID: PMC4653020 DOI: 10.18632/oncotarget.4107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/20/2015] [Indexed: 12/15/2022] Open
Abstract
Our previous work has indicated that CCL18 secreted by tumor-associated macrophages (TAMs) promotes breast cancer metastasis, which is associated with poor patient prognosis. However, it remains unclear whether microRNAs (miRNAs), which may modulate multiple cellular pathways, are involved in the regulation of CCL18 signaling and the ensuing metastasis of breast cancer. In this study, we demonstrated that CCL18 reduces miR98 and miR27b expression via the N-Ras/ERK/PI3K/NFκB/Lin28b signaling pathway, while down-regulation of these mRNAs feedbacks to increase N-Ras and Lin28b levels. This cascade of events forms a positive feedback loop that sustains the activation of CCL18 signaling. More importantly, reduction in miR98 and miR27b enhances the epithelial-mesenchymal transition (EMT) of breast cancer cells, and thus promotes breast cancer metastasis. These findings suggest that down-regulation of miR98 and miR27b promotes CCL18-mediated invasion and migration of breast cancer cells.
Collapse
Affiliation(s)
- Xiaorong Lin
- Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China.,Diagnosis and Treatment Center of Breast Diseases, Shantou Hospital, SunYat-Sen University, Shantou, Guangdong Province, People's Republic of China
| | - Lijun Chen
- Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yandang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Ruihua Zhao
- Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China.,Department of Oncology and Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Xiuying Cui
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Jun Chen
- Department of Breast Tumor, The Third Hospital of Nanchang, Nanchang City, Jiangxi Province, People's Republic of China
| | - Kailian Hou
- Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Mingxia Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Jingqi Chen
- Department of Medical Oncology, No. 2 Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
48
|
Lee KTW, Tan JK, Lam AKY, Gan SY. MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: A critical review. Crit Rev Oncol Hematol 2016; 103:1-9. [PMID: 27179594 DOI: 10.1016/j.critrevonc.2016.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 03/09/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Despite significant medical advancement, nasopharyngeal carcinoma (NPC) remains one of the most difficult cancers to detect and treat where it continues to prevail especially among the Asian population. miRNAs could act as tumour suppressor genes or oncogenes in NPC. They play important roles in the pathogenesis of NPC by regulating specific target genes which are involved in various cellular processes and pathways. In particular, studies on miRNAs related to the Epstein Barr virus (EBV)-encoded latent membrane protein one (LMP1) and EBVmiRNA- BART miRNA confirmed the link between EBV and NPC. Both miRNA and its target genes could potentially be exploited for prognostic and therapeutic strategies. They are also important in predicting the sensitivity of NPC to radiotherapy and chemotherapy. The detection of stable circulating miRNAs in plasma of NPC patients has raised the potential of miRNAs as novel diagnostic markers. To conclude, understanding the roles of miRNA in NPC will identify ways to improve the management of patients with NPC.
Collapse
Affiliation(s)
- Katherine Ting-Wei Lee
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Juan-King Tan
- School of Medicine, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| | - Sook-Yee Gan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
49
|
Prognostic significance of Livin expression in nasopharyngeal carcinoma after radiotherapy. Cancer Radiother 2016; 20:384-90. [DOI: 10.1016/j.canrad.2016.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/04/2016] [Accepted: 05/15/2016] [Indexed: 01/12/2023]
|
50
|
Wang SH, Yang Y, Wu XC, Zhang MD, Weng MZ, Zhou D, Wang JD, Quan ZW. Long non-coding RNA MINCR promotes gallbladder cancer progression through stimulating EZH2 expression. Cancer Lett 2016; 380:122-33. [PMID: 27345740 DOI: 10.1016/j.canlet.2016.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023]
Abstract
The regulation of MYC-regulated long non-coding RNAs has been reported to contribute to certain types of cancers. However, the role of MYC-induced long non-coding RNA (MINCR) in the tumorigenesis of gallbladder cancer (GBC) is still largely unknown. In this study, we discovered that MINCR was markedly upregulated in GBC tissues compared with adjacent normal tissues. High MINCR expression levels in GBC were positively associated with tumor volume and lymph node metastasis and were negatively correlated with overall survival (OS). Upregulation of MINCR and enhancer of zeste homolog 2 (EZH2) in GBC coincided with the downregulation of miR-26a-5p in GBC. Mechanistically, MINCR/miR-26a-5p/EZH2 axis was found to be involved in cell proliferation, cell invasive and apoptosis in GBC cells. Moreover, knockdown of MINCR suppressed cell proliferation, decreased S-phase cell numbers, increased cell apoptosis, and inhibited cell invasion by inhibiting the epithelial-mesenchymal transition (EMT) phenomenon in GBC cells. In vivo, tumor volumes were significantly decreased in the MINCR silencing group compared with those in the control group. These results demonstrated that MINCR could potentially be a therapeutic target as well as a prognostic marker in GBC.
Collapse
Affiliation(s)
- Shou-Hua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Yong Yang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Xiao-Cai Wu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Ming-Di Zhang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Ming-Zhe Weng
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Di Zhou
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Jian-Dong Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Zhi-Wei Quan
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.
| |
Collapse
|