1
|
Kaur A, Singh I, Kohli I, Singh Bhupal S, Patel J, Nikzad N, Sohal A, Yang J. Association of Cannabis Use with Complications Among Patients with Gastroesophageal Reflux Disease: Insights from National Inpatient Sample. Cannabis Cannabinoid Res 2025; 10:e333-e340. [PMID: 38700593 DOI: 10.1089/can.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Background/Objective: Cannabis, one of the most widely used recreational drug in the United States, has had a significant surge in usage following its legalization in 1996. In recent years, there has been research into the physiological effects of cannabis on the gastrointestinal (GI) system. Our study aims to systematically examine the association between cannabis use and complications of gastroesophageal reflux disease (GERD). Materials and Methods: We queried the 2016-2020 National Inpatient Sample database to identify patient encounters with GERD. Patients with eosinophilic esophagitis or missing demographics were excluded. We compared patient demographics, comorbidities, and complications among cannabis users and nonusers. Multivariate logistic regression analysis was used to investigate the relationship between cannabis use and complications of GERD. Results: A total of 27.2 million patient encounters were included in the analysis, out of which 507,190 were cannabis users. Majority of the cannabis users were aged between 45-64 years (46.6%), males (57.4%), White (63.84%), and belonged to the lowest income quartile (40.6%). Cannabis users demonstrated a higher prevalence of esophagitis compared to nonusers (6.11% vs. 3.23%, p<0.001). However, they exhibited a lower rates of esophageal stricture (0.6% vs. 0.8%, p<0.001) and esophageal cancer (0.2% vs. 0.24%, p<0.001). After adjusting for confounding factors, cannabis users were noted to have higher odds of esophagitis (adjusted odds ratio [aOR]: 1.34, 95% confidence interval [CI]: 1.30-1.39, p<0.001). A lower odds of esophageal stricture (aOR: 0.88, 95% CI: 0.81-0.96, p=0.02) and esophageal cancer (aOR: 0.48,95% CI: 0.42-0.57, p<0.001) were noted. Conclusion: Our cross-sectional study using the nationally available database indicates an association between cannabis use and higher odds of esophagitis, along with lower odds of esophageal stricture and cancer. While these findings suggest a potential relationship between cannabis use and esophageal complications, it is limited in establishing causality. Therefore, further long-term studies are warranted to understand the mechanism behind this association and to determine if cannabis use has an impact on esophagus.
Collapse
Affiliation(s)
- Avneet Kaur
- Department of Internal Medicine, Punjab Institute of Medicine Sciences, Jalandhar, India
| | - Ishandeep Singh
- Department of Internal Medicine, Dayanand Medical College and Hospital, India
| | - Isha Kohli
- Graduate Program in Public Health, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Sahiljot Singh Bhupal
- Department of Health Information Systems and Technology, Claremont Graduate University, Claremont, California, USA
| | - Jay Patel
- Department of Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nikki Nikzad
- Department of Hepatology, Liver Institute Northwest, Seattle, Washington, USA
| | - Aalam Sohal
- Department of Hepatology, Liver Institute Northwest, Seattle, Washington, USA
| | - Juliana Yang
- Department of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Rašić D, Zandona A, Katalinić M, Češi M, Kopjar N. Assessing the Potential Synergistic/Antagonistic Effects of Citrinin and Cannabidiol on SH-SY5Y, HepG2, HEK293 Cell Lines, and Human Lymphocytes. Toxins (Basel) 2024; 16:534. [PMID: 39728792 PMCID: PMC11679033 DOI: 10.3390/toxins16120534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
The increasing use of Cannabis sativa products for medicinal, dietary, and recreational purposes has raised concerns about mycotoxin contamination in cannabis and hemp. Mycotoxins persist in these products' post-processing, posing health risks via multiple exposure routes. This study investigated cytotoxic and genotoxic interactions between cannabidiol (CBD) and the mycotoxin citrinin (CIT) using human cell models: SH-SY5Y, HepG2, HEK293, and peripheral blood lymphocytes. IC50 values and membrane disruption were initially assessed, followed by an evaluation of genotoxicity in lymphocytes using the Comet Assay and Cytokinesis Blocked Micronucleus Cytome Assay. Obtained findings demonstrate that cell-type sensitivity varied across treatments, with combined CBD and CIT exposure exhibiting distinct interactions. Lactate dehydrogenase (LDH) release remained minimal, suggesting cytotoxicity did not stem from membrane disruption but likely involved intracellular pathways. In lymphocytes, CBD alone produced negligible cyto/genotoxic effects and weak antiproliferative responses, whereas CIT displayed clear toxic impacts. DNA damage indicates that CIT may induce genome instability through indirect mechanisms rather than direct DNA interaction, with evidence of potential aneuploidic effects from the CBMN Cyt Assay. Combined exposure led to a reduction in CIT-induced DNA and cytogenetic damage, suggesting CIT's potential interference with the beneficial properties of CBD. These results provide a foundation for further toxicological assessments and highlight the necessity of standardized mycotoxin monitoring in cannabis-derived products.
Collapse
Affiliation(s)
- Dubravka Rašić
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Antonio Zandona
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Maja Katalinić
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| | - Martin Češi
- Independent Researcher, Kauzlarićev Prilaz 9, HR-10 000 Zagreb, Croatia;
| | - Nevenka Kopjar
- Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia; (A.Z.); (M.K.); (N.K.)
| |
Collapse
|
3
|
Gurgul A, Żurowski J, Szmatoła T, Kucharski M, Sawicki S, Semik-Gurgul E, Ocłoń E. Cannabidiol (CBD) modulates the transcriptional profile of ethanol-exposed human dermal fibroblast cells. J Appl Genet 2024; 65:773-796. [PMID: 39466591 PMCID: PMC11561130 DOI: 10.1007/s13353-024-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Cannabidiol (CBD) is abundant in the Cannabis sativa plant and exhibits complex immunomodulatory, anxiolytic, antioxidant, and antiepileptic properties. Several studies suggest that CBD could be used for different purposes in alcohol use disorder (AUD) and alcohol-related injuries to the brain and the liver. In this study, we focused on analyzing transcriptional alterations in human dermal fibroblasts (HDFs) cell line challenged simultaneously with ethanol and CBD as an ethanol-protective agent. We aimed to expose the genes and pathways responsible for at least some of the CBD effects in those cells that can be related to the AUD. Transcriptome analysis was performed using HDFs cell line that expresses both cannabinoid receptors and can metabolize ethanol through alcohol dehydrogenase activity. Fibroblasts are also responsible for the progression of liver fibrosis, a common comorbidity in AUD. With the use of a cellular test, we found that CBD at the lowest applied concentration (0.75 μM) was able to stimulate depressed metabolism and reduce the level of apoptosis of cells treated with different concentrations of ethanol to the level observed in the control cells. Similar observations were made at the transcriptome level, in which cells treated with ethanol and CBD had similar expression profiles to the control cells. CBD also affects several genes connected with extracellular matrix formation (especially its collagen constituent), which can have potential implications for, e.g., fibrosis process.
Collapse
Affiliation(s)
- Artur Gurgul
- Faculty of Veterinary Medicine, Department of Basic Sciences, University of Agriculture in Kraków, Redzina 1C, 30-248, Krakow, Poland.
| | - Jakub Żurowski
- Faculty of Veterinary Medicine, Department of Basic Sciences, University of Agriculture in Kraków, Redzina 1C, 30-248, Krakow, Poland
| | - Tomasz Szmatoła
- Faculty of Veterinary Medicine, Department of Basic Sciences, University of Agriculture in Kraków, Redzina 1C, 30-248, Krakow, Poland
| | - Mirosław Kucharski
- Faculty of Animal Science, Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, Mickiewicza 24/28, 30‑059, Krakow, Poland
| | - Sebastian Sawicki
- Faculty of Animal Science, Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland
| | - Ewa Ocłoń
- Faculty of Veterinary Medicine, Laboratory of Recombinant Proteins Production, University of Agriculture in Kraków, Rędzina 1C, 30-248, Kraków, Poland
| |
Collapse
|
4
|
Campasino K, Yourick MR, Zhao Y, Sepehr E, Vaught C, Yourick JJ, Sprando RL, Gao X. Effect of cannabidiol and hemp extract on viability and function of hepatocytes derived from human induced pluripotent stem cells. Toxicol In Vitro 2024; 101:105933. [PMID: 39233107 DOI: 10.1016/j.tiv.2024.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Since the passage of the 2018 Agriculture Improvement Act (2018 Farm Bill), the number of products containing cannabis-derived compounds available to consumers have rapidly increased. Potential effects on liver function as a result from consumption of products containing cannabidiol (CBD), including hemp extracts, have been observed but the mechanisms for the effects are not fully understood. In this study, hepatocytes derived from human induced pluripotent stem cells (iPSCs) were used to evaluate potential hepatic effects of CBD and hemp extract at exposure concentrations ranging from 0.1 to 30 μM. Despite that a significant reduction in cell viability occurred only in the 30 μM group for both CBD and hemp extract, significant changes to cytochrome P450 activity, mitochondrial membrane potential, and lipid accumulation occurred within the concentration range of 0.1-3 μM for both CBD and hemp extract. Albumin and urea production, caspase 3/7 activity, and intracellular glutathione were significantly affected within the concentration range of 3-30 μM by CBD or hemp extract. These findings indicate that CBD and hemp extract can alter hepatic function and metabolism. The current study contributes data to help inform the evaluation of potential hepatotoxic effects of products containing cannabis-derived compounds.
Collapse
Affiliation(s)
- Kayla Campasino
- Division of Toxicology, Office of Applied Research and Safety Assessment, US FDA/CFSAN, Laurel, MD 20708, USA
| | - Miranda R Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, US FDA/CFSAN, Laurel, MD 20708, USA
| | - Yang Zhao
- Division of Toxicology, Office of Applied Research and Safety Assessment, US FDA/CFSAN, Laurel, MD 20708, USA
| | - Estatira Sepehr
- Division of Toxicology, Office of Applied Research and Safety Assessment, US FDA/CFSAN, Laurel, MD 20708, USA
| | - Cory Vaught
- Division of Toxicology, Office of Applied Research and Safety Assessment, US FDA/CFSAN, Laurel, MD 20708, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, US FDA/CFSAN, Laurel, MD 20708, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, US FDA/CFSAN, Laurel, MD 20708, USA
| | - Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, US FDA/CFSAN, Laurel, MD 20708, USA.
| |
Collapse
|
5
|
Cham PS, Singh A, Jamwal A, Singh R, Anand R, Manhas D, Sharma S, Singh VP, Nandi U, Singh SK, Singh PP. Discovery of Ring-Annulated Analogues of Cannabidiol as Potential Anticancer Agents: Synthesis and Biological Evaluation. ACS Med Chem Lett 2024; 15:1832-1842. [PMID: 39563806 PMCID: PMC11571011 DOI: 10.1021/acsmedchemlett.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
Cannabidiol (CBD) is a nonpsychoactive cannabinoid derived from Cannabis sativa and its potential therapeutic effects extend beyond its well-known antiepileptic properties. Exploring CBD and its analogues as anticancer agents has gained significant attention in recent years. In this study, a series of novel ring-annulated analogues of CBD with oxazinyl moiety were synthesized and evaluated for their antiproliferative effect. The analogues 4d and 4h demonstrate promising activity against breast and colorectal cancer. Furthermore, mechanistic insights revealed that the identified candidates arrest the G1 phase of the cell cycle and induce apoptosis via the mitochondrial pathway in breast cancer cell lines. Notably, CBD ring-annulated analogues 4d or 4h exhibit enhanced solubility, better metabolic stability, and lowered cytochrome P450 (CYP) inhibition liability compared to CBD. These multifaceted attributes highlight the potential of cannabinoid-based candidates for further preclinical development.
Collapse
Affiliation(s)
- Pankaj Singh Cham
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajeet Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashiya Jamwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rattandeep Singh
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Radhika Anand
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Manhas
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sucheta Sharma
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varun Pratap Singh
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashank K Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parvinder Pal Singh
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Pongking T, Thongpon P, Intuyod K, Klungsaeng S, Thanan R, Chaidee A, Charoenram N, Kongsintaweesuk S, Sakonsinsiri C, Vaeteewoottacharn K, Pinlaor S, Pinlaor P. Cannabidiol exhibits potent anti-cancer activity against gemcitabine-resistant cholangiocarcinoma via ER-stress induction in vitro and in vivo. BMC Complement Med Ther 2024; 24:325. [PMID: 39215312 PMCID: PMC11365133 DOI: 10.1186/s12906-024-04610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Failure of treatment with gemcitabine in most cholangiocarcinoma (CCA) patients is due to drug resistance. The therapeutic potential of natural plant secondary compounds with minimal toxicity, such as cannabidiol (CBD), is a promising line of investigation in gemcitabine-resistant CCA. We aim to investigate the effects of CBD on gemcitabine-resistant CCA (KKU-213BGemR) cells in vitro and in vivo. MATERIALS In vitro, cell proliferation, colony formation, apoptosis and cell cycle arrest were assessed using MTT assay, clonogenicity assay and flow cytometry. The effect of CBD on ROS production was evaluated using the DCFH-DA fluorescent probe. The mechanism exerted by CBD on ER stress-associated apoptosis was investigated by western blot analysis. A gemcitabine-resistant CCA xenograft model was also used and the expression of PCNA and CHOP were evaluated by immunohistochemical analysis. RESULTS The IC50 values of CBD for KKU-213BGemR cells ranged from 19.66 to 21.05 µM. For a non-cancerous immortalized fibroblast cell line, relevant values were 18.29 to 19.21 µM. CBD suppressed colony formation by KKU-213BGemR cells in a dose-dependent manner in the range of 10 to 30 µM. CBD at 30 µM significantly increased apoptosis at early (16.37%) (P = 0.0024) and late (1.8%) stages (P < 0.0001), for a total of 18.17% apoptosis (P = 0.0017), in part by increasing ROS production (P < 0.0001). Multiphase cell cycle arrest significantly increased at G0/G1 with CBD 10 and 20 µM (P = 0.004 and P = 0.017), and at G2/M with CBD 30 µM (P = 0.005). CBD treatment resulted in increased expression of ER stress-associated apoptosis proteins, including p-PERK, BiP, ATF4, CHOP, BAX, and cytochrome c. In xenografted mouse, CBD significantly suppressed tumors at 10 and 40 mg/kg·Bw (P = 0.0007 and P = 0.0278, respectively), which was supported by an increase in CHOP, but a decrease in PCNA expression in tumor tissues (P < 0.0001). CONCLUSION The results suggest that CBD exhibits potent anti-cancer activity against gemcitabine-resistant CCA in vitro and in vivo, in part via ER stress-mediated mechanisms. These results indicate that clinical explorative use of CBD on gemcitabine-resistant CCA patients is warranted.
Collapse
Affiliation(s)
- Thatsanapong Pongking
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Phonpilas Thongpon
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kitti Intuyod
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirinapha Klungsaeng
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apisit Chaidee
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Naruechar Charoenram
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Suppakrit Kongsintaweesuk
- Medical Sciences Program, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Porntip Pinlaor
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Chen S, Li X, Wu Q, Li Y, Puig M, Moulin F, Choudhuri S, Gingrich J, Guo L. Investigation of cannabidiol-induced cytotoxicity in human hepatic cells. Toxicology 2024; 506:153884. [PMID: 39004336 PMCID: PMC11648445 DOI: 10.1016/j.tox.2024.153884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cannabidiol (CBD) is one of the primary cannabinoids present in extracts of the plant Cannabis sativa L. A CBD-based drug, Epidiolex, has been approved by the U.S. FDA for the treatment of seizures in childhood-onset epileptic disorders. Although CBD-associated liver toxicity has been reported in clinical studies, the underlying mechanisms remain unclear. In this study, we demonstrated that CBD causes cytotoxicity in primary human hepatocytes and hepatic HepG2 cells. A 24-h CBD treatment induced cell cycle disturbances, cellular apoptosis, and endoplasmic reticulum (ER) stress in HepG2 cells. A potent ER stress inhibitor, 4-phenylbutyrate, markedly attenuated CBD-induced apoptosis and cell death. Additionally, we investigated the role of cytochrome P450 (CYP)-mediated metabolism in CBD-induced cytotoxicity using HepG2 cell lines engineered to express 14 individual CYPs. We identified CYP2C9, 2C19, 2D6, 2C18, and 3A5 as participants in CBD metabolism. Notably, cells overexpressing CYP2C9, 2C19, and 2C18 produced 7-hydroxy-CBD, while cells overexpressing CYP2C9, 2C19, 2D6, and 2C18 generated 7-carboxy-CBD. Furthermore, CBD-induced cytotoxicity was significantly attenuated in the cells expressing CYP2D6. Taken together, these data suggest that cell cycle disturbances, apoptosis, and ER stress are associated with CBD-induced cytotoxicity, and CYP2D6-mediated metabolism plays a critical role in decreasing the cytotoxicity of CBD.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA.
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, NCTR, U.S. FDA, Jefferson, AR 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA
| | - Montserrat Puig
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD 20993, USA
| | - Frederic Moulin
- Division of Hepatology and Nutrition, Office of New Drugs, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD 20993, USA
| | - Supratim Choudhuri
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD 20740, USA
| | - Jeremy Gingrich
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD 20740, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA.
| |
Collapse
|
8
|
Mishra F, Yuan Y, Yang JJ, Li B, Chan P, Liu Z. Depletion of Activated Hepatic Stellate Cells and Capillarized Liver Sinusoidal Endothelial Cells Using a Rationally Designed Protein for Nonalcoholic Steatohepatitis and Alcoholic Hepatitis Treatment. Int J Mol Sci 2024; 25:7447. [PMID: 39000553 PMCID: PMC11242029 DOI: 10.3390/ijms25137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, along with sinusoidal remodeling, alters sinusoid structure, resulting in hepatic inflammation, portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for NASH and AH. However, the success of such treatments is limited and unpredictable. We report a strategy for NASH and AH treatment involving the induction of integrin αvβ3-mediated cell apoptosis using a rationally designed protein (ProAgio). Integrin αvβ3 is highly expressed in activated hepatic stellate cells (αHSCs), the angiogenic endothelium, and capillarized liver sinusoidal endothelial cells (caLSECs). ProAgio induces the apoptosis of these disease-driving cells, therefore decreasing collagen fibril, reversing sinusoid remodeling, and reducing immune cell infiltration. The reversal of sinusoid remodeling reduces the expression of leukocyte adhesion molecules on LSECs, thus decreasing leukocyte infiltration/activation in the diseased liver. Our studies present a novel and effective approach for NASH and AH treatment.
Collapse
Affiliation(s)
- Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Bin Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhiren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
9
|
Krzyżewska A, Baranowska-Kuczko M, Galicka A, Kasacka I, Mińczuk K, Kozłowska H. Cannabidiol may prevent the development of congestive hepatopathy secondary to right ventricular hypertrophy associated with pulmonary hypertension in rats. Pharmacol Rep 2024; 76:424-434. [PMID: 38519732 PMCID: PMC11016513 DOI: 10.1007/s43440-024-00579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) can cause right ventricular (RV) failure and subsequent cardiohepatic syndrome referred to as congestive hepatopathy (CH). Passive blood stasis in the liver can affect inflammation, fibrosis, and ultimately cirrhosis. Cannabidiol (CBD) has many beneficial properties including anti-inflammatory and reduces RV systolic pressure and RV hypertrophy in monocrotaline (MCT)-induced PH in rats. Thus, it suggests that CBD may have the potential to limit CH development secondary to RV failure. The present study aimed to determine whether chronic administration of CBD can inhibit the CH secondary to RV hypertrophy associated with MCT-induced PH. METHODS The experiments involved rats with and without MCT-induced PH. CBD (10 mg/kg) or its vehicle was administered once daily for 3 weeks after MCT injection (60 mg/kg). RESULTS Monocrotaline administration increased the liver/body weight ratio. In histology examinations, we observed necrosis and vacuolar degeneration of hepatocytes as well as sinusoidal congestion. In biochemical studies, we observed increased levels of nuclear factor-κappa B (NF-κB), tumour necrosis factor-alpha (TNA-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). CBD administration to PH rats reduced the liver/body weight ratio, improved the architecture of the liver, and inhibited the formation of necrosis. Cannabidiol also decreased the level of NF-κB, TNF-α, IL-1β and IL-6. CONCLUSIONS The studies show that CBD can protect the liver from CH probably through attenuating PH, protective effects on the RV, and possibly direct anti-inflammatory effects on liver tissue through regulation of the NF-κB pathway.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, 15-222, Poland.
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, 15-222, Poland
- Department of Clinical Pharmacy, Medical University of Białystok, Białystok, 15-222, Poland
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Białystok, Białystok, 15-222, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, 15-222, Poland
| | - Krzysztof Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, 15-222, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, 15-222, Poland
| |
Collapse
|
10
|
Chen S, Kim JK. The Role of Cannabidiol in Liver Disease: A Systemic Review. Int J Mol Sci 2024; 25:2370. [PMID: 38397045 PMCID: PMC10888697 DOI: 10.3390/ijms25042370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive phytocannabinoid abundant in Cannabis sativa, has gained considerable attention for its anti-inflammatory, antioxidant, analgesic, and neuroprotective properties. It exhibits the potential to prevent or slow the progression of various diseases, ranging from malignant tumors and viral infections to neurodegenerative disorders and ischemic diseases. Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, and viral hepatitis stand as prominent causes of morbidity and mortality in chronic liver diseases globally. The literature has substantiated CBD's potential therapeutic effects across diverse liver diseases in in vivo and in vitro models. However, the precise mechanism of action remains elusive, and an absence of evidence hinders its translation into clinical practice. This comprehensive review emphasizes the wealth of data linking CBD to liver diseases. Importantly, we delve into a detailed discussion of the receptors through which CBD might exert its effects, including cannabinoid receptors, CB1 and CB2, peroxisome proliferator-activated receptors (PPARs), G protein-coupled receptor 55 (GPR55), transient receptor potential channels (TRPs), and their intricate connections with liver diseases. In conclusion, we address new questions that warrant further investigation in this evolving field.
Collapse
Affiliation(s)
- Si Chen
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Jeon-Kyung Kim
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| |
Collapse
|
11
|
Sinha S, Hassan N, Schwartz RE. Organelle stress and alterations in interorganelle crosstalk during liver fibrosis. Hepatology 2024; 79:482-501. [PMID: 36626634 DOI: 10.1097/hep.0000000000000012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
The synchronous functioning and quality control of organelles ensure cell survival and function and are essential for maintaining homeostasis. Prolonged exposure to stressors (viruses, bacteria, parasitic infections, alcohol, drugs) or genetic mutations often disrupt the functional integrity of organelles which plays a critical role in the initiation and progression of several diseases including chronic liver diseases. One of the most important pathologic consequences of chronic liver diseases is liver fibrosis, characterized by tissue scarring due to the progressive accumulation of extracellular matrix components. Left untreated, fibrosis may advance to life-threatening complications such as cirrhosis, hepatic decompensation, and HCC, which collectively accounts for ∼1 million deaths per year worldwide. Owing to the lack of treatment options that can regress or reverse cirrhosis, liver transplantation is currently the only available treatment for end-stage liver disease. However, the limited supply of usable donor organs, adverse effects of lifelong immunosuppressive regimes, and financial considerations pose major challenges and limit its application. Hence, effective therapeutic strategies are urgently needed. An improved understanding of the organelle-level regulation of fibrosis can help devise effective antifibrotic therapies focused on reducing organelle stress, limiting organelle damage, improving interorganelle crosstalk, and restoring organelle homeostasis; and could be a potential clinical option to avoid transplantation. This review provides a timely update on the recent findings and mechanisms covering organelle-specific dysfunctions in liver fibrosis, highlights how correction of organelle functions opens new treatment avenues and discusses the potential challenges to clinical application.
Collapse
Affiliation(s)
- Saloni Sinha
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|
12
|
Sharma S, Le Guillou D, Chen JY. Cellular stress in the pathogenesis of nonalcoholic steatohepatitis and liver fibrosis. Nat Rev Gastroenterol Hepatol 2023; 20:662-678. [PMID: 37679454 DOI: 10.1038/s41575-023-00832-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
The burden of chronic liver disease is rising substantially worldwide. Fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the common pathway leading to cirrhosis, and limited treatment options are available. There is increasing evidence suggesting the role of cellular stress responses contributing to fibrogenesis. This Review provides an overview of studies that analyse the role of cellular stress in different cell types involved in fibrogenesis, including hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells and macrophages.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dounia Le Guillou
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer Y Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Luo D, Zhang J, Yin H, Li S, Xu S, Li S. Cannabidiol alleviates perfluorooctane sulfonate-induced macrophage extracellular trap mediate inflammation and fibrosis in mice liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115374. [PMID: 37591127 DOI: 10.1016/j.ecoenv.2023.115374] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/04/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
As a new type of persistent organic pollutant, perfluorooctane sulphonate (PFOS) has received extensive attention worldwide. Cannabidiol (CBD) is a non-psychoactive natural cannabinoid extract that has been proved to have antioxidation, regulation of inflammation and other functions. However, the effects of PFOS on liver injury and whether CBD can alleviate PFOS-induced liver injury are still unclear. Therefore, in this study, we used CBD (10 mg/kg) and/or PFOS (5 mg/kg) to intraperitoneally inject mice for 30 days. We found that PFOS exposure led to inflammatory infiltration in the liver of mice, increased the formation of macrophage extracellular trap (MET), and promoted fibrosis. In vitro, we established a coculture system of RAW264.7, AML12 and LX-2 cells, and treated them with CBD (10 μM) and/or PFOS (200 μM). The results showed that PFOS could also induce the expression of MET, inflammation and fibrosis marker genes in vitro. Coiled-coil domain containing protein 25 (CCD25), as a MET-DNA sensor, was used to investigate its ability to regulate inflammation and fibrosis, we knocked down CCDC25 and its downstream proteins (integrin-linked kinase, ILK) by siRNA technology, and used QNZ to inhibit NF-κB pathway. The results showed that the knockdown of CCDC25 and ILK and the inhibition of NF-κB pathway could inhibit MET-induced inflammation and fibrosis marker gene expression. In summary, we found that PFOS-induced MET can promote inflammation and fibrosis through the CCDC25-ILK-NF-κB signaling axis, while the treatment of CBD showed a protective effect, and it is proved by Macromolecular docking that this protective effect is achieved by combining CBD with peptidylarginine deiminase 4 (PAD4) to alleviate the release of MET. Therefore, regulating the formation of MET and the CCDC25-ILK-NF-κB signaling axis is an innovative treatment option that can effectively reduce hepatotoxicity. Our study reveals the mechanism of PFOS-induced hepatotoxicity and provides promising insights into the protective role of CBD in this process.
Collapse
Affiliation(s)
- Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jintao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hang Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shanshan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
14
|
Chandwani B, Bradley BA, Pace A, Buse DC, Singh R, Kuruvilla D. The Exploration of Cannabis and Cannabinoid Therapies for Migraine. Curr Pain Headache Rep 2023; 27:339-350. [PMID: 37515745 DOI: 10.1007/s11916-023-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE OF REVIEW There is increasing interest in the use of cannabis and cannabinoid therapies (CCT) by the general population and among people with headache disorders, which results in a need for healthcare professionals to be well versed with the efficacy and safety data. In this manuscript, we review cannabis and cannabinoid terminology, the endocannabinoid system and its role in the central nervous system (CNS), the data on efficacy, safety, tolerability, and potential pitfalls associated with use in people with migraine and headache disorders. We also propose possible mechanisms of action in headache disorders and debunk commonly held myths about its use. RECENT FINDINGS Preliminary studies show that CCT have evidence for the management of migraine. While this evidence exists, further randomized, controlled studies are needed to better support its clinical use. CCT can be considered an integrative treatment added to mainstream medicine for people with migraine who are refractory to treatment and/or exhibit disability and/or interest in trying these therapies. Further studies are warranted to specify appropriate formulation, dosage, and indication(s). Although not included in guidelines or the AHS 2021 Consensus Statement on migraine therapies, with the legalization of CCT for medical or unrestricted use across the USA, recent systematic reviews highlighting the preliminary evidence for its use in migraine, it is vital for clinicians to be well versed in the efficacy, safety, and clinical considerations for their use. This review provides information which can help people with migraine and clinicians who care for them make mutual, well-informed decisions on the use of cannabis and cannabinoid therapies for migraine based on the existing data.
Collapse
Affiliation(s)
- Brijesh Chandwani
- Department of Diagnostic Sciences, Tufts University, 1 Kneeland St, Boston, MA, 02111, USA.
- Attending, Orofacial Pain Service, St. Barnabas Hospital, Bronx, NY, USA.
| | | | - Anna Pace
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dawn C Buse
- Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | | | | |
Collapse
|
15
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
16
|
Yan C, Li Y, Liu H, Chen D, Wu J. Antitumor mechanism of cannabidiol hidden behind cancer hallmarks. Biochim Biophys Acta Rev Cancer 2023; 1878:188905. [PMID: 37164234 DOI: 10.1016/j.bbcan.2023.188905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Cannabinoids have been utilized for recreational and therapeutic purposes for over 4,000 years. As the primary ingredient in exogenous cannabinoids, Cannabidiol (CBD) has drawn a lot of interest from researchers due to its negligible psychotropic side effects and potential tumor-suppressing properties. However, the obscure mechanisms that underlie them remain a mystery. Complex biological mechanisms are involved in the progression of cancer, and malignancies have a variety of acquired biological capabilities, including sustained proliferation, death evasion, neovascularization, tissue invasion and metastasis, immune escape, metabolic reprogramming, induction of tumor-associated inflammation, cancerous stemness and genomic instability. Nowadays, the role of CBD hidden in these hallmarks is gradually revealed. Nevertheless, flaws or inconsistencies in the recent studies addressing the anti-cancer effects of CBD still exist. The purpose of this review is to evaluate the potential mechanisms underlying the role of CBD in a range of tumor-acquired biological capabilities. We propose potential drugs that may have a synergistic effect with CBD and provide optional directions for future research.
Collapse
Affiliation(s)
- Chaobiao Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Yu Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Hanqing Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
17
|
Erukainure OL, Oyenihi OR, Amaku JF, Chukwuma CI, Nde AL, Salau VF, Matsabisa MG. Cannabis sativa L. modulates altered metabolic pathways involved in key metabolisms in human breast cancer (MCF-7) cells: A metabolomics study. Heliyon 2023; 9:e16156. [PMID: 37215911 PMCID: PMC10196869 DOI: 10.1016/j.heliyon.2023.e16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
The present study investigated the ability of Cannabis sativa leaves infusion (CSI) to modulate major metabolisms implicated in cancer cells survival, as well as to induce cell death in human breast cancer (MCF-7) cells. MCF-7 cell lines were treated with CSI for 48 h, doxorubicin served as the standard anticancer drug, while untreated MCF-7 cells served as the control. CSI caused 21.2% inhibition of cell growth at the highest dose. Liquid chromatography-mass spectroscopy (LC-MS) profiling of the control cells revealed the presence of carbohydrate, vitamins, oxidative, lipids, nucleotides, and amino acids metabolites. Treatment with CSI caused a 91% depletion of these metabolites, while concomitantly generating selenomethionine, l-cystine, deoxyadenosine triphosphate, cyclic AMP, selenocystathionine, inosine triphosphate, adenosine phosphosulfate, 5'-methylthioadenosine, uric acid, malonic semialdehyde, 2-methylguanosine, ganglioside GD2 and malonic acid. Metabolomics analysis via pathway enrichment of the metabolites revealed the activation of key metabolic pathways relevant to glucose, lipid, amino acid, vitamin, and nucleotide metabolisms. CSI caused a total inactivation of glucose, vitamin, and nucleotide metabolisms, while inactivating key lipid and amino acid metabolic pathways linked to cancer cell survival. Flow cytometry analysis revealed an induction of apoptosis and necrosis in MCF-7 cells treated with CSI. High-performance liquid chromatography (HPLC) analysis of CSI revealed the presence of cannabidiol, rutin, cinnamic acid, and ferulic. These results portray the antiproliferative potentials of CSI as an alternative therapy for the treatment and management of breast cancer as depicted by its modulation of glucose, lipid, amino acid, vitamin, and nucleotide metabolisms, while concomitantly inducing cell death in MCF-7 cells.
Collapse
Affiliation(s)
- Ochuko L. Erukainure
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Omolola R. Oyenihi
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - James F. Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| | - Chika I. Chukwuma
- Center for Quality of Health and Living, Faculty of Health Sciences, Central University of Technology, Bloemfontein 9301, South Africa
| | - Adeline Lum Nde
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Veronica F. Salau
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Motlalepula G. Matsabisa
- Department of Pharmacology, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
18
|
Gao J, Chen Y, Wang H, Li X, Li K, Xu Y, Xie X, Guo Y, Yang N, Zhang X, Ma D, Lu HS, Shen YH, Liu Y, Zhang J, Chen YE, Daugherty A, Wang DW, Zheng L. Gasdermin D Deficiency in Vascular Smooth Muscle Cells Ameliorates Abdominal Aortic Aneurysm Through Reducing Putrescine Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204038. [PMID: 36567267 PMCID: PMC9929270 DOI: 10.1002/advs.202204038] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common vascular disease associated with significant phenotypic alterations in vascular smooth muscle cells (VSMCs). Gasdermin D (GSDMD) is a pore-forming effector of pyroptosis. In this study, the role of VSMC-specific GSDMD in the phenotypic alteration of VSMCs and AAA formation is determined. Single-cell transcriptome analyses reveal Gsdmd upregulation in aortic VSMCs in angiotensin (Ang) II-induced AAA. VSMC-specific Gsdmd deletion ameliorates Ang II-induced AAA in apolipoprotein E (ApoE)-/- mice. Using untargeted metabolomic analysis, it is found that putrescine is significantly reduced in the plasma and aortic tissues of VSMC-specific GSDMD deficient mice. High putrescine levels trigger a pro-inflammatory phenotype in VSMCs and increase susceptibility to Ang II-induced AAA formation in mice. In a population-based study, a high level of putrescine in plasma is associated with the risk of AAA (p < 2.2 × 10-16 ), consistent with the animal data. Mechanistically, GSDMD enhances endoplasmic reticulum stress-C/EBP homologous protein (CHOP) signaling, which in turn promotes the expression of ornithine decarboxylase 1 (ODC1), the enzyme responsible for increased putrescine levels. Treatment with the ODC1 inhibitor, difluoromethylornithine, reduces AAA formation in Ang II-infused ApoE-/- mice. The findings suggest that putrescine is a potential biomarker and target for AAA treatment.
Collapse
Affiliation(s)
- Jianing Gao
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Yanghui Chen
- Division of CardiologyDepartment of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic DisordersTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue NO.1095, Qiaokou DistrictWuhan430000P. R. China
| | - Huiqing Wang
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Xin Li
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Ke Li
- Beijing Tiantan HospitalChina National Clinical Research Center for Neurological DiseasesAdvanced Innovation Center for Human Brain ProtectionBeijing Institute of Brain DisordersThe Capital Medical UniversityBeijing100050P. R. China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Xianwei Xie
- Department of CardiologyShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial HospitalFuzhou350001P. R. China
| | - Yansong Guo
- Department of CardiologyShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial HospitalFujian Provincial Key Laboratory of Cardiovascular DiseaseFujian Provincial Center for GeriatricsFujian Clinical Medical Research Center for Cardiovascular DiseasesFujian Heart Failure Center AllianceFuzhou350001P. R. China
| | - Nana Yang
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular DiseasesWeifang Medical UniversityWeifang261053P. R. China
| | - Xinhua Zhang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of EducationHebei Medical UniversityZhongshan East Road No. 361Shijiazhuang050017P. R. China
| | - Dong Ma
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyChina Administration of EducationHebei Medical UniversityHebei050017P. R. China
| | - Hong S. Lu
- Department of PhysiologySaha Cardiovascular Research CenterUniversity of KentuckySouth LimestoneLexingtonKY40536‐0298USA
| | - Ying H. Shen
- Division of Cardiothoracic SurgeryMichael E. DeBakey Department of SurgeryBaylor College of MedicineDepartment of Cardiovascular SurgeryTexas Heart InstituteHoustonTX77030USA
| | - Yong Liu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesInstitute for Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | - Jifeng Zhang
- Department of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMI48109USA
| | - Y. Eugene Chen
- Department of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMI48109USA
| | - Alan Daugherty
- Department of PhysiologySaha Cardiovascular Research CenterUniversity of KentuckySouth LimestoneLexingtonKY40536‐0298USA
| | - Dao Wen Wang
- Division of CardiologyDepartment of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic DisordersTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue NO.1095, Qiaokou DistrictWuhan430000P. R. China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
- Beijing Tiantan HospitalChina National Clinical Research Center for Neurological DiseasesAdvanced Innovation Center for Human Brain ProtectionBeijing Institute of Brain DisordersThe Capital Medical UniversityBeijing100050P. R. China
- Hangzhou Qianjiang Distinguished ExpertHangzhou Institute of Advanced TechnologyHangzhou310026P. R. China
| |
Collapse
|
19
|
Fu Z, Zhao PY, Yang XP, Li H, Hu SD, Xu YX, Du XH. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Front Pharmacol 2023; 14:1094020. [PMID: 36755953 PMCID: PMC9899821 DOI: 10.3389/fphar.2023.1094020] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Cannabidiol (CBD) is a terpenoid naturally found in plants. The purified compound is used in the treatment of mental disorders because of its antidepressive, anxiolytic, and antiepileptic effects. CBD can affect the regulation of several pathophysiologic processes, including autophagy, cytokine secretion, apoptosis, and innate and adaptive immune responses. However, several authors have reported contradictory findings concerning the magnitude and direction of CBD-mediated effects. For example, CBD treatment can increase, decrease, or have no significant effect on autophagy and apoptosis. These variable results can be attributed to the differences in the biological models, cell types, and CBD concentration used in these studies. This review focuses on the mechanism of regulation of autophagy and apoptosis in inflammatory response and cancer by CBD. Further, we broadly elaborated on the prospects of using CBD as an anti-inflammatory agent and in cancer therapy in the future.
Collapse
Affiliation(s)
- Ze Fu
- Medical School of Chinese PLA, Beijing, China
| | | | | | - Hao Li
- Medical School of Chinese PLA, Beijing, China
| | - Shi-Dong Hu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying-Xin Xu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Xiao-Hui Du,
| |
Collapse
|
20
|
Pavlović N, Heindryckx F. Targeting ER stress in the hepatic tumor microenvironment. FEBS J 2022; 289:7163-7176. [PMID: 34331743 DOI: 10.1111/febs.16145] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. It currently ranks as one of the most aggressive and deadly cancers worldwide, with an increasing mortality rate and limited treatment options. An important hallmark of liver pathologies, such as liver fibrosis and HCC, is the accumulation of misfolded and unfolded proteins in the lumen of the endoplasmic reticulum (ER), which induces ER stress and leads to the activation of the unfolded protein response (UPR). Upon accumulation of misfolded proteins, ER stress is sensed through three transmembrane proteins, IRE1α, PERK, and ATF6, which trigger the UPR to either alleviate ER stress or induce apoptosis. Increased expression of ER stress markers has been widely shown to correlate with fibrosis, inflammation, drug resistance, and overall HCC aggressiveness, as well as poor patient prognosis. While preclinical in vivo cancer models and in vitro approaches have shown promising results by pharmacologically targeting ER stress mediators, the major challenge of this therapeutic strategy lies in specifically and effectively targeting ER stress in HCC. Furthermore, both ER stress inducers and inhibitors have been shown to ameliorate HCC progression, adding to the complexity of targeting ER stress players as an anticancer strategy. More studies are needed to better understand the dual role and molecular background of ER stress in HCC, as well as its therapeutic potential for patients with liver cancer.
Collapse
Affiliation(s)
- Nataša Pavlović
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | |
Collapse
|
21
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
22
|
Cannabinoids and Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms23169423. [PMID: 36012687 PMCID: PMC9408890 DOI: 10.3390/ijms23169423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), alcohol-induced liver disease (ALD), and viral hepatitis are the main causes of morbidity and mortality related to chronic liver diseases (CLDs) worldwide. New therapeutic approaches to prevent or reverse these liver disorders are thus emerging. Although their etiologies differ, these CLDs all have in common a significant dysregulation of liver metabolism that is closely linked to the perturbation of the hepatic endocannabinoid system (eCBS) and inflammatory pathways. Therefore, targeting the hepatic eCBS might have promising therapeutic potential to overcome CLDs. Experimental models of CLDs and observational studies in humans suggest that cannabis and its derivatives may exert hepatoprotective effects against CLDs through diverse pathways. However, these promising therapeutic benefits are not yet fully validated, as the few completed clinical trials on phytocannabinoids, which are thought to hold the most promising therapeutic potential (cannabidiol or tetrahydrocannabivarin), remained inconclusive. Therefore, expanding research on less studied phytocannabinoids and their derivatives, with a focus on their mode of action on liver metabolism, might provide promising advances in the development of new and original therapeutics for the management of CLDs, such as NAFLD, ALD, or even hepatitis C-induced liver disorders.
Collapse
|
23
|
Comparative assessment of antimicrobial, antiradical and cytotoxic activities of cannabidiol and its propyl analogue cannabidivarin. Sci Rep 2021; 11:22494. [PMID: 34795379 PMCID: PMC8602723 DOI: 10.1038/s41598-021-01975-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Cannabidiol and cannabidivarin are phytocannabinoids produced by Cannabis indica and Cannabis sativa. Cannabidiol has been studied more extensively than its propyl analogue cannabidivarin. Therefore, we performed a battery of in vitro biological assays to compare the cytotoxic, antiradical and antibacterial activities of both cannabinoids. Potential mitochondrial metabolism alterations, DNA synthesis inhibition, and plasma membrane damage were studied by MTT assay, BrdU-ELISA and LDH assay of cancer and normal human cells exposed to cannabinoids. ABTS and DPPH assays were performed to observe the effects of the cannabinoids on free radicals. Microbial susceptibility tests were performed to study the activity of the cannabinoids in two bacterial species implicated in human infections, Escherichia coli and Staphylococcus aureus. The results showed that the cannabinoids induced medium levels of cytotoxicity in cancer and normal cells at concentrations ranging from 15.80 to 48.63 and from 31.89 to 151.70 µM, respectively, after 72 h of exposure. Cannabinoids did not exhibit a strong antioxidant capacity in scavenging ABTS or DPPH radicals. No evident differences were observed between the two cannabinoids in antimicrobial activity, except with respect to S. aureus, which showed greater susceptibility to cannabidiol than to cannabidivarin after 72 h of exposure.
Collapse
|
24
|
Han H, Zhang Y, Peng G, Li L, Yang J, Yuan Y, Xu Y, Liu ZR. Extracellular PKM2 facilitates organ-tissue fibrosis progression. iScience 2021; 24:103165. [PMID: 34693222 PMCID: PMC8517170 DOI: 10.1016/j.isci.2021.103165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/26/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023] Open
Abstract
Persistent activation of fibroblasts and resistance of myofibroblasts to turnover play important roles in organ-tissue fibrosis development and progression. The mechanism that mediates apoptosis resistance of myofibroblasts is not understood. Here, we report that myofibroblasts express and secrete PKM2. Extracellular PKM2 (EcPKM2) facilitates progression of fibrosis by protecting myofibroblasts from apoptosis. EcPKM2 upregulates arginase-1 expression in myofibroblasts and therefore facilitates proline biosynthesis and subsequent collagen production. EcPKM2 interacts with integrin αvβ3 on myofibroblasts to activate FAK-PI3K signaling axis. Activation of FAK-PI3K by EcPKM2 activates downstream NF-κB survival pathway to prevent myofibroblasts from apoptosis. On the other hand, activation of FAK- PI3K by EcPKM2 suppresses PTEN to subsequently upregulate arginase-1 in myofibroblasts. Our studies uncover an important mechanism for organ fibrosis progression. More importantly, an antibody disrupting the interaction between PKM2 and integrin αvβ3 is effective in reversing fibrosis, suggesting a possible therapeutic strategy and target for treatment of organ fibrosis.
Collapse
Affiliation(s)
- Hongwei Han
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yinwei Zhang
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Guangda Peng
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Liangwei Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yiting Xu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
25
|
Pryimak N, Zaiachuk M, Kovalchuk O, Kovalchuk I. The Potential Use of Cannabis in Tissue Fibrosis. Front Cell Dev Biol 2021; 9:715380. [PMID: 34708034 PMCID: PMC8542845 DOI: 10.3389/fcell.2021.715380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is a condition characterized by thickening or/and scarring of various tissues. Fibrosis may develop in almost all tissues and organs, and it may be one of the leading causes of morbidity and mortality. It provokes excessive scarring that excels the usual wound healing response to trauma in numerous organs. Currently, very little can be done to prevent tissue fibrosis, and it is almost impossible to reverse it. Anti-inflammatory and immunosuppressive drugs are among the few treatments that may be efficient in preventing fibrosis. Numerous publications suggest that cannabinoids and extracts of Cannabis sativa have potent anti-inflammatory and anti-fibrogenic properties. In this review, we describe the types and mechanisms of fibrosis in various tissues and discuss various strategies for prevention and dealing with tissue fibrosis. We further introduce cannabinoids and their potential for the prevention and treatment of fibrosis, and therefore for extending healthy lifespan.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
26
|
Shi R, Fu Y, Zhao D, Boczek T, Wang W, Guo F. Cell death modulation by transient receptor potential melastatin channels TRPM2 and TRPM7 and their underlying molecular mechanisms. Biochem Pharmacol 2021; 190:114664. [PMID: 34175300 DOI: 10.1016/j.bcp.2021.114664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Transient receptor potential melastatin (TRPM) channels are members of the transient receptor potential (TRP) channels, a family of evolutionarily conserved integral membrane proteins. TRPM channels are nonselective cation channels, mediating the influx of various ions including Ca2+, Na+ and Zn2+. The function of TRPM channels is vital for cell proliferation, cell development and cell death. Cell death is a key procedure during embryonic development, organism homeostasis, aging and disease. The category of cell death modalities, beyond the traditionally defined concepts of necrosis, autophagy, and apoptosis, were extended with the discovery of pyroptosis, necroptosis and ferroptosis. As upstream signaling regulators of cell death, TRPM channels have been involved inrelevant pathologies. In this review, we introduced several cell death modalities, then summarized the contribution of TRPM channels (especially TRPM2 and TRPM7) to different cell death modalities and discussed the underlying regulatory mechanisms. Our work highlighted the possibility of TRPM channels as potential therapeutic targets in cell death-related diseases.
Collapse
Affiliation(s)
- Ruixue Shi
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Fu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dongyi Zhao
- The University of Tokyo, Department of Pharmaceutical Science, 1130033, Japan
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92215, Poland.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
27
|
Vrechi TAM, Leão AHFF, Morais IBM, Abílio VC, Zuardi AW, Hallak JEC, Crippa JA, Bincoletto C, Ureshino RP, Smaili SS, Pereira GJS. Cannabidiol induces autophagy via ERK1/2 activation in neural cells. Sci Rep 2021; 11:5434. [PMID: 33686185 PMCID: PMC7940388 DOI: 10.1038/s41598-021-84879-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Autophagy is a lysosomal catabolic process essential to cell homeostasis and is related to the neuroprotection of the central nervous system. Cannabidiol (CBD) is a non-psychotropic phytocannabinoid present in Cannabis sativa. Many therapeutic actions have been linked to this compound, including autophagy activation. However, the precise underlying molecular mechanisms remain unclear, and the downstream functional significance of these actions has yet to be determined. Here, we investigated CBD-evoked effects on autophagy in human neuroblastoma SH-SY5Y and murine astrocyte cell lines. We found that CBD-induced autophagy was substantially reduced in the presence of CB1, CB2 and TRPV1 receptor antagonists, AM 251, AM 630 and capsazepine, respectively. This result strongly indicates that the activation of these receptors mediates the autophagic flux. Additionally, we demonstrated that CBD activates autophagy through ERK1/2 activation and AKT suppression. Interestingly, CBD-mediated autophagy activation is dependent on the autophagy initiator ULK1, but mTORC1 independent. Thus, it is plausible that a non-canonical pathway is involved. Our findings collectively provide evidence that CBD stimulates autophagy signal transduction via crosstalk between the ERK1/2 and AKT kinases, which represent putative regulators of cell proliferation and survival. Furthermore, our study sheds light on potential therapeutic cannabinoid targets that could be developed for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Talita A M Vrechi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Anderson H F F Leão
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Ingrid B M Morais
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Vanessa C Abílio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Antonio W Zuardi
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Jaime Eduardo C Hallak
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, USP, Ribeirão Preto, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rodrigo P Ureshino
- Department of Biological Sciences, Diadema Campus, Universidade Federal de São Paulo, Diadema, SP, Brazil
- Laboratory of Molecular and Translational Endocrinology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Soraya S Smaili
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
28
|
Dash R, Ali MC, Jahan I, Munni YA, Mitra S, Hannan MA, Timalsina B, Oktaviani DF, Choi HJ, Moon IS. Emerging potential of cannabidiol in reversing proteinopathies. Ageing Res Rev 2021; 65:101209. [PMID: 33181336 DOI: 10.1016/j.arr.2020.101209] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
The aberrant accumulation of disease-specific protein aggregates accompanying cognitive decline is a pathological hallmark of age-associated neurological disorders, also termed as proteinopathies, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. Along with oxidative stress and neuroinflammation, disruption in protein homeostasis (proteostasis), a network that constitutes protein surveillance system, plays a pivotal role in the pathobiology of these dementia disorders. Cannabidiol (CBD), a non-psychotropic phytocannabinoid of Cannabis sativa, is known for its pleiotropic neuropharmacological effects on the central nervous system, including the ability to abate oxidative stress, neuroinflammation, and protein misfolding. Over the past years, compelling evidence has documented disease-modifying role of CBD in various preclinical and clinical models of neurological disorders, suggesting the potential therapeutic implications of CBD in these disorders. Because of its putative role in the proteostasis network in particular, CBD could be a potent modulator for reversing not only age-associated neurodegeneration but also other protein misfolding disorders. However, the current understanding is insufficient to underpin this proposition. In this review, we discuss the potentiality of CBD as a pharmacological modulator of the proteostasis network, highlighting its neuroprotective and aggregates clearing roles in the neurodegenerative disorders. We anticipate that the current effort will advance our knowledge on the implication of CBD in proteostasis network, opening up a new therapeutic window for aging proteinopathies.
Collapse
|
29
|
Novosadova E, Antonov S, Arsenyeva E, Kobylanskiy A, Vanyushina Y, Malova T, Khaspekov L, Bobrov M, Bezuglov V, Tarantul V, Illarioshkin S, Grivennikov I. Neuroprotective and neurotoxic effects of endocannabinoid-like compounds, N-arachidonoyl dopamine and N-docosahexaenoyl dopamine in differentiated cultures of induced pluripotent stem cells derived from patients with Parkinson's disease. Neurotoxicology 2020; 82:108-118. [PMID: 33248189 DOI: 10.1016/j.neuro.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/29/2022]
Abstract
The prominent protective effects in diverse neuron injury paradigms exerted by cannabinoids and in particular their endogenously produced species render the endocannabinoid system a promising molecular target in the treatment of neurodegenerative diseases. However, the effects of individual endocannabinoids in human cells remain poorly investigated. Neural derivatives of human induced pluripotent stem cells (iPSC) offer unique opportunities for studying the neuroprotective compounds and development of patient-specific treatment. For the first time the cytotoxic and neuroprotective effects endocannabinoids N-arachidonoyl dopamine (N-ADA) and N-docosahexaenoyl dopamine (N-DDA) were assessed in human neural progenitors and dopamine neurons derived from iPSCs of healthy donors and patients with Parkinson's disease. While the short-term treatment with the investigated compounds in 0.1-10 μM concentration range exerted no toxicity in these cell types, the long-term exposure to 0.1-5 μM N-ADA or N-DDA reduced the survival of human neural progenitors. At the same time, both N-ADA and N-DDA protected neural progenitors and terminally differentiated neurons both from healthy donors and patients with Parkinson's disease against oxidative stress induced by hydrogen peroxide. The observed dramatic difference in the mode of action of N-acyl dopamines points on the possible existence of novel pathogenic mechanism of neurodegeneration induced by prolonged uncompensated production of these substances within neuronal tissue and should also be considered as a precaution in the future development of N-acyl dopamine-based therapeutic drugs.
Collapse
Affiliation(s)
- Ekaterina Novosadova
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Stanislav Antonov
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Elena Arsenyeva
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Andrey Kobylanskiy
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Yulia Vanyushina
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | - Tatyana Malova
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| | | | - Mikhail Bobrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia; Kulakov Recearh Center of Obstetrics, Gynecology and Perinatology of Ministry of Health of the Russian Federation 117997 Moscow, Russia.
| | - Vladimir Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia.
| | - Vyacheslav Tarantul
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia
| | | | - Igor Grivennikov
- National Research Center, Kurchatov Institute, Institute of Molecular Genetics, Moscow 123182, Russia.
| |
Collapse
|
30
|
Fuster D, García-Calvo X, Bolao F, Zuluaga P, Rocamora G, Hernández-Rubio A, Sanvisens A, Tor J, Muga R. Cannabis use is associated with monocyte activation (sCD163) in patients admitted for alcohol use disorder treatment. Drug Alcohol Depend 2020; 216:108231. [PMID: 32818911 DOI: 10.1016/j.drugalcdep.2020.108231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The effect of concomitant cocaine and cannabis use on monocyte activation and inflammation in patients with alcohol use disorder (AUD) is unknown. METHODS To analyze the impact of cocaine and cannabis use on levels of markers of monocyte activation (sCD163 and sCD14) and systemic inflammation (interleukin-6 [IL-6]) in AUD patients admitted for hospital treatment between 2013 and 2018. Clinical and laboratory parameters were obtained upon admission. IL-6, sCD163, and sCD14 were measured in frozen plasma samples. We performed logistic regression to detect associations between cocaine and cannabis use and markers of monocyte activation and inflammation in the highest quartile. RESULTS A total of 289 patients (77.5 % male) were included (median age = 50 years). The median alcohol intake upon admission was 142 g/day. The median duration of AUD was 20 years. Of the 289 patients with AUD, 76 % were active smokers, 23.1 % and 22.1 % concomitantly used cocaine and cannabis, respectively The median levels of IL-6, sCD163, and sCD14 were 4.37 pg/mL, 759 ng/mL, and 1.68 × 106 pg/mL, respectively. We did not detect associations between cocaine use and inflammation or monocyte activation. Cannabis use was associated with a higher odds of having sCD163 levels in the highest quartile (adjusted odds ratio = 2.34, 95 % confidence interval = 1.07-5.15, p = 0.03). Cannabis use was not associated with inflammation. CONCLUSION In this series of AUD patients the concomitant use of cannabis use was associated with sCD163 levels that were in the highest quartile, consistent with monocyte activation.
Collapse
Affiliation(s)
- Daniel Fuster
- Department of Internal Medicine, Addiction Unit Hospital Universitari Germans Trias i Pujol, Badalona, 08916, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Badalona, 08916, Spain.
| | - Xavier García-Calvo
- Department of Internal Medicine, Addiction Unit Hospital Universitari Germans Trias i Pujol, Badalona, 08916, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Ferran Bolao
- Department of Internal Medicine, Hospital Universitari Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08907, Spain
| | - Paola Zuluaga
- Department of Internal Medicine, Addiction Unit Hospital Universitari Germans Trias i Pujol, Badalona, 08916, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Gemma Rocamora
- Department of Internal Medicine, Addiction Unit Hospital Universitari Germans Trias i Pujol, Badalona, 08916, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Anna Hernández-Rubio
- Department of Internal Medicine, Addiction Unit Hospital Universitari Germans Trias i Pujol, Badalona, 08916, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Arantza Sanvisens
- Department of Internal Medicine, Addiction Unit Hospital Universitari Germans Trias i Pujol, Badalona, 08916, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Jordi Tor
- Department of Internal Medicine, Addiction Unit Hospital Universitari Germans Trias i Pujol, Badalona, 08916, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | - Robert Muga
- Department of Internal Medicine, Addiction Unit Hospital Universitari Germans Trias i Pujol, Badalona, 08916, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| |
Collapse
|
31
|
Zhai K, Liskova A, Kubatka P, Büsselberg D. Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci 2020; 21:E4177. [PMID: 32545311 PMCID: PMC7312732 DOI: 10.3390/ijms21114177] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is a key determinant of cell fate and is implicated in carcinogenesis. Membrane ion channels are structures through which ions enter or exit the cell, depending on the driving forces. The opening of transient receptor potential vanilloid 1 (TRPV1) ligand-gated ion channels facilitates transmembrane Ca2+ and Na+ entry, which modifies the delicate balance between apoptotic and proliferative signaling pathways. Proliferation is upregulated through two mechanisms: (1) ATP binding to the G-protein-coupled receptor P2Y2, commencing a kinase signaling cascade that activates the serine-threonine kinase Akt, and (2) the transactivation of the epidermal growth factor receptor (EGFR), leading to a series of protein signals that activate the extracellular signal-regulated kinases (ERK) 1/2. The TRPV1-apoptosis pathway involves Ca2+ influx and efflux between the cytosol, mitochondria, and endoplasmic reticulum (ER), the release of apoptosis-inducing factor (AIF) and cytochrome c from the mitochondria, caspase activation, and DNA fragmentation and condensation. While proliferative mechanisms are typically upregulated in cancerous tissues, shifting the balance to favor apoptosis could support anti-cancer therapies. TRPV1, through [Ca2+]i signaling, influences cancer cell fate; therefore, the modulation of the TRPV1-enforced proliferation-apoptosis balance is a promising avenue in developing anti-cancer therapies and overcoming cancer drug resistance. As such, this review characterizes and evaluates the role of TRPV1 in cell death and survival, in the interest of identifying mechanistic targets for drug discovery.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| |
Collapse
|
32
|
Gao H, Wen N, Xu X, Hong G, Lai X. [Endoplasmic reticulum stress enhances tumor necrosis factor- α expression in rat Kupffer cells to trigger hepatic stellate apoptosis cell through TNFR/caspase-8 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:632-639. [PMID: 32897203 DOI: 10.12122/j.issn.1673-4254.2020.05.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the role of endoplasmic reticulum (ER)-stress of Kupffer cells (KCs) and KCs-derived tumor necrosis factor-α (TNF-α) in medicating apoptosis of hepatic stellate cell (HSC). METHODS Sixty male SD rats were randomized into control group, model group, ER- stress group, depletion group and KCs block group (n=15). The 4 groups of rats were given intraperitoneal injections (twice a week for 8 weeks) of normal saline (2 mg/kg); 40% CCl4 solution (in peanut oil, 2 mg/kg); 40% CCl4 solution (2 mg/kg) and tunicamycin (1 mg/kg); and 40% CCl4 solution (2 mg/kg) and tunicamycin (1 mg/kg) followed by clodronate liposomes (50 mg/kg), respectively. After the treatments, samples of the liver tissue and serum were collected from the rats from the 4 groups to isolate KC cells, which were co-cultured with LX2 cells. In the depletion group, the rats were injected with anti-rat TNFR mAb (0.35 mg/kg) via the portal vein before isolating the KCs. Liver function examination, Eirius red staining, ELISA, immuno- histochemical staining, and RT-PCR were performed to assess the liver function, liver fibrosis, KC phenotypes, expression of the in fl ammatory factors, and the number of active HSC was detected. The isolated KCs were treated with tunicamycin before co-culture with LX2 cells, and ELISA, RT-PCR and Western blot were performed to examine KC phenotypes, in fl ammatory factors, LX2 cell apoptosis and TNFR/caspase8 pathway activity. RESULTS Compared with the rats in the control group, the rats in the model group had significantly increased ALT and AST levels, Sirius red staining-positive area, and Desmin-positive cells (activated HSCs) (P < 0.05) with significantly lowered number of CD16-positive KCs (M1), and TNF-α protein and mRNA expression (P < 0.05). Compared with those in the model group, the rats in ER-stress group showed significantly decreased ALT and AST levels, Sirius red staining positivity and Desmin-positive cells (P < 0.05) and increased number of CD16-positive KCs and TNF-α expressions (P < 0.05). In the depletion group, compared with the ER-stress group, the rats had significantly increased ALT and AST levels of, Sirius red staining positivity and Desmin-positive cells (P < 0.05) and reduced CD16- positive KCs and TNF-αexpressions (P < 0.05). In the cell co-culture experiment, the model group showed significantly reduced TUNEL-positive LX2 cells, CD16-positive cells, and expressions of TNFR1, cleaved caspase- 8 and cleaved caspase- 3 in the KCs (P < 0.05) with increased Desmin-positive LX2 cells (P < 0.05). Compared with the model group, the ER- stress group exhibited significantly increased TUNEL-positive LX2 cells, CD16-positive cells and expressions of TNFR, cleaved caspase-8 and cleaved caspase-3 in the KCs (P < 0.05) and decreased Desmin-positive LX2 cells (P < 0.05). In the depletion group, blocking TNFR resulted in significantly decreased expressions of cleaved caspase-8 and cleaved caspase-3 compared with those in ER- stress group (P < 0.05) although there was no significant changed in TNFR expression. CONCLUSIONS ER stress of KCs promotes the transformation of KCs towards M1 phenotype and increases the expression of TNF-α, which triggers the apoptosis of HSCs through the TNFR/caspase-8 pathway.
Collapse
Affiliation(s)
- Hong Gao
- Department of Hepatobiliary Surgery, Chongqing Fourth People's Hospital, Chongqing 400014, China
| | - Nan Wen
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xuesong Xu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guoqing Hong
- Department of Hepatobiliary Surgery, People's Hospital of Tongnan District, Chongqing 402660, China
| | - Xing Lai
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
33
|
Karoly HC, Mueller RL, Bidwell LC, Hutchison KE. Cannabinoids and the Microbiota-Gut-Brain Axis: Emerging Effects of Cannabidiol and Potential Applications to Alcohol Use Disorders. Alcohol Clin Exp Res 2019; 44:340-353. [PMID: 31803950 DOI: 10.1111/acer.14256] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) has emerged in recent years as a potential treatment target for alcohol use disorders (AUD). In particular, the nonpsychoactive cannabinoid cannabidiol (CBD) has shown preclinical promise in ameliorating numerous clinical symptoms of AUD. There are several proposed mechanism(s) through which cannabinoids (and CBD in particular) may confer beneficial effects in the context of AUD. First, CBD may directly impact specific brain mechanisms underlying AUD to influence alcohol consumption and the clinical features of AUD. Second, CBD may influence AUD symptoms through its actions across the digestive, immune, and central nervous systems, collectively known as the microbiota-gut-brain axis (MGBA). Notably, emerging work suggests that alcohol and cannabinoids exert opposing effects on the MGBA. Alcohol is linked to immune dysfunction (e.g., chronic systemic inflammation in the brain and periphery) as well as disturbances in gut microbial species (microbiota) and increased intestinal permeability. These MGBA disruptions have been associated with AUD symptoms such as craving and impaired cognitive control. Conversely, existing preclinical data suggest that cannabinoids may confer beneficial effects on the gastrointestinal and immune system, such as reducing intestinal permeability, regulating gut bacteria, and reducing inflammation. Thus, cannabinoids may exert AUD harm-reduction effects, at least in part, through their beneficial actions across the MGBA. This review will provide a brief introduction to the ECS and the MGBA, discuss the effects of cannabinoids (particularly CBD) and alcohol in the brain, gut, and immune system (i.e., across the MGBA), and put forth a theoretical framework to inform future research questions.
Collapse
Affiliation(s)
- Hollis C Karoly
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado
| | - Raeghan L Mueller
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - L Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, Colorado.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Kent E Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
34
|
Khomich O, Ivanov AV, Bartosch B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2019; 9:24. [PMID: 31861818 PMCID: PMC7016711 DOI: 10.3390/cells9010024] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.
Collapse
Affiliation(s)
- Olga Khomich
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
| |
Collapse
|
35
|
Challa TD, Wueest S, Lucchini FC, Dedual M, Modica S, Borsigova M, Wolfrum C, Blüher M, Konrad D. Liver ASK1 protects from non-alcoholic fatty liver disease and fibrosis. EMBO Mol Med 2019; 11:e10124. [PMID: 31595673 PMCID: PMC6783644 DOI: 10.15252/emmm.201810124] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is strongly associated with obesity and may progress to non-alcoholic steatohepatitis (NASH) and liver fibrosis. The deficit of pharmacological therapies for the latter mainly results from an incomplete understanding of involved pathological mechanisms. Herein, we identify apoptosis signal-regulating kinase 1 (ASK1) as a suppressor of NASH and fibrosis formation. High-fat diet-fed and aged chow-fed liver-specific ASK1-knockout mice develop a higher degree of hepatic steatosis, inflammation, and fibrosis compared to controls. In addition, pharmacological inhibition of ASK1 increased hepatic lipid accumulation in wild-type mice. In line, liver-specific ASK1 overexpression protected mice from the development of high-fat diet-induced hepatic steatosis and carbon tetrachloride-induced fibrosis. Mechanistically, ASK1 depletion blunts autophagy, thereby enhancing lipid droplet accumulation and liver fibrosis. In human livers of lean and obese subjects, ASK1 expression correlated negatively with liver fat content and NASH scores, but positively with markers for autophagy. Taken together, ASK1 may be a novel therapeutic target to tackle NAFLD and liver fibrosis.
Collapse
Affiliation(s)
- Tenagne D Challa
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Fabrizio C Lucchini
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Mara Dedual
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Salvatore Modica
- Institute of Food, Nutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | - Marcela Borsigova
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and HealthETH ZurichSchwerzenbachSwitzerland
| | | | - Daniel Konrad
- Division of Pediatric Endocrinology and DiabetologyUniversity Children's HospitalZurichSwitzerland
- Children's Research CenterUniversity Children's HospitalZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
36
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
37
|
De Ternay J, Naassila M, Nourredine M, Louvet A, Bailly F, Sescousse G, Maurage P, Cottencin O, Carrieri PM, Rolland B. Therapeutic Prospects of Cannabidiol for Alcohol Use Disorder and Alcohol-Related Damages on the Liver and the Brain. Front Pharmacol 2019; 10:627. [PMID: 31214036 PMCID: PMC6554654 DOI: 10.3389/fphar.2019.00627] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Cannabidiol (CBD) is a natural component of cannabis that possesses a widespread and complex immunomodulatory, antioxidant, anxiolytic, and antiepileptic properties. Much experimental data suggest that CBD could be used for various purposes in alcohol use disorder (AUD) and alcohol-related damage on the brain and the liver. Aim: To provide a rationale for using CBD to treat human subjects with AUD, based on the findings of experimental studies. Methods: Narrative review of studies pertaining to the assessment of CBD efficiency on drinking reduction, or on the improvement of any aspect of alcohol-related toxicity in AUD. Results: Experimental studies find that CBD reduces the overall level of alcohol drinking in animal models of AUD by reducing ethanol intake, motivation for ethanol, relapse, anxiety, and impulsivity. Moreover, CBD reduces alcohol-related steatosis and fibrosis in the liver by reducing lipid accumulation, stimulating autophagy, modulating inflammation, reducing oxidative stress, and by inducing death of activated hepatic stellate cells. Finally, CBD reduces alcohol-related brain damage, preventing neuronal loss by its antioxidant and immunomodulatory properties. Conclusions: CBD could directly reduce alcohol drinking in subjects with AUD. Any other applications warrant human trials in this population. By reducing alcohol-related steatosis processes in the liver, and alcohol-related brain damage, CBD could improve both hepatic and neurocognitive outcomes in subjects with AUD, regardless of the individual's drinking trajectory. This might pave the way for testing new harm reduction approaches in AUD, in order to protect the organs of subjects with an ongoing AUD.
Collapse
Affiliation(s)
- Julia De Ternay
- Service Universitaire d’Addictologie de Lyon (SUAL), Bron, France
| | - Mickaël Naassila
- Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, INSERM UMR 1247, Groupe de Recherche sur l’Alcool & les Pharmacodépendances, Amiens, France
| | | | - Alexandre Louvet
- Service des maladies de l’appareil digestif, CHU Lille, Universitéde Lille and INSERM U995, Lille, France
| | - François Bailly
- Service d’Addictologie et d’Hépatologie, GHN, HCL, Lyon, France
| | - Guillaume Sescousse
- Université de Lyon, UCBL, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, PSYR2, Bron, France
| | - Pierre Maurage
- Laboratory for Experimental Psychopathology (LEP), Psychological Science Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Cottencin
- CHU de Lille, Université Lille, service d’addictologie, CNRS, UMR 9193, SCALab, équipe psyCHIC, Lille, France
| | - Patrizia Maria Carrieri
- INSERM, UMR_S 912, Sciences Economiques & Sociales de la Santé et Traitement de l’Information Médicale (SESSTIM), Marseille, France
| | - Benjamin Rolland
- Service Universitaire d’Addictologie de Lyon (SUAL), Bron, France
- Université de Lyon, UCBL, Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR5292, PSYR2, Bron, France
| |
Collapse
|
38
|
Cannabidiol Enhances the Therapeutic Effects of TRAIL by Upregulating DR5 in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11050642. [PMID: 31075907 PMCID: PMC6562873 DOI: 10.3390/cancers11050642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022] Open
Abstract
Cannabidiol, a major non-psychotomimetic compound derived from Cannabis sativa, is a potential therapeutic agent for a variety of diseases such as inflammatory diseases, chronic neurodegenerative diseases, and cancers. Here, we found that the combination of cannabidiol and TNF-related apoptosis-inducing ligand (TRAIL) produces synergistic antitumor effects in vitro. However, this synergistic effect was not observed in normal colonic cells. The levels of ER stress-related proteins, including C/EBP homologous protein (CHOP) and phosphorylated protein kinase RNA-like ER kinase (PERK) were increased in treatment of cannabidiol. Cannabidiol enhanced significantly DR5 expression by ER stress. Knockdown of DR5 decreased the combined effect of cannabidiol and TRAIL. Additionally, the combination of TRAIL and cannabidiol decreased tumor growth in xenograft models. Our studies demonstrate that cannabidiol enhances TRAIL-induced apoptosis by upregulating DR5 and suggests that cannabidiol is a novel agent for increasing sensitivity to TRAIL.
Collapse
|
39
|
De Miguel C, Sedaka R, Kasztan M, Lever JM, Sonnenberger M, Abad A, Jin C, Carmines PK, Pollock DM, Pollock JS. Tauroursodeoxycholic acid (TUDCA) abolishes chronic high salt-induced renal injury and inflammation. Acta Physiol (Oxf) 2019; 226:e13227. [PMID: 30501003 DOI: 10.1111/apha.13227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/23/2018] [Accepted: 11/22/2018] [Indexed: 12/23/2022]
Abstract
AIM Chronic high salt intake exaggerates renal injury and inflammation, especially with the loss of functional ETB receptors. Tauroursodeoxycholic acid (TUDCA) is a chemical chaperone and bile salt that is approved for the treatment of hepatic diseases. Our aim was to determine whether TUDCA is reno-protective in a model of ETB receptor deficiency with chronic high salt-induced renal injury and inflammation. METHODS ETB -deficient and transgenic control rats were placed on normal (0.8% NaCl) or high salt (8% NaCl) diet for 3 weeks, receiving TUDCA (400 mg/kg/d; ip) or vehicle. Histological and biochemical markers of kidney injury, renal cell death and renal inflammation were assessed. RESULTS In ETB -deficient rats, high salt diet significantly increased glomerular and proximal tubular histological injury, proteinuria, albuminuria, excretion of tubular injury markers KIM-1 and NGAL, renal cortical cell death and renal CD4+ T cell numbers. TUDCA treatment increased proximal tubule megalin expression as well as prevented high salt diet-induced glomerular and tubular damage in ETB -deficient rats, as indicated by reduced kidney injury markers, decreased glomerular permeability and proximal tubule brush border restoration, as well as reduced renal inflammation. However, TUDCA had no significant effect on blood pressure. CONCLUSIONS TUDCA protects against the development of glomerular and proximal tubular damage, decreases renal cell death and inflammation in the renal cortex in rats with ETB receptor dysfunction on a chronic high salt diet. These results highlight the potential use of TUDCA as a preventive tool against chronic high salt induced renal damage.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Randee Sedaka
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Malgorzata Kasztan
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Jeremie M. Lever
- Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Michelle Sonnenberger
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Andrew Abad
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Chunhua Jin
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Pamela K. Carmines
- Department of Cellular and Integrative Physiology University of Nebraska Medical Center Omaha Nebraska
| | - David M. Pollock
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| | - Jennifer S. Pollock
- Section of Cardio‐Renal Physiology and Medicine, Division of Nephrology, Department of Medicine University of Alabama at Birmingham Birmingham Alabama
| |
Collapse
|
40
|
Tomas-Roig J, Havemann-Reinecke U. Gene expression signature in brain regions exposed to long-term psychosocial stress following acute challenge with cannabinoid drugs. Psychoneuroendocrinology 2019; 102:1-8. [PMID: 30476795 DOI: 10.1016/j.psyneuen.2018.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Repeated exposure to life stressors can overwhelm the body's capacity to restore homeostasis and result in severe negative consequences. Cannabinoid CB1 receptors are highly expressed in the Central Nervous System (CNS) and regulate both glucocorticoid signalling and neurotransmitter release. In rodents, WIN55212.2 is a full agonist at the cannabinoid receptor type-1, while Rimonabant is a potent and selective cannabinoid inverse agonist at this receptor. This study aims to investigate the effect of long-term psychosocial stress following acute challenge with cannabinoid drugs on gene expression in distinct brain regions; this is done by employing digital multiplexed gene expression analysis. We found that repeated stress increased cortical mRNA levels of dopamine receptor D2, while the expression of neuregulin-1 decreased in both the prefrontal cortex and cerebellum. Further, we found that the acute injection of the agonist WIN55212.2 reduced striatal levels of dopamine receptor D2, while the use of inverse agonist Rimonabant acted in the opposite direction. The analysis of the interaction between the drugs and repeated stress revealed that defeat mice treated with WIN55212.2 showed lower expression of a set of myelin-related genes, as did the expression of SRY-box 10 and dopamine receptors-D1 and -D2 in the prefrontal cortex when compared to vehicle. In addition, in the hippocampus of stressed mice treated with WIN55212.2, we found an elevated expression of oligodendrocyte transcription factor-1, -2 and zinc finger protein 488 when compared to vehicle. In comparison to vehicle, an increase in 2',3'-Cyclic nucleotide 3'-phosphodiesterase and oligodendrocyte transcription factor-1 occurred in the cerebellum of stressed animals treated with the agonist. Moreover, treatment with Rimonabant under the influence of stress induced an overexpression of a set of myelin-related genes in the prefrontal cortex when compared to WIN-treated animals. In conclusion, repeated stress interfered with the dopaminergic system in the prefrontal cortex. We demonstrated that the expression of dopamine receptor D2 in the striatum was mediated by the CB1 receptor. Stressed mice exposed to either WIN55212.2 or Rimonabant displayed pronounced deficits in CNS myelination. In addition, the pharmacological blockage of CB1 receptor in stressed mice deregulated the expression of dopamine receptors and might lead to dysfunctions in dopamine metabolism.
Collapse
Affiliation(s)
- J Tomas-Roig
- Dept. of Psychiatry and Psychotherapy, University of Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany; Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEMTG), Dr. Josep Trueta University Hospital and Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Spain.
| | - U Havemann-Reinecke
- Dept. of Psychiatry and Psychotherapy, University of Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
41
|
Unfolded protein response is an early, non-critical event during hepatic stellate cell activation. Cell Death Dis 2019; 10:98. [PMID: 30718473 PMCID: PMC6362073 DOI: 10.1038/s41419-019-1327-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
Hepatic stellate cells activate upon liver injury and help at restoring damaged tissue by producing extracellular matrix proteins. A drastic increase in matrix proteins results in liver fibrosis and we hypothesize that this sudden increase leads to accumulation of proteins in the endoplasmic reticulum and its compensatory mechanism, the unfolded protein response. We indeed observe a very early, but transient induction of unfolded protein response genes during activation of primary mouse hepatic stellate cells in vitro and in vivo, prior to induction of classical stellate cell activation genes. This unfolded protein response does not seem sufficient to drive stellate cell activation on its own, as chemical induction of endoplasmic reticulum stress with tunicamycin in 3D cultured, quiescent stellate cells is not able to induce stellate cell activation. Inhibition of Jnk is important for the transduction of the unfolded protein response. Stellate cells isolated from Jnk knockout mice do not activate as much as their wild-type counterparts and do not have an induced expression of unfolded protein response genes. A timely termination of the unfolded protein response is essential to prevent endoplasmic reticulum stress-related apoptosis. A pathway known to be involved in this termination is the non-sense-mediated decay pathway. Non-sense-mediated decay inhibitors influence the unfolded protein response at early time points during stellate cell activation. Our data suggest that UPR in HSCs is differentially regulated between acute and chronic stages of the activation process. In conclusion, our data demonstrates that the unfolded protein response is a JNK1-dependent early event during hepatic stellate cell activation, which is counteracted by non-sense-mediated decay and is not sufficient to drive the stellate cell activation process. Therapeutic strategies based on UPR or NMD modulation might interfere with fibrosis, but will remain challenging because of the feedback mechanisms between the stress pathways.
Collapse
|
42
|
Farooqui MT, Khan MA, Cholankeril G, Khan Z, Mohammed Abdul MK, Li AA, Shah N, Wu L, Haq K, Solanki S, Kim D, Ahmed A. Marijuana is not associated with progression of hepatic fibrosis in liver disease: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2019; 31:149-156. [PMID: 30234644 PMCID: PMC6467701 DOI: 10.1097/meg.0000000000001263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND An estimated 22 million adults use marijuana in the USA. The role of marijuana in the progression of hepatic fibrosis remains unclear. AIMS We carried out a systematic review and meta-analysis to evaluate the impact of marijuana on prevalence and progression of hepatic fibrosis in chronic liver disease. PATIENTS AND METHODS We searched several databases from inception through 10 November 2017 to identify studies evaluating the role of marijuana in chronic liver disease. Our main outcome of interest was prevalence/progression of hepatic fibrosis. Adjusted odds ratios (ORs) and hazards ratios (HRs) were pooled and analyzed using random-effects model. RESULTS Nine studies with 5 976 026 patients were included in this meta-analysis. Prevalence of hepatic fibrosis was evaluated in nonalcoholic fatty liver disease (NAFLD), hepatitis C virus (HCV), and hepatitis C and HIV coinfection by two, four, and one studies. Progression of hepatic fibrosis was evaluated by two studies. Pooled OR for prevalence of fibrosis was 0.91 (0.72-1.15), I=75%. On subgroup analysis, pooled OR among NAFLD patients was 0.80 (0.75-0.86), I=0% and pooled OR among HCV patients was 1.96 (0.78-4.92), I=77%. Among studies evaluating HR, pooled HR for progression of fibrosis in HCV-HIV co-infected patients was 1.03 (0.96-1.11), I=0%. CONCLUSION Marijuana use did not increase the prevalence or progression of hepatic fibrosis in HCV and HCV-HIV-coinfected patients. On the contrary, we noted a reduction in the prevalence of NAFLD in marijuana users. Future studies are needed to further understand the therapeutic impact of cannabidiol-based formulations in the management of NAFLD.
Collapse
Affiliation(s)
| | - Muhammad A. Khan
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - George Cholankeril
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Zubair Khan
- Department of Internal Medicine, University of Toledo, Toledo, Ohio, USA
| | - Mubeen K. Mohammed Abdul
- Division of Gastroenterology and Hepatology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Andrew A. Li
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Neha Shah
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Lin Wu
- Health Sciences Library, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Khwaja Haq
- Department of Internal Medicine, University of Toledo, Toledo, Ohio, USA
| | - Shantanu Solanki
- Department of Internal Medicine, University of Toledo, Toledo, Ohio, USA
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
43
|
Loeuillard E, El Mourabit H, Lei L, Lemoinne S, Housset C, Cadoret A. Endoplasmic reticulum stress induces inverse regulations of major functions in portal myofibroblasts during liver fibrosis progression. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3688-3696. [DOI: 10.1016/j.bbadis.2018.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
|
44
|
Abstract
The recent legalization of recreational marijuana use in some parts of the world, the discovery of new indications for the clinical application of cannabis, and the acceptance of the use of cannabis in practice has been paralleled by extensive research on the active components of cannabis and the endocannabinoid system within the human body. In this review, we evaluate the available evidence on cannabis and its constituents and the application of this evidence in clinical practice, focusing particularly on the liver and liver diseases. Constituents of cannabis, such as cannabidiol and Δ-tetrahydrocannabinol, have shown anti-inflammatory, antioxidant, and hepatoprotective effects both in in vitro and clinical studies, and appear to have potential in the symptom management and treatment of various liver diseases that were previously considered difficult to manage conservatively. In addition, the manipulation of the inherent endocannabinoid response system has found favor in many clinical fields and has generated considerable research and clinical interest. Moreover, evidence with regard to the adverse effects of marijuana use in liver diseases is weak, which has led to raise a question on the prior rules, with regard to a denial of liver transplantation to marijuana users. All in all, the recent trends in research, clinical experiences, as well as the legislature, has opened up new avenues towards the widespread clinical application of cannabis and its derivatives as well as modifiers of the components of the endocannabinoid system. More research is required to fully exploit these new evidences.
Collapse
|
45
|
Up-regulation of heme oxygenase-1 expression and inhibition of disease-associated features by cannabidiol in vascular smooth muscle cells. Oncotarget 2018; 9:34595-34616. [PMID: 30349652 PMCID: PMC6195385 DOI: 10.18632/oncotarget.26191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Aberrant proliferation and migration of vascular smooth muscle cells (VSMC) have been closely linked to the development and progression of cardiovascular and cancer diseases. The cytoprotective enzyme heme oxygenase-1 (HO-1) has been shown to mediate anti-proliferative and anti-migratory effects in VSMC. This study investigates the effect of cannabidiol (CBD), a non-psychoactive cannabinoid, on HO-1 expression and disease-associated functions of human umbilical artery smooth muscle cells (HUASMC). HO-1 protein and mRNA were significantly increased by CBD in a time- and concentration-dependent manner. Although the expression of several cannabinoid-activated receptors (CB1, CB2, G protein-coupled receptor 55, transient receptor potential vanilloid 1) was verified in HUASMC, CBD was shown to induce HO-1 via none of these targets. Instead, the CBD-mediated increase in HO-1 protein was reversed by the glutathione precursor N-acetylcysteine, indicating the participation of reactive oxygen species (ROS) signaling; this was confirmed by flow cytometry-based ROS detection. CBD-induced HO-1 expression was accompanied by inhibition of growth factor-mediated proliferation and migration of HUASMC. However, neither inhibition of HO-1 activity nor knockdown of HO-1 protein attenuated CBD-mediated anti-proliferative and anti-migratory effects. Indeed, inhibition or depletion of HO-1 resulted in induction of apoptosis and intensified CBD-mediated effects on proliferation and migration. Collectively, this work provides the first indication of CBD-mediated enhancement of HO-1 in VSMC and potential protective effects against aberrant VSMC proliferation and migration. On the other hand, our data argue against a role of HO-1 in CBD-mediated inhibition of proliferation and migration while substantiating its anti-apoptotic role in oxidative stress-mediated cell fate.
Collapse
|
46
|
The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol 2018; 157:122-133. [PMID: 30138623 DOI: 10.1016/j.bcp.2018.08.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
The skin is the largest organ of the body and has a complex and very active structure that contributes to homeostasis and provides the first line defense against injury and infection. In the past few years it has become evident that the endocannabinoid system (ECS) plays a relevant role in healthy and diseased skin. Specifically, we review how the dysregulation of ECS has been associated to dermatological disorders such as atopic dermatitis, psoriasis, scleroderma and skin cancer. Therefore, the druggability of the ECS could open new research avenues for the treatment of the pathologies mentioned. Numerous studies have reported that phytocannabinoids and their biological analogues modulate a complex network pharmacology involved in the modulation of ECS, focusing on classical cannabinoid receptors, transient receptor potential channels (TRPs), and peroxisome proliferator-activated receptors (PPARs). The combined targeting of several end-points seems critical to provide better chances of therapeutically success, in sharp contrast to the one-disease-one-target dogma that permeates current drug discovery campaigns.
Collapse
|
47
|
Huang Y, Leng TD, Inoue K, Yang T, Liu M, Horgen FD, Fleig A, Li J, Xiong ZG. TRPM7 channels play a role in high glucose-induced endoplasmic reticulum stress and neuronal cell apoptosis. J Biol Chem 2018; 293:14393-14406. [PMID: 30076216 DOI: 10.1074/jbc.ra117.001032] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
High-glucose (HG) levels and hyperglycemia associated with diabetes are known to cause neuronal damage. The detailed molecular mechanisms, however, remain to be elucidated. Here, we investigated the role of transient receptor potential melastatin 7 (TRPM7) channels in HG-mediated endoplasmic reticulum stress (ERS) and injury of NS20Y neuronal cells. The cells were incubated in the absence or presence of HG for 48 h. We found that mRNA and protein levels of TRPM7 and of ERS-associated proteins, such as C/EBP homologous protein (CHOP), 78-kDa glucose-regulated protein (GRP78), and inducible nitric-oxide synthase (iNOS), increased in HG-treated cells, along with significantly increased TRPM7-associated currents in these cells. Similar results were obtained in cerebral cortical tissue from an insulin-deficiency model of diabetic mice. Moreover, HG treatment of cells activated ERS-associated proapoptotic caspase activity and induced cellular injury. Interestingly, a NOS inhibitor, l-NAME, suppressed the HG-induced increase of TRPM7 expression and cellular injury. siRNA-mediated TRPM7 knockdown or chemical inhibition of TRPM7 activity also suppressed HG-induced ERS and decreased cleaved caspase-12/caspase-3 levels and cell injury. Of note, TRPM7 overexpression increased ERS and cell injury independently of its kinase activity. Taken together, our findings suggest that TRPM7 channel activities play a key role in HG-associated ERS and cytotoxicity through an apoptosis-inducing signaling cascade involving HG, iNOS, TRPM7, ERS proteins, and caspases.
Collapse
Affiliation(s)
- Yan Huang
- From the School of Pharmacy, Anhui Medical University, Hefei 230032, China.,the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - Tian-Dong Leng
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310,
| | - Koichi Inoue
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310.,the Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Tao Yang
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - Mingli Liu
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - F David Horgen
- the Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, and
| | - Andrea Fleig
- the Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center and University of Hawaii John A. Burns School of Medicine and Cancer Center, Honolulu, Hawaii 96813
| | - Jun Li
- From the School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhi-Gang Xiong
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310,
| |
Collapse
|
48
|
Senoo T, Sasaki R, Akazawa Y, Ichikawa T, Miuma S, Miyaaki H, Taura N, Nakao K. Geranylgeranylacetone attenuates fibrogenic activity and induces apoptosis in cultured human hepatic stellate cells and reduces liver fibrosis in carbon tetrachloride-treated mice. BMC Gastroenterol 2018; 18:34. [PMID: 29486718 PMCID: PMC5830074 DOI: 10.1186/s12876-018-0761-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 02/22/2018] [Indexed: 12/12/2022] Open
Abstract
Background Geranylgeranylacetone (GGA), an anti-ulcer drug widely used in Japan, has attracted interest because of its various therapeutic effects. Therefore, we investigated the effects of GGA on human hepatic stellate cells (HSCs) in vitro and in a mouse model of liver fibrosis. Methods LX2, an immortalized human HSC line, was cultured and treated with GGA at concentrations up to 0.5 mM. After GGA treatment, changes in cellular morphology, apoptosis, and fibrosis-related gene expression were assessed. Male C57BL/6 J mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis was treated with GGA. Liver fibrosis was evaluated using Sirius red staining and immunohistochemistry for α-smooth muscle actin (SMA). Results GGA decreased the density of LX2 and primary human hepatic stellate cells but not that of HepG2 cells (a human hepatoma cell line), which was employed as control. In addition, GGA decreased the expression of fibrogenic genes and increased that of C/EBP homologous protein (CHOP). It also induced endoplasmic reticulum (ER) stress and increased apoptosis. CHOP knockdown, however, failed to suppress the GGA-induced decrease in LX2 cell density, suggesting the involvement of additional molecules in ER stress–associated apoptosis. Expression of death receptor 5, mitogen-activated protein kinase, heat shock protein 70, and Akt, all of which affect the activity of stellate cells, was unchanged in relation to LX2 cell fibrogenic activity. In the mouse model of liver fibrosis, GGA decreased the extent of Sirius red staining and SMA expression. Conclusions GGA attenuated fibrogenic activity and induced apoptosis in cultured human HSCs, and suppressed liver fibrosis in mice, suggesting its potential as an agent for treating liver fibrosis. Electronic supplementary material The online version of this article (10.1186/s12876-018-0761-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takemasa Senoo
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan. .,Department of Gastroenterology and Hepatology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Ryu Sasaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.,Department of Clinical Oncology Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Yuko Akazawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tatsuki Ichikawa
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.,Department of Gastroenterology, Nagasaki Harbor Medical Center, 6-39 Shinchi, Nagasaki, 850-8555, Japan
| | - Satoshi Miuma
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Naota Taura
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
49
|
Fonseca BM, Correia-da-Silva G, Teixeira NA. Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis. J Physiol Biochem 2018; 74:261-272. [PMID: 29441458 DOI: 10.1007/s13105-018-0611-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
Among a variety of phytocannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most promising therapeutic compounds. Besides the well-known palliative effects in cancer patients, cannabinoids have been shown to inhibit in vitro growth of tumor cells. Likewise, the major endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), induce tumor cell death. The purpose of the present study was to characterize cannabinoid elements and evaluate the effect of cannabinoids in endometrial cancer cell viability. The presence of cannabinoid receptors, transient receptor potential vanilloid 1 (TRPV1), and endocannabinoid-metabolizing enzymes were determined by qRT-PCR and Western blot. We also examined the effects and the underlying mechanisms induced by eCBs and phytocannabinoids in endometrial cancer cell viability. Besides TRPV1, both EC cell lines express all the constituents of the endocannabinoid system. We observed that at concentrations higher than 5 μM, eCBs and CBD induced a significant reduction in cell viability in both Ishikawa and Hec50co cells, whereas THC did not cause any effect. In Ishikawa cells, contrary to Hec50co, treatment with AEA and CBD resulted in an increase in the levels of activated caspase -3/-7, in cleaved PARP, and in reactive oxygen species generation, confirming that the reduction in cell viability observed in the MTT assay was caused by the activation of the apoptotic pathway. Finally, these effects were dependent on TRPV1 activation and intracellular calcium levels. These data indicate that cannabinoids modulate endometrial cancer cell death. Selective targeting of TPRV1 by AEA, CBD, or other stable analogues may be an attractive research area for the treatment of estrogen-dependent endometrial carcinoma. Our data further support the evaluation of CBD and CBD-rich extracts for the potential treatment of endometrial cancer, particularly, that has become non-responsive to common therapies.
Collapse
Affiliation(s)
- B M Fonseca
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal.
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| | - N A Teixeira
- UCIBIO, REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313, Porto, Portugal
| |
Collapse
|
50
|
Han K, Hassanzadeh S, Singh K, Menazza S, Nguyen TT, Stevens MV, Nguyen A, San H, Anderson SA, Lin Y, Zou J, Murphy E, Sack MN. Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress. Sci Rep 2017; 7:2093. [PMID: 28522833 PMCID: PMC5437023 DOI: 10.1038/s41598-017-02339-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
Abstract
The regulatory control of cardiac endoplasmic reticulum (ER) stress is incompletely characterized. As ER stress signaling upregulates the E3-ubiquitin ligase Parkin, we investigated the role of Parkin in cardiac ER stress. Parkin knockout mice exposed to aortic constriction-induced cardiac pressure-overload or in response to systemic tunicamycin (TM) developed adverse ventricular remodeling with excessive levels of the ER regulatory C/EBP homologous protein CHOP. CHOP was identified as a Parkin substrate and its turnover was Parkin-dose and proteasome-dependent. Parkin depletion in cardiac HL-1 cells increased CHOP levels and enhanced susceptibility to TM-induced cell death. Parkin reconstitution rescued this phenotype and the contribution of excess CHOP to this ER stress injury was confirmed by reduction in TM-induced cell death when CHOP was depleted in Parkin knockdown cardiomyocytes. Isogenic Parkin mutant iPSC-derived cardiomyocytes showed exaggerated ER stress induced CHOP and apoptotic signatures and myocardium from subjects with dilated cardiomyopathy showed excessive Parkin and CHOP induction. This study identifies that Parkin functions to blunt excessive CHOP to prevent maladaptive ER stress-induced cell death and adverse cardiac ventricular remodeling. Additionally, Parkin is identified as a novel post-translational regulatory moderator of CHOP stability and uncovers an additional stress-modifying function of this E3-ubiquitin ligase.
Collapse
Affiliation(s)
- Kim Han
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shahin Hassanzadeh
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Komudi Singh
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara Menazza
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiffany T Nguyen
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark V Stevens
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - An Nguyen
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hong San
- Animal Surgery Program, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stasia A Anderson
- MRI Imaging Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yongshun Lin
- Ipsc Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jizhong Zou
- Ipsc Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael N Sack
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|