1
|
Gupta PO, Patil PS, Sekar N. Toxicity of anthraquinone derivatives in relation to non-linear optical properties and electron correlation. J Biomol Struct Dyn 2024:1-12. [PMID: 39681386 DOI: 10.1080/07391102.2024.2439582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/03/2024] [Indexed: 12/18/2024]
Abstract
1,4-Dialkylamino -5,8-dihydroxy anthraquinones are investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT) for their growth inhibitory potential. The frontier molecular orbital shows that the electron density is located at the anthraquinone core and at the substituents NH and OH in both HOMO as well as in LUMO. The chemical potential and electrophilicity index showed a direct relation, while hardness and hyperhardness had an inverse association with an energy gap. The results of the molecular docking analysis revealed that the anthraquinone molecules have a high affinity for the primary targets of the DNA topoisomerase IIα enzyme. The docking results showed good binding ability with extremely energetically stable scores ranging from -8.9 to -7.6 kcal/mol. Electron correlation descriptors showed a direct link with NLO properties and toxicity.
Collapse
Affiliation(s)
- Puja O Gupta
- Department of Dyestuff Technology (Currently named Department of Speciality Chemicals Technology), Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Praful S Patil
- Department of Dyestuff Technology (Currently named Department of Speciality Chemicals Technology), Institute of Chemical Technology, Mumbai, Maharashtra, India
| | - Nagaiyan Sekar
- Department of Dyestuff Technology (Currently named Department of Speciality Chemicals Technology), Institute of Chemical Technology, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Tariq B, Mansha A, Asim S, Kausar A. Effect of Substituents on Solubility, Medicinal, Absorption, Emission and Cationic/Anionic Detection Properties of Anthraquinone Derivatives. J Fluoresc 2024; 34:1527-1544. [PMID: 37646872 DOI: 10.1007/s10895-023-03410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Anthraquinones constitute an important class of compounds with wide applications. The solubility of derivatives at 298.15 K was discussed in ethanol-water solution and at atmospheric pressure, the solubility of 1-amino-4-hydroxy-9,10-anthraquinone (AHAQ) in binary solvents (ethanol-water combinations) was determined. Colour strength and fastening properties depend upon the kind and position of a hydrophobic group connected to the phenoxy ring of Anthraquinone moiety. There is a continuing interest in the creation of novel anthraquinone derivatives with biological activities since they have demonstrated potential for treating multiple sclerosis. For this purpose, by utilizing voltammetric and absorption studies, interactions of various derivatives with calf thymus DNA (ct-DNA) and the cationic surfactant cetyltrimethylammoniumbromide (CTAB) were examined. Here prominent Hydrophobic interaction and electron transfer resulting in binding to CTAB micelles were observed. The polarity index of the media was assessed and associated with the electrochemical parameters. The medicinal behaviour of Anthraquinone derivatives was a result of electron transfer reactions with DNA. UV-Visible and fluorescence properties were due to the transitions between n* and π* orbitals. Large absorption band with low dichroic ratio was characteristic of various derivatives of Anthraquinone. Presence of -NH group proves various derivatives remarkable calorimetric and anionic sensors.
Collapse
Affiliation(s)
- Bushra Tariq
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sadia Asim
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan.
| | - Abida Kausar
- Department of Botany, Government College Women University, Faisalabad, Pakistan
| |
Collapse
|
3
|
Li Y, Zhang J, Zhang C, Dang W, Xue L, Liu H, Cheng H, Yan X. Facile and selective separation of anthraquinones by alizarin-modified iron oxide magnetic nanoparticles. J Chromatogr A 2023; 1702:464088. [PMID: 37230053 DOI: 10.1016/j.chroma.2023.464088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Anthraquinones are widely distributed in higher plants and possess broad biological activities. The conventional separation procedures for isolating anthraquinones from the plant crude extracts require multiple extraction, concentration, and column chromatography steps. In this study, we synthesized three alizarin (AZ)-modified Fe3O4 nanoparticles (Fe3O4@AZ, Fe3O4@SiO2-AZ, and Fe3O4@SiO2-PEI-AZ) by thermal solubilization method. Fe3O4@SiO2-PEI-AZ showed strong magnetic responsiveness, high methanol/water dispersion, good recyclability, and high loading capacity for anthraquinones. To evaluate the feasibility of using Fe3O4@SiO2-PEI-AZ for separating various aromatic compounds, we employed molecular dynamics simulations to predict the adsorption/desorption effects of PEI-AZ for various aromatic compounds in different methanol concentrations. The results showed that the anthraquinones could be efficiently separated from the monocyclic and bicyclic aromatic compounds by adjusting the methanol/water ratio. The Fe3O4@SiO2-PEI-AZ nanoparticles were then used to separate the anthraquinones from the rhubarb extract. At 5% methanol, all the anthraquinones were adsorbed by the nanoparticles, thus allowing their separation from other components in the crude extract. Compared with the conventional separation methods, this adsorption method has the advantages of high adsorption specificity, simple operation, and solvent saving. This method sheds light on the future application of functionalized Fe3O4 magnetic nanoparticles to selectively separate desired components from complex plant and microbial crude extracts.
Collapse
Affiliation(s)
- Yuexuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chengyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weifan Dang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lu Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongliang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huiying Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Preet G, Astakala RV, Gomez-Banderas J, Rajakulendran JE, Hasan AH, Ebel R, Jaspars M. Virtual Screening of a Library of Naturally Occurring Anthraquinones for Potential Anti-Fouling Agents. Molecules 2023; 28:molecules28030995. [PMID: 36770663 PMCID: PMC9920117 DOI: 10.3390/molecules28030995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Marine biofouling is the undesired accumulation of organic molecules, microorganisms, macroalgae, marine invertebrates, and their by-products on submerged surfaces. It is a serious challenge for marine vessels and the oil, gas, and renewable energy industries, as biofouling can cause economic losses for these industries. Natural products have been an abundant source of therapeutics since the start of civilisation. Their use as novel anti-fouling agents is a promising approach for replacing currently used, harmful anti-fouling agents. Anthraquinones (AQs) have been used for centuries in the food, pharmaceutical, cosmetics, and paint industries. Citreorosein and emodin are typical additives used in the anti-fouling paint industry to help improve the global problem of biofouling. This study is based on our previous study, in which we presented the promising activity of structurally related anthraquinone compounds against biofilm-forming marine bacteria. To help uncover the anti-fouling potential of other AQ-related structures, 2194 compounds from the COCONUT natural products database were analysed. Molecular docking analysis was performed to assess the binding strength of these compounds to the LuxP protein in Vibrio carchariae. The LuxP protein is a vital binding protein responsible for the movements of autoinducers within the quorum sensing system; hence, interrupting the process at an early stage could be an effective strategy. Seventy-six AQ structures were found to be highly docked, and eight of these structures were used in structure-based pharmacophore modelling, resulting in six unique pharmacophore features.
Collapse
Affiliation(s)
- Gagan Preet
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | | | - Jessica Gomez-Banderas
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- The National Decommissioning Centre, University of Aberdeen, Aberdeen AB41 6AA, UK
| | - Joy Ebenezer Rajakulendran
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- Department of Chemistry, Eastern University, Chenkaladi 30350, Sri Lanka
| | - Ahlam Haj Hasan
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- The Medicinal Chemistry and Pharmacognosy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- Correspondence:
| |
Collapse
|
5
|
Jackson TC, Dezfulian C, Vagni VA, Stezoski J, Janesko-Feldman K, Kochanek PM. PHLPP Inhibitor NSC74429 Is Neuroprotective in Rodent Models of Cardiac Arrest and Traumatic Brain Injury. Biomolecules 2022; 12:1352. [PMID: 36291561 PMCID: PMC9599532 DOI: 10.3390/biom12101352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 09/07/2024] Open
Abstract
Pleckstrin homology domain and leucine rich repeat protein phosphatase (PHLPP) knockout mice have improved outcomes after a stroke, traumatic brain injury (TBI), and decreased maladaptive vascular remodeling following vascular injury. Thus, small-molecule PHLPP inhibitors have the potential to improve neurological outcomes in a variety of conditions. There is a paucity of data on the efficacy of the known experimental PHLPP inhibitors, and not all may be suited for targeting acute brain injury. Here, we assessed several PHLPP inhibitors not previously explored for neuroprotection (NSC13378, NSC25247, and NSC74429) that had favorable predicted chemistries for targeting the central nervous system (CNS). Neuronal culture studies in staurosporine (apoptosis), glutamate (excitotoxicity), and hydrogen peroxide (necrosis/oxidative stress) revealed that NSC74429 at micromolar concentrations was the most neuroprotective. Subsequent testing in a rat model of asphyxial cardiac arrest, and in a mouse model of severe TBI, showed that serial dosing of 1 mg/kg of NSC74429 over 3 days improved hippocampal survival in both models. Taken together, NSC74429 is neuroprotective across multiple insult mechanisms. Future pharmacokinetic and pharmacodynamic (PK/PD) studies are warranted to optimize dosing, and mechanistic studies are needed to determine the percentage of neuroprotection mediated by PHLPP1/2 inhibition, or potentially from the modulation of PHLPP-independent targets.
Collapse
Affiliation(s)
- Travis C. Jackson
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs BLDV, Tampa, FL 33612, USA
- USF Health Heart Institute, Morsani College of Medicine, University of South Florida, 560 Channelside Dr, Tampa, FL 33602, USA
| | - Cameron Dezfulian
- Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, Rangos Research Center—6th Floor, Pittsburgh, PA 15224, USA
- Department of Pediatrics, Baylor College of Medicine, 6651 Main Street, Houston, TX 77030, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Vincent A. Vagni
- Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, Rangos Research Center—6th Floor, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Jason Stezoski
- Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, Rangos Research Center—6th Floor, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, Rangos Research Center—6th Floor, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, Rangos Research Center—6th Floor, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
6
|
Krzak A, Swiech O, Majdecki M, Garbacz P, Gwardys P, Bilewicz R. Adjusting the Structure of β-Cyclodextrin to Improve Complexation of Anthraquinone-Derived Drugs. Molecules 2021; 26:7205. [PMID: 34885787 PMCID: PMC8659250 DOI: 10.3390/molecules26237205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
β-Cyclodextrin (CD) derivatives containing an aromatic triazole ring were studied as potential carriers of the following drugs containing an anthraquinone moiety: anthraquinone-2-sulfonic acid (AQ2S); anthraquinone-2-carboxylic acid (AQ2CA); and a common anthracycline, daunorubicin (DNR). UV-Vis and voltammetry measurements were carried out to determine the solubilities and association constants of the complexes formed, and the results revealed the unique properties of the chosen CDs as effective pH-dependent drug complexing agents. The association constants of the drug complexes with the CDs containing a triazole and lipoic acid (βCDLip) or galactosamine (βCDGAL), were significantly larger than that of the native βCD. The AQ2CA and AQ2S drugs were poorly soluble, and their solubilities increased as a result of complex formation with βCDLip and βCDGAL ligands. AQ2CA and AQ2S are negatively charged at pH 7.4. Therefore, they were less prone to form an inclusion complex with the hydrophobic CD cavity than at pH 3 (characteristic of gastric juices) when protonated. The βCDTriazole and βCDGAL ligands were found to form weaker inclusion complexes with the positively charged drug DNR at an acidic pH (pH 5.5) than in a neutral medium (pH 7.4) in which the drug dissociates to its neutral, uncharged form. This pH dependence is favorable for antitumor applications.
Collapse
Affiliation(s)
- Agata Krzak
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; (A.K.); (P.G.); (P.G.)
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| | - Olga Swiech
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; (A.K.); (P.G.); (P.G.)
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| | - Maciej Majdecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01224 Warsaw, Poland;
| | - Piotr Garbacz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; (A.K.); (P.G.); (P.G.)
| | - Paulina Gwardys
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; (A.K.); (P.G.); (P.G.)
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093 Warsaw, Poland; (A.K.); (P.G.); (P.G.)
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| |
Collapse
|
7
|
Malik MS, Alsantali RI, Jassas RS, Alsimaree AA, Syed R, Alsharif MA, Kalpana K, Morad M, Althagafi II, Ahmed SA. Journey of anthraquinones as anticancer agents - a systematic review of recent literature. RSC Adv 2021; 11:35806-35827. [PMID: 35492773 PMCID: PMC9043427 DOI: 10.1039/d1ra05686g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Anthraquinones are privileged chemical scaffolds that have been used for centuries in various therapeutic applications. The anthraquinone moiety forms the core of various anticancer agents. However, the emergence of drug-resistant cancers warrants the development of new anticancer agents. The research endeavours towards new anthraquinone-based compounds are increasing rapidly in recent years. They are used as a core chemical template to achieve structural modifications, resulting in the development of new anthraquinone-based compounds as promising anticancer agents. Mechanistically, most of the anthraquinone-based compounds inhibit cancer progression by targeting essential cellular proteins. Herein, we review new anthraquinone analogues that have been developed in recent years as anticancer agents. This includes a systematic review of the recent literature (2005-2021) on anthraquinone-based compounds in cell-based models and key target proteins such as kinases, topoisomerases, telomerases, matrix metalloproteinases and G-quadruplexes involved in the viability of cancer cells. In addition to this, the developments in PEG-based delivery of anthraquinones and the toxicity aspects of anthraquinone derivatives are also discussed. The review dispenses a compact background knowledge to understanding anthraquinones for future research on the expansion of anticancer therapeutics.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Abdulrahman A Alsimaree
- Department of Basic Science (Chemistry), College of Science and Humanities, Shaqra University Afif Saudi Arabia
| | - Riyaz Syed
- Centalla Discovery, JHUB, Jawaharlal Nehru Technological University Hyderabad Kukatpally Hyderabad 500085 India
| | - Meshari A Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Kulkarni Kalpana
- Department of Humanities and Sciences (Chemistry), Gokaraju Rangaraju Institute of Engineering and Technology Bachupally Hyderabad 500090 India
| | - Moataz Morad
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ismail I Althagafi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
8
|
Marine Anthraquinones: Pharmacological and Toxicological Issues. Mar Drugs 2021; 19:md19050272. [PMID: 34068184 PMCID: PMC8152984 DOI: 10.3390/md19050272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The marine ecosystem, populated by a myriad of animals, plants, and microorganisms, is an inexhaustible reservoir of pharmacologically active molecules. Among the multiple secondary metabolites produced by marine sources, there are anthraquinones and their derivatives. Besides being mainly known to be produced by terrestrial species, even marine organisms and the uncountable kingdom of marine microorganisms biosynthesize anthraquinones. Anthraquinones possess many different biological activities, including a remarkable antitumor activity. However, due to their peculiar chemical structures, anthraquinones are often associated with toxicological issues, even relevant, such as genotoxicity and mutagenicity. The aim of this review is to critically describe the anticancer potential of anthraquinones derived from marine sources and their genotoxic and mutagenic potential. Marine-derived anthraquinones show a promising anticancer potential, although clinical studies are missing. Additionally, an in-depth investigation of their toxicological profile is needed before advocating anthraquinones as a therapeutic armamentarium in the oncological area.
Collapse
|
9
|
Soundarapandian S, Alexander A, Pillai AS, Enoch IVMV, Yousuf S. G-Quadruplex binding of cavity-containing anthraquinonesulfonyl-β-cyclodextrin conjugate. Effect of encapsulation of ethidium bromide and berberine. J Biomol Struct Dyn 2021; 40:8301-8311. [PMID: 33856290 DOI: 10.1080/07391102.2021.1911849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An anthraquinonesulfonyl derivative of β-cyclodextrin is prepared and characterized employing spectroscopic techniques. The binding interactions of the compound with ethidium bromide, berberine, calf-thymus DNA, quadruplex DNAs viz., kit22, telo24, and myc22 are investigated by ultraviolet-visible, and fluorescence spectroscopic methods. Anthraquinonesulfonyl-β-cyclodextrin conjugate acts as a host molecule and enhances ethidium bromide and berberine fluorescence due to their encapsulation in cyclodextrin's cavity. The binding constant values are 9.0 × 105 mol-1 dm3 and 5.7 × 104 mol-1 dm3 for the formation of host: guest complexes of the β-CD derivative with ethidium bromide and berberine respectively. The proximity of the protons of ethidium bromide and berberine protons with those of the internal cavity of β-CD in the anthraquinonesulfonyl-β-CD conjugate is confirmed by two-dimensional rotating-frame Overhauser effect spectroscopy. The conjugate displays a quenching of fluorescence selectively to the quadruplexes kit22 and telo24 that is contrast to the spectral behavior with duplex DNA. ctDNA and myc22 exhibit different absorption and emission profiles with ethidium bromide on encapsulation by β-CD. The encapsulation of berberine leads to a fluorescence enhancement on binding to ctDNA, telo24, and myc22 with binding constants of 5.6 × 105, 3.3 × 105 mol-1 dm3, and 1.5 × 105 mol-1 dm3 respectively. In contrast, kit22 leads to fluorescence quenching on berberine encapsulated-anthraquinonesulfonyl-β-cyclodextrin conjugate with a Stern-Volmer constant of 3.3 × 105 mol-1 dm3.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suganthi Soundarapandian
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore, Tamil Nadu, India
| | - Sameena Yousuf
- Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
10
|
Li Z, Zhou X, Zhu H, Song X, Gao H, Niu Z, Lu J. Purpurin binding interacts with LHPP protein that inhibits PI3K/AKT phosphorylation and induces apoptosis in colon cancer cells HCT-116. J Biochem Mol Toxicol 2021; 35:e22665. [PMID: 33368780 DOI: 10.1002/jbt.22665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is the leading type of diagnosed cancer; globally, it resides in the fourth-leading origin of cancer-interrelated mortality in the globe. The treatment strategies were chemotherapy and potent radiotherapy. Although chemotherapy treatment can eliminate tumor cells, it remains with unnecessary toxic effects in cancer patients. Therefore, the identification of natural-based compounds, which have selectively inhibiting target proteins with limited toxicity that can facilitate the therapeutic approaches against CRC. In this existing approach, which highlights the binding efficacy of our anthraquinone compound, purpurin against phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) protein restrains the CRC cell growth by inhibiting phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), cell proliferation, and inducing apoptosis signaling. Primarily, purpurin (36 μM) exposed to HCT-116 cells and incubated for 24 and 48 h could induce reactive oxygen species production, subsequently alter mitochondrion membrane, and increase the apoptotic cells in HCT-116. LHPP, a kind of histidine phosphatase protein, has been considered as a tumor suppressor in numerous carcinomas. However, purpurin-mediated LHPP proteins and its associated molecular events in CRC remain unclear. In our docking studies revealed that purpurin has been strongly interacts with LHPP via hydrophobic and hydrophilic binding interaction. Western blot results confirmed that purpurin enhances the expression of LHPP protein, thereby inhibits the expression of phosphorylated-PI3K/AKT, EGFR, cyclin-D1, PCNA in HCT-116 cells. Moreover, purpurin induces messenger RNA expression of apoptotic genes (Bax, CASP-9, and CASP-3) in HCT-116 cells. Thus, we conclude that purpurin could be a natural and useful compound, which inhibits the growth of CRC cells through the activation of LHPP proteins.
Collapse
Affiliation(s)
- Zhiwen Li
- Department of Colorectal and Anal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xie Song
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Zheyu Niu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
11
|
Liu X, Han W, An N, Cao N, Wu T, Yang S, Ding L, Chen X, Chen C, Aruhan, Zhang Y, Wang K, Suo L, Huang J, Wang J, Zhao X, Zhu J, Zhang Y, Yang B. Kanglexin protects against cardiac fibrosis and dysfunction in mice by TGF-β1/ERK1/2 noncanonical pathway. Front Pharmacol 2021; 11:572637. [PMID: 33519438 PMCID: PMC7840489 DOI: 10.3389/fphar.2020.572637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac fibrosis is a common pathological manifestation accompanied by various heart diseases, and antifibrotic therapy is an effective strategy to prevent diverse pathological processes of the cardiovascular system. We currently report the pharmacological evaluation of a novel anthraquinone compound (1,8-dihydroxy-6-methyl-9,10-anthraquinone-3-oxy ethyl succinate) named Kanglexin (KLX), as a potent cardioprotective agent with antifibrosis activity. Our results demonstrated that the administration of KLX by intragastric gavage alleviated cardiac dysfunction, hypertrophy, and fibrosis induced by transverse aortic constriction (TAC) surgical operation. Meanwhile, KLX administration relieved endothelial to mesenchymal transition of TAC mice. In TGF β1-treated primary cultured adult mouse cardiac fibroblasts (CFs) and human umbilical vein endothelial cells (HUVECs), KLX inhibited cell proliferation and collagen secretion. Also, KLX suppressed the transformation of fibroblasts to myofibroblasts in CFs. Further studies revealed that KLX-mediated cardiac protection was due to the inhibitory role of TGF-β1/ERK1/2 noncanonical pathway. In summary, our study indicates that KLX attenuated cardiac fibrosis and dysfunction of TAC mice, providing a potentially effective therapeutic strategy for heart pathological remodeling.
Collapse
Affiliation(s)
- Xue Liu
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weina Han
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Na An
- Science and Technology Park, Harbin Medical University, Harbin, China
| | - Na Cao
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tingting Wu
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shuang Yang
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lili Ding
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaoli Chen
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chao Chen
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Aruhan
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yannan Zhang
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kexin Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lianhuan Suo
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xin Zhao
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiuxin Zhu
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Zhang
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Tel-Cu-NPs Catalyst: Synthesis of Naphtho[2,3-g]phthalazine Derivatives as Potential Inhibiters of Tyrosinase Enzymes and Their Investigation in Kinetic, Molecular Docking, and Cytotoxicity Studies. Catalysts 2020. [DOI: 10.3390/catal10121442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Novel one-pot synthesis naphtho[2,3-g]phthalazine (1a–1k) of Mannich base derivatives can be achieved via grindstone chemistry using a Tel-Cu-NPs (telmisartan-copper nanoparticles) catalyst. This method offers efficient mild reaction conditions and high yields. Tyrosinase inhibitory activity was evaluated for all synthesized compounds, along with analysis of kinetic behavior and molecular docking studies. The synthesized compound, 1c was (IC50 = 11.5 µM) more active than kojic acid (IC50 = 78.0 µM). Lineweaver Burk plots were used to analyze the kinetic behavior of the most active compound 1c, it was reversible and competitive behavior. Compound 1c and kojic acid occurred in the presence of 2-hydroxyketone, which has the same inhibitory mechanism. The molecular docking of compound 1c and the control kojic acid were docked against 2Y9X protein via the Schrodinger Suite. The compound 1c showed a respectable dock score (−5.6 kcal/mol) compared to kojic acid with a dock score of (−5.2 kcal/mol) in the 2Y9X protein. Cytotoxicity activity was also evaluated by using HepG2 (liver), MCF-7 (breast), and HeLa (cervical) cancer cell lines, and high activity for 1c (GI50 = 0.01, 0.03, and 0.04 µM, respectively) against all cell lines was found compared to standard and other compounds. Therefore, this study succeeded in testing a few promising molecules as potential antityrosinase agents.
Collapse
|
13
|
Pretsch D, Rollinger JM, Schmid A, Genov M, Wöhrer T, Krenn L, Moloney M, Kasture A, Hummel T, Pretsch A. Prolongation of metallothionein induction combats Aß and α-synuclein toxicity in aged transgenic Caenorhabditis elegans. Sci Rep 2020; 10:11707. [PMID: 32678125 PMCID: PMC7366685 DOI: 10.1038/s41598-020-68561-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders (ND) like Alzheimer's (AD), Parkinson's (PD), Huntington's or Prion diseases share similar pathological features. They are all age dependent and are often associated with disruptions in analogous metabolic processes such as protein aggregation and oxidative stress, both of which involve metal ions like copper, manganese and iron. Bush and Tanzi proposed 2008 in the 'metal hypothesis of Alzheimer's disease' that a breakdown in metal homeostasis is the main cause of NDs, and drugs restoring metal homeostasis are promising novel therapeutic strategies. We report here that metallothionein (MT), an endogenous metal detoxifying protein, is increased in young amyloid ß (Aß) expressing Caenorhabditis elegans, whereas it is not in wild type strains. Further MT induction collapsed in 8 days old transgenic worms, indicating the age dependency of disease outbreak, and sharing intriguing parallels to diminished MT levels in human brains of AD. A medium throughput screening assay method was established to search for compounds increasing the MT level. Compounds known to induce MT release like progesterone, ZnSO4, quercetin, dexamethasone and apomorphine were active in models of AD and PD. Thioflavin T, clioquinol and emodin are promising leads in AD and PD research, whose mode of action has not been fully established yet. In this study, we could show that the reduction of Aß and α-synuclein toxicity in transgenic C. elegans models correlated with the prolongation of MT induction time and that knockdown of MT with RNA interference resulted in a loss of bioactivity.
Collapse
Affiliation(s)
- Dagmar Pretsch
- Oxford Antibiotic Group GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | - Judith Maria Rollinger
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Axel Schmid
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Miroslav Genov
- Oxford Antibiotic Group GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Teresa Wöhrer
- Oxford Antibiotic Group GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Liselotte Krenn
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Mark Moloney
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ameya Kasture
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Alexander Pretsch
- Oxford Antibiotic Group GmbH, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| |
Collapse
|
14
|
Jackson TC, Kochanek PM. RNA Binding Motif 5 (RBM5) in the CNS-Moving Beyond Cancer to Harness RNA Splicing to Mitigate the Consequences of Brain Injury. Front Mol Neurosci 2020; 13:126. [PMID: 32765218 PMCID: PMC7381114 DOI: 10.3389/fnmol.2020.00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Gene splicing modulates the potency of cell death effectors, alters neuropathological disease processes, influences neuronal recovery, but may also direct distinct mechanisms of secondary brain injury. Therapeutic targeting of RNA splicing is a promising avenue for next-generation CNS treatments. RNA-binding proteins (RBPs) regulate a variety of RNA species and are prime candidates in the hunt for druggable targets to manipulate and tailor gene-splicing responses in the brain. RBPs preferentially recognize unique consensus sequences in targeted mRNAs. Also, RBPs often contain multiple RNA-binding domains (RBDs)—each having a unique consensus sequence—suggesting the possibility that drugs could be developed to block individual functional domains, increasing the precision of RBP-targeting therapies. Empirical characterization of most RBPs is lacking and represents a major barrier to advance this emerging therapeutic area. There is a paucity of data on the role of RBPs in the brain including, identification of their unique mRNA targets, defining how CNS insults affect their levels and elucidating which RBPs (and individual domains within) to target to improve neurological outcomes. This review focuses on the state-of-the-art of the RBP tumor suppressor RNA binding motif 5 (RBM5) in the CNS. We discuss its potent pro-death roles in cancer, which motivated our interest to study it in the brain. We review recent studies showing that RBM5 levels are increased after CNS trauma and that it promotes neuronal death in vitro. Finally, we conclude with recent reports on the first set of RBM5 regulated genes identified in the intact brain, and discuss how those findings provide new clues germane to its potential function(s) in the CNS, and pose new questions on its therapeutic utility to mitigate CNS injury.
Collapse
Affiliation(s)
- Travis C Jackson
- Morsani College of Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, United States.,Morsani College of Medicine, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Zou Y, Cao Z, Wang J, Chen X, Chen YQ, Li Y, Liu J, Zhao Y, Wang A, He B. A Series of Novel HDAC Inhibitors with Anthraquinone as a Cap Group. Chem Pharm Bull (Tokyo) 2020; 68:613-617. [PMID: 32611998 DOI: 10.1248/cpb.c20-00206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although anthraquinone derivatives possess significant antitumor activity, most of them also displayed those side effects like cardiotoxicity, mainly owing to their inhibition of topoisomerase II of DNA repair mechanisms. Our raised design strategy by switching therapeutic target from topoisomerase II to histone deacetylase (HDAC) has been applied to the design of anthraquinone derivatives in current study. Consequently, a series of novel HDAC inhibitors with a tricylic diketone of anthraquinone as a cap group have been synthesized. After screening and evaluation, compounds 4b, 4d, 7b and 7d have displayed the comparable inhibition in enzymatic activity and cell proliferation than that of Vorinostat (SAHA). Notably, compound 4b showed certain selectivity of antiproliferative effects on cancer cell lines over non-cancer cell lines.
Collapse
Affiliation(s)
- Yefang Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Zhuoxian Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Xiaoxue Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Yan-Qin Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Basic Medicine, Guizhou Medical University
| | - Jingzi Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Aimin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University.,School of Pharmacy, Guizhou Medical University
| |
Collapse
|
16
|
Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem 2020; 12:1037-1069. [PMID: 32349522 DOI: 10.4155/fmc-2019-0198] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer, characterized by uncontrolled malignant neoplasm, is a leading cause of death in both advanced and emerging countries. Although, ample drugs are accessible in the market to intervene with tumor progression, none are totally effective and safe. Natural anthraquinone (AQ) equivalents such as emodin, aloe-emodin, alchemix and many synthetic analogs extend their antitumor activity on different targets including telomerase, topoisomerases, kinases, matrix metalloproteinases, DNA and different phases of cell lines. Nano drug delivery strategies are advanced tools which deliver drugs into tumor cells with minimum drug leakage to normal cells. This review delineates the way AQ derivatives are binding on these targets by abolishing tumor cells to produce anticancer activity and purview of nanoformulations related to AQ analogs.
Collapse
|
17
|
Synthesis of Anthraquinones by Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of a 1,2-Bis(propiolyl)benzene Derivative with Alkynes. INORGANICS 2019. [DOI: 10.3390/inorganics7110138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[2 + 2 + 2] cycloaddition of a 1,2-bis(propiolyl)benzene derivative with terminal and internal alkynes takes place in the presence of [Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) combined with bis(diphenylphosphino)ethane (DPPE) to give anthraquinones in 42% to 93% yields with a simple experimental procedure. A fluorenone derivative can also be synthesized by iridium-catalyzed [2 + 2 + 2] cycloaddition of a benzene-linked ketodiyne with an internal alkyne to give a 94% yield.
Collapse
|
18
|
Elucidation of marine fungi derived anthraquinones as mycobacterial mycolic acid synthesis inhibitors: an in silico approach. Mol Biol Rep 2019; 46:1715-1725. [DOI: 10.1007/s11033-019-04621-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/18/2019] [Indexed: 02/03/2023]
|
19
|
Tan CC, Zhang XY, Tan L, Yu JT. Tauopathies: Mechanisms and Therapeutic Strategies. J Alzheimers Dis 2019; 61:487-508. [PMID: 29278892 DOI: 10.3233/jad-170187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tauopathies are morphologically, biochemically, and clinically heterogeneous neurodegenerative diseases defined by the accumulation of abnormal tau proteins in the brain. There is no effective method to prevent and reverse the tauopathies, but this gloomy picture has been changed by recent research advances. Evidences from genetic studies, experimental animal models, and molecular and cell biology have shed light on the main mechanisms of the diseases. The development of radiology and biochemistry, especially the development of PET imaging, will provide important biomarkers for the clinical diagnosis and treatment. Given the central role of tau in tauopathies, many treatments have constantly emerged, including targeting phosphorylation, targeting aggregation, increasing microtubule stabilization, tau immunization, clearance of tau, anti-inflammatory treatment, and other therapeutics. There is still a long way to go before we obtain drug therapy targeted at multifactor mechanisms.
Collapse
Affiliation(s)
- Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiao-Yan Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
20
|
Jackson TC, Kotermanski SE, Kochanek PM, Jackson EK. Oxidative stress induces release of 2'-AMP from microglia. Brain Res 2018; 1706:101-109. [PMID: 30395838 DOI: 10.1016/j.brainres.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Microglia metabolize exogenous 2'-AMP and 3'-AMP (non-canonical nucleotides) to adenosine and exogenous 2'-AMP and 3'-AMP (via conversion to adenosine) inhibit the production of inflammatory cytokines by microglia. This suggests that if microglia release endogenous 2'-AMP and/or 3'-AMP in response to injurious stimuli, this would complete an autocrine/paracrine mechanism that attenuates the over-activation of microglia during brain injury. Here we investigated in microglia (and for comparison astrocytes and neurons) the effects of injurious stimuli on extracellular and intracellular levels of 2',3'-cAMP (2'-AMP and 3'-AMP precursor), 2'-AMP, and 3'-AMP. METHODS Experiments were conducted in primary cultures of rat microglia, astrocytes, and neurons. Cells were exposed to oxygen/glucose deprivation, iodoacetate plus 2,4-dinitrophenol (metabolic inhibitors), glutamate, or H2O2 for one hour, and extracellular and intracellular 2',3'-cAMP, 2'-AMP, and 3'-AMP were measured by UPLC-MS/MS. KEY RESULTS In microglia, H2O2 increased extracellular levels of 2'-AMP, but not 3'-AMP, by ∼16-fold (from 0.17 ± 0.11 to 2.78 ± 0.27 ng/106 cells; n = 13; mean ± SEM; P < 0.000005). H2O2 also induced oxidative changes in cellular proteins as detected by an increased number of carbonyl groups in protein side chains. In contrast, oxygen/glucose deprivation, metabolic inhibitors, or glutamate had no effect on either extracellular 2'-AMP or 3'-AMP levels. In astrocytes and neurons, none of the injurious stimuli increased extracellular 2'-AMP or 3'-AMP. CONCLUSIONS Oxidative stress (but not oxygen/glucose deprivation, energy deprivation, or excitotoxicity) induces microglia (but not astrocytes or neurons) to release 2'-AMP, but not 3'-AMP. The 2',3'-cAMP/2'-AMP/adenosine pathway mechanism may serve to prevent over-activation of microglia in response to oxidative stress.
Collapse
Affiliation(s)
- Travis C Jackson
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Shawn E Kotermanski
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Salehi B, Albayrak S, Antolak H, Kręgiel D, Pawlikowska E, Sharifi-Rad M, Uprety Y, Tsouh Fokou PV, Yousef Z, Amiruddin Zakaria Z, Varoni EM, Sharopov F, Martins N, Iriti M, Sharifi-Rad J. Aloe Genus Plants: From Farm to Food Applications and Phytopharmacotherapy. Int J Mol Sci 2018; 19:E2843. [PMID: 30235891 PMCID: PMC6163315 DOI: 10.3390/ijms19092843] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
Aloe genus plants, distributed in Old World, are widely known and have been used for centuries as topical and oral therapeutic agents due to their health, beauty, medicinal, and skin care properties. Among the well-investigated Aloe species are A. arborescens, A. barbadensis, A. ferox, and A. vera. Today, they account among the most economically important medicinal plants and are commonly used in primary health treatment, where they play a pivotal role in the treatment of various types of diseases via the modulation of biochemical and molecular pathways, besides being a rich source of valuable phytochemicals. In the present review, we summarized the recent advances in botany, phytochemical composition, ethnobotanical uses, food preservation, and the preclinical and clinical efficacy of Aloe plants. These data will be helpful to provide future directions for the industrial and medicinal use of Aloe plants.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 88777539, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 22439789, Iran.
| | - Sevil Albayrak
- Department of Biology, Science Faculty, Erciyes University, Kayseri 38039, Turkey.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Ewelina Pawlikowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Yadav Uprety
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, P.O. Box 1030 Kirtipur, Kathmandu, Nepal.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, P.O. Box 812 Yaounde, Cameroon.
| | - Zubaida Yousef
- Department of Botany, Lahore College for Women University, Jail Road Lahore 54000, Pakistan.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Integrative Pharmacogenomics Institute (iPROMISE), Level 7, FF3 Building, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia.
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, via Beldiletto 1/3, 20100 Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
22
|
Jackson TC, Dixon CE, Janesko-Feldman K, Vagni V, Kotermanski SE, Jackson EK, Kochanek PM. Acute Physiology and Neurologic Outcomes after Brain Injury in SCOP/PHLPP1 KO Mice. Sci Rep 2018; 8:7158. [PMID: 29739983 PMCID: PMC5940799 DOI: 10.1038/s41598-018-25371-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/20/2018] [Indexed: 11/12/2022] Open
Abstract
Suprachiasmatic nucleus circadian oscillatory protein (SCOP) (a.k.a. PHLPP1) regulates long-term memory consolidation in the brain. Using a mouse model of controlled cortical impact (CCI) we tested if (1) brain tissue levels of SCOP/PHLPP1 increase after a traumatic brain injury (TBI), and (2) if SCOP/PHLPP1 gene knockout (KO) mice have improved (or worse) neurologic outcomes. Blood chemistry (pH, pCO2, pO2, pSO2, base excess, sodium bicarbonate, and osmolarity) and arterial pressure (MAP) differed in isoflurane anesthetized WT vs. KOs at baseline and up to 1 h post-injury. CCI injury increased cortical/hippocampal SCOP/PHLPP1 levels in WTs 7d and 14d post-injury. Injured KOs had higher brain tissue levels of phosphorylated AKT (pAKT) in cortex (14d post-injury), and higher levels of phosphorylated MEK (pMEK) in hippocampus (7d and 14d post-injury) and in cortex (7d post-injury). Consistent with an important role of SCOP/PHLPP1 on memory function, injured-KOs had near normal performance on the probe trial of the Morris water maze, whereas injured-WTs were impaired. CA1/CA3 hippocampal survival was lower in KOs vs. WTs 24 h post-injury but equivalent by 7d. No difference in 21d cortical lesion volume was detected. SCOP/PHLPP1 overexpression in cultured rat cortical neurons had no effect on 24 h cell death after a mechanical stretch-injury.
Collapse
Affiliation(s)
- Travis C Jackson
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center - 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA. .,University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, Pittsburgh, USA.
| | - C Edward Dixon
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center - 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.,University of Pittsburgh School of Medicine, Department of Neurology, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, USA
| | - Keri Janesko-Feldman
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center - 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.,University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, Pittsburgh, USA
| | - Vincent Vagni
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center - 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.,University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, Pittsburgh, USA
| | - Shawn E Kotermanski
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Bridgeside Point Building 1, 100 Technology Drive, Pittsburgh, USA
| | - Edwin K Jackson
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Bridgeside Point Building 1, 100 Technology Drive, Pittsburgh, USA
| | - Patrick M Kochanek
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center - 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.,University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, Pittsburgh, USA
| |
Collapse
|
23
|
Jackson TC, Kotermanski SE, Jackson EK, Kochanek PM. BrainPhys® increases neurofilament levels in CNS cultures, and facilitates investigation of axonal damage after a mechanical stretch-injury in vitro. Exp Neurol 2017; 300:232-246. [PMID: 29199132 DOI: 10.1016/j.expneurol.2017.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/25/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023]
Abstract
Neurobasal®/B27 is a gold standard culture media used to study primary neurons in vitro. An alternative media (BrainPhys®/SM1) was recently developed which robustly enhances neuronal activity vs. Neurobasal® or DMEM. To the best of our knowledge BrainPhys® has not been explored in the setting of neuronal injury. Here we characterized the utility of BrainPhys® in a model of in vitro mechanical-stretch injury. METHODS/RESULTS Primary rat cortical neurons were maintained in classic Neurobasal®, or sequentially maintained in Neurocult® followed by BrainPhys® (hereafter simply referred to as "BrainPhys® maintained neurons"). The levels of axonal markers and proteins involved in neurotransmission were compared on day in vitro 10 (DIV10). BrainPhys® maintained neurons had higher levels of GluN2B, GluR1, Neurofilament light/heavy chain (NF-L & NF-H), and protein phosphatase 2 A (PP2A) vs. neurons in Neurobasal®. Mechanical stretch-injury (50ms/54% biaxial stretch) to BrainPhys® maintained neurons modestly (albeit significantly) increased 24h lactate dehydrogenase (LDH) levels but markedly decreased axonal NF-L levels post-injury vs. uninjured controls or neurons given a milder 38% stretch-injury. Furthermore, two 54% stretch-injuries (in tandem) exacerbated 24h LDH release, increased α-spectrin breakdown products (SBDPs), and decreased Tau levels. Also, BrainPhys® maintained cultures had decreased markers of cell damage 24h after a single 54% stretch-injury vs. neurons in Neurobasal®. Finally, we tested the hypothesis that lentivirus mediated overexpression of the pro-death protein RBM5 exacerbates neuronal and/or axonal injury in primary CNS cultures. RBM5 overexpression vs. empty-vector controls increased 24h LDH release, and SBDP levels, after a single 54% stretch-injury but did not affect NF-L levels or Tau. CONCLUSION BrainPhys® is a promising new reagent which facilities the investigation of molecular targets involved in axonal and/or neuronal injury in vitro.
Collapse
Affiliation(s)
- Travis C Jackson
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, United States.
| | - Shawn E Kotermanski
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Bridgeside Point Building 1, 100 Technology Drive, United States
| | - Edwin K Jackson
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Bridgeside Point Building 1, 100 Technology Drive, United States
| | - Patrick M Kochanek
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, Children's Hospital of Pittsburgh of UPMC, John G. Rangos Research Center, 6th Floor, 4401 Penn Avenue, Pittsburgh, PA 15224, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Scaife Hall, 3550 Terrace Street, United States
| |
Collapse
|
24
|
Wang D, Hu S, Zhang J, Li Q, Liu X, Li Y. Investigation of the neuroprotective effects of a novel synthetic compound via the mitochondrial pathway. Mol Med Rep 2017. [PMID: 28627694 PMCID: PMC5562046 DOI: 10.3892/mmr.2017.6745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The present study aimed to investigate the neuroprotective effect of a novel synthetic compound (5zou) on differentiated PC12 cells against 6-hydroxydopamine (6-OHDA) and L-glutamic acid (L-Glu) neurotoxin-induced cell injury and the potential mechanisms involved. 5zou is a 2, 2-disubstituted 1,2-dihydropyridine. PC12 cells were treated with 6-OHDA and L-Glu to establish neurotoxic cell models. MTT assay, DCFH-DA staining, Fluo-4-AM staining, JC-1 staining and western blotting were used to determine the changes in cell viability, intracellular reactive oxygen species concentration, Ca2+ influx, mitochondrial membrane potential and the protein expressions of B-cell lymphoma-2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL). Morphological analysis demonstrated the effect of 5zous on neuritogenesis and differentiation in PC12 cells. The results suggested that 5zou rescued the cell viability, intracellular ROS level, Ca2+ influx, mitochondrial membrane potential, and expression of Bcl-2 and Bcl-xL, which were altered by 6-OHDA and L-Glu. The study confirmed that 5zou has neuroprotective effects on neurotoxin-induced differentiated PC12 cells injury, potentially via the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Shuang Hu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Junrong Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Qiuyue Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xinyu Liu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| |
Collapse
|
25
|
Furkan M, Alam MT, Rizvi A, Khan K, Ali A, Naeem A. Aloe emodin, an anthroquinone from Aloe vera acts as an anti aggregatory agent to the thermally aggregated hemoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 179:188-193. [PMID: 28242448 DOI: 10.1016/j.saa.2017.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/04/2017] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
Aggregation of proteins is a physiological process which contributes to the pathophysiology of several maladies including diabetes mellitus, Huntington's and Alzheimer's disease. In this study we have reported that aloe emodin (AE), an anthroquinone, which is one of the active components of the Aloe vera plant, acts as an inhibitor of hemoglobin (Hb) aggregation. Hb was thermally aggregated at 60°C for four days as evident by increased thioflavin T and ANS fluorescence, shifted congo red absorbance, appearance of β sheet structure, increase in turbidity and presence of oligomeric aggregates. Increasing concentration of AE partially reverses the aggregation of the model heme protein (hemoglobin). The maximum effect of AE was observed at 100μM followed by saturation at 125μM. The results were confirmed by UV-visible spectrometry, intrinsic fluorescence, ThT, ANS, congo red assay as well as transmission electron microscopy (TEM). These results were also supported by fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) which shows the disappearance of β sheet structure and appearance of α helices. This study will serve as baseline for translatory research and the development of AE based therapeutics for diseases attributed to protein aggregation.
Collapse
Affiliation(s)
- Mohammad Furkan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Md Tauqir Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Asim Rizvi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Kashan Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Abad Ali
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
26
|
Jackson EK, Kotermanski SE, Menshikova EV, Dubey RK, Jackson TC, Kochanek PM. Adenosine production by brain cells. J Neurochem 2017; 141:676-693. [PMID: 28294336 DOI: 10.1111/jnc.14018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/06/2023]
Abstract
The early release of adenosine following traumatic brain injury (TBI) suppresses seizures and brain inflammation; thus, it is important to elucidate the cellular sources of adenosine following injurious stimuli triggered by TBI so that therapeutics for enhancing the early adenosine-release response can be optimized. Using mass spectrometry with 13 C-labeled standards, we investigated in cultured rat neurons, astrocytes, and microglia the effects of oxygen-glucose deprivation (OGD; models energy failure), H2 O2 (produces oxidative stress), and glutamate (induces excitotoxicity) on intracellular and extracellular levels of 5'-AMP (adenosine precursor), adenosine, and inosine and hypoxanthine (adenosine metabolites). In neurons, OGD triggered increases in intracellular 5'-AMP (2.8-fold), adenosine (2.6-fold), inosine (2.2-fold), and hypoxanthine (5.3-fold) and extracellular 5'-AMP (2.2-fold), adenosine (2.4-fold), and hypoxanthine (2.5-fold). In neurons, H2 O2 did not affect intracellular or extracellular purines; yet, glutamate increased intracellular adenosine, inosine, and hypoxanthine (1.7-fold, 1.7-fold, and 1.6-fold, respectively) and extracellular adenosine, inosine, and hypoxanthine (2.9-fold, 2.1-fold, and 1.6-fold, respectively). In astrocytes, neither H2 O2 nor glutamate affected intracellular or extracellular purines, and OGD only slightly increased intracellular and extracellular hypoxanthine. Microglia were unresponsive to OGD and glutamate, but were remarkably responsive to H2 O2 , which increased intracellular 5'-AMP (1.6-fold), adenosine (1.6-fold), inosine (2.1-fold), and hypoxanthine (1.6-fold) and extracellular 5'-AMP (5.9-fold), adenosine (4.0-fold), inosine (4.3-fold), and hypoxanthine (1.9-fold). CONCLUSION Under these particular experimental conditions, cultured neurons are the main contributors to adenosine production/release in response to OGD and glutamate, whereas cultured microglia are the main contributors upon oxidative stress. Developing therapeutics that recruit astrocytes to produce/release adenosine could have beneficial effects in TBI.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shawn E Kotermanski
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Raghvendra K Dubey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Reproductive Endocrinology, University Hospital Zurich and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Travis C Jackson
- Department of Critical Care Medicine and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Zhao Z, Xie J, Liu B, Ge X, Song C, Ren M, Zhou Q, Miao L, Zhang H, Shan F, Yang Z. The effects of emodin on cell viability, respiratory burst and gene expression of Nrf2-Keap1 signaling molecules in the peripheral blood leukocytes of blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2017; 62:75-85. [PMID: 28065629 DOI: 10.1016/j.fsi.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
We determined the effects of emodin on the cell viability, respiratory burst activity, mRNA levels of antioxidative enzymes (Cu-Zn SOD, CAT and NOX2), and gene expressions of the Nrf2-Keap1 signaling molecules in the peripheral blood leukocytes of blunt snout bream. Triplicate groups of cultured cells were treated with different concentrations of emodin (0.04-25 μg/ml) for 24 h. Results showed that the emodin caused a dramatic loss in cell viability, and occurred in a dose-dependent manner. Emodin exposure (1-25 μg/ml) were significantly induced the ROS generation compared to the control. The respiratory burst and NADPH oxidase activities were significantly induced at a concentration of 0.20 μg/ml, and inhibited at 25 μg/ml. Besides, mRNA levels of antioxidant enzyme genes were dramatically regulated by emodin exposure for 24 h. During low concentrations of exposure, mRNA levels of Cu-Zn SOD in the cells treated with 0.04, 0.20 μg/ml, CAT, NOX2 and Nrf2 in the cells treated with 1 μg/ml were sharply increased, respectively. Whereas, high concentrations were dramatically down-regulated the gene expressions of CAT in the cells treated with 5, 25 μg/ml and NOX2 in the cells treated with 25 μg/ml. Furthermore, sharp increase in Keap1and Bach1 expression levels were observed a dose-dependent manner. In conclusion, this study demonstrated that emodin could induce antioxidant defenses which were involved in cytotoxic activities, respiratory burst and the transcriptional regulation levels of antioxidant enzymes and Nrf2-Keap1 signaling molecules.
Collapse
Affiliation(s)
- Zhenxin Zhao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Changyou Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Huimin Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Fan Shan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Zhenfei Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| |
Collapse
|
28
|
Silica nanoparticles doped with anthraquinone for lung cancer phototherapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:1-9. [DOI: 10.1016/j.jphotobiol.2016.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022]
|
29
|
Ahn SM, Kim HN, Kim YR, Choi YW, Kim CM, Shin HK, Choi BT. Emodin from Polygonum multiflorum ameliorates oxidative toxicity in HT22 cells and deficits in photothrombotic ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:13-20. [PMID: 27151150 DOI: 10.1016/j.jep.2016.04.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/15/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb. has been used widely in East Asia in treatment of diseases associated with aging. Emodin, an active component from Polygonum multiflorum Thunb., provides benefits for brain disturbances induced by severe cerebral injury. AIM OF THE STUDY We investigated the neuroprotective effect of emodin from Polygonum multiflorum Thunb. against glutamate-induced oxidative toxicity and cerebral ischemia. MATERIALS AND METHODS For examination of neuroprotective effects of emodin, cell viability, cytotoxicity, flow cytometry, and Western blot were performed in HT22 cells and infarct volume, behavioral tests and Western blot in a mouse model of photothrombotic ischemic stroke. RESULTS Pretreatment with emodin resulted in significantly reduced glutamate-induced apoptotic cell death in HT22 cells. However, blocking of phosphatidylinositol-3 kinase (PI3K) activity with LY294002 resulted in significantly inhibited cell survival by emodin. Exposure of glutamate-treated cells to emodin induced an increase in the level of Bcl-2 expression, whereas the expression of Bax and active caspase-3 proteins was significantly reduced. In addition, treatment with emodin resulted in increased phosphorylation of Akt and cAMP response element binding protein (CREB), and expression of mature brain-derived neurotrophic factor (BDNF). This expression by emodin was also significantly inhibited by blocking of PI3K activity. In a photothrombotic ischemic stroke model, treatment with emodin resulted in significantly reduced infarct volume and improved motor function. We confirmed the critical role of the expression levels of Bcl-2/Bax, active caspase-3, phosphorylated (p)Akt, p-CREB, and mature BDNF for potent neuroprotective effects of emodin in cerebral ischemia. CONCLUSIONS These results suggest that emodin may afford a significant neuroprotective effect against glutamate-induced apoptosis through activation of the PI3K/Akt signaling pathway, and subsequently enhance behavioral function in cerebral ischemia.
Collapse
Affiliation(s)
- Sung Min Ahn
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Neui Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yu Ri Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Young Whan Choi
- Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Cheol Min Kim
- Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Department of Biochemistry, College of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Republic of Korea; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Republic of Korea; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
30
|
Malik EM, Müller CE. Anthraquinones As Pharmacological Tools and Drugs. Med Res Rev 2016; 36:705-48. [PMID: 27111664 DOI: 10.1002/med.21391] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/09/2016] [Accepted: 02/27/2016] [Indexed: 12/11/2022]
Abstract
Anthraquinones (9,10-dioxoanthracenes) constitute an important class of natural and synthetic compounds with a wide range of applications. Besides their utilization as colorants, anthraquinone derivatives have been used since centuries for medical applications, for example, as laxatives and antimicrobial and antiinflammatory agents. Current therapeutic indications include constipation, arthritis, multiple sclerosis, and cancer. Moreover, biologically active anthraquinones derived from Reactive Blue 2 have been utilized as valuable tool compounds for biochemical and pharmacological studies. They may serve as lead structures for the development of future drugs. However, the presence of the quinone moiety in the structure of anthraquinones raises safety concerns, and anthraquinone laxatives have therefore been under critical reassessment. This review article provides an overview of the chemistry, biology, and toxicology of anthraquinones focusing on their application as drugs.
Collapse
Affiliation(s)
- Enas M Malik
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| |
Collapse
|
31
|
Jackson TC, Du L, Janesko-Feldman K, Vagni VA, Dezfulian C, Poloyac SM, Jackson EK, Clark RSB, Kochanek PM. The nuclear splicing factor RNA binding motif 5 promotes caspase activation in human neuronal cells, and increases after traumatic brain injury in mice. J Cereb Blood Flow Metab 2015; 35:655-66. [PMID: 25586139 PMCID: PMC4420885 DOI: 10.1038/jcbfm.2014.242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/06/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022]
Abstract
Splicing factors (SFs) coordinate nuclear intron/exon splicing of RNA. Splicing factor disturbances can cause cell death. RNA binding motif 5 (RBM5) and 10 (RBM10) promote apoptosis in cancer cells by activating detrimental alternative splicing of key death/survival genes. The role(s) of RBM5/10 in neurons has not been established. Here, we report that RBM5 knockdown in human neuronal cells decreases caspase activation by staurosporine. In contrast, RBM10 knockdown augments caspase activation. To determine whether brain injury alters RBM signaling, we measured RBM5/10 protein in mouse cortical/hippocampus homogenates after controlled cortical impact (CCI) traumatic brain injury (TBI) plus hemorrhagic shock (CCI+HS). The RBM5/10 staining was higher 48 to 72 hours after injury and appeared to be increased in neuronal nuclei of the hippocampus. We also measured levels of other nuclear SFs known to be essential for cellular viability and report that splicing factor 1 (SF1) but not splicing factor 3A (SF3A) decreased 4 to 72 hours after injury. Finally, we confirm that RBM5/10 regulate protein expression of several target genes including caspase-2, cellular FLICE-like inhibitory protein (c-FLIP), LETM1 Domain-Containing Protein 1 (LETMD1), and amyloid precursor-like protein 2 (APLP2) in neuronal cells. Knockdown of RBM5 appeared to increase expression of c-FLIP(s), LETMD1, and APLP2 but decrease caspase-2.
Collapse
Affiliation(s)
- Travis C Jackson
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lina Du
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vincent A Vagni
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cameron Dezfulian
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M Poloyac
- Pharmaceutical Sciences Department, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S B Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Kochanek PM, Jackson TC, Ferguson NM, Carlson SW, Simon DW, Brockman EC, Ji J, Bayir H, Poloyac SM, Wagner AK, Kline AE, Empey PE, Clark RS, Jackson EK, Dixon CE. Emerging therapies in traumatic brain injury. Semin Neurol 2015; 35:83-100. [PMID: 25714870 PMCID: PMC4356170 DOI: 10.1055/s-0035-1544237] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite decades of basic and clinical research, treatments to improve outcomes after traumatic brain injury (TBI) are limited. However, based on the recent recognition of the prevalence of mild TBI, and its potential link to neurodegenerative disease, many new and exciting secondary injury mechanisms have been identified and several new therapies are being evaluated targeting both classic and novel paradigms. This includes a robust increase in both preclinical and clinical investigations. Using a mechanism-based approach the authors define the targets and emerging therapies for TBI. They address putative new therapies for TBI across both the spectrum of injury severity and the continuum of care, from the field to rehabilitation. They discussTBI therapy using 11 categories, namely, (1) excitotoxicity and neuronal death, (2) brain edema, (3) mitochondria and oxidative stress, (4) axonal injury, (5) inflammation, (6) ischemia and cerebral blood flow dysregulation, (7) cognitive enhancement, (8) augmentation of endogenous neuroprotection, (9) cellular therapies, (10) combination therapy, and (11) TBI resuscitation. The current golden age of TBI research represents a special opportunity for the development of breakthroughs in the field.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nikki Miller Ferguson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departmentol Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erik C. Brockman
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jing Ji
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hülya Bayir
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Philip E. Empey
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K. Jackson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departmentol Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Radha MH, Laxmipriya NP. Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. J Tradit Complement Med 2014; 5:21-6. [PMID: 26151005 PMCID: PMC4488101 DOI: 10.1016/j.jtcme.2014.10.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023] Open
Abstract
Aloe vera (蘆薈 lú huì) is well known for its considerable medicinal properties. This plant is one of the richest natural sources of health for human beings coming. The chemistry of the plant has revealed the presence of more than 200 different biologically active substances. Many biological properties associated with Aloe species are contributed by inner gel of the leaves. Most research has been centralized on the biological activities of the various species of Aloe, which include antibacterial and antimicrobial activities of the nonvolatile constituents of the leaf gel. Aloe species are widely distributed in the African and the eastern European continents, and are spread almost throughout the world. The genus Aloe has more than 400 species but few, such as A. vera, Aloe ferox, and Aloe arborescens, are globally used for trade. A. vera has various medicinal properties such as antitumor, antiarthritic, antirheumatoid, anticancer, and antidiabetic properties. In addition, A. vera has also been promoted for constipation, gastrointestinal disorders, and for immune system deficiencies. However, not much convincing information is available on properties of the gel. The present review focuses on the detailed composition of Aloe gel, its various phytocomponents having various biological properties that help to improve health and prevent disease conditions.
Collapse
Affiliation(s)
- Maharjan H Radha
- Biochemistry Department, Faculty of Science, The M S University of Baroda, Vadodara, Gujarat, India
| | - Nampoothiri P Laxmipriya
- Biochemistry Department, Faculty of Science, The M S University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
34
|
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BIOMED RESEARCH INTERNATIONAL 2014; 2014:869269. [PMID: 25136634 PMCID: PMC4127280 DOI: 10.1155/2014/869269] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/31/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022]
Abstract
Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
35
|
Adhikari A, Datta A, Adhikari M, Chauhan K, Chuttani K, Saw S, Shukla A, Mishra AK. Preclinical Evaluation of DO3A-Act-AQ: A Polyazamacrocyclic Monomeric Anthraquinone Derivative as a Theranostic Agent. Mol Pharm 2014; 11:445-56. [DOI: 10.1021/mp4004089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anupriya Adhikari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi-110054, India
- Department
of Chemistry, Kanya Gurukul Campus, Gurukul Kangri Vishwavidyalaya, Haridwar-249404, India
| | - Anupama Datta
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi-110054, India
| | - Manish Adhikari
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi-110054, India
| | - Kanchan Chauhan
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi-110054, India
| | - Krishna Chuttani
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi-110054, India
| | - Sanjiv Saw
- Division of Clinical PET, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi-110054, India
| | - Abha Shukla
- Department
of Chemistry, Kanya Gurukul Campus, Gurukul Kangri Vishwavidyalaya, Haridwar-249404, India
| | - Anil K. Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi-110054, India
| |
Collapse
|
36
|
Jackson TC, Verrier JD, Drabek T, Janesko-Feldman K, Gillespie DG, Uray T, Dezfulian C, Clark RS, Bayir H, Jackson EK, Kochanek PM. Pharmacological inhibition of pleckstrin homology domain leucine-rich repeat protein phosphatase is neuroprotective: differential effects on astrocytes. J Pharmacol Exp Ther 2013; 347:516-528. [PMID: 24023368 PMCID: PMC3807060 DOI: 10.1124/jpet.113.206888] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023] Open
Abstract
Pleckstrin homology domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) inhibits protein kinase B (AKT) survival signaling in neurons. Small molecule pan-PHLPP inhibitors (selective for PHLPP1 and PHLPP2) may offer a translatable method to induce AKT neuroprotection. We tested several recently discovered PHLPP inhibitors (NSC117079 and NSC45586; benzoic acid, 5-[2-[4-[2-(2,4-diamino-5-methylphenyl)diazenyl]phenyl]diazenyl]-2-hydroxy-,sodium salt.) in rat cortical neurons and astrocytes and compared the biochemical response of these agents with short hairpin RNA (shRNA)-mediated PHLPP1 knockdown (KD). In neurons, both PHLPP1 KD and experimental PHLPP inhibitors activated AKT and ameliorated staurosporine (STS)-induced cell death. Unexpectedly, in astrocytes, both inhibitors blocked AKT activation, and NSC117079 reduced viability. Only PHLPP2 KD mimicked PHLPP inhibitors on astrocyte biochemistry. This suggests that these inhibitors could have possible detrimental effects on astrocytes by blocking novel PHLPP2-mediated prosurvival signaling mechanisms. Finally, because PHLPP1 levels are reportedly high in the hippocampus (a region prone to ischemic death), we characterized hippocampal changes in PHLPP and several AKT targeting prodeath phosphatases after cardiac arrest (CA)-induced brain injury. PHLPP1 levels increased in rat brains subjected to CA. None of the other AKT inhibitory phosphatases increased after global ischemia (i.e., PHLPP2, PTEN, PP2A, and PP1). Selective PHLPP1 inhibition (such as by shRNA KD) activates AKT survival signaling in neurons and astrocytes. Nonspecific PHLPP inhibition (by NSC117079 and NSC45586) only activates AKT in neurons. Taken together, these results suggest that selective PHLPP1 inhibitors should be developed and may yield optimal strategies to protect injured hippocampal neurons and astrocytes-namely from global brain ischemia.
Collapse
Affiliation(s)
- Travis C Jackson
- University of Pittsburgh School of Medicine, Department of Critical Care Medicine, Safar Center for Resuscitation Research (T.C.J., P.M.K., H.B., R.S.C, K.J.F., C.D., T.U.) and Department of Pharmacology and Chemical Biology (J.D.V., D.G.G., E.K.J.),University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Department of Anesthesiology, Presbyterian Hospital (T.D.), Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Potential synergy between tau aggregation inhibitors and tau chaperone modulators. ALZHEIMERS RESEARCH & THERAPY 2013; 5:41. [PMID: 24041111 PMCID: PMC3979086 DOI: 10.1186/alzrt207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tau is a soluble, microtubule-associated protein known to aberrantly form
amyloid-positive aggregates. This pathology is characteristic for more than 15
neuropathies, the most common of which is Alzheimer’s disease. Finding
therapeutics to reverse or remove this non-native tau state is of great
interest; however, at this time only one drug is entering phase III clinical
trials for treating tauopathies. Generally, tau manipulation by therapeutics can
either directly or indirectly alter tau aggregation and stability. Drugs that
bind and change the conformation of tau itself are largely classified as
aggregation inhibitors, while drugs that alter the activity of a tau-effector
protein fall into several categories, such as kinase inhibitors, microtubule
stabilizers, or chaperone modulators. Chaperone inhibitors that have proven
effective in tau models include heat shock protein 90 inhibitors, heat shock
protein 70 inhibitors and activators, as well as inducers of heat shock
proteins. While many of these compounds can alter tau levels and/or aggregation
states, it is possible that combining these approaches may produce the most
optimal outcome. However, because many of these compounds have multiple
off-target effects or poor blood–brain barrier permeability, the
development of this synergistic therapeutic strategy presents significant
challenges. This review will summarize many of the drugs that have been
identified to alter tau biology, with special focus on therapeutics that prevent
tau aggregation and regulate chaperone-mediated clearance of tau.
Collapse
|
38
|
Zhen Y, Ye Y, Yu X, Mai C, Zhou Y, Chen Y, Yang H, Lyu X, Song Y, Wu Q, Fu Q, Zhao M, Hua S, Wang H, Liu Z, Zhang Y, Fang W. Reduced CTGF expression promotes cell growth, migration, and invasion in nasopharyngeal carcinoma. PLoS One 2013; 8:e64976. [PMID: 23755163 PMCID: PMC3670884 DOI: 10.1371/journal.pone.0064976] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/19/2013] [Indexed: 01/11/2023] Open
Abstract
Background The role of CTGF varies in different types of cancer. The purpose of this study is to investigate the involvement of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC). Experimental design CTGF expression levels were examined in NPC tissues and cells, nasopharynx (NP) tissues, and NP69 cells. The effects and molecular mechanisms of CTGF expression on cell proliferation, migration, invasion, and cell cycle were also explored. Results NPC cells exhibited decreased mRNA expression of CTGF compared to immortalized human nasopharyngeal epithelial cell line NP69. Similarly, CTGF was observed to be downregulated in NPC compared to normal tissues at mRNA and protein levels. Furthermore, reduced CTGF was negatively associated with the progression of NPC. Knocking down CTGF expression enhanced the colony formation, cell migration, invasion, and G1/S cell cycle transition. Mechanistic analysis revealed that CTGF suppression activated FAK/PI3K/AKT and its downstream signals regulating the cell cycle, epithelial-mesenchymal transition (EMT) and MMPs. Finally, DNA methylation microarray revealed a lack of hypermethylation at the CTGF promoter, suggesting other mechanisms are associated with suppression of CTGF in NPC. Conclusion Our study demonstrates that reduced expression of CTGF promoted cell proliferation, migration, invasion and cell cycle progression through FAK/PI3K/AKT, EMT and MMP pathways in NPC.
Collapse
Affiliation(s)
- Yan Zhen
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Yanfen Ye
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Xiaoli Yu
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Chunping Mai
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Ying Zhou
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Yan Chen
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical College, Dongguan, PR China
| | - Xiaoming Lyu
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Qiangyun Wu
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Qiaofen Fu
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Mengyang Zhao
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Shengni Hua
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Hao Wang
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
| | - Zhen Liu
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
- Department of Pathology of Basic School, Medical University of Guangzhou, Guangzhou, PR China
- * E-mail: (ZL); (YZ); (WF)
| | - Yajie Zhang
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
- Department of Pathology of Basic School, Medical University of Guangzhou, Guangzhou, PR China
- * E-mail: (ZL); (YZ); (WF)
| | - Weiyi Fang
- Cancer Research Institute of Basic Medicine School, Southern Medical University, Guangzhou, PR China
- * E-mail: (ZL); (YZ); (WF)
| |
Collapse
|