1
|
Attarian F, Hatamian G, Nosrati S, Akbari Oryani M, Javid H, Hashemzadeh A, Tarin M. Role of liposomes in chemoimmunotherapy of breast cancer. J Drug Target 2025; 33:887-915. [PMID: 39967479 DOI: 10.1080/1061186x.2025.2467139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
In the dynamic arena of cancer therapeutics, chemoimmunotherapy has shown tremendous promise, especially for aggressive forms of breast cancer like triple-negative breast cancer (TNBC). This review delves into the significant role of liposomes in enhancing the effectiveness of chemoimmunotherapy by leveraging breast cancer-specific mechanisms such as the induction of immunogenic cell death (ICD), reprogramming the tumour microenvironment (TME), and enabling sequential drug release. We examine innovative dual-targeting liposomes that capitalise on tumour heterogeneity, as well as pH-sensitive formulations that offer improved control over drug delivery. Unlike prior analyses, this review directly links advancements in preclinical research-such as PAMAM dendrimer-based nanoplatforms and RGD-decorated liposomes-to clinical trial results, highlighting their potential to revolutionise TNBC treatment strategies. Additionally, we address ongoing challenges related to scalability, toxicity, and regulatory compliance, and propose future directions for personalised, immune-focused nanomedicine. This work not only synthesises the latest research but also offers a framework for translating liposomal chemoimmunotherapy from laboratory research to clinical practice.
Collapse
Affiliation(s)
- Fatemeh Attarian
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Ghazaleh Hatamian
- Department of Microbiology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Sun Y, Deng Z, Sun H, Wei X, Wang L, Wang S, Gao A, Sun Y, Li J. Prognostic impact of the timing of immunotherapy in first-line immunochemotherapy for patients with advanced lung adenocarcinoma: A propensity score-matched analysis. Int J Cancer 2025. [PMID: 40259531 DOI: 10.1002/ijc.35447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/23/2025]
Abstract
Immunochemotherapy combinations have been the standard first-line therapy for advanced lung adenocarcinoma (LUAD) without driver mutations, wherein concurrent chemotherapy and immunotherapy are conventionally anchored in the established dosing regimen. A few studies have suggested that the timing of immunotherapy in combinations may have a significant impact on the efficacy. However, this issue has not been addressed in an advanced LUAD cohort. We aimed to investigate the prognostic significance of the timing of immunotherapy in first-line immunochemotherapy combinations for patients with advanced LUAD. We retrospectively analyzed 508 patients with advanced LUAD without driver mutations who received immunochemotherapy as initial systemic treatment. The patients were divided into two groups-the induction and non-induction groups-with induction defined as receiving chemotherapy alone before concurrent immunochemotherapy. The bias between different groups was minimized using propensity score matching (PSM). We found both the PFS and OS of the patients in the induction group were significantly longer than those in the non-induction group before (PFS: p < 0.0001, OS: p < 0.0001) and after PSM (PFS: p = 0.0045, OS: p = 0.00073). After adjusting for confounders, induction chemotherapy was still a significant favorable factor for both PFS (p = 0.001) and OS (p = 0.001). In subsequent analyses, we found that both ≥2-cycles induction (PFS: p = 0.000, OS: p = 0.000) and 1-cycle induction (PFS: p = 0.013, OS: p = 0.002) were superior to non-induction and these differences were still significant after PSM. Our findings highlight the notable benefits of induction chemotherapy for patients with advanced LUAD treated with first-line immunochemotherapy combinations.
Collapse
Affiliation(s)
- Yanxin Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Deng
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haifeng Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaojuan Wei
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Leirong Wang
- Phase I Clinical Research Center, Shandong University Cancer Center, Jinan, Shandong, China
| | - Shuyun Wang
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Aiqin Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuping Sun
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Juan Li
- Phase I Clinical Trail Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
3
|
Ahn Y, Choe J, Lee HJ, Park SR, Kim JH, Song HJ, Kim MJ, Kim YH. Diagnosing Complete Response to Preoperative Chemoradiation in Esophageal Cancer Using Dynamic Contrast-Enhanced MRI Response Criteria. Korean J Radiol 2025; 26:269-280. [PMID: 39999967 PMCID: PMC11865900 DOI: 10.3348/kjr.2024.0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVE To assess the performance of novel qualitative diagnostic criteria using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) to identify the pathologic complete response (pCR) of primary tumors in esophageal cancer after neoadjuvant chemoradiation (nCRT). MATERIALS AND METHODS Patients who underwent nCRT, subsequent MRI, positron emission tomography/computed tomography (PET/CT), endoscopy, or esophagectomy for esophageal cancer between October 2021 and October 2023 were retrospectively analyzed. The DCE-MRI response of primary tumors was interpreted using five grades by thoracic radiologists as follows: G1 (compatible with CR), G2 (probable CR), G3 (probable partial response [PR]), G4 (compatible with PR), and G5 (stable or progressive disease). The performances of MRI, PET/CT, endoscopy, and their combinations in diagnosing pCR in primary tumors were calculated. RESULTS A total of 52 patients (male:female, 46:6; age, 61.2 ± 8.0 years) were included. Surgical specimens revealed pCR (ypT0) in 34 patients. G1 as the MRI criterion for pCR of primary tumors yielded a positive predictive value (PPV), specificity of 100% (18/18), and low sensitivity (23.5% [8/34]). Combining G1 and G2 as the MRI criteria increased the sensitivity to 73.5% (25/34), with a specificity of 88.9% (16/18), accuracy of 78.8% (41/52), and PPV of 92.6% (25/27). Adding the DCE-MRI results (G1-2) significantly improved accuracy for both PET/CT (from 65.4% [34/52] to 80.8% [42/52], P = 0.03) and endoscopy (from 55.8% [29/52] to 76.9% [40/52], P = 0.005), with increase in sensitivity (from 55.9% [19/34] to 82.4% [28/34] for PET/CT-based evaluation [P = 0.008] and from 47.1% [16/34] to 82.4% [28/34] for endoscopy-based evaluation [P = 0.001]). CONCLUSION DCE-MRI-based grading shows high diagnostic performance for identifying pCR in primary tumors, particularly in terms of PPV and specificity, and enhances response evaluation when combined with PET/CT and endoscopy.
Collapse
Affiliation(s)
- Yura Ahn
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jooae Choe
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - Hyun Joo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sook Ryun Park
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jong-Hoon Kim
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ho June Song
- Division of Gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Min-Ju Kim
- Department of Clinical Epidemiology and Biostatistic, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yong-Hee Kim
- Department of Thoracic and Cardiovascular Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Yang Y, Liu T, Mi S, Liu X, Jabbour SK, Liang N, Deng G, Hu P, Zhang J. Radiotherapy as salvage therapy and an adjunct to immunotherapy: exploring local and abscopal mechanisms to overcome immunotherapy resistance: a narrative review. Transl Lung Cancer Res 2025; 14:591-606. [PMID: 40114936 PMCID: PMC11921301 DOI: 10.21037/tlcr-2025-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025]
Abstract
Background and Objective Immune checkpoint inhibitors (ICIs) have ushered in a new era of therapies and play a significant role in the clinical treatment of a variety of tumors. However, immune resistance has increasingly created a bottleneck in treatment, making the question of how to overcome drug resistance an urgent issue to address. In this article, the mechanism of drug resistance is briefly described with a focus on how radiotherapy (RT) acts on the immune system to reverse immunotherapy failure. Combinations of existing treatment modalities need to be optimized to overcome resistance problems. Research has shown that some RT modalities reverse immune resistance or enhance efficacy when used in combination, which shows some value for immune resistance and is worthy of in-depth research. Methods In this review, we searched the literature published from 2000 to 2023 surrounding immunotherapy, RT and cancer. Key Content and Findings Based on the immune effects and immunosuppressive effects induced by RT, this review examined the preclinical rationales of RT and its clinical results. The findings indicate that RT might provide a novel regimen for patients with locally advanced tumors, especially oligometastatic tumors. Conclusions Salvage therapy with RT after immunotherapy resistance is the focus of current research. Other strategies, such as multidrug combination therapies, have made preliminary progress in preclinical experiments. Further research on the roles of different RT doses, fractionation regimens, and other treatment sequences in salvage therapy need to be conducted in the future. The optimal site and timing of low-dose radiotherapy are also undetermined, and prospective studies are need to determine the best regimen for optimizing patient treatment.
Collapse
Affiliation(s)
- Yunxin Yang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Tong Liu
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Song Mi
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Department of Oncology, Shandong University of Traditional Chinese Medicine, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Pingping Hu
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
5
|
Zhang J, Wei Q, Piao Y, Shao S, Zhou Z, Tang J, Xiang J, Shen Y. Synergistic Combination of Oral Transcytotic Nanomedicine and Histone Demethylase Inhibitor for Enhanced Cancer Chemoimmunotherapy. ACS NANO 2024; 18:33729-33742. [PMID: 39612220 DOI: 10.1021/acsnano.4c14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Oral nanomedicines present a preferable avenue for cancer immunotherapy, but their efficacy is limited by gastrointestinal absorption challenges, tumor physiopathologic barriers, and immune evasion mechanisms. Here, we present an approach that combines an oral transcytotic doxorubicin (DOX) nanomedicine with the histone demethylase inhibitor 5-carboxy-8-hydroxyquinoline (IOX1), thereby enabling synergistic chemoimmunotherapy. We demonstrate that IOX1 significantly augments the transcytosis capabilities of DOX-loaded poly(2-(N-oxide-N,N-diethylamino)ethylmethacrylate)-poly(ε-caprolactone) micelles (OPDOX), promoting their transcellular transport across various cellular barriers (villus, endothelial, and tumor cells), thus improving oral adsorption, vascular extravasation, and tumor penetration. Furthermore, IOX1 sensitizes chemotherapy to potentiate DOX-induced immunogenic cell death and downregulates programmed cell death-ligand 1 to disrupt the immune checkpoint mechanism, synergistically boosting robust antitumor immune responses. Consequently, orally administered OPDOX in combination with IOX1 efficiently inhibits CT26 tumor growth, highlighting the significant potential for enhancing the efficacy of oral nanomedicines in cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qiuyu Wei
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Frascatani R, Colella M, Monteleone G. Hepcidin Is a Valuable Therapeutic Target for Colorectal Cancer. Cancers (Basel) 2024; 16:4068. [PMID: 39682254 DOI: 10.3390/cancers16234068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent neoplasms and a major cause of cancer death worldwide. Despite recent advances in treatment approaches, the prognosis of advanced CRC remains poor, thus indicating the necessity of more effective treatments for CRC patients. CRC cells produce high levels of hepcidin, a peptide hormone that binds to the membrane-bound ferroportin and promotes its internalization and degradation, thus sequestering iron into the cancer cells with the downstream effect of enhancing tumor growth. Additionally, CRC cell-expressed hepcidin prolongs cell survival and, by targeting both CD8+ T cells and myeloid cells, restrains the induction of an efficient immune response against tumor antigens. The greatest expression of hepcidin is found in patients with metastatic CRC, and CRC patients with high hepcidin content have a worse survival rate than those with low hepcidin content. In the present article, we review the data supporting the prominent role of hepcidin in colon tumorigenesis and discuss how hepcidin inhibitors can help treat CRC patients in the metastatic setting with particular regard to the impact of hepcidin modulation on immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Rachele Frascatani
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Marco Colella
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Gastroenterology Unit, Fondazione Policlinico "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
7
|
Luo T, Jiang X, Li J, Nash GT, Yuan E, Albano L, Tillman L, Lin W. Phosphate Coordination to Metal-Organic Layer Secondary Building Units Prolongs Drug Retention for Synergistic Chemoradiotherapy. Angew Chem Int Ed Engl 2024; 63:e202319981. [PMID: 38381713 DOI: 10.1002/anie.202319981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
Chemoradiotherapy combines radiotherapy with concurrent chemotherapy to potentiate antitumor activity but exacerbates toxicities and causes debilitating side effects in cancer patients. Herein, we report the use of a nanoscale metal-organic layer (MOL) as a 2D nanoradiosensitizer and a reservoir for the slow release of chemotherapeutics to amplify the antitumor effects of radiotherapy. Coordination of phosphate-containing drugs to MOL secondary building units prolongs their intratumoral retention, allowing for continuous release of gemcitabine monophosphate (GMP) for effective localized chemotherapy. In the meantime, the MOL sensitizes cancer cells to X-ray irradiation and provides potent radiotherapeutic effects. GMP-loaded MOL (GMP/MOL) enhances cytotoxicity by 2-fold and improves radiotherapeutic effects over free GMP in vitro. In a colon cancer model, GMP/MOL retains GMP in tumors for more than four days and, when combined with low-dose radiotherapy, inhibits tumor growth by 98 %. The synergistic chemoradiotherapy enabled by GMP/MOL shows a cure rate of 50 %, improves survival, and ameliorates cancer-proliferation histological biomarkers.
Collapse
Affiliation(s)
- Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Geoffrey T Nash
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Eric Yuan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Luciana Albano
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Xue X, Ye G, Zhang L, Zhu X, Liu Q, Rui G, Geng G, Lin Y, Chen X. PI3Kα inhibitor GNE-493 triggers antitumor immunity in murine lung cancer by inducing immunogenic cell death and activating T cells. Int Immunopharmacol 2024; 130:111747. [PMID: 38442576 DOI: 10.1016/j.intimp.2024.111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Phosphatidylinositol 3-kinase (PI3K) is frequently hyperactivated in cancer, playing pivotal roles in the pathophysiology of both malignant and immune cells. The impact of PI3K inhibitors on the tumor microenvironment (TME) within lung cancer remains largely unknown. In this study, we explored the regulatory effects of GNE-493, an innovative dual inhibitor of PI3K and mammalian target of rapamycin (mTOR), on the TME of lung cancer. First, through the analysis of The Cancer Genome Atlas-lung squamous cell carcinoma (LUSC) cohort, we found PIK3CA to be related to CD8 T cells, which may affect the overall survival rate of patients by affecting CD8 function. We herein demonstrated that GNE-493 can significantly inhibit tumor cell proliferation and promote cell apoptosis while increasing the expression of the immunogenic death-related molecules CRT and HSP70 using in vitro cell proliferation and apoptosis experiments on the murine KP lung cancer cell line and human A549 lung cancer cell line. Next, through the establishment of an orthotopic tumor model in vivo, it was found that after GNE-493 intervention, the infiltration of CD4+ and CD8+ T cells in mouse lung tumor was significantly increased, and the expression of CRT in tumors could be induced to increase. To explore the mechanisms underlying PI3K inhibition-induced changes in the TME, the gene expression differences of T cells in the control group versus GNE-493-treated KP tumors were analyzed by RNA-seq, and the main effector pathway of anti-tumor immunity was identified. The IFN/TNF family molecules were significantly upregulated after GNE-493 treatment. In summary, our findings indicate that GNE-493 promotes immunogenic cell death in lung cancer cells, and elucidates its regulatory impact on molecules associated with the adaptive immune response. Our study provides novel insights into how PI3K/mTOR inhibitors exert their activity by modulating the tumor-immune interaction.
Collapse
Affiliation(s)
- Xiaomin Xue
- Department of Pulmonary and Critical Care Medicine, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China
| | - Guanzhi Ye
- Department of Pulmonary and Critical Care Medicine, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China; Department of Thoracic Surgery, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Long Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003 PR China
| | - Xiaolei Zhu
- Department of Thoracic Surgery, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Qun Liu
- Department of Pulmonary and Critical Care Medicine, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003 PR China
| | - Guojun Geng
- Department of Thoracic Surgery, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, PR China
| | - Yihua Lin
- Department of Pulmonary and Critical Care Medicine, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China.
| | - Xiaohui Chen
- Department of Pulmonary and Critical Care Medicine, The First Hospital Affiliated of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003 PR China.
| |
Collapse
|
9
|
Yan X, Zhao L, Wu F, Shen B, Zhou G, Feng J, Yue C, Zhu J, Yu S. Efficacy and safety analysis of immune checkpoint inhibitor rechallenge therapy in locally advanced and advanced non-small cell lung cancer: a retrospective study. J Thorac Dis 2024; 16:1787-1803. [PMID: 38617775 PMCID: PMC11009570 DOI: 10.21037/jtd-23-1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/26/2024] [Indexed: 04/16/2024]
Abstract
Background Immune checkpoint inhibitors (ICIs) have dramatically changed the first-line treatment pattern of non-small cell lung cancer (NSCLC) without driver gene alterations. However, the optimal choice for second-line treatment after initial treatment with ICIs is unclear. This study aimed to clarify the efficacy and safety of ICI rechallenge therapy in locally advanced and advanced NSCLC. Methods We retrospectively analyzed the histories of 224 patients with locally advanced or advanced NSCLC treated with programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors alone or in combination with chemotherapy and/or antiangiogenic therapy in first-line treatment. Progression-free survival 2 (PFS2) was the time from the first defined progress disease (PD) to the second disease progression or death. Efficacy evaluation was performed directly in accordance with RECIST v1.1 criteria. Adverse events (AEs) were graded following the National Cancer Institute Common Terminology Criteria for Adverse Events v5.0. Survival data were estimated using the Kaplan-Meier method or Cox survival regression model and compared using the log-rank test in overall cohort and other subgroups. Results There were no significant differences in objective response rate (ORR) and median PFS2 (mPFS2) between the ICI rechallenge group and non-rechallenge group (ORR: 10.3% vs. 15.3%, P=0.308; mPFS2: 5.33 vs. 4.40 months, P=0.715). And the ICI rechallenge group showed no new safety signals compared with non-rechallenge group. In ICI rechallenge group, patients resistant to first-line immunotherapy had a lower ORR and shorter PFS2 compared with those who responded to initial ICIs treatment (ORR: 7.0% vs. 17.6%, P=0.038; mPFS2: 3.68 vs. 5.91 months, P=0.014). No significant difference in mPFS2 was observed among different second-line treatment groups (P=0.362). Radiotherapy in second-line treatment and ICI rechallenge therapy were not the main factors affecting PFS2. Conclusions ICI rechallenge therapy beyond disease progression did not improve clinical outcomes in patients with NSCLC, but no new safety signals emerged. However, patients with favorable response to initial ICIs treatment still showed significant efficacy of subsequent ICI rechallenge therapy.
Collapse
Affiliation(s)
- Xiaoqi Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Luqing Zhao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Fei Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bo Shen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Guoren Zhou
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Chao Yue
- Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jingni Zhu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Shaorong Yu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
10
|
Kong RJ, Li YM, Huang JQ, Yan N, Wu YY, Cheng H. Self-Delivery Photodynamic Re-educator Enhanced Tumor Treatment by Inducing Immunogenic Cell Death and Improving Immunosuppressive Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59165-59174. [PMID: 38100370 DOI: 10.1021/acsami.3c13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Immunotherapy is known to be a promising strategy in the clinical treatment of malignant tumors, but it has received generally low response rates in various tumors because of the poor immunogenicity and multiple immunosuppressive microenvironments. A self-delivery photodynamic re-educator, denoted as CCXB, is synthesized through the self-assembly of chlorine e6 (Ce6) and celecoxib (CXB). As a carrier-free nanomedicine, CCXB shows a high drug loading rate, improved water stability, superior cellular uptake, and tumor accumulation capability. In comparison with free Ce6, CCXB triggers much stronger photodynamic therapy (PDT) to reduce the proliferation of breast cancer cells and activates robust immune responses via the induction of immunogenic cell death (ICD). Better yet, CXB-mediated cyclooxygenase 2 (COX-2) inhibition can decrease the level of synthesis of prostaglandin E2 (PGE2) to further improve immunosuppressive microenvironments. With the increase of cytotoxic T lymphocytes (CTLs) and decrease of regulatory T cells (Tregs) in tumor, in vivo antitumor immunity is significantly amplified to inhibit the metastasis of breast cancer. This study sheds light on developing drug codelivery systems with collaborative mechanisms for immunotherapy of metastatic tumors.
Collapse
Affiliation(s)
- Ren-Jiang Kong
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yan-Mei Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Jia-Qi Huang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ni Yan
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ye-Yang Wu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
11
|
Wang M, Hu D, Yang Y, Shi K, Li J, Liu Q, Li Y, Li R, Pan M, Mo D, Chen W, Li X, Qian Z. Enhanced Chemo-Immunotherapy Strategy Utilizing Injectable Thermosensitive Hydrogel for The Treatment of Diffuse Peritoneal Metastasis in Advanced Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303819. [PMID: 37875399 PMCID: PMC10724414 DOI: 10.1002/advs.202303819] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/17/2023] [Indexed: 10/26/2023]
Abstract
Patients with colorectal cancer (CRC) and diffuse peritoneal metastasis (PM) are not eligible for surgical intervention. Thus, palliative treatment remains the standard of care in clinical practice. Systemic chemotherapy fails to cause drug accumulation at the lesion sites, while intraperitoneal chemotherapy (IPC) is limited by high clearance rates and associated complications. Given the poor prognosis, a customized OxP/R848@PLEL hydrogel delivery system has been devised to improve the clinical benefit of advanced CRC with diffuse PM. This system is distinguished by its simplicity, security, and efficiency. Specifically, the PLEL hydrogel exhibits excellent injectability and thermosensitivity, enabling the formation of drug depots within the abdominal cavity, rendering it an optimal carrier for IPC. Oxaliplatin (OxP), a first-line drug for advanced CRC, is cytotoxic and enhances the immunogenicity of tumors by inducing immunogenic cell death. Furthermore, OxP and resiquimod (R848) synergistically enhance the maturation of dendritic cells, promote the expansion of cytotoxic T lymphocytes, and induce the formation of central memory T cells. Moreover, R848 domesticates macrophages to an anti-tumor phenotype. OxP/R848@PLEL effectively eradicates peritoneal metastases, completely inhibits ascites production, and significantly prolongs mice lifespan. As such, it provides a promising approach to managing diffuse PM in patients with CRC without surgical indications.
Collapse
Affiliation(s)
- Meng Wang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - DanRong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation MedicineKey Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengdu610041China
| | - Yun Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kun Shi
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - JiaNan Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - QingYa Liu
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - YiCong Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation MedicineKey Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengdu610041China
| | - Meng Pan
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Dong Mo
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Wen Chen
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - XiCheng Li
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - ZhiYong Qian
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
12
|
Hou C, Lu M, Lei Z, Dai S, Chen W, Du S, Jin Q, Zhou Z, Li H. HMGB1 Positive Feedback Loop Between Cancer Cells and Tumor-Associated Macrophages Promotes Osteosarcoma Migration and Invasion. J Transl Med 2023; 103:100054. [PMID: 36801636 DOI: 10.1016/j.labinv.2022.100054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/11/2022] [Accepted: 12/03/2022] [Indexed: 01/11/2023] Open
Abstract
Numerous studies have demonstrated the key roles of tumor-associated macrophages (TAMs) in osteosarcoma metastasis. Higher levels of high mobility group box 1 (HMGB1) promote osteosarcoma progression. However, whether HMGB1 is involved in the polarization of M2 macrophages into M1 macrophages in osteosarcoma remains largely unknown. Here, HMGB1 and CD206 mRNA expression levels were measured by a quantitative reverse transcription-polymerase chain reaction in osteosarcoma tissues and cells. HMGB1 and receptor for advanced glycation end products (RAGE) protein expression levels were measured by western blotting. Osteosarcoma migration was measured using transwell and wound-healing assays, while a transwell assay determined osteosarcoma invasion. Macrophage subtypes were detected using flow cytometry. HMGB1 expression levels were aberrantly enhanced in osteosarcoma tissues compared with normal tissues and were positively correlated with AJCC III and IV stages, lymph node metastasis, and distant metastasis. Silencing HMGB1 inhibited the migration, invasion, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. Furthermore, reduced HMGB1 expression levels in conditioned media derived from osteosarcoma cells induced the polarization of M2 TAMs to M1 TAMs. In addition, silencing HMGB1 inhibited the liver and lung metastasis of tumors and reduced the expression levels of HMGB1, CD163, and CD206 in vivo. HMGB1 was found to regulate macrophage polarization through RAGE. Polarized M2 macrophages induced osteosarcoma migration and invasion, activating HMGB1 expression in osteosarcoma cells to form a positive feedback loop. In conclusion, HMGB1 and M2 macrophages enhanced osteosarcoma migration, invasion, and EMT through positive feedback regulation. These findings reveal the significance of tumor cell and TAM interactions in the metastatic microenvironment.
Collapse
Affiliation(s)
- Changhe Hou
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ming Lu
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zixiong Lei
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shuangwu Dai
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wei Chen
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shaohua Du
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qinglin Jin
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhongxin Zhou
- Department of Vascular Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Haomiao Li
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Liu C, Wang XL, Shen EC, Wang BZ, Meng R, Cui Y, Wang WJ, Shao Q. Bioinformatics analysis of prognosis and immune microenvironment of immunological cell death-related gemcitabine-resistance genes in bladder cancer. Transl Androl Urol 2022; 11:1715-1728. [PMID: 36632166 PMCID: PMC9827393 DOI: 10.21037/tau-22-736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Background Bladder cancer (BC) is the most common malignant tumor of the urinary system. Gemcitabine resistance partly accounts for treatment failure and recurrence in BC. Immunological cell death (ICD) is correlated with chemoresistance. The prognosis of patients with similar tumor stage still varies in response to chemotherapy, recurrence, and disease progression. Therefore, our study aimed to provide a prognostic model based on ICD-related and gemcitabine-resistance genes for BC. Methods The data of BC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs), and differentially expressed gemcitabine resistance-related genes (DEGRRGs) were identified using the edgeR package. The survival-associated DEGRRGs were identified by univariate Cox analysis. A prognostic model was established by univariate Cox regression analysis and validated by GEO dataset. The outcome of low-risk group and high-risk group was analyzed by the Kaplan-Meier curve. The relationship between risk score and immune cell infiltration was investigated using the TIMER online database. Results The prognosis of patients in the ICD-high group was significantly better than ICD-low group. A prognostic model containing 5 gemcitabine resistance-related ICD-associated genes, including PTPRR, HOXB3, SIGLEC15, UNC5CL, and CASQ1, was established. In both TCGA prognostic model and GEO validation model, patients in the low-risk group had better outcomes than high-risk group. According to the receiver operating characteristic (ROC) curves, the risk score area under ROC curve (AUC) of the TCGA prognostic model were calculated to be 0.705, while the risk score of the GEO validation model were calculated to be 0.716. Patients in the high-risk group had a significantly higher immune score, stromal score, and infiltration of M0 macrophages, M1 macrophages, M2 macrophages, and activated CD4+ T cells. Patients in the high-risk group had significantly lower infiltration of the regulatory T cells, resting dendritic cell (DCs), and activated DCs. Conclusions The present study highlighted the functional role of gemcitabine resistance-related ICD-associated genes, constructed a prognostic score for the outcome evaluation and searched for potential targets to overcome gemcitabine chemoresistance in BC.
Collapse
Affiliation(s)
- Chao Liu
- Department of Urology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xiao-Lan Wang
- Department of Urology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Er-Chang Shen
- Department of Clinical Medicine, Nantong University, Nantong, China
| | - Bing-Zhi Wang
- Department of Urology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Rui Meng
- Department of Urology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yong Cui
- Department of Urology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Wen-Jie Wang
- Department of Radio-Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qiang Shao
- Department of Urology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
14
|
Zheng D, Hou X, Yu J, He X. Combinatorial Strategies With PD-1/PD-L1 Immune Checkpoint Blockade for Breast Cancer Therapy: Mechanisms and Clinical Outcomes. Front Pharmacol 2022; 13:928369. [PMID: 35935874 PMCID: PMC9355550 DOI: 10.3389/fphar.2022.928369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
As an emerging antitumor strategy, immune checkpoint therapy is one of the most promising anticancer therapies due to its long response duration. Antibodies against the programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) axis have been extensively applied to various cancers and have demonstrated unprecedented efficacy. Nevertheless, a poor response to monotherapy with anti-PD-1/PD-L1 has been observed in metastatic breast cancer. Combination therapy with other standard treatments is expected to overcome this limitation of PD-1/PD-L1 blockade in the treatment of breast cancer. In the present review, we first illustrate the biological functions of PD-1/PD-L1 and their role in maintaining immune homeostasis as well as protecting against immune-mediated tissue damage in a variety of microenvironments. Several combination therapy strategies for the combination of PD-1/PD-L1 blockade with standard treatment modalities have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including chemotherapy, radiotherapy, targeted therapy, antiangiogenic therapy, and other immunotherapies. The corresponding clinical trials provide valuable estimates of treatment effects. Notably, several combination options significantly improve the response and efficacy of PD-1/PD-L1 blockade. This review provides a PD-1/PD-L1 clinical trial landscape survey in breast cancer to guide the development of more effective and less toxic combination therapies.
Collapse
Affiliation(s)
- Dan Zheng
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiaolin Hou
- Department of Neurosurgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiujing He
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- *Correspondence: Xiujing He,
| |
Collapse
|
15
|
Lagou MK, Anastasiadou DP, Karagiannis GS. A Proposed Link Between Acute Thymic Involution and Late Adverse Effects of Chemotherapy. Front Immunol 2022; 13:933547. [PMID: 35844592 PMCID: PMC9283860 DOI: 10.3389/fimmu.2022.933547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiologic data suggest that cancer survivors tend to develop a protuberant number of adverse late effects, including second primary malignancies (SPM), as a result of cytotoxic chemotherapy. Besides the genotoxic potential of these drugs that directly inflict mutational burden on genomic DNA, the precise mechanisms contributing to SPM development are poorly understood. Cancer is nowadays perceived as a complex process that goes beyond the concept of genetic disease and includes tumor cell interactions with complex stromal and immune cell microenvironments. The cancer immunoediting theory offers an explanation for the development of nascent neoplastic cells. Briefly, the theory suggests that newly emerging tumor cells are mostly eliminated by an effective tissue immunosurveillance, but certain tumor variants may occasionally escape innate and adaptive mechanisms of immunological destruction, entering an equilibrium phase, where immunologic tumor cell death "equals" new tumor cell birth. Subsequent microenvironmental pressures and accumulation of helpful mutations in certain variants may lead to escape from the equilibrium phase, and eventually cause an overt neoplasm. Cancer immunoediting functions as a dedicated sentinel under the auspice of a highly competent immune system. This perspective offers the fresh insight that chemotherapy-induced thymic involution, which is characterized by the extensive obliteration of the sensitive thymic epithelial cell (TEC) compartment, can cause long-term defects in thymopoiesis and in establishment of diverse T cell receptor repertoires and peripheral T cell pools of cancer survivors. Such delayed recovery of T cell adaptive immunity may result in prolonged hijacking of the cancer immunoediting mechanisms, and lead to development of persistent and mortal infections, inflammatory disorders, organ-specific autoimmunity lesions, and SPMs. Acknowledging that chemotherapy-induced thymic involution is a potential risk factor for the emergence of SPM demarcates new avenues for the rationalized development of pharmacologic interventions to promote thymic regeneration in patients receiving cytoreductive chemotherapies.
Collapse
Affiliation(s)
- Maria K. Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - Dimitra P. Anastasiadou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
| | - George S. Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Tumor Microenvironment and Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, United States
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein Cancer Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
16
|
Ma L, Sakamoto Y, Ando K, Fujita H, Takahashi A, Takeshima T, Otsuka H, Ebner DK, Kakimi K, Imai T, Shimokawa T. Th balance related host genetic background affects the therapeutic effects of combining carbon-ion radiotherapy with dendritic cell immunotherapy. Int J Radiat Oncol Biol Phys 2021; 112:780-789. [PMID: 34740767 DOI: 10.1016/j.ijrobp.2021.10.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The goal of this study is to clarify the underlying mechanisms of metastasis suppression by CiDC (carbon-ion radiotherapy (CIRT) combined with immature dendritic cell (iDC) immunotherapy), which was previously shown to significantly suppress pulmonary metastasis in a NR-S1-bearing C3H/He mouse model. METHODS AND MATERIALS Mouse carcinoma cell lines (LLC, LM8, Colon-26 and Colon-26MGS) were grafted into the right hind paw of syngeneic mice (C57BL/6J, C3H/He and BALB/c). Seven days later, the tumors on the mice were locally irradiated with carbon-ions (290 MeV/n, 6 cm SOBP, 1 or 2 Gy). At 1.5 days after irradiation, bone marrow-derived immature dendritic cells were administrated intravenously into a subset of the mice. The number of lung metastases was evaluated within three weeks after irradiation. In vitro cultured cancer cells were irradiated with carbon-ion (290 MeV/n, mono-energy, LET approximately 70 ∼ 80 keV/µm), and then co-cultured with iDCs for three days to determine the DC maturation. RESULTS CiDC effectively repressed distant lung metastases in cancer cell (LLC and LM8)-bearing C57BL/6J and C3H/He mouse models. However, Colon-26 and Colon-26MGS-bearing BALB/c models did not show enhancement of metastasis suppression by combination treatment. This was further evaluated by comparing LM8-bearing C3H/He and LLC-bearing C57BL/6J models with a Colon-26-bearing BALB/c model. In vitro co-culture assays demonstrated that all irradiated cell lines were able to activate C3H/He or C57BL/6J-derived iDCs into mature DCs, but not BALB/c-derived iDCs. CONCLUSION The genetic background of the host may have a strong impact on the potency of combination therapy. Future animal and clinical testing should evaluate host genetic factors when evaluating treatment efficacy.
Collapse
Affiliation(s)
- Liqiu Ma
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan; China Institute of Atomic Energy, Beijing 102413, China
| | - Yoshimitsu Sakamoto
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ken Ando
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hidetoshi Fujita
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Tsuguhide Takeshima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiromi Otsuka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daniel K Ebner
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo, Tokyo, Japan
| | - Takashi Imai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takashi Shimokawa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|
17
|
Jiang M, Zeng J, Zhao L, Zhang M, Ma J, Guan X, Zhang W. Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo-immunotherapy. NANOSCALE 2021; 13:17218-17235. [PMID: 34643196 DOI: 10.1039/d1nr05512g] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy has been a conventional paradigm for cancer treatment, and multifarious chemotherapeutic drugs have been widely employed for decades with significant performances in suppressing tumors. Moreover, some of the antitumor chemotherapeutic agents, such as doxorubicin (DOX), oxaliplatin (OXA), cyclophosphamide (CPA) and paclitaxel (PTX), can also tackle tumors through the induction of immunogenic cell death (ICD) in tumor cells to trigger specific antitumor immune responses of the body and improve chemotherapy efficacy. In recent years, chemo-immunotherapy has attracted increasing attention as one of the most promising combination therapies to struggle with malignant tumors. Many effective antitumor therapies have benefited from the successful induction of ICD in tumors, which could incur the release of endogenous danger signals and tumor-associated antigens (TAAs), further stimulating antigen-presenting cells (APCs) and ultimately initiating efficient antitumor immunity. In this review, several well-characterized damage-associated molecular patterns (DAMPs) were introduced and the progress of ICD induced by representative chemotherapeutic drugs for nanomedicine-based chemo-immunotherapy was highlighted. In addition, the combination strategies involving ICD cooperated with other therapies were discussed. Finally, we shared some perspectives in chemotherapeutic drug-induced ICD for future chemo-immunotherapy. It was hoped that this review would provide worthwhile presentations and enlightenments for cancer chemo-immunotherapy.
Collapse
Affiliation(s)
- Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Jun Zeng
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Liping Zhao
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Mogen Zhang
- College of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
18
|
Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int J Mol Sci 2021; 22:ijms22137239. [PMID: 34281293 PMCID: PMC8269174 DOI: 10.3390/ijms22137239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the most important cells of the innate immune system and are known for their ability to engulf and digest foreign substances, including cellular debris and tumor cells. They can convert into tumor-associated macrophages (TAMs) when mature macrophages are recruited into the tumor microenvironment. Their role in cancer progression, metastasis, and therapy failure is of special note. The aim of this review is to understand how the presence of TAMs are both advantageous and disadvantageous in the immune system.
Collapse
Affiliation(s)
- Pedram Moeini
- Plant Virology Research Center, Shiraz University, Shiraz 71441-65186, Iran;
| | | |
Collapse
|
19
|
Nishimura J, Deguchi S, Tanaka H, Yamakoshi Y, Yoshii M, Tamura T, Toyokawa T, Lee S, Muguruma K, Ohira M. Induction of Immunogenic Cell Death of Esophageal Squamous Cell Carcinoma by 5-Fluorouracil and Cisplatin. In Vivo 2021; 35:743-752. [PMID: 33622867 DOI: 10.21873/invivo.12315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Neoadjuvant chemotherapy (NAC) using 5-FU (5-fluorouracil)/CDDP (cisplatin) is a standard therapy for stage II/III thoracic esophageal squamous cell carcinoma (ESCC) in Japan. The aim of this study was to investigate whether 5-FU/CDDP could induce immunogenic cell death in ESCC cell lines. MATERIALS AND METHODS Tumor samples for immunohistochemistry were obtained from 50 patients (mean age=63.1 years) with pathological stage 0-IVa ESCC who underwent NAC followed by surgery. Cell lines T.T and KYSE30 were used for the in vitro experiments. RESULTS The concentrations of HMGB1 were elevated in the cell line supernatants treated with 5-FU/CDDP. 5-FU/CDDP treated dendritic cells (DCs) showed a mature phenotype, and enhanced T cell proliferation capacity. In addition, mature DCs were observed in surgical specimens with a histological response after treatment with 5-FU/CDDP chemotherapy. CONCLUSION 5-FU/CDDP could induce immunogenic cell death in the tumor microenvironment of ESCC.
Collapse
Affiliation(s)
- Junya Nishimura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Sota Deguchi
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshihito Yamakoshi
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mami Yoshii
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tatsuro Tamura
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Lee
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kazuya Muguruma
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
20
|
Emerging applications of bacteria as antitumor agents. Semin Cancer Biol 2021; 86:1014-1025. [PMID: 33989734 DOI: 10.1016/j.semcancer.2021.05.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Bacteria are associated with the human body and colonize the gut, skin, and mucous membranes. These associations can be either symbiotic or pathogenic. In either case, bacteria derive more benefit from their host. The ability of bacteria to enter and survive within the human body can be exploited for human benefit. They can be used as a vehicle for delivering or producing bioactive molecules, such as toxins and lytic enzymes, and eventually for killing tumor cells. Clostridium and Salmonella have been shown to infect and survive within the human body, including in tumors. There is a need to develop genetic circuits, which enable bacterial cells to carry out the following activities: (i) escape the human immune system, (ii) invade tumors, (iii) multiply within the tumorous cells, (iv) produce toxins via quorum sensing at low cell densities, and (v) express suicide genes to undergo cell death or cell lysis after the tumor has been lysed. Thus, bacteria have the potential to be exploited as anticancer agents.
Collapse
|
21
|
Li Z, Li Y, Gao J, Fu Y, Hua P, Jing Y, Cai M, Wang H, Tong T. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy. Life Sci 2021; 273:119150. [PMID: 33662426 DOI: 10.1016/j.lfs.2021.119150] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
As a transmembrane protein, CD47 plays an important role in mediating cell proliferation, migration, phagocytosis, apoptosis, immune homeostasis, inhibition of NO signal transduction and other related reactions. Upon the interaction of innate immune checkpoint CD47-SIRPα occurrence, they send a "don't eat me" signal to the macrophages. This signal ultimately helps tumors achieve immune escape by inhibiting macrophage contraction to prevent tumor cells from phagocytosis. Therefore, the importance of CD47-SIRPα immune checkpoint inhibitors in tumor immunotherapy has attracted more attention in recent years. Based on the cognitive improvement of the effect with CD47 in tumor microenvironment and tumor characteristics, the pace of tumor treatment strategies for CD47-SIRPα immune checkpoint inhibitors has gradually accelerated. In this review, we introduced the high expression of CD47 in cancer cells to avoid phagocytosis by immune cells and the importance of CD47 in the structure of cancer microenvironment and the maintenance of cancer cell characteristics. Given the role of the innate immune system in tumorigenesis and development, an improved understanding of the anti-tumor process of innate immune checkpoint inhibitors can lay the foundation for more effective combinations with other anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Zihao Li
- The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Yue Li
- The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yilin Fu
- The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Peiyan Hua
- The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Yingying Jing
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Science and Technology of China, Hefei, Anhui 230027, China; Laboratory for Marine Biology and Biotechnology, Qing dao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong 266237, China
| | - Ti Tong
- The Second Hospital of Jilin University, Changchun, Jilin 130041, China.
| |
Collapse
|
22
|
Ishimwe N, Wei P, Wang M, Zhang H, Wang L, Jing M, Wen L, Zhang Y. Autophagy Impairment through Lysosome Dysfunction by Brucine Induces Immunogenic Cell Death (ICD). THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1915-1940. [PMID: 33308096 DOI: 10.1142/s0192415x20500962] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Autophagy is an important tightly controlled cellular process that regulates cellular homeostasis and is involved in deciding cell fate such as cell survival and death. The role of autophagy in many intracellular signaling pathways explains its interaction with other different types of cell death, including apoptosis and immunogenic cell death (ICD). The reports showed the complex and intriguing relationship existing between autophagy and immune system signaling pathways. However, the role of autophagy in ICD remains to be clearly elucidated. In this study, we demonstrated that Brucine, a clinically-used small molecule in traditional Chinese medicine, elicited autophagy inhibition. Brucine also triggered cell stress and induced features of ICD, including calreticulin (CRT) exposure and high-mobility group box 1 (HMGB1) release in MDA-MB-231 and CT26 cancer cells. Brucine impaired autolysosomal degradation and exerted a feedback regulation of ERK1/2-mTOR-p70S6K signaling cascade. Brucine-elicited ICD was confirmed by the rejection of CT26 tumor cells, implanted in the mice after vaccination with Brucine-treated CT26 cells. The impaired autophagy contributed to Brucine-induced ICD, as knock-down of Atg5 significantly reduced Brucine-elicited CRT exposure and HMGB1 release. Our results revealed Brucine as a novel autophagy regulator, ICD inducer and hitherto undocumented role of autophagy in ICD. Thus, these results imply the importance of Brucine in cancer immunotherapy. Therefore, Brucine may be used as an ICD inducer and improve its application in cancer treatment with minimized toxicity.
Collapse
Affiliation(s)
- Nestor Ishimwe
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Pengfei Wei
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Meimei Wang
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Hao Zhang
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Liansheng Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Manman Jing
- Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Longping Wen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China.,Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, P. R. China.,Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, P. R. China
| | - Yunjiao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China.,Guangzhou First People's Hospital, School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, P. R. China.,Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
23
|
Hong S, Bi M, Yu H, Yan Z, Wang H. Radiation therapy enhanced therapeutic efficacy of anti-PD1 against gastric cancer. JOURNAL OF RADIATION RESEARCH 2020; 61:851-859. [PMID: 32960261 PMCID: PMC7674687 DOI: 10.1093/jrr/rraa077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/20/2020] [Indexed: 05/05/2023]
Abstract
Radiation therapy is an important method in tumor treatment with distinct responses. This study aimed to investigate the immune effects of radiation therapy on the syngeneic gastric tumor model. Mouse forestomach carcinoma (MFC) cells were irradiated with different X-ray doses. Cell proliferation was determined by clonogenic assay. Gene and protein expression were determined by real-time quantitative PCR and western blot, respectively. The tumor model was established by subcutaneously injecting tumor cells in 615-(H-2 K) mice. Levels of immune-related factors in tumor tissues were determined by immunohistochemistry and flow cytometry. 5 Gy × 3 (three subfractions with 4 h interval) treatment significantly inhibited cell proliferation. Protein expression of stimulator of interferon genes (Sting) and gene expression of IFNB1, TNFα as well as CXCL-9 significantly increased in MFC cells after irradiation. In the MFC mouse model, no obvious tumor regression was observed after irradiation treatment. Further studies showed Sting protein expression, infiltration of dendritic cells and T cells, and significantly increased PD-1/PD-L1 expression in tumor tissues. Moreover, the irradiation treatment activated T cells and enhanced the therapeutic effects of anti-PD1 antibody against MFC tumor. Our data demonstrated that although the MFC tumor was not sensitive to radiation therapy, the tumor microenvironment could be primed after irradiation. Radiation therapy combined with immunotherapy can greatly improve anti-tumor activities in radiation therapy-insensitive tumor models.
Collapse
Affiliation(s)
- Sen Hong
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - MiaoMiao Bi
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - HaiYao Yu
- Department of Chief Pharmacist, Changchun Food and Drug Inspection Center, Changchun 130033, P.R. China
| | - ZhenKun Yan
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - HeLei Wang
- Corresponding author. Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| |
Collapse
|
24
|
Campesato LF, Weng CH, Merghoub T. Innate immune checkpoints for cancer immunotherapy: expanding the scope of non T cell targets. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1031. [PMID: 32953831 PMCID: PMC7475486 DOI: 10.21037/atm-20-1816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Luis F Campesato
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chien-Huan Weng
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
25
|
Accordino G, Lettieri S, Bortolotto C, Benvenuti S, Gallotti A, Gattoni E, Agustoni F, Pozzi E, Rinaldi P, Primiceri C, Morbini P, Lancia A, Stella GM. From Interconnection between Genes and Microenvironment to Novel Immunotherapeutic Approaches in Upper Gastro-Intestinal Cancers-A Multidisciplinary Perspective. Cancers (Basel) 2020; 12:cancers12082105. [PMID: 32751137 PMCID: PMC7465773 DOI: 10.3390/cancers12082105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the progress during the last decade, patients with advanced gastric and esophageal cancers still have poor prognosis. Finding optimal therapeutic strategies represents an unmet need in this field. Several prognostic and predictive factors have been evaluated and may guide clinicians in choosing a tailored treatment. Data from large studies investigating the role of immunotherapy in gastrointestinal cancers are promising but further investigations are necessary to better select those patients who can mostly benefit from these novel therapies. This review will focus on the treatment of metastatic esophageal and gastric cancer. We will review the standard of care and the role of novel therapies such as immunotherapies and CAR-T. Moreover, we will focus on the analysis of potential predictive biomarkers such as Modify as: Microsatellite Instability (MSI) and PD-L1, which may lead to treatment personalization and improved treatment outcomes. A multidisciplinary point of view is mandatory to generate an integrated approach to properly exploit these novel antiproliferative agents.
Collapse
Affiliation(s)
- Giulia Accordino
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
| | - Sara Lettieri
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
| | - Chandra Bortolotto
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (C.B.); (A.G.)
| | - Silvia Benvenuti
- Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia (FPO)-IRCCS-Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy;
| | - Anna Gallotti
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (C.B.); (A.G.)
| | - Elisabetta Gattoni
- Department of Oncology, Azienda Sanitaria Locale (ASL) AL, 27000 Casale Monferrato (AL), Italy;
| | - Francesco Agustoni
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (F.A.); (E.P.)
| | - Emma Pozzi
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (F.A.); (E.P.)
| | - Pietro Rinaldi
- Department of Intensive Medicine, Unit of Thoracic Surgery, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (P.R.); (C.P.)
| | - Cristiano Primiceri
- Department of Intensive Medicine, Unit of Thoracic Surgery, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (P.R.); (C.P.)
| | - Patrizia Morbini
- Department of Diagnostic Medicine, Unit of Pathology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy;
| | - Andrea Lancia
- Department of Medical Sciences and Infective Diseases, Unit of Radiation Therapy, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy;
| | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
- Correspondence: ; Tel.: +39-0382503369; Fax: +39-0382502719
| |
Collapse
|
26
|
Liao Y, Liu S, Fu S, Wu J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. Onco Targets Ther 2020; 13:6859-6871. [PMID: 32764978 PMCID: PMC7369309 DOI: 10.2147/ott.s253772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is a mainstay of cancer treatment. Recent studies have shown that RT not only directly induces cell death but also has late and sustained immune effects. High mobility group box 1 (HMGB1) is a nuclear protein released during RT, with location-dependent functions. It is essential for normal cellular function but also regulates the proliferation and migration of tumor cells by binding to high-affinity receptors. In this review, we summarize recent evidence on the functions of HMGB1 in RT according to the position, intracellular HMGB1 and extracellular HMGB1. Intracellular HMGB1 induces radiation tolerance in tumor cells by promoting DNA damage repair and autophagy. Extracellular HMGB1 plays a more intricate role in radiation-related immune responses, wherein it not only stimulates the anti-tumor immune response by facilitating the recognition of dying tumor cells but is also involved in maintaining immunosuppression. Factors that potentially affect the role of HMGB1 in RT-induced cytotoxicity have also been discussed in the context of possible therapeutic applications, which helps to develop effective and targeted radio-sensitization therapies.
Collapse
Affiliation(s)
- Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
27
|
Predicting therapeutic efficacy of endocrine therapy for stage IV breast cancer by tumor-infiltrating lymphocytes. Mol Clin Oncol 2020; 13:195-202. [PMID: 32714546 PMCID: PMC7366244 DOI: 10.3892/mco.2020.2063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/05/2019] [Indexed: 01/15/2023] Open
Abstract
The tumor immune environment not only modulates the effects of immunotherapy, but also the effects of other anticancer drugs and treatment outcomes. These immune responses may be evaluated by measuring tumor-infiltrating lymphocytes (TILs), which has been frequently verified clinically. In the present study, the prediction of the therapeutic effect of endocrine therapy by TILs on stage IV breast cancer was clinically analyzed. Data from 40 patients who underwent endocrine therapy as the initial drug therapy for stage IV breast cancer were used. The correlation between TILs, evaluated according to standard methods, and prognosis, including the efficacy of endocrine therapy, was investigated retrospectively. Patients with ≥50% lymphocytic infiltration were considered to have lymphocyte-predominant breast cancer (LPBC). An analysis of outcomes revealed no difference in progression-free survival (PFS; P=0.171), time to treatment failure (TTF; P=0.054), or overall survival (OS; P=0.641) between the high TIL (>10%) and low TIL (≤10%) groups. Patients with LPBC (≥50%) exhibited a significant prolongation of PFS (P=0.005, log-rank), TTF (P=0.001) and OS (P=0.027) compared with non-LPBC patients. On receiver operating characteristics (ROC) curve analysis, better results were obtained with LPBCs [area under the curve (AUC)=0.700] than with TILs (AUC=0.606). The present findings suggest that a high level of lymphocytic infiltration in the tumor stroma may serve as a predictor of the therapeutic efficacy of endocrine therapy in patients with stage IV estrogen receptor-positive breast cancer.
Collapse
|
28
|
Induction chemoradiotherapy including docetaxel, cisplatin, and 5-fluorouracil for locally advanced esophageal cancer. Esophagus 2020; 17:127-134. [PMID: 31897761 DOI: 10.1007/s10388-019-00709-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Locally advanced esophageal cancer (EC) invading surrounding organs (T4b) is difficult to treat. In general, definitive chemoradiotherapy (d-CRT) has been chosen as treatment for such cases. However, the outcome has not been good. Recently, the effectiveness of d-CRT with docetaxel, cisplatin, and 5-fluorouracil (DCF-RT) has been reported. Furthermore, surgery after d-CRT has a better prognosis than d-CRT alone in some reports, although it has a high risk of surgical complications. This study investigated the effectiveness and safety of induction DCF-RT. METHODS The subjects were EC patients who underwent induction DCF-RT in Okayama University Hospital between January 2011 and December 2017. Their background characteristics, treatment details, histopathological factors, adverse events during CRT, postoperative complications, and overall survival (OS) were assessed. RESULTS A total of 16 cases were performed induction DCF-RT. In 10 cases, death occurred, with 9 cancer-related deaths, and 1 death due to other disease. For all cases, OS was 37.5% at 3 years. 12 cases underwent esophagectomy after DCF-RT. Their OS was 50% at 3 years. 13 patients (81.3%) had Grade 3 febrile neutropenia. In 7 cases (62.5%), fasting for the treatment of diarrhea was needed. Three patients (25%) developed anastomotic leakage. Some recurrent laryngeal nerve paralysis was observed in 6 cases (50%). CONCLUSION Although the rates of adverse events and surgical complications were slightly higher than in past reports, they were acceptable. It is useful to perform induction DCF-RT for T4b EC.
Collapse
|
29
|
Montaseri G, Alfonso JCL, Hatzikirou H, Meyer-Hermann M. A minimal modeling framework of radiation and immune system synergy to assist radiotherapy planning. J Theor Biol 2020; 486:110099. [PMID: 31790681 DOI: 10.1016/j.jtbi.2019.110099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/15/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Recent evidence indicates the ability of radiotherapy to induce local and systemic tumor-specific immune responses as a result of immunogenic cell death. However, fractionation regimes routinely used in clinical practice typically ignore the synergy between radiation and the immune system, and instead attempt to completely eradicate tumors by the direct lethal effect of radiation on cancer cells. This paradigm is expected to change in the near future due to the potential benefits of considering radiation-induced antitumor immunity during treatment planning. Towards this goal, we propose a minimal modeling framework based on key aspects of the tumor-immune system interplay to simulate the effects of radiation on tumors and the immunological consequences of radiotherapy. The impacts of tumor-associated vasculature and intratumoral oxygen-mediated heterogeneity on treatment outcomes are ininvestigated. The model provides estimates of the minimum radiation doses required for tumor eradication given a certain number of treatment fractions. Moreover, estimates of treatment duration for disease control given predetermined fractional radiation doses can be also obtained. Although theoretical in nature, this study motivates the development and establishment of immune-based decision-support tools in radiotherapy planning.
Collapse
Affiliation(s)
- Ghazal Montaseri
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Centre for Individualised Infection Medicine (CIIM), Hannover, Germany
| | - Juan Carlos López Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Haralampos Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Centre for Individualised Infection Medicine (CIIM), Hannover, Germany; Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Germany.
| |
Collapse
|
30
|
Li Y, Liu X, Pan W, Li N, Tang B. Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer. Chem Commun (Camb) 2020; 56:1389-1392. [PMID: 31912821 DOI: 10.1039/c9cc08447a] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A photothermal and immune co-therapy strategy based on natural melanin nanoparticles was developed for treating primary and abscopal breast cancers.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | |
Collapse
|
31
|
Haderski GJ, Kandar BM, Brackett CM, Toshkov IM, Johnson CP, Paszkiewicz GM, Natarajan V, Gleiberman AS, Gudkov AV, Burdelya LG. TLR5 agonist entolimod reduces the adverse toxicity of TNF while preserving its antitumor effects. PLoS One 2020; 15:e0227940. [PMID: 32027657 PMCID: PMC7004342 DOI: 10.1371/journal.pone.0227940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/02/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor alpha (TNF) is capable of inducing regression of solid tumors. However, TNF released in response to Toll-like receptor 4 (TLR4) activation by bacterial lipopolysaccharide (LPS) is the key mediator of cytokine storm and septic shock that can cause severe tissue damage limiting anticancer applications of this cytokine. In our previous studies, we demonstrated that activation of another Toll-like receptor, TLR5, could protect from tissue damage caused by a variety of stresses including radiation, chemotherapy, Fas-activating antibody and ischemia-reperfusion. In this study, we tested whether entolimod could counteract TNF-induced toxicity in mouse models. We found that entolimod pretreatment effectively protects livers and lungs from LPS- and TNF-induced toxicity and prevents mortality caused by combining either of these agents with the sensitizer, D-galactosamine. While LPS and TNF induced significant activation of apoptotic caspase 3/7, lipid tissue peroxidation and serum ALT accumulation in mice without entolimod treatment, these indicators of toxicity were reduced by entolimod pretreatment to the levels of untreated control mice. Entolimod was effective when injected 0.5–48 hours prior to, but not when injected simultaneously or after LPS or TNF. Using chimeric mice with hematopoiesis differing in its TLR5 status from the rest of tissues, we showed that this protective activity was dependent on TLR5 expression by non-hematopoietic cells. Gene expression analysis identified multiple genes upregulated by entolimod in the liver and cultured hepatocytes as possible mediators of its protective activity. Entolimod did not interfere with the antitumor activity of TNF in mouse hepatocellular and colorectal tumor models. These results support further development of TLR5 agonists to increase tissue resistance to cytotoxic cytokines, reduce the risk of septic shock and enable safe systemic application of TNF as an anticancer therapy.
Collapse
Affiliation(s)
- Gary J. Haderski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Bojidar M. Kandar
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Ilia M. Toshkov
- Genome Protection, Inc., Buffalo, New York, United States of America
| | - Christopher P. Johnson
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Geraldine M. Paszkiewicz
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | - Venkatesh Natarajan
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
| | | | - Andrei V. Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
- * E-mail: (LGB); (AVG)
| | - Lyudmila G. Burdelya
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States America
- * E-mail: (LGB); (AVG)
| |
Collapse
|
32
|
Zhang S, Zhou L, Zhang M, Wang Y, Wang M, Du J, Gu W, Kui F, Li J, Geng S, Du G. Berberine Maintains the Neutrophil N1 Phenotype to Reverse Cancer Cell Resistance to Doxorubicin. Front Pharmacol 2020; 10:1658. [PMID: 32063859 PMCID: PMC7000449 DOI: 10.3389/fphar.2019.01658] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
This study explores the contributions of neutrophils to chemotherapeutic resistance and berberine-regulated cancer cell sensitivity to doxorubicin (DOX). In vitro experiments, continuous DOX treatment led to the shift of HL-60 cells to N2 neutrophils and thus induced chemotherapeutic resistance. The combination treatment with DOX and 2 µM berberine resulted in the differentiation of HL-60 cells toward N1 and therefore stimulated HL-60 cell immune clearance. Berberine increased reactive oxygen species (ROS) and decreased autophagy and therefore induced apoptosis in HL-60-N2 cells with morphological changes, but had no effect on cell viability in HL-60-N1 cells. The neutrophil-regulating efficacy of berberine was confirmed in the urethane-induced lung carcinogenic model and H22 liver cancer allograft model. Furthermore, we found that DOX-derived neutrophils had high levels of CD133 and CD309 surface expression, which prevented both chemotherapeutic sensitivity and immune rejection by self-expression of PD-L1 and surface expression of PD-1 receptor on T cells, whereas berberine could downregulate CD133 and CD309 surface expression. Finally, berberine-relevant targets and pathways were evaluated. This study first suggests an important role of berberine in regulating neutrophil phenotypes to maintain cancer cell sensitivity to DOX.
Collapse
Affiliation(s)
- Shuhui Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Lin Zhou
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Mengdi Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yuehua Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Mengqi Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Jincheng Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- Chinese Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Jiahuan Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Shengnan Geng
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, China
| |
Collapse
|
33
|
Imaizumi K, Suzuki T, Kojima M, Shimomura M, Sakuyama N, Tsukada Y, Sasaki T, Nishizawa Y, Taketomi A, Ito M, Nakatsura T. Ki67 expression and localization of T cells after neoadjuvant therapies as reliable predictive markers in rectal cancer. Cancer Sci 2019; 111:23-35. [PMID: 31660687 PMCID: PMC6942445 DOI: 10.1111/cas.14223] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/03/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Chemoradiotherapy (CRT) is the standard neoadjuvant therapy for locally advanced rectal cancer (RC). However, neoadjuvant chemotherapy (NAC) also shows favorable outcomes. Although the immunological environment of RC has been thoroughly discussed, the effect of NAC on it is less clear. Here, we investigated the immunological microenvironment, including T cell infiltration, activation, and topological distribution, of resected RC tissue after neoadjuvant therapies and evaluated the correlation between T cell subsets and patient prognosis. Rectal cancer patients (n = 188) were enrolled and categorized into 3 groups, namely CRT (n = 41), NAC (n = 46), and control (surgery alone; n = 101) groups. Characterization of residual carcinoma cells and T cell subsets in resected tissues was performed using multiplex fluorescence immunohistochemistry. The densities of total and activated (Ki67high) T cells in tissues after NAC, but not CRT, were higher than in control. In both CRT and NAC groups, patients presenting with higher treatment effects showed aggressive infiltration of T cell subsets into carcinomas. Multivariate analyses of pathological and immunological features and prognosis revealed that carcinoma Ki67highCD4+ T cells after CRT and stromal Ki67highCD8+ T cells after NAC are important prognostic factors, respectively. Our results suggest that evaluation of T cell activation with Ki67 expression and its tumor localization can be used to determine the prognosis of advanced RC after neoadjuvant therapies.
Collapse
Affiliation(s)
- Ken Imaizumi
- Deparment of Colorectal Surgery, National Cancer Center Hospital East, Kashiwa, Japan.,Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Motohiro Kojima
- Division of Pathology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Naoki Sakuyama
- Deparment of Colorectal Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuichiro Tsukada
- Deparment of Colorectal Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takeshi Sasaki
- Deparment of Colorectal Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuji Nishizawa
- Deparment of Colorectal Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Ito
- Deparment of Colorectal Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
34
|
Chen C, Ni X, Jia S, Liang Y, Wu X, Kong D, Ding D. Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904914. [PMID: 31696981 DOI: 10.1002/adma.201904914] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/04/2019] [Indexed: 05/06/2023]
Abstract
Immunogenic cell death (ICD) provides momentous theoretical principle for modern cancer immunotherapy. However, the currently available ICD inducers are still very limited and photosensitizer-based ones can hardly induce sufficient ICD to achieve satisfactory cancer immunotherapy by themselves. Herein, an organic photosensitizer (named TPE-DPA-TCyP) with a twisted molecular structure, strong aggregation-induced emission activity, and specific ability is reported for effectively inducing focused mitochondrial oxidative stress of cancer cells, which can serve as a much superior ICD inducer to the popularly used ones, including chlorin e6 (Ce6), pheophorbide A, and oxaliplatin. Furthermore, more effective in vivo ICD immunogenicity of TPE-DPA-TCyP than Ce6 is also demonstrated using a prophylactic tumor vaccination model. The underlying mechanism of the effectiveness and robustness of TPE-DPA-TCyP in inducing antitumor immunity and immune-memory effect in vivo is verified by immune cell analyses. This study thus reveals that inducing focused mitochondrial oxidative stress is a highly effective strategy to evoke abundant and large-scale ICD.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiang Ni
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shaorui Jia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Liang
- Department of Clinical Laboratory, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second Hospital, Huai'an, 223002, Jiangsu, China
| | - Xiaoli Wu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| |
Collapse
|
35
|
Zhang J, Shen L, Li X, Song W, Liu Y, Huang L. Nanoformulated Codelivery of Quercetin and Alantolactone Promotes an Antitumor Response through Synergistic Immunogenic Cell Death for Microsatellite-Stable Colorectal Cancer. ACS NANO 2019; 13:12511-12524. [PMID: 31664821 DOI: 10.1021/acsnano.9b02875] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microsatellite-stable colorectal cancer (CRC) is known to be resistant to immunotherapy. The combination of quercetin (Q) and alantolactone (A) was found to induce synergistic immunogenic cell death (ICD) at a molar ratio of 1:4 (Q:A). To achieve ratiometric loading and delivery, the micellar delivery of Q and A (QA-M) was developed with high entrapment efficiency and drug loading at an optimal ratio. QA-M achieved prolonged blood circulation and increased tumor accumulation for both drugs. More importantly, QA-M retained the desired drug ratio (molar ratio of Q to A = 1:4) in tumors at 2 and 4 h after intravenous injection for synergistic immunotherapy. Tumor growth was significantly inhibited in murine orthotopic CRC by the treatment of QA-M compared to PBS and the combination of free drugs (p < 0.005). The combination of nanotherapy stimulated the host immune response to induce long-term tumor destruction and induced memory tumor surveillance with a 1.3-fold increase in survival median time compared to PBS (p < 0.0001) and a combination of free drugs (p < 0.0005). The synergistic therapeutic effect induced by codelivery of Q and A is capable of reactivating antitumor immunity by inducing ICD, causing cell toxicity and modulating the immune-suppressive tumor microenvironment. Such a combination of Q and A with synergistic effects entrapped in a simple and safe nanodelivery system may provide the potential for scale-up manufacturing and clinical applications as immunotherapeutic agents for CRC.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
- Key Laboratory of Modern Preparation of TCM, Ministry of Education , Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi Province 330004 , China
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education , Jiangxi University of Traditional Chinese Medicine , Nanchang , Jiangxi Province 330004 , China
| | - Wantong Song
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
- Key Laboratory of Polymer Ecomaterials , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin Province 130022 , China
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
36
|
Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 2019; 26:78. [PMID: 31629410 PMCID: PMC6800990 DOI: 10.1186/s12929-019-0568-z] [Citation(s) in RCA: 742] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
In many solid tumor types, tumor-associated macrophages (TAMs) are important components of the tumor microenvironment (TME). Moreover, TAMs infiltration is strongly associated with poor survival in solid tumor patients. In this review, we describe the origins of TAMs and their polarization state dictated by the TME. We also specifically focus on the role of TAMs in promoting tumor growth, enhancing cancer cells resistance to chemotherapy and radiotherapy, promoting tumor angiogenesis, inducing tumor migration and invasion and metastasis, activating immunosuppression. In addition, we discuss TAMs can be used as therapeutic targets of solid tumor in clinics. The therapeutic strategies include clearing macrophages and inhibiting the activation of TAMs, promoting macrophage phagocytic activity, limiting monocyte recruitment and other targeted TAMs therapies.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China.
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Longlong Gong
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
37
|
Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX, Weissman IL. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer 2019; 19:568-586. [PMID: 31462760 PMCID: PMC7002027 DOI: 10.1038/s41568-019-0183-z] [Citation(s) in RCA: 637] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapies targeting adaptive immune checkpoints have substantially improved patient outcomes across multiple metastatic and treatment-refractory cancer types. However, emerging studies have demonstrated that innate immune checkpoints, which interfere with the detection and clearance of malignant cells through phagocytosis and suppress innate immune sensing, also have a key role in tumour-mediated immune escape and might, therefore, be potential targets for cancer immunotherapy. Indeed, preclinical studies and early clinical data have established the promise of targeting phagocytosis checkpoints, such as the CD47-signal-regulatory protein α (SIRPα) axis, either alone or in combination with other cancer therapies. In this Review, we highlight the current understanding of how cancer cells evade the immune system by disrupting phagocytic clearance and the effect of phagocytosis checkpoint blockade on induction of antitumour immune responses. Given the role of innate immune cells in priming adaptive immune responses, an improved understanding of the tumour-intrinsic processes that inhibit essential immune surveillance processes, such as phagocytosis and innate immune sensing, could pave the way for the development of highly effective combination immunotherapy strategies that modulate both innate and adaptive antitumour immune responses.
Collapse
Affiliation(s)
- Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Centre, Duarte, CA, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Yang-Xin Fu
- Department of Pathology, The University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
38
|
Feng X, Xu W, Li Z, Song W, Ding J, Chen X. Immunomodulatory Nanosystems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900101. [PMID: 31508270 PMCID: PMC6724480 DOI: 10.1002/advs.201900101] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/21/2019] [Indexed: 05/15/2023]
Abstract
Immunotherapy has emerged as an effective strategy for the prevention and treatment of a variety of diseases, including cancer, infectious diseases, inflammatory diseases, and autoimmune diseases. Immunomodulatory nanosystems can readily improve the therapeutic effects and simultaneously overcome many obstacles facing the treatment method, such as inadequate immune stimulation, off-target side effects, and bioactivity loss of immune agents during circulation. In recent years, researchers have continuously developed nanomaterials with new structures, properties, and functions. This Review provides the most recent advances of nanotechnology for immunostimulation and immunosuppression. In cancer immunotherapy, nanosystems play an essential role in immune cell activation and tumor microenvironment modulation, as well as combination with other antitumor approaches. In infectious diseases, many encouraging outcomes from using nanomaterial vaccines against viral and bacterial infections have been reported. In addition, nanoparticles also potentiate the effects of immunosuppressive immune cells for the treatment of inflammatory and autoimmune diseases. Finally, the challenges and prospects of applying nanotechnology to modulate immunotherapy are discussed.
Collapse
Affiliation(s)
- Xiangru Feng
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- University of Science and Technology of ChinaHefei230026P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Zhongmin Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Department of Gastrointestinal Colorectal and Anal SurgeryChina–Japan Union Hospital of Jilin UniversityChangchun130033P. R. China
| | - Wantong Song
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| |
Collapse
|
39
|
Khan KA, McMurray JL, Mohammed F, Bicknell R. C-type lectin domain group 14 proteins in vascular biology, cancer and inflammation. FEBS J 2019; 286:3299-3332. [PMID: 31287944 PMCID: PMC6852297 DOI: 10.1111/febs.14985] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
The C‐type lectin domain (CTLD) group 14 family of transmembrane glycoproteins consist of thrombomodulin, CD93, CLEC14A and CD248 (endosialin or tumour endothelial marker‐1). These cell surface proteins exhibit similar ectodomain architecture and yet mediate a diverse range of cellular functions, including but not restricted to angiogenesis, inflammation and cell adhesion. Thrombomodulin, CD93 and CLEC14A can be expressed by endothelial cells, whereas CD248 is expressed by vasculature associated pericytes, activated fibroblasts and tumour cells among other cell types. In this article, we review the current literature of these family members including their expression profiles, interacting partners, as well as established and speculated functions. We focus primarily on their roles in the vasculature and inflammation as well as their contributions to tumour immunology. The CTLD group 14 family shares several characteristic features including their ability to be proteolytically cleaved and engagement of some shared extracellular matrix ligands. Each family member has strong links to tumour development and in particular CD93, CLEC14A and CD248 have been proposed as attractive candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Canada
| | - Jack L McMurray
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Roy Bicknell
- Institutes of Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|
40
|
Process of immunogenic cell death caused by disulfiram as the anti-colorectal cancer candidate. Biochem Biophys Res Commun 2019; 513:891-897. [DOI: 10.1016/j.bbrc.2019.03.192] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
|
41
|
Yaguchi D, Ichikawa M, Ito M, Okamoto S, Kimura H, Watanabe K. Dramatic response to nivolumab after local radiotherapy in pulmonary pleomorphic carcinoma with rapid progressive post-surgical recurrence. Thorac Cancer 2019; 10:1263-1266. [PMID: 30860657 PMCID: PMC6500956 DOI: 10.1111/1759-7714.13029] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 11/05/2022] Open
Abstract
Pulmonary pleomorphic carcinoma (PPC) is resistant to anticancer drug treatment, outcomes are poor, and no standard therapy has been established. High PD‐L1 expression has been found in PPCs, suggesting the possible efficacy of an immune checkpoint inhibitor (ICI) in cancer immunotherapy; however, this approach requires further investigation through case accumulation. Herein, we report a case of rapid recurrence and progression of PPC early after surgery in a 70‐year‐old male ex‐smoker. Surgery was performed for lung cancer of the right lower lobe, and a pathological examination indicated primary PPC with high PD‐L1 expression (tumor proportion score: 90%). Because systemic metastasis recurred only six weeks after surgery, nivolumab was administered as second‐line treatment. Marked tumor regression was observed on imaging after three cycles, revealing a near complete response. Palliative radiotherapy was applied to the bone metastasis region for pain relief before nivolumab was administered. This case suggests that an ICI can have an effect on PPC and that the efficacy of ICIs may be enhanced by radiotherapy‐induced abscopal effects.
Collapse
Affiliation(s)
- Daizo Yaguchi
- Department of Respiratory Medicine, Gifu Prefectural Tajimi Hospital, Gifu, Japan
| | - Motoshi Ichikawa
- Department of Respiratory Medicine, Gifu Prefectural Tajimi Hospital, Gifu, Japan
| | - Masao Ito
- Department of Thoracic Surgery, Gifu Prefectural Tajimi Hospital, Gifu, Japan
| | - Sawako Okamoto
- Department of Thoracic Surgery, Gifu Prefectural Tajimi Hospital, Gifu, Japan
| | - Hayata Kimura
- Department of Respiratory Medicine, Gifu Prefectural Tajimi Hospital, Gifu, Japan
| | - Kazuko Watanabe
- Department of Pathology, Gifu Prefectural Tajimi Hospital, Gifu, Japan
| |
Collapse
|
42
|
Wu J, Waxman DJ. Immunogenic chemotherapy: Dose and schedule dependence and combination with immunotherapy. Cancer Lett 2019; 419:210-221. [PMID: 29414305 DOI: 10.1016/j.canlet.2018.01.050] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
Conventional cytotoxic cancer chemotherapy is often immunosuppressive and associated with drug resistance and tumor regrowth after a short period of tumor shrinkage or growth stasis. However, certain cytotoxic cancer chemotherapeutic drugs, including doxorubicin, mitoxantrone, and cyclophosphamide, can kill tumor cells by an immunogenic cell death pathway, which activates robust innate and adaptive anti-tumor immune responses and has the potential to greatly increase the efficacy of chemotherapy. Here, we review studies on chemotherapeutic drug-induced immunogenic cell death, focusing on how the choice of a conventional cytotoxic agent and its dose and schedule impact anti-tumor immune responses. We propose a strategy for effective immunogenic chemotherapy that employs a modified metronomic schedule for drug delivery, which we term medium-dose intermittent chemotherapy (MEDIC). Striking responses have been seen in preclinical cancer models using MEDIC, where an immunogenic cancer chemotherapeutic agent is administered intermittently and at an intermediate dose, designed to impart strong and repeated cytotoxic damage to tumors, and on a schedule compatible with activation of a sustained anti-tumor immune response, thereby maximizing anti-cancer activity. We also discuss strategies for combination chemo-immunotherapy, and we outline approaches to identify new immunogenic chemotherapeutic agents for drug development.
Collapse
Affiliation(s)
- Junjie Wu
- Department of Biology, Division of Cell and Molecular Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology, Division of Cell and Molecular Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
43
|
Mazumder A, Lee JY, Talhi O, Cerella C, Chateauvieux S, Gaigneaux A, Hong CR, Kang HJ, Lee Y, Kim KW, Kim DW, Shin HY, Dicato M, Bachari K, Silva AM, Orlikova-Boyer B, Diederich M. Hydroxycoumarin OT-55 kills CML cells alone or in synergy with imatinib or Synribo: Involvement of ER stress and DAMP release. Cancer Lett 2018; 438:197-218. [DOI: 10.1016/j.canlet.2018.07.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 01/08/2023]
|
44
|
Merino VF, Cho S, Nguyen N, Sadik H, Narayan A, Talbot C, Cope L, Zhou XC, Zhang Z, Győrffy B, Sukumar S. Induction of cell cycle arrest and inflammatory genes by combined treatment with epigenetic, differentiating, and chemotherapeutic agents in triple-negative breast cancer. Breast Cancer Res 2018; 20:145. [PMID: 30486871 PMCID: PMC6263070 DOI: 10.1186/s13058-018-1068-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background A combination of entinostat, all-trans retinoic acid, and doxorubicin (EAD) induces cell death and differentiation and causes significant regression of xenografts of triple-negative breast cancer (TNBC). Methods We investigated the mechanisms underlying the antitumor effects of each component of the EAD combination therapy by high-throughput gene expression profiling of drug-treated cells. Results Microarray analysis showed that entinostat and doxorubicin (ED) altered expression of genes related to growth arrest, inflammation, and differentiation. ED downregulated MYC, E2F, and G2M cell cycle genes. Accordingly, entinostat sensitized the cells to doxorubicin-induced growth arrest at G2. ED induced interferon genes, which correlated with breast tumors containing a higher proportion of tumor-infiltrating lymphocytes. ED also increased the expression of immune checkpoint agonists and cancer testis antigens. Analysis of TNBC xenografts showed that EAD enhanced the inflammation score in nude mice. Among the genes differentially regulated between the EAD and ED groups, an all-trans retinoic acid (ATRA)-regulated gene, DHRS3, was induced in EAD-treated xenografts. DHRS3 was expressed at lower levels in human TNBC metastases compared to normal breast or primary tumors. High expression of ED-induced growth arrest and inflammatory genes was associated with better prognosis in TNBC patients. Conclusions Entinostat potentiated doxorubicin-mediated cell death and the combination induced inflammatory signatures. The ED-induced immunomodulation may improve immunotherapy. Addition of ATRA to ED may potentiate inflammation and contribute to TNBC regression. Electronic supplementary material The online version of this article (10.1186/s13058-018-1068-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vanessa F Merino
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Soonweng Cho
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nguyen Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helen Sadik
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athira Narayan
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Conover Talbot
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xian C Zhou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhe Zhang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary.,2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Lybaert L, Vermaelen K, De Geest BG, Nuhn L. Immunoengineering through cancer vaccines – A personalized and multi-step vaccine approach towards precise cancer immunity. J Control Release 2018; 289:125-145. [DOI: 10.1016/j.jconrel.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
46
|
Iimori N, Kashiwagi S, Asano Y, Goto W, Takada K, Takahashi K, Hatano T, Takashima T, Tomita S, Motomura H, Hirakawa K, Ohira M. Clinical Significance of the Neutrophil-to-Lymphocyte Ratio in Endocrine Therapy for Stage IV Breast Cancer. ACTA ACUST UNITED AC 2018; 32:669-675. [PMID: 29695577 DOI: 10.21873/invivo.11292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Studies have found that patients with cancer exhibit abnormal leukocyte fractions, such as elevated neutrophil count and diminished lymphocyte count, and that the neutrophil-to-lymphocyte ratio (NLR) provides a surrogate marker for prognosis and response to treatment of patients after radical surgery for several different types of cancer. However, few reports have addressed the association between the NLR and response to endocrine therapy. In this study, we carried out a clinical investigation to confirm whether or not the NLR predicted the response to endocrine therapy of stage IV breast cancer. PATIENTS AND METHODS The study subjects were 34 patients who underwent endocrine therapy as initial drug therapy for stage IV breast cancer. The correlation between NLR and prognosis, including the efficacy of endocrine therapy, was evaluated retrospectively. RESULTS Among the 34 patients, the NLR was high in 10 (29.4%) and low in 24 (70.6%). In analysis of outcomes, the group with low NLR had a significant prolongation of progression-free survival (p=0.003), time to treatment failure (p=0.031), and overall survival (p=0.013) compared to the group with high NLR. Univariate analysis of progression-free survival found that responding to treatment [hazard ratio (HR)=4.310, p=0.004] and low NLR (HR=3.940, p=0.016) were factors associated with a favorable prognosis. Multivariate analysis also showed that responding to treatment (HR=4.329, p=0.006) and low NLR (HR=3.930, p=0.008) were independent factors associated with a favorable prognosis. CONCLUSION Our results suggested that the NLR may represent a predictive marker for response to endocrine therapy in stage IV breast cancer.
Collapse
Affiliation(s)
- Nozomi Iimori
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Kashiwagi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuka Asano
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Wataru Goto
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Takada
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Katsuyuki Takahashi
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takaharu Hatano
- Department of Plastic and Reconstructive Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsutomu Takashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Tomita
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hisashi Motomura
- Department of Plastic and Reconstructive Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
47
|
Yoon HY, Selvan ST, Yang Y, Kim MJ, Yi DK, Kwon IC, Kim K. Engineering nanoparticle strategies for effective cancer immunotherapy. Biomaterials 2018; 178:597-607. [DOI: 10.1016/j.biomaterials.2018.03.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
|
48
|
Onishi M, Okonogi N, Oike T, Yoshimoto Y, Sato H, Suzuki Y, Kamada T, Nakano T. High linear energy transfer carbon-ion irradiation increases the release of the immune mediator high mobility group box 1 from human cancer cells. JOURNAL OF RADIATION RESEARCH 2018; 59:541-546. [PMID: 29947767 PMCID: PMC6151640 DOI: 10.1093/jrr/rry049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 05/13/2023]
Abstract
Anti-tumor immunity modulates the local effects of radiation therapy. High mobility group box 1 (HMGB1) plays a pivotal role in activating antigen-specific T-cell responses. Here, we examined the relationship between linear energy transfer (LET) and HMGB1 release. We assessed the proportions of KYSE-70, HeLa and SiHa cells surviving after carbon-ion (C-ion) beam irradiation with different LET values, using a clonogenic assay. The D10, the dose at which 10% of cells survived, was calculated using a linear-quadratic model. HMGB1 levels in the culture supernatants of C-ion beam-irradiated tumor cells were assessed by enzyme-linked immunosorbent assay. The D10 doses for 13 keV/μm of C-ion irradiation in KYSE-70, HeLa and SiHa cells were 2.8, 3.9 and 4.1 Gy, respectively, whereas those for 70 keV/μm C-ion irradiation were 1.4, 1.9 and 2.3 Gy, respectively. We found that 70 keV/μm of C-ion irradiation significantly increased HMGB1 levels in the culture supernatants of all cell lines 72 h after irradiation compared with non-irradiated controls. Furthermore, 70 keV/μm of C-ion irradiation significantly increased HMGB1 levels in the culture supernatants of all cell lines 72 h after irradiation compared with 13 keV/μm. The results suggest that HMGB1 release from several cancer cell lines increases with increased LET.
Collapse
Affiliation(s)
- Masahiro Onishi
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi-City, Gunma, Japan
| | - Noriyuki Okonogi
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
- Corresponding author. Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan. Tel: +81-43-206-3306; Fax: +81-43-256-6506;
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi-City, Gunma, Japan
| | - Yuya Yoshimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi-City, Gunma, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi-City, Gunma, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine,1 Hikariga-oka, Fukushima-City, Fukushima, Japan
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi-City, Gunma, Japan
| |
Collapse
|
49
|
Forbes NS, Coffin RS, Deng L, Evgin L, Fiering S, Giacalone M, Gravekamp C, Gulley JL, Gunn H, Hoffman RM, Kaur B, Liu K, Lyerly HK, Marciscano AE, Moradian E, Ruppel S, Saltzman DA, Tattersall PJ, Thorne S, Vile RG, Zhang HH, Zhou S, McFadden G. White paper on microbial anti-cancer therapy and prevention. J Immunother Cancer 2018; 6:78. [PMID: 30081947 PMCID: PMC6091193 DOI: 10.1186/s40425-018-0381-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
In this White Paper, we discuss the current state of microbial cancer therapy. This paper resulted from a meeting ('Microbial Based Cancer Therapy') at the US National Cancer Institute in the summer of 2017. Here, we define 'Microbial Therapy' to include both oncolytic viral therapy and bacterial anticancer therapy. Both of these fields exploit tumor-specific infectious microbes to treat cancer, have similar mechanisms of action, and are facing similar challenges to commercialization. We designed this paper to nucleate this growing field of microbial therapeutics and increase interactions between researchers in it and related fields. The authors of this paper include many primary researchers in this field. In this paper, we discuss the potential, status and opportunities for microbial therapy as well as strategies attempted to date and important questions that need to be addressed. The main areas that we think will have the greatest impact are immune stimulation, control of efficacy, control of delivery, and safety. There is much excitement about the potential of this field to treat currently intractable cancer. Much of the potential exists because these therapies utilize unique mechanisms of action, difficult to achieve with other biological or small molecule drugs. By better understanding and controlling these mechanisms, we will create new therapies that will become integral components of cancer care.
Collapse
Affiliation(s)
- Neil S Forbes
- grid.266683.f0000 0001 2184 9220Department of Chemical EngineeringUniversity of Massachusetts 159 Goessmann Hall 01003 Amherst MA USA
| | | | - Liang Deng
- 0000 0001 2171 9952grid.51462.34Department of Medicine, Memorial Sloan Kettering Cancer Center 10065 New York NY USA
| | - Laura Evgin
- 0000 0004 0459 167Xgrid.66875.3aMayo Clinic Rochester USA
| | - Steve Fiering
- 0000 0001 2179 2404grid.254880.3Geisel School of Medicine at Dartmouth Hanover USA
| | | | - Claudia Gravekamp
- 0000000121791997grid.251993.5Albert Einstein College of Medicine Bronx USA
| | - James L Gulley
- 0000 0004 1936 8075grid.48336.3aNational Cancer Institute, National Institutes of Health Bethesda USA
| | | | - Robert M Hoffman
- 0000 0001 2107 4242grid.266100.3UC, San Diego San Diego USA
- 0000 0004 0461 1271grid.417448.aAntiCancer Inc. San Diego USA
| | - Balveen Kaur
- 0000000121548364grid.55460.32University of Texas Austin USA
| | - Ke Liu
- 0000 0001 2243 3366grid.417587.8Center for Biologics Evaluation and ResearchUS Food and Drug Administration Silver Spring USA
| | | | - Ariel E Marciscano
- 0000 0004 1936 8075grid.48336.3aNational Cancer Institute, National Institutes of Health Bethesda USA
| | | | - Sheryl Ruppel
- 0000 0004 4665 8158grid.419407.fLeidos Biomedical Research, Inc. Frederick USA
| | - Daniel A Saltzman
- 0000000419368657grid.17635.36University of Minnesota Minneapolis USA
| | | | - Steve Thorne
- 0000 0004 1936 9000grid.21925.3dUniversity of Pittsburgh Pittsburgh USA
| | - Richard G Vile
- 0000 0004 0459 167Xgrid.66875.3aMayo Clinic Rochester USA
| | | | - Shibin Zhou
- 0000 0001 2171 9311grid.21107.35Johns Hopkins University Baltimore USA
| | - Grant McFadden
- 0000 0001 2151 2636grid.215654.1Center for Immunotherapy, Vaccines and Virotherapy , Biodesign InstituteArizona State University 727 E Tyler Street, Room A330E 85281 Tempe AZ USA
| |
Collapse
|
50
|
Xia L, Wu H, Qian W. Irradiation enhanced the effects of PD-1 blockade in brain metastatic osteosarcoma. J Bone Oncol 2018; 12:61-64. [PMID: 29992089 PMCID: PMC6036860 DOI: 10.1016/j.jbo.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 11/30/2022] Open
Abstract
Brain metastasis of osteosarcoma are rare but carry a dismal prognosis. Despite the advances in both systemic immunotherapy and localized radiation, it is still difficult to treat brain metastasis, with less than 12 months of survival from the time of diagnosis for most patients. Currently, there is interest in combining strategies to take advantage of the potential synergy. In this study, the mouse model of metastatic osteosarcoma to brain was used to explore the ability of local radiation and anti-PD-1 blockade to induce beneficial anti-tumor immune responses against distant, unirradiated brain metastatic tumors. Immune markers from the peripheral blood and tumor tissue were analyzed by flow cytometry, real-time PCR and western blot. The combination treatment produced a stronger systemic anti-tumor response than either treatment alone, shown by the reduced tumor burden and larger numbers of cytotoxic CD8+ T cells in the unirradiated tumors, indicating an abscopal effect. These data suggested that combination treatment of irradiation with anti-PD-1 immunotherapy can induce abscopal anti-tumor responses and improve both local and distant control.
Collapse
Affiliation(s)
- Liming Xia
- Department of Musculoskeletal Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou 310000, People's Republic of China
| | - Hao Wu
- Department of Musculoskeletal Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou 310000, People's Republic of China
| | - Wenkang Qian
- Department of Musculoskeletal Cancer Surgery, Zhejiang Cancer Hospital, Hangzhou 310000, People's Republic of China
| |
Collapse
|